JP2009250616A - Radar signal processing device - Google Patents

Radar signal processing device Download PDF

Info

Publication number
JP2009250616A
JP2009250616A JP2008094853A JP2008094853A JP2009250616A JP 2009250616 A JP2009250616 A JP 2009250616A JP 2008094853 A JP2008094853 A JP 2008094853A JP 2008094853 A JP2008094853 A JP 2008094853A JP 2009250616 A JP2009250616 A JP 2009250616A
Authority
JP
Japan
Prior art keywords
signal
frequency
target
detection
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008094853A
Other languages
Japanese (ja)
Inventor
Yu Toyosaki
優 豊崎
Takashi Kawaai
隆 川相
Yukihiko Kenmochi
幸彦 剱持
Yoshihiko Hayashi
芳彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008094853A priority Critical patent/JP2009250616A/en
Publication of JP2009250616A publication Critical patent/JP2009250616A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radar signal processing device having a simple constitution, capable of improving a target detection probability by suppressing in the low state, a wrong alarm probability caused by a noise, in a pulse Doppler radar device. <P>SOLUTION: This device is equipped with: a reception part for receiving a reflected wave from a target, and outputting a time series of received pulse signals in each distance from the radar device; a signal processing part for applying coherent integration to the time series of the received pulse signals for each distance, and calculating a frequency series of received data in each distance; a signal detection part for applying CFAR processing relative to each frequency component to the frequency series of the received data for each distance, and detecting the frequency series of the received data having an S/N ratio over a detection threshold; and a filter correlating part for determining whether the time series of the received pulse signals is generated by the reflected wave from the target or by a noise, based on the correlation in the frequency direction of the detected frequency series of the received data. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はレーダ装置で使用されるレーダ信号処理装置、特に受信信号に対しコヒーレント積分処理を行うことによりドップラーフィルタ成分を得るパルスドップラーレーダシステムにおいて、受信処理の誤警報確率を抑えつつ、低S/Nの受信信号の検出確率を向上させることを可能とするレーダ信号処理装置に関するものである。   The present invention relates to a radar signal processing apparatus used in a radar apparatus, and more particularly to a pulse Doppler radar system that obtains a Doppler filter component by performing coherent integration processing on a received signal. The present invention relates to a radar signal processing apparatus that can improve the detection probability of N received signals.

レーダ信号処理において、受信処理の誤警報確率を抑えつつ、低S/Nの受信信号の検出確率を向上させた従来の装置として、特開2001−208835号公報に記載されたレーダ信号処理装置がある。   In radar signal processing, a radar signal processing device described in Japanese Patent Laid-Open No. 2001-208835 is known as a conventional device that improves the detection probability of a low S / N reception signal while suppressing the false alarm probability of reception processing. is there.

この従来のレーダ信号処理装置では、装置全体を通じた複数の信号処理の総合判断によって目標検出処理を行っている。この総合的な処理により、検出確率Pdを低下させずに、誤警報確率Pfaを低く抑えることが可能となっている。具体的には、このレーダ信号処理装置では、クラッタフリー領域での目標の検出確率を上げるため、「ヒット間振幅差検定系統」と「CFAR(Constant False Alarm Rate、定誤警報確率)処理系統」の2系統の信号処理を有している。いずれの信号処理においても、所望の誤警報確率Pfaを得るのに必要な本来の受信信号の検出スレッショルド(閾値)よりも検出スレショルドを低く設定している。   In this conventional radar signal processing apparatus, target detection processing is performed by comprehensive judgment of a plurality of signal processes throughout the apparatus. By this comprehensive process, the false alarm probability Pfa can be kept low without reducing the detection probability Pd. Specifically, in this radar signal processing device, in order to increase the target detection probability in the clutter-free region, an “inter-hit amplitude difference test system” and a “CFAR (Constant False Alarm Rate) processing system” 2 signal processing. In any signal processing, the detection threshold is set lower than the detection threshold (threshold value) of the original received signal necessary to obtain the desired false alarm probability Pfa.

