JP2009244180A - Battery status detection method and system - Google Patents

Battery status detection method and system Download PDF

Info

Publication number
JP2009244180A
JP2009244180A JP2008092790A JP2008092790A JP2009244180A JP 2009244180 A JP2009244180 A JP 2009244180A JP 2008092790 A JP2008092790 A JP 2008092790A JP 2008092790 A JP2008092790 A JP 2008092790A JP 2009244180 A JP2009244180 A JP 2009244180A
Authority
JP
Japan
Prior art keywords
battery
voltage
pulse discharge
pulse
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008092790A
Other languages
Japanese (ja)
Other versions
JP5342160B2 (en
Inventor
Noriyasu Iwane
典靖 岩根
Kovats Antal
コバチュ・アンタル
Zsolt Szabo
サボー・ジョルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2008092790A priority Critical patent/JP5342160B2/en
Publication of JP2009244180A publication Critical patent/JP2009244180A/en
Application granted granted Critical
Publication of JP5342160B2 publication Critical patent/JP5342160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery status detection method and a battery status detection system which determines the discharge capability and the degree of deterioration of a battery by detecting a voltage drop caused by the reactive resistance of the battery. <P>SOLUTION: The battery status detection method measures the voltage V1 of the battery before starting pulse discharge in a first step S1, allows a constant current I0 to be pulse discharged with a frequency of 100 Hz or more in a second step S2, measures the voltage V2 of the battery immediately after the pulse discharge in a third step S3, calculates a voltage drop amount ΔV=V1-V2 from the voltage V1 before the pulse discharge obtained in the first step S1 and the voltage V2 immediately after the end of the pulse discharge obtained in the third step S3 in a fourth step S4, and determines the discharge capability and the degree of deterioration of the battery from the voltage drop amount ΔV in a fifth step S5. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、バッテリの放電能力または劣化度を推定するバッテリ状態検知方法とバッテリ状態検知装置に関するものである。   The present invention relates to a battery state detection method and a battery state detection device that estimate the discharge capacity or the degree of deterioration of a battery.

近年、自動車分野においては、多くの電気デバイスが搭載されるようになっており、とくに安全系装置の電気制御化が進むのに伴って車載電源の重要度が一層高まっている。また、省エネや二酸化炭素の排出規制への対応として、交差点などにおけるアイドリングストップ機能とその再始動能力の確保が求められている。   In recent years, many electric devices have been mounted in the automobile field, and in particular, the importance of the on-vehicle power source has been further increased with the progress of electric control of safety devices. In addition, in order to respond to energy saving and carbon dioxide emission regulations, it is required to secure an idling stop function and its restart capability at intersections and the like.

このように、バッテリへの負荷が増大するとともにその重要性が高まっていることから、バッテリ状態をモニタして状態検知する必要性も高まっている。これに対応してバッテリの劣化度(SOH)あるいは放電能力(SOF)を予測する技術がこれまでに多数提案されている。   Thus, since the load to a battery increases and the importance is increasing, the necessity of monitoring a battery state and detecting a state is also increasing. In response to this, many techniques for predicting the degree of deterioration (SOH) or discharge capacity (SOF) of a battery have been proposed.

特許文献1では、バッテリから一定周期で放電させて一定周波数の電流を流し、このときの放電電流波形と応答電圧波形とをそれぞれフーリエ変換してそれぞれのフーリエ変換値を求め、電圧応答波形のフーリエ変換値を放電電流波形のフーリエ変換値で除して内部インピーダンスを求めている。そして、この内部インピーダンスと放電電圧とからバッテリの劣化状態を判定している。   In Patent Document 1, a battery is discharged at a constant cycle and a current of a constant frequency is supplied. The discharge current waveform and the response voltage waveform at this time are Fourier transformed to obtain respective Fourier transform values, and the Fourier of the voltage response waveform is obtained. The internal impedance is obtained by dividing the converted value by the Fourier transform value of the discharge current waveform. And the deterioration state of a battery is determined from this internal impedance and discharge voltage.

