JP2009255172A - Method for manufacturing t-type joint - Google Patents

Method for manufacturing t-type joint Download PDF

Info

Publication number
JP2009255172A
JP2009255172A JP2009073746A JP2009073746A JP2009255172A JP 2009255172 A JP2009255172 A JP 2009255172A JP 2009073746 A JP2009073746 A JP 2009073746A JP 2009073746 A JP2009073746 A JP 2009073746A JP 2009255172 A JP2009255172 A JP 2009255172A
Authority
JP
Japan
Prior art keywords
plate
welding
manufacturing
thickness
plate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009073746A
Other languages
Japanese (ja)
Inventor
Kikuichi Mori
喜久一 森
Katsuhiro Mihashi
克広 三橋
Akiyoshi Ando
彰芳 安藤
Shigeru Ishida
茂 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2009073746A priority Critical patent/JP2009255172A/en
Publication of JP2009255172A publication Critical patent/JP2009255172A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method which enables the formation of inexpensive high-quality T-type joint by using ark welding method and plasma welding method which are conventional and inexpensive for welding equipment. <P>SOLUTION: In the method for manufacturing the T-type joint, an end surface of a second plate 14 is abutted at a predetermined angle to the rear side of a first plate 12, and ark welding or plasma welding is performed from the surface side of the first plate 12. Thereby, the heat of ark welding or plasma welding penetrates through the first plate 12 and melts an end surface portion of the second plate, and a T-type welded joint is formed by depositing a molten portion. In ark or plasma welding, a deep penetration method is applied by case according to a thickness of the first plate. Also, thickness-reduction working is performed on the surface of the plate when plate thickness exceeds a penetration depth. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば比較的小型の流体機械の羽根車の主板又は側板と羽根のような複雑な構造を溶接するために好適なT型継手の製造方法に関する。   The present invention relates to a method of manufacturing a T-shaped joint suitable for welding a complicated structure such as a main plate or a side plate and a blade of an impeller of a relatively small fluid machine.

小型ポンプ用の羽根車は、従来、図15に示すように、大型のものと同様に鋳造で製造されていた。この場合、最終形状に近い形に鋳造するので、製品当たりの製造工程が少なくコストが安い。しかしながら、このような小型で複雑な形状の製品の鋳造は、中子が薄いので変形や割れが生じやすく、またガスが抜けにくいので欠陥が発生しやすい、といった鋳造自体の困難性がある。本来、羽根車の性能には、寸法精度や表面粗さが大きな影響を及ぼすが、一体物の鋳物は流路面が鋳肌になるので、表面が粗い。また、凝固収縮による寸法の変化があるので、設計通りの寸法を得ることが困難である。さらに、中空形状の鋳物を作るには中子を使わなければならないが、中子のずれにより肉厚・寸法を狙い通りにすることが難しい。内部流路にグラインダが入りにくいので鋳造後の内表面の仕上げ作業も困難であり、狭い流路面の手直しや修正加工はできず、性能に及ぼす上記の影響を回避できない。特に、翼(羽根)高さが小さい羽根車は鋳造が難しく不良率が高いことなどの問題がある。このため、鋳造後の廃却率が高くなり、納期遅れやコスト高の原因となっていた。   Conventionally, the impeller for a small pump has been manufactured by casting in the same manner as a large one as shown in FIG. In this case, since it is cast to a shape close to the final shape, the number of manufacturing steps per product is small and the cost is low. However, casting of such a small and complicated product has difficulty in casting such that the core is thin, so that deformation and cracking are likely to occur, and gas is difficult to escape, so that defects are likely to occur. Originally, although the dimensional accuracy and the surface roughness have a great influence on the performance of the impeller, the integral casting has a rough surface because the flow path surface becomes a casting surface. In addition, since there is a change in dimension due to solidification shrinkage, it is difficult to obtain a designed dimension. Furthermore, a core must be used to make a hollow casting, but it is difficult to achieve the desired thickness and dimensions due to the displacement of the core. Since it is difficult for the grinder to enter the internal flow path, it is difficult to finish the inner surface after casting, and the narrow flow path surface cannot be reworked or corrected, and the above-described influence on performance cannot be avoided. In particular, impellers with small blade (blade) height have problems such as difficulty in casting and high defect rate. For this reason, the disposal rate after casting became high, resulting in delays in delivery and high costs.

そこで、このような閉鎖的な空間を持つ構造の鋳造が困難なことに鑑み、羽根車を構成する部品である主板と側板を個別に製造し、これらを溶接することで一体化する製造方法が考えられる(図13参照)。この場合、主板と側板の一体化は、一方に形成した翼14の端面を他方の主板(又は側板)12の裏面に突き合わせて行うが、裏面側は閉鎖空間に近いので、図16(d)に示すような、裏面側からの隅肉溶接56を形成するのは困難で、主板(又は側板)12の表面側からしか行えない。このような場合に採用される従来の方法を、図16(a)〜(c)の開先形状図を参照して説明する。なお、ここでは、口径150mm以下の羽根車を製造する場合で、主板又は側板の板厚は5mm程度としている。   Therefore, in view of the difficulty in casting such a structure having a closed space, there is a manufacturing method in which a main plate and a side plate, which are parts constituting an impeller, are individually manufactured and integrated by welding them. Possible (see FIG. 13). In this case, the main plate and the side plate are integrated by abutting the end surface of the blade 14 formed on one side against the back surface of the other main plate (or side plate) 12, but the back surface side is close to the closed space, so FIG. It is difficult to form the fillet weld 56 from the back side as shown in FIG. 2, and it can be performed only from the front side of the main plate (or side plate) 12. A conventional method employed in such a case will be described with reference to the groove shape diagrams of FIGS. Here, in the case of manufacturing an impeller having a diameter of 150 mm or less, the plate thickness of the main plate or the side plate is set to about 5 mm.

同図(a)および(b)は、TIG(Tungsten Inert Gas)溶接方法を用いるもので、主板または側板(第1板材)12に板厚方向に貫通するスリット50、52を形成し、これにより羽根(第2板材)14の先端との間に形成される開先に肉盛り溶接する方法である。(a)の方法は板の全厚を開先とするもので、溶接部54が深く、トーチ侵入のためにスリット50の断面形状が上広がりとなるため、加工量が増え、機械加工のための費用が高くなる。また、溶接の肉盛量が多いため、溶接作業に時間を要し、作業コストが高くなるとともに、溶接熱による歪みの発生も大きい。   (A) and (b) of FIG. 1 use a TIG (Tungsten Inert Gas) welding method, and form slits 50 and 52 penetrating in the plate thickness direction in the main plate or side plate (first plate material) 12, thereby In this method, build-up welding is performed on a groove formed between the blade (second plate member) 14 and the tip. In the method (a), the entire thickness of the plate is used as the groove, the welded portion 54 is deep, and the cross-sectional shape of the slit 50 is widened due to penetration of the torch. The cost of Further, since the amount of welding build-up is large, time is required for welding work, the work cost is increased, and distortion due to welding heat is large.