一般に、レーダ信号の検出スレショルドを低く設定すると、レーダ信号の検出確率Pdは高くなるものの、ノイズ信号を検出する確率も高くなるので、誤警報確率Pfaも高くなってしまう。しかし、この従来の装置では、上記の2系統で個別に信号処理された結果を用いて総合的に処理することにより、検出確率Pdは高く維持したまま、誤警報確率Pfaを低く抑えようとするものである。つまり、前者の「ヒット間振幅差検定系統」の処理は、受信信号のヒット間の信号振幅差に注目してノイズ信号から目標の信号を分離するものである。一方、後者の「CFAR処理系統」の処理は、通常のCFAR処理を行うものである。これら2系統の信号処理出力の論理積(AND演算)をとることにより、所望の誤警報確率Pfaを満たしつつ、検出確率Pdの改善を図っている。   In general, if the radar signal detection threshold is set low, the radar signal detection probability Pd is increased, but the probability of detecting a noise signal is also increased, so that the false alarm probability Pfa is also increased. However, in this conventional apparatus, the false alarm probability Pfa is kept low while keeping the detection probability Pd high by comprehensively processing using the results of the individual signal processing in the above two systems. Is. In other words, the former “hit amplitude difference test system” processes the target signal from the noise signal by paying attention to the signal amplitude difference between hits of the received signal. On the other hand, the processing of the latter “CFAR processing system” performs normal CFAR processing. By taking the logical product (AND operation) of these two signal processing outputs, the detection probability Pd is improved while satisfying the desired false alarm probability Pfa.

上記の2系統の信号処理の総合処理につき、より詳しく説明する。まず、「CFAR処理系統」の処理では、CFAR回路のCFAR係数を、所望の誤警報確率Pfaを満たす値よりも低めに設定する。この設定により、検出確率Pdを上げることができる。一方、「ヒット間振幅差検定系統」の処理では、同一レンジビンの同一コヒーレント・パルス・インタバル(Coherent Pulse Interval。以下「CPI」と称す)内の振幅が、本来のレーダ信号ではほぼ一定であるのに対し、ノイズ信号ではレイリー分布状に散らばるということに注目する。   The overall processing of the above two systems of signal processing will be described in more detail. First, in the processing of “CFAR processing system”, the CFAR coefficient of the CFAR circuit is set lower than a value satisfying a desired false alarm probability Pfa. With this setting, the detection probability Pd can be increased. On the other hand, in the process of “amplitude difference test system between hits”, the amplitude within the same coherent pulse interval (hereinafter referred to as “CPI”) of the same range bin is substantially constant in the original radar signal. On the other hand, it is noted that noise signals are scattered in a Rayleigh distribution.

このレーダ信号とノイズ信号の性質の相違を利用して、検出スレショルドを設定する。この「ヒット間振幅差検定系統」の処理では、例えば、各ヒット間の振幅の分散を算出して、その分散値が一定値より小さければ、「検出あり」として後段のAND回路に出力信号を送る。このときに設定された検出スレショルドは、誤警報確率Pfa及び検出確率Pdの値が大きめとなるように、通常より低めの値に設定しておく。AND回路では、上記2つの処理系統から検出出力があった場合、すなわち両方とも「検出有り」とした場合のみ「検出あり」として、その結果を後段の処理装置に出力する。この2系統の信号処理の総合処理により、振幅が大きくかつヒット間の振幅の分散が小さい信号のみが受信信号として出力されることとなる。その結果、所望の誤警報確率Pfaが達成されるとともに、低S/N信号の検出を含む検出確率Pdの値を大きくすることができる。   The detection threshold is set by utilizing the difference in properties between the radar signal and the noise signal. In the processing of the “amplitude difference test system between hits”, for example, the variance of the amplitude between hits is calculated, and if the variance is smaller than a certain value, the output signal is output to the subsequent AND circuit as “detected”. send. The detection threshold set at this time is set to a value lower than usual so that the values of the false alarm probability Pfa and the detection probability Pd are larger. In the AND circuit, when there is a detection output from the above two processing systems, that is, when both are “detection present”, “detection is present”, and the result is output to the subsequent processing device. By the total processing of the two signal processings, only a signal having a large amplitude and a small amplitude variance between hits is output as a received signal. As a result, a desired false alarm probability Pfa is achieved, and the value of the detection probability Pd including detection of a low S / N signal can be increased.

特開2001−208835号JP 2001-208835 A

しかし上記の従来のレーダ信号処理装置では、「ヒット間振幅差検定系統」と「CFAR処理系統」という2つの信号処理系統が必要であるため、信号処理装置が大規模なものとなり、装置全体のコストを抑えることが困難であるという問題があった。   However, since the conventional radar signal processing apparatus described above requires two signal processing systems, that is, an “hit amplitude difference test system” and a “CFAR processing system”, the signal processing apparatus becomes large-scale, There was a problem that it was difficult to reduce costs.