また、特許文献2では、高コストな処理演算が必要となるフーリエ変換に代えて、矩形波形のパルス放電を行い、そのときの放電電流および応答電圧を直交する矩形波成分に展開することで低コストで演算処理している。そして、放電電流および応答電圧の所定の矩形波成分の振幅から所定のインピーダンスを求めて劣化状態を判定している。
特許第3367320号 特許第3960998号
Further, in Patent Document 2, instead of Fourier transform, which requires expensive processing operations, pulse discharge with a rectangular waveform is performed, and the discharge current and response voltage at that time are developed into orthogonal rectangular wave components. Processing is performed at cost. A deterioration state is determined by obtaining a predetermined impedance from the amplitude of a predetermined rectangular wave component of the discharge current and the response voltage.
Japanese Patent No. 3367320 Japanese Patent No. 3960998

しかしながら、特許文献1および2の方法では、パルス放電中の内部インピーダンスの大きさを推定することはできるが、放電開始から応答が現れるまでに時間のかかる反応抵抗の劣化度を検知することはできない。特許文献1では、平均放電電圧をさらに考慮して劣化度を判定するようにしているが、この場合でも、放電開始の瞬間から応答が表れる液抵抗と放電開始から応答が現れるまでに時間のかかる反応抵抗による電圧降下を切り分けて検知することはできず、反応抵抗を明確かつ定量的に切り分けて高精度の放電能力/劣化度の判定をすることはできない。   However, in the methods of Patent Documents 1 and 2, the magnitude of the internal impedance during pulse discharge can be estimated, but it is not possible to detect the degree of degradation of reaction resistance that takes time from the start of discharge until a response appears. . In Patent Document 1, the degree of deterioration is determined with further consideration of the average discharge voltage, but even in this case, it takes time until the response appears from the liquid resistance at which the response appears from the start of the discharge and the discharge. The voltage drop due to the reaction resistance cannot be detected separately, and the reaction resistance cannot be clearly and quantitatively determined to determine the discharge capacity / degradation level with high accuracy.

そこで、本発明はこれらの問題を解決するためになされたものであり、バッテリの反応抵抗による電圧降下を検知することでバッテリの放電能力または劣化度を極めて高精度に判定するバッテリ状態検知方法及びバッテリ状態検知装置を提供することを目的とする。   Therefore, the present invention has been made to solve these problems, and a battery state detection method for determining the discharge capability or the degree of deterioration of a battery with extremely high accuracy by detecting a voltage drop due to the reaction resistance of the battery, and An object is to provide a battery state detection device.

この発明のバッテリ状態検知方法の第1の態様は、バッテリから周波数100Hz以上で一定電流を所定回数パルス放電させ、前記パルス放電の開始前の電圧と終了直後の電圧との差である電圧差を算出し、前記電圧差から前記バッテリの放電能力または劣化度を判定することを特徴とする。   According to a first aspect of the battery state detection method of the present invention, a predetermined current is pulse-discharged a predetermined number of times at a frequency of 100 Hz or more from a battery, and a voltage difference that is a difference between a voltage before the start of the pulse discharge and a voltage immediately after the end is obtained. It is calculated and the discharge capability or the deterioration degree of the battery is determined from the voltage difference.

この発明のバッテリ状態検知方法の他の態様は、前記電圧差と前記一定電流とから反応抵抗値を算出し、前記反応抵抗値から前記バッテリの放電能力または劣化度を判定することを特徴とする。   Another aspect of the battery state detection method of the present invention is characterized in that a reaction resistance value is calculated from the voltage difference and the constant current, and a discharge capability or a deterioration degree of the battery is determined from the reaction resistance value. .