一方、(b)の方法では、羽根の先端をスリット52内に所定長さだけ進入させて開先を形成しており、溶接部54の深さが小さいので、スリット52をレーザ加工することが可能で加工費用は安いが、裏面側で裏波が形成されず、溶接の品質はよくない。また、板厚方向の位置決め、すなわち進入深さの調整作業に手間が掛かるという難点がある。   On the other hand, in the method (b), the tip of the blade is made to enter the slit 52 by a predetermined length to form a groove, and since the depth of the welded portion 54 is small, the slit 52 can be laser processed. It is possible and the processing cost is low, but no back wave is formed on the back side, and the quality of welding is not good. In addition, there is a problem that it takes time to position the plate in the thickness direction, that is, to adjust the depth of entry.

一方、同図(c)は、主板または側板の裏面に羽根を突き合わせ、表面側から、レーザまたは電子ビームを照射して、その溶け込み深さが大きいことを利用したいわゆる貫通溶接を行うものである。レーザまたは電子ビームを用いる貫通溶接は、板厚の小さい電子部品等の場合に良く用いられている。特許文献1に示すように、この方法では、スリットを形成するための加工工程に要する費用を省くことができる。しかしながら、これらの方法はアークやプラズマを用いる方法と比較して一般に設備コストが高く、特に板厚が大きい場合には大きな入熱が必要であるので、一層それが顕著となる。また、入熱量が少ないので、溶込みも少なく、良好な形状の裏波を形成するのは難しい。   On the other hand, FIG. 6C shows what is called through welding utilizing the fact that the penetration depth is large by butting a blade against the back surface of the main plate or side plate and irradiating a laser or electron beam from the front side. . Through welding using a laser or an electron beam is often used for electronic parts having a small thickness. As shown in Patent Document 1, in this method, the cost required for the processing step for forming the slit can be omitted. However, these methods are generally more expensive than the methods using arcs and plasmas, and particularly when the plate thickness is large, a large heat input is required. Further, since the amount of heat input is small, there is little penetration and it is difficult to form a well-shaped back wave.

そこで、同図(e)に示すように、アーク又はプラズマ溶接を用いて、表面側から貫通溶接を行うことが考えられる。しかしながら、大きな板厚の上板を貫通し、さらに良好な裏波を出すのは必ずしも容易ではない。   Therefore, as shown in FIG. 5E, it is conceivable to perform through welding from the surface side using arc or plasma welding. However, it is not always easy to penetrate the upper plate of a large plate thickness and produce a better back wave.

特開2003−334680号JP 2003-334680 A

本発明は、前記事情に鑑みて為されたもので、溶接設備として一般的でコストが安いアーク溶接やプラズマ溶接法を用いて安価にかつ高品質なT字継手を形成することができるようなT型継手の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is capable of forming a low-cost and high-quality T-shaped joint by using arc welding or plasma welding, which is a general welding equipment and is inexpensive. It aims at providing the manufacturing method of a T type joint.

前記目的を達成するために、請求項1に記載のT型継手の製造方法は、第1板材の裏面側に所定の角度で第2板材の端面を当接させ、該第1板材の表面側からアーク又はプラズマ溶接を行い、該アーク又はプラズマ溶接熱により第1板材を貫通して第2板材の端面部分を溶融させ、これらを溶着させることによって溶接継手を形成することを特徴とする。   In order to achieve the object, the method of manufacturing a T-shaped joint according to claim 1, the end surface of the second plate member is brought into contact with the back surface side of the first plate member at a predetermined angle, and the surface side of the first plate member Arc welding or plasma welding is performed, the first plate member is penetrated by the arc or plasma welding heat, the end surface portion of the second plate member is melted, and these are welded to form a welded joint.

請求項1に記載の発明によれば、一般的アーク又はプラズマ溶接法において貫通溶接を行い、第1板材と第2板材を第1板材の表面側からアーク又はプラズマ溶接して、これらを溶着させることで、複雑でコストの掛かる開先形成や多層の肉盛等の作業を排除し、低コストで高品質のT型継手を提供する。   According to the first aspect of the present invention, through welding is performed in a general arc or plasma welding method, the first plate member and the second plate member are arced or plasma welded from the surface side of the first plate member, and these are welded. This eliminates complicated and costly operations such as groove formation and multilayer overlaying, and provides a low-cost, high-quality T-shaped joint.

請求項2に記載のT型継手の製造方法は、請求項1に記載の発明において、事前に前記第1板材の前記第2板材が当接する部分に減厚溝を加工し、該減厚溝に沿って溶接を行うことを特徴とする。   According to a second aspect of the present invention, there is provided a method for manufacturing a T-shaped joint. In the invention according to the first aspect, the thickness reducing groove is processed in advance in a portion where the second plate material of the first plate material abuts. Welding is performed along the line.

請求項2に記載の発明によれば、第1板材の板厚がアーク又はプラズマ溶接の溶け込み深さを上回るほど大きい場合でも、一般的アーク又はプラズマ溶接法を用いて貫通溶接を行う際に、比較的簡単な加工のみで、第2板材の端面まで充分に入熱してこれを溶融させ、欠陥の無い継手を形成させる。これにより、複雑な開先形成や多層の肉盛等の作業を排除し、低コストで高品質のT型継手を提供する。   According to the invention of claim 2, even when the plate thickness of the first plate material is large enough to exceed the penetration depth of arc or plasma welding, when performing through welding using a general arc or plasma welding method, With only relatively simple processing, the end surface of the second plate material is sufficiently input and melted to form a defect-free joint. This eliminates complicated operations such as groove formation and multilayer overlaying, and provides a low-cost, high-quality T-shaped joint.

請求項3に記載のT型継手の製造方法は、請求項2に記載の発明において、前記減厚溝の底部の幅は前記第2板材の厚さより大きく設定され、それにより、溶接の際に、前記第2板材が前記第1板材の裏面に接する箇所において溶融した金属が裏波ビードを形成することを特徴とする。   According to a third aspect of the present invention, there is provided a method for manufacturing a T-shaped joint. In the invention of the second aspect, the width of the bottom portion of the thickness reducing groove is set to be larger than the thickness of the second plate member. The melted metal forms a back bead at a location where the second plate contacts the back surface of the first plate.

請求項3に記載の発明によれば、第2板材の端面のエッジ部分の上部において第1板材が充分に溶融するとともに、第2板材の端面のエッジ部分も充分な入熱が供給され、これにより、第1板材裏面と第2板材端面のエッジ部分とが交差する隅部に良好な裏波ビードが形成される。   According to the invention described in claim 3, the first plate material is sufficiently melted at the upper portion of the edge portion of the end surface of the second plate material, and sufficient heat input is supplied to the edge portion of the end surface of the second plate material. Thus, a good back bead is formed at the corner where the back surface of the first plate material and the edge portion of the end surface of the second plate material intersect.

請求項4に記載のT型継手の製造方法は、請求項3に記載の発明において、前記減厚溝の断面は、前記第2板材の端面のエッジに相当する位置において、該減厚溝の中央から外方に向かうに従い厚さが上昇するようになっていることを特徴とする。   According to a fourth aspect of the present invention, there is provided the method for manufacturing a T-shaped joint according to the third aspect, wherein the thickness reduction groove has a cross-section at a position corresponding to an edge of the end face of the second plate member. The thickness is increased from the center toward the outside.