また、上記以外の方法で低S/N信号の検出確率Pdを上げ、さらに誤警報確率Pfaを抑える手段として、原理的に「1送信パルス当たりの送信パルス電力を増やす」、「複数の送信パルスを空間に放射する」などの手段を挙げることができる。しかし、前者の手段では、電力増加に伴い、送信部が大規模化し装置全体のコストが高くなるという問題がある。一方、後者の手段では、送信パルス数の増加に伴い、データレートの低下を招き装置実現に制約があるという問題がある。   In addition, as means for increasing the detection probability Pd of a low S / N signal by a method other than the above and further suppressing the false alarm probability Pfa, in principle, “increase transmission pulse power per transmission pulse”, “multiple transmission pulses” Can be mentioned. However, the former means has a problem that the transmission unit becomes large-scaled and the cost of the entire apparatus increases as the power increases. On the other hand, the latter means has a problem in that the data rate is lowered with the increase in the number of transmission pulses, and the implementation of the apparatus is restricted.

本発明は上述した従来の技術が有する問題点を解決するためになされたものである。本発明では、通常のコヒーレント積分処理とCFAR処理を行う系統を有している。この系統においては、CFAR回路のCFAR係数を、所望の誤警報確率Pfaを満たすために必要な値よりも低めに設定する(つまり、検出スレッショルドを低くする)ことにより、低S/N信号の検出を含む検出確率Pdを高くしている。その結果、誤警報確率Pfaも高くなり誤警報が多くなる。そこで、この誤警報確率Pfaの上昇を補償するために、目標信号とノイズ信号の周波数領域における相関性(連続性)の差異に着目し、この相関性の差異に基づき、目標信号とノイズ信号を識別して誤警報確率Pfaを抑えるようにしている。   The present invention has been made to solve the above-described problems of the prior art. The present invention has a system for performing normal coherent integration processing and CFAR processing. In this system, the CFAR coefficient of the CFAR circuit is set lower than a value necessary to satisfy the desired false alarm probability Pfa (that is, the detection threshold is lowered), thereby detecting a low S / N signal. The detection probability Pd including is increased. As a result, the false alarm probability Pfa is increased and the false alarms are increased. Accordingly, in order to compensate for the increase in the false alarm probability Pfa, attention is paid to the difference in correlation (continuity) in the frequency domain between the target signal and the noise signal, and the target signal and the noise signal are determined based on the difference in correlation. The false alarm probability Pfa is suppressed by identifying.

請求項1に係るレーダ信号処理装置は、レーダ装置で使用されるものであって、目標からの反射波を受信処理しレーダ装置からの距離毎に受信パルス信号の時系列を出力する受信部と、この距離毎の受信パルス信号の時系列に対しコヒーレント積分を施し距離毎の受信データの周波数系列を算出する信号処理部と、この距離毎の受信データの周波数系列に対し周波数成分ごとにCFAR処理を施し検出スレッショルド以上のS/N比を持つ受信データの周波数系列を検出する信号検出部と、この検出された受信データの周波数系列の周波数方向の相関性に基づき前記受信パルス信号の時系列が前記目標からの反射波によるものか雑音によるものかを判定するフィルタ相関部とを有することを特徴とするものである。   A radar signal processing device according to claim 1 is used in a radar device, and receives a reflected wave from a target and outputs a time series of received pulse signals for each distance from the radar device; A signal processing unit that performs coherent integration on the time series of received pulse signals for each distance to calculate a frequency series of received data for each distance, and CFAR processing for each frequency component for the frequency series of received data for each distance And a signal detector for detecting a frequency sequence of received data having an S / N ratio equal to or higher than a detection threshold, and a time series of the received pulse signal based on the correlation in the frequency direction of the frequency sequence of the detected received data. And a filter correlator for determining whether the target is a reflected wave or noise.