この発明のバッテリ状態検知方法の他の態様は、前記パルス放電の開始前の電圧は、前記パルス放電開始前に複数回測定された電圧の平均値であり、前記パルス放電の終了直後の電圧は、前記パルス放電終了直後に複数回測定された電圧の平均値であることを特徴とする。   In another aspect of the battery state detection method of the present invention, the voltage before the start of the pulse discharge is an average value of the voltages measured a plurality of times before the start of the pulse discharge, and the voltage immediately after the end of the pulse discharge is The average value of the voltages measured a plurality of times immediately after the end of the pulse discharge.

この発明のバッテリ状態検知方法の他の態様は、バッテリから周波数100Hz以上で一定電流を所定回数パルス放電させ、前記パルス放電開始前の電圧とパルス放電1周期内の電流停止期間の電圧との差を算出して周期毎電圧差とし、前記周期毎電圧差を所定の関数を用いてパルス回数でフィッティングして電圧差近似式を作成し、前記電圧差近似式から前記パルス放電を継続したときの収束電圧差を算出し、前記収束電圧差から前記バッテリの放電能力または劣化度を判定することを特徴とする。   According to another aspect of the battery state detection method of the present invention, a constant current is pulse-discharged a predetermined number of times at a frequency of 100 Hz or more from a battery, and the difference between the voltage before the start of the pulse discharge and the voltage during the current stop period within one cycle of the pulse discharge. The voltage difference for each cycle is calculated, and the voltage difference for each cycle is fitted with the number of pulses using a predetermined function to create a voltage difference approximate expression, and when the pulse discharge is continued from the voltage difference approximate expression A convergence voltage difference is calculated, and a discharge capability or a deterioration degree of the battery is determined from the convergence voltage difference.

この発明のバッテリ状態検知方法の他の態様は、前記収束電圧差と前記一定電流とから反応抵抗値を算出し、前記反応抵抗値から前記バッテリの放電能力または劣化度を判定することを特徴とする。   Another aspect of the battery state detection method of the present invention is characterized in that a reaction resistance value is calculated from the convergence voltage difference and the constant current, and a discharge capacity or a deterioration degree of the battery is determined from the reaction resistance value. To do.

この発明のバッテリ状態検知方法の他の態様は、前記所定の関数は、指数関数または逆数関数であることを特徴とする。   In another aspect of the battery state detection method of the present invention, the predetermined function is an exponential function or an inverse function.

この発明のバッテリ状態検知装置の第1の態様は、バッテリの電圧を測定する電圧測定部と、前記バッテリに流れる電流を測定する電流測定部と、前記バッテリをパルス放電させるパルス放電回路と、前記パルス放電回路を所定の周期で動作させる制御部と、前記パルス放電回路で前記パルス放電を行う期間を含む所定の期間の前記バッテリの電圧の測定値および電流の測定値をそれぞれ前記電圧測定部および前記電流測定部から入力し、前記電圧の測定値および前記電流の測定値から前記バッテリの反応抵抗値を算出してバッテリ状態を検知する演算制御部と、を備えることを特徴とする。   According to a first aspect of the battery state detection apparatus of the present invention, a voltage measurement unit that measures the voltage of the battery, a current measurement unit that measures a current flowing through the battery, a pulse discharge circuit that pulse-discharges the battery, A control unit that operates a pulse discharge circuit at a predetermined period; a voltage measurement value and a current measurement value of the battery in a predetermined period including a period in which the pulse discharge circuit performs the pulse discharge; And an arithmetic control unit for detecting a battery state by calculating a reaction resistance value of the battery from the measured value of the voltage and the measured value of the current, which is input from the current measuring unit.

この発明のバッテリ状態検知装置の他の態様は、前記制御部は、前記演算制御部からの要求により前記バッテリから周波数100Hz以上で一定値の電流を所定回数パルス放電させるように前記パルス放電回路を制御することを特徴とする。   According to another aspect of the battery state detection device of the present invention, the control unit causes the pulse discharge circuit to discharge a predetermined value of current at a frequency of 100 Hz or more from the battery a predetermined number of times in response to a request from the arithmetic control unit. It is characterized by controlling.