請求項4に記載の発明によれば、第2板材の端面のエッジに相当する位置において、減厚溝の中央側が溶融しやすく、外側は溶融しにくいので、中央側の溶融金属が外側部分により保持され、表面張力によって形状を維持し、当該部分における割れや溶け落ちの発生を防ぎ、欠陥の無い溶接部を形成する。   According to the fourth aspect of the present invention, the center side of the thickness reducing groove is easily melted at the position corresponding to the edge of the end face of the second plate member, and the outside is difficult to melt. It is held and maintains its shape by surface tension, prevents the occurrence of cracks and burn-off at the relevant part, and forms a weld with no defects.

請求項5に記載のT型継手の製造方法は、請求項4に記載の発明において、前記減厚溝の断面は、前記第2板材の端面のエッジに相当する位置において、滑らかに変化するようになっていることを特徴とする。これにより、形状が滑らかに変化するので、溶融境界で接線方向が急激に変化して境界に大きな力が作用することが防止される。   According to a fifth aspect of the present invention, there is provided a method for manufacturing a T-shaped joint, wherein the cross-section of the thickness reducing groove is smoothly changed at a position corresponding to an edge of an end surface of the second plate member. It is characterized by becoming. Thereby, since the shape changes smoothly, it is prevented that a tangential direction changes rapidly at the melting boundary and a large force acts on the boundary.

請求項6に記載のT型継手の製造方法は、請求項5に記載の発明において、前記減厚溝の断面は、円弧状であることを特徴とする。これにより、断面円弧状の溝の形成は、機械加工が容易であり、加工コストを低減させる。   According to a sixth aspect of the present invention, there is provided a method for manufacturing a T-shaped joint according to the fifth aspect of the present invention, wherein the thickness reduction groove has a circular arc cross section. Thereby, the formation of the groove having the arcuate section is easy to machine and reduces the machining cost.

請求項7に記載のT型継手の製造方法は、請求項1ないし請求項6のいずれかに記載の発明において、前記第1板材は、流体機械の羽根車の主板又は側板であり、前記第2板材は、流体機械の羽根車の羽根であることを特徴とする。   The method for manufacturing a T-shaped joint according to claim 7 is the invention according to any one of claims 1 to 6, wherein the first plate member is a main plate or a side plate of an impeller of a fluid machine. The two-plate material is a blade of an impeller of a fluid machine.

請求項7に記載の発明によれば、流体機械の羽根車の製造工程を大幅に簡素化し、高品質の羽根車を安価で製造することができる。   According to the seventh aspect of the invention, the manufacturing process of the impeller of the fluid machine can be greatly simplified, and a high-quality impeller can be manufactured at low cost.

請求項8に記載のT型継手の製造方法は、請求項7に記載の発明において、前記主板と側板は、それぞれ最終形状に近い形状で鋳造されたニアネットシェイプ材を機械加工して得ることを特徴とする。   The method for manufacturing a T-shaped joint according to claim 8 is the invention according to claim 7, wherein the main plate and the side plate are obtained by machining a near net shape material cast in a shape close to the final shape. It is characterized by.

請求項8に記載の発明によれば、比較的簡単な形状に鋳造した部材を機械加工することで、鋳造材の内部品質及び表面品質の向上が図られ、また、加工及び素材コストの低減が図られる。   According to the invention described in claim 8, by machining a member cast into a relatively simple shape, the internal quality and surface quality of the cast material can be improved, and the processing and material costs can be reduced. Figured.

請求項9に記載のT型継手の製造方法は、請求項1ないし請求項8のいずれかに記載の発明において、前記第1板材の表面に酸化物系の溶接用フラックスを塗布することを特徴とする。   A method for manufacturing a T-shaped joint according to claim 9 is characterized in that, in the invention according to any one of claims 1 to 8, an oxide-based welding flux is applied to the surface of the first plate member. And

請求項9に記載の発明によれば、酸化物系の溶接用フラックスが、アークを集中させるとともに、溶融池の酸素量を制御して深溶け込み作用を促進する。   According to the ninth aspect of the invention, the oxide-based welding flux concentrates the arc and controls the amount of oxygen in the molten pool to promote deep penetration.

請求項10に記載のT型継手の製造方法は、請求項1ないし請求項9のいずれかに記載の発明において、溶接トーチの周囲に二重のガスシールドを形成し、外側のシールドガスに酸素源を添加することを特徴とする。   A method for manufacturing a T-shaped joint according to claim 10 is the invention according to any one of claims 1 to 9, wherein a double gas shield is formed around the welding torch and oxygen is added to the outer shield gas. It is characterized by adding a source.

請求項10に記載の発明によれば、トーチの周囲に形成した二重のガスシールドが、アークのエネルギーを集中させるとともに、溶融池の酸素量を制御して深溶け込み作用を促進する。   According to the tenth aspect of the present invention, the double gas shield formed around the torch concentrates the arc energy and controls the oxygen amount in the molten pool to promote the deep penetration action.

請求項11に記載のT型継手の製造方法は、請求項1ないし請求項10のいずれかに記載の発明において、溶接時に前記第1板材の裏面側に不活性ガスを供給することを特徴とする。   The method for manufacturing a T-shaped joint according to claim 11 is characterized in that, in the invention according to any one of claims 1 to 10, an inert gas is supplied to the back side of the first plate member during welding. To do.

請求項11に記載の発明によれば、前記第1板材の裏面側に供給された不活性ガスにより、特に、裏波のビード形状の不正や、酸化、割れの発生を防止する。   According to the eleventh aspect of the present invention, the inert gas supplied to the back surface side of the first plate member prevents, in particular, fraud of the back bead shape, oxidation, and cracking.

請求項12に記載のT型継手は、表面、裏面を有する第1板材の裏面側に所定の角度で第2板材を当接させ、該第1板材の表面側からアーク又はプラズマ溶接を行い、該第1板材と第2板材とを溶着させたことを特徴とする。   The T-shaped joint according to claim 12, wherein the second plate material is brought into contact with the back surface side of the first plate material having the front surface and the back surface at a predetermined angle, and arc or plasma welding is performed from the front surface side of the first plate material, The first plate member and the second plate member are welded.

請求項1ないし請求項11に記載の発明によれば、小型ポンプの主板等と羽根の溶接部のような比較的厚肉材のT型継手の製造を、低コストかつ高品質に実施することができる。   According to the first to eleventh aspects of the invention, the manufacture of a relatively thick-walled T-shaped joint such as a main plate of a small pump and a welded portion of a blade is performed at low cost and with high quality. Can do.

請求項12に記載の発明によれば、低コストで高品質のT型継手を提供することができる。   According to the invention described in claim 12, a high-quality T-shaped joint can be provided at low cost.