また、請求項2に係るレーダ信号処理装置は、上記信号検出部では、CFAR処理におけるCFAR係数の値を所望の誤警報確率Pfaを得ることができる本来の係数値よりも低く設定し、検出スレッショルドを低くすることにより目標からの低S/Nの信号検出を可能とすることで、レーダ装置の検出確率Pdを上げるとともに、上記フィルタ相関部では、目標からの信号とノイズにおける周波数方向の相関性の差異を分析し、その分析結果によって目標からの信号とノイズとを判別し誤警報確率Pfaを抑えるようにしたことを特徴とするものである。   In the radar signal processing device according to claim 2, in the signal detection unit, the value of the CFAR coefficient in the CFAR process is set lower than the original coefficient value that can obtain the desired false alarm probability Pfa, and the detection threshold is set. By lowering the signal, the detection probability Pd of the radar apparatus is increased by enabling detection of a low S / N signal from the target, and the filter correlator has a correlation between the signal from the target and noise in the frequency direction. The difference between the two is analyzed, the signal from the target and noise are discriminated based on the analysis result, and the false alarm probability Pfa is suppressed.

本発明のレーダ信号処理装置は、以上説明したような構成を有するため、特に、信号検出部における通常のCFAR処理とフィルタ相関部における相関処理という組合せを採用することにより、大規模な送信部や信号処理装置を不用とし、低コストで検出確率が高く誤警報確率の低いレーダ装置を得ることができるという効果を奏する。   Since the radar signal processing apparatus of the present invention has the configuration as described above, in particular, by adopting a combination of normal CFAR processing in the signal detection unit and correlation processing in the filter correlation unit, There is an effect that it is possible to obtain a radar device that does not use a signal processing device, has a low detection cost, and has a low false alarm probability.

実施の形態1.
一般に、信号検出のスレッショルド値(閾値)を低くすると、低S/Nである目標(レーダ装置から遠距離に存在する目標や低RCS(Radar Cross Section、レーダ反射断面積)の目標)を検出することができ、探知確率Pdが向上する。しかし、同時にノイズなどによる誤警報確率Pfaも増加してしまう。ここで、目標からの受信信号とノイズの周波数方向の振幅分布について考えると、目標からの受信信号では、大きな振幅を持つドップラー周波数成分に対し、それに隣接する周波数成分においても振幅が大きくなる。他方、ノイズでは、大きな振幅を持つドップラー周波数成分に対し、それに隣接する周波数成分において振幅が大きいとは限らない。よって、上記性質の差異を利用して目標からの受信信号とノイズの判定精度を向上させ、誤警報確率Pfaを抑えることができる。本実施の形態はこの性質を利用したものである。
Embodiment 1 FIG.
Generally, when a threshold value (threshold value) for signal detection is lowered, a target having a low S / N (a target existing at a long distance from a radar device or a target having a low RCS (Radar Cross Section)) is detected. And detection probability Pd is improved. However, the false alarm probability Pfa due to noise or the like increases at the same time. Here, considering the amplitude distribution of the received signal from the target and noise in the frequency direction, the received signal from the target has a larger amplitude in the adjacent Doppler frequency component than in the Doppler frequency component having a large amplitude. On the other hand, in the case of noise, the amplitude is not always large in the frequency component adjacent to the Doppler frequency component having a large amplitude. Therefore, it is possible to improve the determination accuracy of the received signal and noise from the target by using the difference in the properties, and to suppress the false alarm probability Pfa. The present embodiment utilizes this property.

図1は、本発明のレーダ信号処理装置の構成を示す概略ブロック図である。図1において、1は送信パルス信号を出力する送信部、2は送信パルス信号を空間に放射し、目標対象からの反射波を受信する空中線部、3は目標対象からの反射波を受信処理する受信部である。4は受信パルス信号列にコヒーレント積分処理を施し、受信データ系列を算出する信号処理部である。   FIG. 1 is a schematic block diagram showing the configuration of the radar signal processing apparatus of the present invention. In FIG. 1, 1 is a transmission unit that outputs a transmission pulse signal, 2 is an antenna unit that radiates the transmission pulse signal to space and receives a reflected wave from the target object, and 3 is a reception process for the reflected wave from the target object. It is a receiving part. Reference numeral 4 denotes a signal processing unit that performs coherent integration processing on the received pulse signal sequence to calculate a received data sequence.

受信パルス信号列は、距離と時間の2次元座標軸上で表せる信号である。受信パルス信号列は、レーダ装置からの距離に応じて分類すると距離毎の受信パルス信号の時系列の集合と見ることができる。一方、受信データ系列は、距離と周波数の2次元座標軸上で表せる信号である。受信データ系列は、レーダ装置からの距離に応じて分類すると距離毎の受信データの周波数系列の集合と見ることができる。以上の説明から明らかなように、受信データ系列は受信パルス信号列を距離ごとの時系列の信号に対しフーリエ変換処理を施した結果と見ることができる。   The received pulse signal train is a signal that can be expressed on a two-dimensional coordinate axis of distance and time. If the received pulse signal sequence is classified according to the distance from the radar apparatus, it can be viewed as a time-series set of received pulse signals for each distance. On the other hand, the received data series is a signal that can be expressed on a two-dimensional coordinate axis of distance and frequency. If the received data series is classified according to the distance from the radar apparatus, it can be viewed as a set of frequency series of received data for each distance. As is clear from the above description, the received data sequence can be regarded as a result of subjecting the received pulse signal sequence to a Fourier transform process on a time-series signal for each distance.