本発明の方法を用いた小型ポンプの羽根車の(a)製造工程および(b)外観を説明する図である。It is a figure explaining the (a) manufacturing process and (b) external appearance of the impeller of a small pump using the method of this invention. 本発明のT型継手の製造方法の第1の実施の形態を説明する図である。It is a figure explaining 1st Embodiment of the manufacturing method of the T-shaped coupling of this invention. 同じく、本発明のT型継手の製造方法の第2の実施の形態を説明する図である。Similarly, it is a figure explaining 2nd Embodiment of the manufacturing method of the T-shaped coupling of this invention. 本発明のT型継手の製造方法における減厚溝を説明する図である。It is a figure explaining the thickness reduction groove | channel in the manufacturing method of the T-shaped coupling of this invention. (a)及び(b)は、減厚溝を詳しく説明する図である。(A) And (b) is a figure explaining a thickness reduction groove | channel in detail. (a)及び(b)は、減厚溝の他の実施の形態を説明する図である。(A) And (b) is a figure explaining other embodiment of a thickness reduction groove | channel. 本発明の実施例のT型継手の断面組織を示す図である。It is a figure which shows the cross-sectional structure | tissue of the T-shaped coupling of the Example of this invention. 本発明の他の実施例のT型継手の断面組織を示す図である。It is a figure which shows the cross-sectional structure | tissue of the T-shaped coupling of the other Example of this invention. 図8の実施例の溶接部の断面における硬度試験結果を示すグラフである。It is a graph which shows the hardness test result in the cross section of the welding part of the Example of FIG. 従来の隅肉溶接法によるT型継手の断面組織を示す図である。It is a figure which shows the cross-sectional structure | tissue of the T-shaped joint by the conventional fillet welding method. 図10の従来法によるT型継手の溶接部の断面における硬度試験結果を示すグラフである。It is a graph which shows the hardness test result in the cross section of the welding part of the T-shaped coupling by the conventional method of FIG. 本発明のT型継手の製造方法により製造したポンプ用羽根車の(a)外観を示す図、(b)要部を拡大して示す図である。It is a figure which shows the (a) external appearance of the impeller for pumps manufactured with the manufacturing method of the T-shaped coupling of this invention, (b) It is a figure which expands and shows the principal part. 本発明の方法による羽根車の製造方法を示す図である。It is a figure which shows the manufacturing method of the impeller by the method of this invention. 本発明の他の実施の形態の方法による羽根車の製造方法を示す図である。It is a figure which shows the manufacturing method of the impeller by the method of other embodiment of this invention. 鋳造による羽根車の製造方法を示す図である。It is a figure which shows the manufacturing method of the impeller by casting. (a)〜(d)はそれぞれ従来又は想定される溶接方法を模式的に説明する図である。(A)-(d) is a figure which illustrates typically the welding method conventionally or assumed.

以下、図面を参照してこの発明の実施の形態を説明する。
図1は、素材がオーステナイト系のステンレス鋼のようにフラックスの効果が大きく溶け込みも深い場合で、側板(第1の板材)12の厚さが5mm程度以下の場合の小型ポンプ用の羽根車10の製造方法を示す。この方法では、図1(a)に示すように、側板(第1の板材)12と、表面に羽根(第2の板材)14を削り出し加工した主板16とを準備している。側板12と、羽根14を有する主板16の作製方法は適宜に採用する。そして、所定の治具を用いて側板12の裏面と羽根14の端面を密着させ、図1(b)に示すように互いに固定した状態とする。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows an impeller 10 for a small pump in the case where the material is austenitic stainless steel and the effect of flux is large and the penetration is deep, and the thickness of the side plate (first plate material) 12 is about 5 mm or less. The manufacturing method of is shown. In this method, as shown in FIG. 1A, a side plate (first plate material) 12 and a main plate 16 obtained by cutting out blades (second plate material) 14 on the surface are prepared. The method for producing the side plate 12 and the main plate 16 having the blades 14 is appropriately adopted. Then, the back surface of the side plate 12 and the end surface of the blade 14 are brought into close contact with each other using a predetermined jig, and are fixed to each other as shown in FIG.

次に、図2(a)に羽根14に直交する方向から見た断面を示すように、当接部の側板12の表面側から溶接トーチ20を当てて、突き合わせ線(溶接線)18に沿ってアーク又はプラズマ溶接を行う。これにより、溶接線18に沿って溶接ビードが形成される。溶接トーチ20は、電極22の周囲に不活性ガスGを供給するようにした管状構造であり、電極22へ印加する電圧、電流、シールドガス流路等についての溶接条件下で、人手または自動溶接装置(ロボット)により突き合わせ面(溶接線)に沿って移動させつつ溶接を行う。不活性ガスGは、トーチから表面に供給する他に、裏波ビード部をシールするために裏面側にも別途供給する。   Next, a welding torch 20 is applied from the surface side of the side plate 12 of the abutting portion along the butt line (welding line) 18 as shown in FIG. Arc or plasma welding. Thereby, a weld bead is formed along the weld line 18. The welding torch 20 has a tubular structure in which an inert gas G is supplied to the periphery of the electrode 22, and is manually or automatically welded under welding conditions for voltage, current, shield gas flow path, and the like applied to the electrode 22. Welding is performed while being moved along the abutting surface (welding line) by an apparatus (robot). In addition to supplying the inert gas G from the torch to the surface, the inert gas G is also separately supplied to the back side in order to seal the back bead portion.

この溶接は、図16の(a)、(b)に示すような切り欠いた開先に肉盛するものではなく、側板12と羽根14のそれぞれの母材を溶融させて互いに融着させる貫通溶接である。すなわち、アーク熱が、第1の板材12を溶融し、これを貫通してさらに第2の板材14の端部を溶融させる。これにより、図2(a)で斜線ハッチングで示すような第1の板材12と第2の板材の端部を含む溶融池24が形成される。これが冷却すると、図2(b)に示すように、側板12の表面側が重力で多少凹んだ溶接ビード26が形成され、裏面側の板材の接合する角部には、溶接金属24が適当な曲率を持って凸となる裏波28が形成される。   This welding does not build up the notched groove as shown in FIGS. 16 (a) and 16 (b), but penetrates the respective base materials of the side plate 12 and the blade 14 to be fused together. It is welding. That is, the arc heat melts the first plate 12, penetrates the first plate 12, and further melts the end of the second plate 14. Thereby, the molten pool 24 including the edge part of the 1st board | plate material 12 and a 2nd board | plate material which is shown with the hatching of hatching in Fig.2 (a) is formed. When this is cooled, as shown in FIG. 2B, a weld bead 26 in which the surface side of the side plate 12 is slightly depressed by gravity is formed, and the weld metal 24 has an appropriate curvature at the corner where the plate material on the back side is joined. A back wave 28 having a convex shape is formed.

ここで、従来のTIG溶接では、板厚が2mm未満の場合、板が薄すぎて裏波ビードによるフィレットが確保できない。また、板厚が2〜4mmの場合、通常の溶接では溶け込みが浅いため、均一な裏波が確保できない。溶け込みを大きくするため電流を上げても溶け込みは横に広がるのみで深くはならず、その結果、溶融部の溶け落ちが起こる。このため、通常の溶接の場合よりアークを狭い範囲に集中させて溶け込み深さを大きくする、いわゆる深溶け込み法を用いることが必要である。以下、一般的に用いられているTIG溶接法において深溶け込み法を実施する方法について詳しく説明する。   Here, in the conventional TIG welding, when the plate thickness is less than 2 mm, the plate is too thin to ensure the fillet by the back bead. In addition, when the plate thickness is 2 to 4 mm, since the penetration is shallow in normal welding, a uniform back surface cannot be secured. Even if the current is increased in order to increase the penetration, the penetration only spreads laterally and does not deepen. As a result, the melted portion melts down. For this reason, it is necessary to use a so-called deep penetration method in which the arc is concentrated in a narrower range than in the case of normal welding to increase the penetration depth. Hereinafter, a method for carrying out the deep penetration method in the commonly used TIG welding method will be described in detail.

(1)A−TIG(Active Flux TIG)
図2に示すように、金属酸化物を主成分とするフラックス30を被溶接材の表面に塗布してアーク溶接を行うことにより、アークの発生および熱の発散をコントロールして、深溶け込みを実現する方法である。アーク溶接の不利点を補う方法として開発された方法であるが、これを本発明の貫通溶接に適用することができる。フラックス30の成分としては、TiO2 、Cr2 3 、SiO2等が好適である。このようなフラックス30が有効である理由は、フラックス30が溶接時に表面を被覆してアーク発生を集中させること、および溶融池の酸素量を増加させて溶融池における対流を反転させる効果があるためであると言われている。
(1) A-TIG (Active Flux TIG)
As shown in Fig. 2, by applying flux 30 containing metal oxide as the main component to the surface of the material to be welded and performing arc welding, the generation of arc and heat divergence are controlled to achieve deep penetration. It is a method to do. Although this method has been developed as a method for compensating for the disadvantages of arc welding, it can be applied to the penetration welding of the present invention. As a component of the flux 30, TiO 2 , Cr 2 O 3 , SiO 2 or the like is preferable. The reason why such a flux 30 is effective is that the flux 30 covers the surface at the time of welding to concentrate arc generation, and increases the amount of oxygen in the molten pool to reverse the convection in the molten pool. It is said that.

(2)AA−TIG(Advanced A-TIG)
A−TIG法はフラックスの材料コスト、塗布作業コスト等が掛かることに鑑み、より簡素な方法として、電極の周囲から溶剤等部に向けて噴射するシールドガスGに酸化成分(OやCO)を添加する方法が提案されている。例えば、Ar+0.3〜0.5%OまたはAr+0.3〜0.5%COが有効である。この方法ではフラックスを用いずに製造できるので、コスト低下が可能である。
(2) AA-TIG (Advanced A-TIG)
In view of the fact that the A-TIG method requires the material cost of the flux, the application work cost, etc., as a simpler method, an oxidizing component (O 2 or CO 2) is added to the shielding gas G injected from the periphery of the electrode toward the solvent or the like. ) Has been proposed. For example, Ar + 0.3 to 0.5% O 2 or Ar + 0.3 to 0.5% CO 2 is effective. Since this method can be manufactured without using a flux, the cost can be reduced.

(3)二重シールドTIG
AA−TIGは電極の酸化による消耗を起こすことから開発された。これは図3に示すように、二重管構造の溶接トーチ32の内側からは通常のシールドガスGを、外側からは酸化成分を含むシールドガスGを供給する。これにより、溶融池24への酸素供給を確保するとともに、エネルギーのさらなる集中による深溶け込みを達成することができる。なお、本発明では、上述した方法の他、適宜の深溶け込み手法を採用することができる。
(3) Double shield TIG
AA-TIG was developed because it causes consumption due to oxidation of electrodes. This is because, as shown in FIG. 3, the conventional shielding gas G from the inside of the welding torch 32 of the double pipe structure, supplying a shield gas G 2 containing an oxidizing component from the outside. Thereby, while ensuring the oxygen supply to the molten pool 24, the deep penetration by the further concentration of energy can be achieved. In the present invention, in addition to the method described above, an appropriate deep penetration method can be adopted.

次に、側板12の板厚が5mm以上の場合には、深溶け込み手法を用いても裏波ビードによるフィレットの形成は難しいので、図4に概略を示すように、側板12の羽根14との突き合わせ箇所の表面側に減厚溝60を加工することにより、溶接部を局部的に減厚する。減厚溝60の底部の幅wは羽根14の厚さtより大きく設定され、それにより、溶接の際に溶融金属が裏波28を形成するようになっている。減厚溝60は、貫通溶接後に肉盛溶接して埋める。 Next, when the plate thickness of the side plate 12 is 5 mm or more, it is difficult to form a fillet by the back bead even if the deep penetration method is used. Therefore, as schematically shown in FIG. By processing the thickness reducing groove 60 on the surface side of the butted portion, the welded portion is locally reduced in thickness. The width w of the bottom of the thickness reducing groove 60 is set larger than the thickness t 2 of the blade 14, so that the molten metal forms the back wave 28 during welding. The thickness reduction groove 60 is buried by overlay welding after penetration welding.

以下にさらに詳しく減厚溝60の形状、寸法について説明する。なお、以下の例では、羽根14の厚さ(t)5mmに対して側板12の板厚(t)が10mm程度である場合を想定している。図5(a)は、減厚溝60の断面形状がほぼ台形である場合を示している。減厚溝60の底部は中央が平坦であり、底部と側部の間の隅部は、円弧状部分により滑らかに接続されている。溶接の際に溶融する底部の幅(w)は、羽根14の厚さ(t)より大きくなるように設定されている。また、平坦な底部の厚さ(t)は、溶接の際に第1部材の底部と第2部材の端面を含む頂部が充分に溶融する程度(この例では2mm)に設定されている。羽根14の端面のエッジ62の上部では、第1部材の底部は円弧状部分となっており、底部は減厚溝60の中央から外方に向かうに従い厚さが上昇するので、溶接の際に中央から外方に向かうに従い徐々に単位入熱量が少なくなり、中央の溶融部の両側に未溶融部が形成されやすくなる。 The shape and size of the thickness reducing groove 60 will be described in more detail below. In the following example, it is assumed that the thickness (t 1 ) of the side plate 12 is about 10 mm with respect to the thickness (t 2 ) of the blade 14 5 mm. FIG. 5A shows a case where the cross-sectional shape of the thickness reducing groove 60 is substantially trapezoidal. The center of the bottom of the thickness reducing groove 60 is flat, and the corner between the bottom and the side is smoothly connected by an arcuate portion. The width (w) of the bottom part that melts during welding is set to be larger than the thickness (t 2 ) of the blade 14. Further, the thickness (t 0 ) of the flat bottom is set to such an extent that the bottom including the bottom of the first member and the top of the second member are sufficiently melted during welding (2 mm in this example). At the top of the edge 62 of the end face of the blade 14, the bottom of the first member is an arc-shaped portion, and the thickness of the bottom increases from the center of the thickness reducing groove 60 toward the outside. The amount of unit heat input gradually decreases from the center toward the outside, and unmelted portions are likely to be formed on both sides of the central molten portion.