5は信号処理部4で算出した受信データ系列に対して周波数成分ごとにCFARなどの信号検出処理を施し、検出スレッショルド以上のS/N比を持つ信号を検出する信号検出部である。6は信号検出部5を通過し量子化された受信データ系列の、周波数軸上での相関性(連続性)を参照し、信号検出部5で検出した信号が対象目標からの信号であるか、ノイズ信号であるかを判定するフィルタ相関部である。   A signal detection unit 5 performs signal detection processing such as CFAR for each frequency component on the reception data sequence calculated by the signal processing unit 4 to detect a signal having an S / N ratio equal to or higher than the detection threshold. Reference numeral 6 refers to the correlation (continuity) on the frequency axis of the received data sequence that has passed through the signal detection unit 5 and is quantized, and whether the signal detected by the signal detection unit 5 is a signal from the target target. A filter correlation unit that determines whether the signal is a noise signal.

次に上記構成による本発明のレーダ信号処理装置の動作について説明する。送信部1では送信パルス信号が生成され出力される。この送信パルス信号は、サーキュレータを経由し空中線部2を通してレーダ装置から空間へ送信電波信号として放射される。放射された電波信号は対象目標で反射し、受信電波信号として再びレーダ装置へ戻ってくる。この受信電波信号は空中線部2で受信され、サーキュレータを経由し受信部3へ入力される。   Next, the operation of the radar signal processing apparatus of the present invention having the above configuration will be described. The transmission unit 1 generates and outputs a transmission pulse signal. This transmission pulse signal is radiated as a transmission radio signal from the radar apparatus to the space through the antenna unit 2 via the circulator. The radiated radio wave signal is reflected by the target and returns to the radar apparatus again as a received radio wave signal. This received radio wave signal is received by the antenna unit 2 and input to the receiving unit 3 via the circulator.

受信部3では、この受信電波信号を受信パルス信号列として信号処理部4へ出力する。この受信パルス信号列は、距離と時間の2次元座標軸上で表せる信号である。信号処理部4では、受信パルス信号列にコヒーレント積分を施して受信データ系列を算出する。この受信データ系列は、距離と周波数の2次元座標軸上で表せる信号である。図2に受信データ系列の一例を示す。受信パルス信号列にコヒーレント積分処理を行うことにより、「距離−周波数」軸上で表現される受信データ系列が変換生成される。   The receiving unit 3 outputs the received radio wave signal to the signal processing unit 4 as a received pulse signal sequence. This received pulse signal sequence is a signal that can be expressed on a two-dimensional coordinate axis of distance and time. The signal processing unit 4 performs coherent integration on the received pulse signal sequence to calculate a received data sequence. This received data series is a signal that can be represented on a two-dimensional coordinate axis of distance and frequency. FIG. 2 shows an example of the received data series. By performing a coherent integration process on the received pulse signal sequence, a received data sequence expressed on the “distance-frequency” axis is converted and generated.

信号検出部5では、受信データ系列に対して周波数成分ごとにCFARなどの信号検出処理を施す。CFAR処理では、処理される信号のS/N比と対応する一定の閾値(検出スレッショルド)が設定されている。この検出スレッショルド以上のS/N比を持つ信号を検出する。CFAR処理で得られた量子化された受信データ系列の距離対周波数軸上での様子を図3に示す。ここで、CFAR処理での検出スレショルドの設定は、本来の誤警報確率Pfを得るのに必要なスレショルド値よりも低く設定されている。これは、後段のフィルタ相関部5で検出信号の周波数方向の相関性を判定することで誤警報確率Pfaの改善を図ることが可能であるからである。スレッショルドを低くして検出信号を増やし、低S/N信号の検出を含む探知確率Pdを向上させることが可能となる。   The signal detection unit 5 performs signal detection processing such as CFAR for each frequency component on the received data series. In the CFAR process, a certain threshold value (detection threshold) corresponding to the S / N ratio of the signal to be processed is set. A signal having an S / N ratio equal to or higher than the detection threshold is detected. FIG. 3 shows a state of the quantized reception data sequence obtained by the CFAR process on the distance versus frequency axis. Here, the setting of the detection threshold in the CFAR process is set lower than the threshold value necessary for obtaining the original false alarm probability Pf. This is because the false alarm probability Pfa can be improved by determining the correlation in the frequency direction of the detection signal by the filter correlation unit 5 in the subsequent stage. It becomes possible to increase the detection probability by including the detection of the low S / N signal by increasing the detection signal by lowering the threshold.