このような構成により、溶融部が未溶融部分によって安定に支持され、溶融部が重力によりやや下降した後に凝固し、裏波を含む欠陥の無い溶融金属を形成する。また、中央から外方に向かうに従い厚さが上昇する未溶融部の形成により、溶融金属が未溶融部分から切り離される(溶落ち)ことが起きにくい。図5(b)は、図5(a)とほぼ同じ形状の減厚溝60が形成されているが、断面が不連続な直線で形成されている。この例でも上述した例の作用効果を奏するが、溶融部を安定的に保持する作用は多少損なわれると思われる。   With such a configuration, the melted portion is stably supported by the unmelted portion, and the melted portion is solidified after being slightly lowered by gravity to form a molten metal having no defects including a back wave. In addition, the formation of an unmelted portion whose thickness increases from the center toward the outside hardly causes the molten metal to be separated from the unmelted portion (melted down). In FIG. 5B, the thickness reduction groove 60 having substantially the same shape as that in FIG. 5A is formed, but the cross section is formed by a discontinuous straight line. Although this example also has the effects of the above-described example, it seems that the action of stably holding the melted portion is somewhat impaired.

図6(a)は、減厚溝60の断面形状が半円形である場合を示している。図6(b)に示すように、溶接の際に溶融する底部の幅(w)は、羽根14の厚さ(t)より大きくなるように設定されている。底部の最小厚さ(t)は、溶接の際に第1部材の底部と第2部材の端面を含む頂部が充分に溶融する程度に設定されている。この例も、良好な形状の裏波28が形成される等、先の図5(a)の例と同様の作用効果を奏する。また、この例では、減厚溝60の断面が円形であるので、回転工具のみで形成することができ、溝の加工が大幅に容易になるという利点がある。もちろん、半円形でなくても、部分的な円弧状溝であればよく、深さと幅を適宜に設定できる。 FIG. 6A shows a case where the thickness reduction groove 60 has a semicircular cross-sectional shape. As shown in FIG. 6B, the width (w) of the bottom part that melts during welding is set to be larger than the thickness (t 2 ) of the blade 14. The minimum thickness (t 0 ) of the bottom is set to such an extent that the bottom of the first member and the top including the end face of the second member are sufficiently melted during welding. This example also has the same effects as the example of FIG. 5A, such as the formation of the back wave 28 having a good shape. Moreover, in this example, since the cross section of the thickness reducing groove 60 is circular, it can be formed only by a rotary tool, and there is an advantage that the processing of the groove is greatly facilitated. Of course, it does not have to be semicircular, but may be a partial arc-shaped groove, and the depth and width can be set appropriately.

(実施例1)
(1)A−TIG法を用いて、オーステナイト系ステンレス綱(18Cr-8Ni)、マルテンサイト系ステンレス綱(13Cr-4Ni)について、それぞれ板厚5mmの第1板材と第2板材の試験片を直交させたT型継手を貫通溶接により作成した。また、素材がマルテンサイト系ステンレス綱(13Cr-4Ni)であって、第1板材の板厚が10mmの場合について、図6(a)に示す溝加工を行って第1板材の最小板厚(t)を2mmまで減厚して貫通溶接を実施した。
Example 1
(1) For the austenitic stainless steel (18Cr-8Ni) and martensitic stainless steel (13Cr-4Ni) using the A-TIG method, the test pieces of the first plate and the second plate with a thickness of 5 mm are orthogonal to each other. The made T-shaped joint was made by through welding. Further, when the material is martensitic stainless steel (13Cr-4Ni) and the thickness of the first plate is 10 mm, the groove thickness shown in FIG. Through-welding was carried out with the thickness t 0 ) reduced to 2 mm.

フラックスは、TiO2 、Cr2 3 、SiO2系のTIG用深溶け込み剤であるスピーディグF(商品名:株式会社タセト社製)を用いた。溶接条件を表1に、フラックスの成分を表2に、それぞれ示す。 For the flux, Speedig F (trade name: manufactured by Taseto Co., Ltd.), which is a deep penetration agent for TIG based on TiO 2 , Cr 2 O 3 and SiO 2 , was used. Table 1 shows the welding conditions, and Table 2 shows the components of the flux.

Figure 2009255172
Figure 2009255172

Figure 2009255172
Figure 2009255172

板厚5mmのオーステナイト系ステンレス綱の断面組織は図7(a)に示すように健全であり、裏波の形成も隅肉溶接と同程度であった。板厚5mmのマルテンサイト系ステンレス綱(13Cr-4Ni)については、図7(b)に示すように、磁界の影響でアークが偏向する磁気吹き現象が見られた。   The cross-sectional structure of the 5 mm thick austenitic stainless steel was sound as shown in FIG. 7 (a), and the formation of back waves was similar to fillet welding. As for the martensitic stainless steel (13Cr-4Ni) having a thickness of 5 mm, a magnetic blowing phenomenon was observed in which the arc was deflected by the influence of a magnetic field, as shown in FIG. 7B.

板厚10mmの減厚溝60付きマルテンサイト系ステンレス綱(13Cr-4Ni)については、図8に示すように健全な溶接組織が得られた。この継手について、断面での硬度試験を行った。結果を図9に示す。また、比較例として、隅肉溶接を行った場合の断面組織と硬度試験結果を図10および図11に示す。この実施例の硬度は、全て溶融金属の硬度を示しており、隅肉溶接と比較しても問題が無いと考えられる。   For martensitic stainless steel (13Cr-4Ni) with a thickness reduction groove 60 having a thickness of 10 mm, a sound welded structure was obtained as shown in FIG. About this joint, the hardness test in a cross section was done. The results are shown in FIG. As a comparative example, FIGS. 10 and 11 show a cross-sectional structure and a hardness test result when fillet welding is performed. All the hardness of this Example has shown the hardness of molten metal, and even if it compares with fillet welding, it is thought that there is no problem.

(実施例2)
マルテンサイト系ステンレス綱(13Cr-4Ni)を素材とし、羽根を形成した主板を鋳造し、これに圧延材を加工した側板を第1板材として、図1と同様の方法で貫通溶接を行い、羽根車を製造した。深溶け込み手法としては、実施例1と同様のA−TIG法を用いた。溶接条件を表3に示す。フラックスは実施例1と同じである。溶接は、溶接用ロボットをティーチングすることにより実施した。

Figure 2009255172
(Example 2)
Cast a main plate with blades made of martensite stainless steel (13Cr-4Ni), and use the side plate with the rolled material as the first plate to perform through welding in the same way as in Fig. 1. A car was manufactured. As the deep penetration method, the same A-TIG method as in Example 1 was used. Table 3 shows the welding conditions. The flux is the same as in Example 1. Welding was performed by teaching a welding robot.
Figure 2009255172

溶接後に仕上げ加工を行った状態の側板上の溶接ビードの外観を図12(a)に、また、羽根車端面部における羽根と側板の断面を図12(b)に示す。欠陥の無い良好なビードが得られた。   FIG. 12 (a) shows the appearance of the weld bead on the side plate in a state where finishing is performed after welding, and FIG. 12 (b) shows a cross section of the blade and side plate at the impeller end surface. A good bead with no defects was obtained.

以上説明したように、この発明のT型継手の製造方法により、小型ポンプの主板等と羽根の溶接部のような比較的肉厚の板材のT型継手の製造を、低コストかつ高品質に実施することができるようになった。以下に、このT型継手の製造方法を用いて小型ポンプ等の流体機械を製造する方法を説明する。   As described above, the manufacturing method of the T-shaped joint of the present invention makes it possible to manufacture a T-shaped joint of a relatively thick plate material such as a main plate of a small pump and a welded portion of a blade with low cost and high quality. It became possible to carry out. Below, the method of manufacturing fluid machines, such as a small pump, using the manufacturing method of this T type joint is explained.

図13は、鍛造した鋼材を切削加工して主板16と側板12の形状とし、さらにその一方(図では主板)に翼(羽根)の削出し加工をする。そして、主板と側板とを溶接により接合して一体化した後、仕上げ加工して製品とする。この製造方法では、素材の欠陥はほとんどなく、削り出しで翼形状の加工を行うので、設計通りの寸法・形状にすることが可能。加工面も滑らかであるため、性能が高い羽根車を製造することができる。一方、鍛造素材が高価であり、また、削出し加工の量が多いために、加工費、材料費ともに嵩むので、製造コストは比較的高い。   In FIG. 13, the forged steel material is cut into the shapes of the main plate 16 and the side plate 12, and the blade (blade) is cut out on one of them (main plate in the figure). And after joining and integrating a main board and a side board by welding, it finishes and makes it a product. In this manufacturing method, there are almost no defects in the material, and the blade shape is processed by machining, so the dimensions and shape as designed can be achieved. Since the machined surface is also smooth, an impeller with high performance can be manufactured. On the other hand, since the forging material is expensive and the amount of machining is large, both the processing cost and the material cost increase, so the manufacturing cost is relatively high.

図14は、鍛造した鋼材の代わりに、主板16と側板12の形状に近い形状であって必要な全表面に加工しろを設けた形状(ニアネットシェイプ)に鋳造した素材を用いるものである。先の場合と同様に、これらの素材を切削加工して主板16と側板12の形状とし、さらにその一方(図では主板)に翼(羽根)の削出し加工をする。そして、主板と側板とを溶接により接合して一体化した後、仕上げ加工して製品とする。   FIG. 14 uses a material cast into a shape (near net shape) having a shape close to the shapes of the main plate 16 and the side plate 12 and provided with machining margins on all necessary surfaces, instead of the forged steel material. As in the previous case, these materials are cut into the shapes of the main plate 16 and the side plate 12, and the blades (blades) are cut out on one of them (the main plate in the figure). And after joining and integrating a main board and a side board by welding, it finishes and makes it a product.

この製造方法では、全表面が機械加工されるので、表面は滑らかでばらつきが少ない、設計通りの形状が得られる。また、素材は鋳造でも、主板と側板を別に鋳込むので、鋳造が簡単で内在欠陥がほとんどできない。そして、最終形状に近い形で主板と側板の素材を作るので、機械加工の量が少なく、素材費、加工費ともに鍛造材を使うより大幅に安くできる。   In this manufacturing method, since the entire surface is machined, the surface is smooth and has less variation, and a shape as designed can be obtained. In addition, even if the material is cast, the main plate and the side plate are cast separately, so that casting is easy and there are almost no inherent defects. And since the material of the main plate and the side plate is made in a shape close to the final shape, the amount of machining is small, and both the material cost and the processing cost can be greatly reduced compared to using forging.

12 主板(第1板材)
14 羽根(第2板材)
16 側板
18 溶接線
20 溶接トーチ
22 電極
24 溶融池
26 溶接ビード
28 裏波
30 フラックス
32 二重管溶接トーチ
60 減厚溝
62 エッジ
G、G2 シールドガス
12 Main plate (first plate)
14 blades (second plate)
16 Side plate 18 Welding line 20 Welding torch 22 Electrode 24 Weld pool 26 Weld bead 28 Back wave 30 Flux 32 Double pipe welding torch 60 Thickening groove 62 Edge G, G2 Shielding gas

Claims (12)

第1板材の裏面側に所定の角度で第2板材の端面を当接させ、
該第1板材の表面側からアーク又はプラズマ溶接を行い、該アーク又はプラズマ溶接熱により第1板材を貫通して第2板材の端面部分を溶融させ、これらを溶着させることによって溶接継手を形成することを特徴とするT型継手の製造方法。
Abutting the end surface of the second plate material at a predetermined angle on the back surface side of the first plate material;
Arc welding or plasma welding is performed from the surface side of the first plate material, the first plate material is penetrated by the arc or plasma welding heat, the end surface portion of the second plate material is melted, and these are welded to form a welded joint. A method for producing a T-shaped joint.
事前に前記第1板材の前記第2板材が当接する部分に減厚溝を加工し、該減厚溝に沿って溶接を行うことを特徴とする請求項1に記載のT型継手の製造方法。   2. The method of manufacturing a T-shaped joint according to claim 1, wherein a thickness reduction groove is processed in advance in a portion of the first plate material that contacts the second plate material, and welding is performed along the thickness reduction groove. . 前記減厚溝の底部の幅は前記第2板材の厚さより大きく設定され、それにより、溶接の際に、前記第2板材が前記第1板材の裏面に接する箇所において溶融した金属が裏波ビードを形成することを特徴とする請求項2に記載の製造方法。   The width of the bottom portion of the thickness reducing groove is set to be larger than the thickness of the second plate member, so that the metal melted at the place where the second plate member is in contact with the back surface of the first plate member during welding The manufacturing method according to claim 2, wherein: 前記減厚溝の断面は、前記第2板材の端面のエッジに相当する位置において、該減厚溝の中央から外方に向かうに従い厚さが上昇するようになっていることを特徴とする請求項3に記載の製造方法。   The thickness of the cross section of the thickness-reducing groove increases at the position corresponding to the edge of the end face of the second plate member from the center of the thickness-reducing groove toward the outside. Item 4. The manufacturing method according to Item 3. 前記減厚溝の断面は、前記第2板材の端面のエッジに相当する位置において、滑らかに変化するようになっていることを特徴とする請求項4に記載の製造方法。   5. The manufacturing method according to claim 4, wherein a cross section of the thickness reduction groove is smoothly changed at a position corresponding to an edge of an end face of the second plate member. 前記減厚溝の断面は、円弧状であることを特徴とする請求項5に記載の製造方法。   The manufacturing method according to claim 5, wherein a cross section of the thickness reducing groove is arcuate. 前記第1板材は、流体機械の羽根車の主板又は側板であり、前記第2板材は、流体機械の羽根車の羽根であることを特徴とする請求項1ないし請求項6のいずれかに記載のT型継手の製造方法。   The first plate member is a main plate or a side plate of an impeller of a fluid machine, and the second plate member is a blade of an impeller of the fluid machine. Of manufacturing a T-shaped joint. 前記主板と側板は、それぞれ最終形状に近い形状で鋳造されたニアネットシェイプ材を機械加工して得ることを特徴とする請求項7に記載のT型継手の製造方法。   8. The method of manufacturing a T-shaped joint according to claim 7, wherein the main plate and the side plate are obtained by machining a near net shape material cast in a shape close to a final shape. 前記第1板材の表面に酸化物系の溶接用フラックスを塗布することを特徴とする請求項1ないし請求項8のいずれかに記載のT型継手の製造方法。   9. The method for manufacturing a T-shaped joint according to claim 1, wherein an oxide-based welding flux is applied to the surface of the first plate member. 溶接トーチの周囲に二重のガスシールドを形成し、外側のシールドガスに酸素源を添加することを特徴とする請求項1ないし請求項9のいずれかに記載のT型継手の製造方法。   The method for manufacturing a T-shaped joint according to any one of claims 1 to 9, wherein a double gas shield is formed around the welding torch, and an oxygen source is added to the outer shield gas. 溶接時に前記第1板材の裏面側に不活性ガスを供給することを特徴とする請求項1ないし請求項10のいずれかに記載のT型継手の製造方法。   The method for manufacturing a T-shaped joint according to any one of claims 1 to 10, wherein an inert gas is supplied to a back surface side of the first plate member during welding. 表面、裏面を有する第1板材の裏面側に所定の角度で第2板材を当接させ、該第1板材の表面側からアーク又はプラズマ溶接を行い、該第1板材と第2板材とを溶着させたことを特徴とするT型継手。   A second plate material is brought into contact with the back surface side of the first plate material having a front surface and a back surface at a predetermined angle, arc or plasma welding is performed from the front surface side of the first plate material, and the first plate material and the second plate material are welded. A T-shaped joint characterized by having been made.
JP2009073746A 2008-03-26 2009-03-25 Method for manufacturing t-type joint Pending JP2009255172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009073746A JP2009255172A (en) 2008-03-26 2009-03-25 Method for manufacturing t-type joint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008080887 2008-03-26
JP2009073746A JP2009255172A (en) 2008-03-26 2009-03-25 Method for manufacturing t-type joint