フィルタ相関部5では、検出された信号が周波数軸方向に連続して検出されていれば、目標からの受信信号と判断して「検出有り」とする。この周波数軸方向の連続性を相関性ともいう。具体的には、一定の周波数幅の範囲で、所定のレベル以上の信号が存在する場合に相関性(連続性)があると判断される。一方、信号が周波数軸方向に連続して検出されなければノイズ(誤警報)と判断して、検出された信号を「検出無し」とする。図3においてフィルタ相関した結果を図4に示す。図4において破線で囲んだ信号が目標からの信号として検出されている。これにより、低S/N信号の検出を含む探知確率Pdを維持しつつ誤警報確率Pfaをおさえることが可能となる。   If the detected signal is continuously detected in the frequency axis direction, the filter correlator 5 determines that the received signal is from the target and “detects”. This continuity in the frequency axis direction is also called correlation. Specifically, it is determined that there is a correlation (continuity) when a signal having a predetermined level or higher exists within a certain frequency range. On the other hand, if the signal is not continuously detected in the frequency axis direction, it is determined as noise (false alarm), and the detected signal is set to “no detection”. The result of filter correlation in FIG. 3 is shown in FIG. In FIG. 4, a signal surrounded by a broken line is detected as a signal from the target. Thereby, it is possible to suppress the false alarm probability Pfa while maintaining the detection probability Pd including the detection of the low S / N signal.

本発明の実施の形態1によるレーダ信号処理装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the radar signal processing apparatus by Embodiment 1 of this invention. 本発明の実施の形態1によるレーダ信号処理装置内の信号処理部におけるコヒーレント積分後の受信データ系列の一例を示す図である。It is a figure which shows an example of the received data series after the coherent integration in the signal processing part in the radar signal processing apparatus according to the first embodiment of the present invention. 本発明の実施の形態1によるレーダ信号処理装置内の信号検出部におけるCFAR処理後の量子化された受信データ系列の一例を示す図である。It is a figure which shows an example of the received data series quantized after the CFAR process in the signal detection part in the radar signal processing apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1によるレーダ信号処理装置内のフィルタ相関部におけるフィルタ相関によって検出された目標からの信号の一例を示す図である。It is a figure which shows an example of the signal from the target detected by the filter correlation in the filter correlation part in the radar signal processing apparatus by Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 送信部、 2 空中線部、 3 受信部、 4 信号処理部、 5 信号検出部、
6 フィルタ相関部。
1 transmitting unit, 2 antenna unit, 3 receiving unit, 4 signal processing unit, 5 signal detecting unit,
6 Filter correlation unit.

Claims (2)