Publications (1)

Publication Number Publication Date
JP2009255172A true JP2009255172A (en) 2009-11-05

Family

ID=41383275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009073746A Pending JP2009255172A (en) 2008-03-26 2009-03-25 Method for manufacturing t-type joint

Country Status (1)

Country Link
JP (1) JP2009255172A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013050095A (en) * 2011-08-31 2013-03-14 Kawamoto Pump Mfg Co Ltd Impeller and submerged pump
JP2013050094A (en) * 2011-08-31 2013-03-14 Kawamoto Pump Mfg Co Ltd Impeller and submerged pump
KR101444849B1 (en) * 2010-01-07 2014-09-29 삼성테크윈 주식회사 Method of manufacturing rotation part of rotary machine
JP2018061983A (en) * 2016-10-14 2018-04-19 株式会社荏原製作所 Manufacturing method of impeller, welding system and control device
CN111545873A (en) * 2020-04-14 2020-08-18 哈尔滨汽轮机厂有限责任公司 Method for assembling and welding half-ring of blade grid of self-shrouded diaphragm of steam turbine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497547A (en) * 1978-01-12 1979-08-01 Nuovo Pignone Spa Arc welding of blade to disk of rotating machine
JPS5623274U (en) * 1979-07-27 1981-03-02
JPS57149090A (en) * 1981-03-10 1982-09-14 Kawasaki Heavy Ind Ltd Production for t-shaped welded joint having minute fillet
JP2004052754A (en) * 2002-05-10 2004-02-19 Borgwarner Inc Hybrid method for manufacturing titanium compressor impeller
JP2008238265A (en) * 2007-02-28 2008-10-09 Hitachi-Ge Nuclear Energy Ltd Penetration welding method of t-type joint and penetration welding structure of t-type joint

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497547A (en) * 1978-01-12 1979-08-01 Nuovo Pignone Spa Arc welding of blade to disk of rotating machine
JPS5623274U (en) * 1979-07-27 1981-03-02
JPS57149090A (en) * 1981-03-10 1982-09-14 Kawasaki Heavy Ind Ltd Production for t-shaped welded joint having minute fillet
JP2004052754A (en) * 2002-05-10 2004-02-19 Borgwarner Inc Hybrid method for manufacturing titanium compressor impeller
JP2008238265A (en) * 2007-02-28 2008-10-09 Hitachi-Ge Nuclear Energy Ltd Penetration welding method of t-type joint and penetration welding structure of t-type joint

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101444849B1 (en) * 2010-01-07 2014-09-29 삼성테크윈 주식회사 Method of manufacturing rotation part of rotary machine
JP2013050095A (en) * 2011-08-31 2013-03-14 Kawamoto Pump Mfg Co Ltd Impeller and submerged pump
JP2013050094A (en) * 2011-08-31 2013-03-14 Kawamoto Pump Mfg Co Ltd Impeller and submerged pump
JP2018061983A (en) * 2016-10-14 2018-04-19 株式会社荏原製作所 Manufacturing method of impeller, welding system and control device
CN111545873A (en) * 2020-04-14 2020-08-18 哈尔滨汽轮机厂有限责任公司 Method for assembling and welding half-ring of blade grid of self-shrouded diaphragm of steam turbine

Similar Documents

Publication Publication Date Title
JP6159147B2 (en) Hybrid laser arc welding process and apparatus
JP5873658B2 (en) Hybrid laser arc welding process and apparatus
JP2005334974A (en) Laser welding method
EP2402106B1 (en) Method of and machine for arc welding combining gas-shield arc welding with submerged arc welding
EP2246144B1 (en) A method of high-powered laser beam welding of articles using a metallic shim produding from the surfaces of the articles ; Assembly therefore
JP5294573B2 (en) Laser and arc combined welding apparatus and method
JP5496152B2 (en) Combined welding method of laser welding and arc welding of T type joint
EP2692476B1 (en) Method for producing laser-welded steel tube
JP5869972B2 (en) Laser-arc combined welding method
US8895886B2 (en) Cladding application method and apparatus using hybrid laser process
JP2009090349A (en) Method and apparatus for welding impeller
JP2004306084A (en) Composite welding method of laser welding and arc welding
US7896979B2 (en) Activating flux for welding stainless steels
JP2009255172A (en) Method for manufacturing t-type joint
JP2013111654A (en) Welding system, welding process, and welded article
JP2004298896A (en) Groove working method and composite welding method using laser and arc
JP4978121B2 (en) Butt joining method of metal plates
US20120261459A1 (en) Laser metalworking using reactive gas
KR101053300B1 (en) Hybrid welding method to improve butt weld quality
JP2007181876A (en) Two-electrode arc welding method for high alloy steel
JP3182672B2 (en) Internal welding method of clad steel pipe
JP2019126842A (en) Overlay welding method
CN110722265A (en) Method for controlling high-energy beam welding deformation
JPH07246484A (en) Laser beam welding method
JP5483553B2 (en) Laser-arc combined welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110324

A977 Report on retrieval

Effective date: 20120522

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120618

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121108