レーダ装置で使用されるレーダ信号処理装置において、
目標からの反射波を受信処理しレーダ装置からの距離毎に受信パルス信号の時系列を出力する受信部と、
この距離毎の受信パルス信号の時系列に対しコヒーレント積分を施し距離毎の受信データの周波数系列を算出する信号処理部と、
この距離毎の受信データの周波数系列に対し周波数成分ごとにCFAR処理を施し検出スレッショルド以上のS/N比を持つ受信データの周波数系列を検出する信号検出部と、
この検出された受信データの周波数系列の周波数方向の相関性に基づき前記受信パルス信号の時系列が前記目標からの反射波によるものか雑音によるものかを判定するフィルタ相関部と
を有することを特徴とするレーダ信号処理装置。
In a radar signal processing device used in a radar device,
A reception unit that receives a reflected wave from the target and outputs a time series of received pulse signals for each distance from the radar device; and
A signal processing unit that performs coherent integration on a time series of received pulse signals for each distance and calculates a frequency series of received data for each distance;
A signal detector for performing a CFAR process for each frequency component on the frequency sequence of the received data for each distance and detecting a frequency sequence of the received data having an S / N ratio equal to or higher than a detection threshold;
A filter correlator that determines whether the time series of the received pulse signal is due to a reflected wave from the target or noise based on the correlation in the frequency direction of the frequency series of the detected reception data. Radar signal processing device.
上記信号検出部では、CFAR処理におけるCFAR係数の値を所望の誤警報確率Pfaを得ることができる本来の係数値よりも低く設定し、検出スレッショルドを低くすることにより目標からの低S/Nの信号検出を可能とすることで、レーダ装置の検出確率Pdを上げるとともに、
上記フィルタ相関部では、目標からの信号とノイズにおける周波数方向の相関性の差異を分析し、その分析結果によって目標からの信号とノイズとを判別し誤警報確率Pfaを抑えるようにしたことを特徴とする請求項1に記載のレーダ信号処理装置。
In the signal detection unit, the value of the CFAR coefficient in the CFAR process is set lower than the original coefficient value capable of obtaining the desired false alarm probability Pfa, and the detection threshold is lowered to reduce the low S / N from the target. By enabling signal detection, the detection probability Pd of the radar device is increased,
The filter correlator analyzes the difference in correlation between the signal from the target and the noise in the frequency direction, determines the signal and noise from the target based on the analysis result, and suppresses the false alarm probability Pfa. The radar signal processing apparatus according to claim 1.
JP2008094853A 2008-04-01 2008-04-01 Radar signal processing device Pending JP2009250616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008094853A JP2009250616A (en) 2008-04-01 2008-04-01 Radar signal processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008094853A JP2009250616A (en) 2008-04-01 2008-04-01 Radar signal processing device

Publications (1)

Publication Number Publication Date
JP2009250616A true JP2009250616A (en) 2009-10-29

Family

ID=41311509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008094853A Pending JP2009250616A (en) 2008-04-01 2008-04-01 Radar signal processing device

Country Status (1)

Country Link
JP (1) JP2009250616A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117845A (en) * 2009-12-03 2011-06-16 Toshiba Corp Apparatus and method for detecting target
RU2460088C1 (en) * 2011-04-08 2012-08-27 ОАО "Концерн "Океанприбор" Method of detecting local object on background of distributed interference
JP2012193961A (en) * 2011-03-15 2012-10-11 Mitsubishi Electric Corp Radar signal processing apparatus
US20140176361A1 (en) * 2012-12-21 2014-06-26 Raytheon Canada Limited Identification and removal of a false detection in a radar system
JP2016151469A (en) * 2015-02-17 2016-08-22 三菱電機株式会社 Signal processing device
KR101738241B1 (en) * 2015-06-02 2017-05-19 광운대학교 산학협력단 Method and apparatus for locating of target
RU2634787C1 (en) * 2016-10-28 2017-11-03 Акционерное Общество "Концерн "Океанприбор" Method of detecting local object against background of distributed interference
KR102069100B1 (en) * 2019-08-21 2020-01-22 주식회사 인포웍스 FMCW LiDAR SIGNAL PROCESSING SYSTEM AND METHOD BASED ON NEURAL NETWORK
CN111679259A (en) * 2020-06-18 2020-09-18 成都纳雷科技有限公司 Method and system for improving signal-to-noise ratio of millimeter wave radar moving target detection
CN112180354A (en) * 2020-09-29 2021-01-05 武汉大学 High-frequency radar target joint detection method by utilizing time-frequency analysis and constant false alarm technology
CN112752987A (en) * 2018-09-26 2021-05-04 京瓷株式会社 Electronic device, control method for electronic device, and control program for electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0862325A (en) * 1994-06-13 1996-03-08 Nec Corp Moving target detecting device
JPH11118917A (en) * 1997-10-13 1999-04-30 Mitsubishi Electric Corp Fm-cw radar apparatus
JP2000230972A (en) * 1999-02-08 2000-08-22 Mitsubishi Electric Corp Radar signal processor
JP2001208835A (en) * 2000-01-27 2001-08-03 Mitsubishi Electric Corp Radar signal processor
JP2002350531A (en) * 2001-05-23 2002-12-04 Mitsubishi Electric Corp Target detector
JP2007033156A (en) * 2005-07-25 2007-02-08 Secom Co Ltd Radar device
JP2007333515A (en) * 2006-06-14 2007-12-27 Mitsubishi Electric Corp Target detection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0862325A (en) * 1994-06-13 1996-03-08 Nec Corp Moving target detecting device
JPH11118917A (en) * 1997-10-13 1999-04-30 Mitsubishi Electric Corp Fm-cw radar apparatus
JP2000230972A (en) * 1999-02-08 2000-08-22 Mitsubishi Electric Corp Radar signal processor
JP2001208835A (en) * 2000-01-27 2001-08-03 Mitsubishi Electric Corp Radar signal processor
JP2002350531A (en) * 2001-05-23 2002-12-04 Mitsubishi Electric Corp Target detector
JP2007033156A (en) * 2005-07-25 2007-02-08 Secom Co Ltd Radar device
JP2007333515A (en) * 2006-06-14 2007-12-27 Mitsubishi Electric Corp Target detection device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117845A (en) * 2009-12-03 2011-06-16 Toshiba Corp Apparatus and method for detecting target
JP2012193961A (en) * 2011-03-15 2012-10-11 Mitsubishi Electric Corp Radar signal processing apparatus
RU2460088C1 (en) * 2011-04-08 2012-08-27 ОАО "Концерн "Океанприбор" Method of detecting local object on background of distributed interference
US20140176361A1 (en) * 2012-12-21 2014-06-26 Raytheon Canada Limited Identification and removal of a false detection in a radar system
US8976059B2 (en) * 2012-12-21 2015-03-10 Raytheon Canada Limited Identification and removal of a false detection in a radar system
JP2016151469A (en) * 2015-02-17 2016-08-22 三菱電機株式会社 Signal processing device
KR101738241B1 (en) * 2015-06-02 2017-05-19 광운대학교 산학협력단 Method and apparatus for locating of target
RU2634787C1 (en) * 2016-10-28 2017-11-03 Акционерное Общество "Концерн "Океанприбор" Method of detecting local object against background of distributed interference
CN112752987A (en) * 2018-09-26 2021-05-04 京瓷株式会社 Electronic device, control method for electronic device, and control program for electronic device
KR102069100B1 (en) * 2019-08-21 2020-01-22 주식회사 인포웍스 FMCW LiDAR SIGNAL PROCESSING SYSTEM AND METHOD BASED ON NEURAL NETWORK
CN111679259A (en) * 2020-06-18 2020-09-18 成都纳雷科技有限公司 Method and system for improving signal-to-noise ratio of millimeter wave radar moving target detection
CN111679259B (en) * 2020-06-18 2023-07-14 成都纳雷科技有限公司 Method and system for improving millimeter wave radar moving target detection signal to noise ratio
CN112180354A (en) * 2020-09-29 2021-01-05 武汉大学 High-frequency radar target joint detection method by utilizing time-frequency analysis and constant false alarm technology
CN112180354B (en) * 2020-09-29 2022-08-16 武汉大学 High-frequency radar target joint detection method utilizing time-frequency analysis and constant false alarm technology

Similar Documents

Publication Publication Date Title
JP2009250616A (en) Radar signal processing device
CN108291957B (en) Vehicle radar system configured to reduce interference
US9140783B2 (en) Radar device
JP5985372B2 (en) Target detection apparatus and target detection method
WO2010062418A3 (en) Method and system for locating signal jammers
CN107462873A (en) A kind of radar chaff method for quickly identifying
US9057792B2 (en) Device and method for detection of water flow in ground
KR101303769B1 (en) Method for suppression and detection of the interference signal in frequency modulated continuous wave radars, and storage medium thereof
JP2006292597A (en) Radar signal processor, and cfar processing method used therefor
JP2019117055A (en) Estimation method, estimation device and program
SE1530160A1 (en) Radar apparatus and method
JP2023519529A (en) A Multi-Target Constant False Alarm Probability Detection Method Based on Signal Proxy
JP2019527831A5 (en)
JP5992574B1 (en) Object detection device
Zhu et al. Detection of moving targets in sea clutter using complementary waveforms
JP2013007578A (en) Signal detection device, signal detection method and signal detection program
KR102011959B1 (en) Method and Apparatus for Processing Radar Received Signal for Detecting Interference Signals in Pulse Compression Process
JP4881209B2 (en) Target detection device
JP2010117332A (en) Bistatic radar device
JP4625720B2 (en) Radar equipment
JP2009250925A (en) Radar signal processing device
US10732255B2 (en) Method and apparatus for detection of a signal
JP2007047112A (en) Radar system
CN103185881B (en) Reverberation suppression method based on waveguide invariant
KR101052050B1 (en) Method for detecting moving target and radar system thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120321