この発明のバッテリ状態検知装置の他の態様は、前記制御部は、前記演算制御部からの要求により前記パルス放電回路によるパルス放電の開始および終了を制御することを特徴とする。   In another aspect of the battery state detection device of the present invention, the control unit controls the start and end of pulse discharge by the pulse discharge circuit in response to a request from the arithmetic control unit.

本発明によれば、バッテリの反応抵抗による電圧降下を検知することでバッテリの放電能力または劣化度を高精度に判定するバッテリ状態検知方法及びバッテリ状態検知装置を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the battery state detection method and battery state detection apparatus which determine the discharge capability or deterioration degree of a battery with high precision by detecting the voltage drop by the reaction resistance of a battery.

図面を参照して本発明の好ましい実施の形態におけるバッテリ状態検知方法、バッテリ状態検知装置及びバッテリ電源システムの構成について詳細に説明する。なお、同一機能を有する各構成部については、図示及び説明簡略化のため、同一符号を付して示す。   A configuration of a battery state detection method, a battery state detection device, and a battery power supply system in a preferred embodiment of the present invention will be described in detail with reference to the drawings. In addition, about each structural part which has the same function, the same code | symbol is attached | subjected and shown for simplification of illustration and description.

本発明のバッテリ状態検知方法の第1の実施形態を、図1に示すフローチャートを用いて以下に説明する。本実施形態のバッテリ状態検知方法では、バッテリ状態としてバッテリの放電能力(SOF:State of Function)または劣化度(SOH:State of Health)を推定している。このようなバッテリの放電能力または劣化度を判定するために、本実施形態のバッテリ状態検知方法では、バッテリを所定の周期でパルス放電させ、そのときのデータを取得して判定に用いている。   A first embodiment of the battery state detection method of the present invention will be described below using the flowchart shown in FIG. In the battery state detection method of the present embodiment, the battery discharge state (SOF: State of Function) or the degree of deterioration (SOH: State of Health) is estimated as the battery state. In order to determine the discharge capability or the degree of deterioration of such a battery, in the battery state detection method of this embodiment, the battery is pulse-discharged at a predetermined cycle, and data at that time is acquired and used for the determination.

本実施形態のバッテリ状態検知方法では、第1ステップS1として、パルス放電開始前のバッテリの電圧V1を測定して取得する。つぎの第2ステップS2として、バッテリから所定のパルス放電を行わせる。このパルス放電は、一定の大きさの電流I0を周波数100Hz以上でオン/オフさせて行うことができる。このようなパルス放電を所定回数行った後、第3ステップS3ではパルス放電直後のバッテリの電圧V2を測定して取得する。   In the battery state detection method of the present embodiment, as the first step S1, the battery voltage V1 before the start of pulse discharge is measured and acquired. As the next second step S2, a predetermined pulse discharge is performed from the battery. This pulse discharge can be performed by turning on and off a constant current I0 at a frequency of 100 Hz or more. After performing such a pulse discharge a predetermined number of times, in a third step S3, the battery voltage V2 immediately after the pulse discharge is measured and acquired.

第4ステップS4では、第1ステップS1で取得したパルス放電開始前の電圧V1と、第3ステップS3で取得したパルス放電終了直後の電圧V2とから、その差である電圧降下量ΔV=V1−V2を算出する。第5ステップでは、算出された電圧降下量ΔVからバッテリの放電能力または劣化状態を推定してバッテリ状態が適切かを判定する。   In the fourth step S4, the voltage drop amount ΔV = V1−, which is the difference between the voltage V1 before the start of the pulse discharge acquired in the first step S1 and the voltage V2 immediately after the end of the pulse discharge acquired in the third step S3. V2 is calculated. In the fifth step, the battery discharge capacity or the deterioration state is estimated from the calculated voltage drop amount ΔV to determine whether the battery state is appropriate.

上記の本実施形態のバッテリ状態検知方法の処理の流れにおいて、第2ステップS2で実施されるパルス放電の一例を図2に示す。図2(a)は、バッテリから放電される電流の時間的変化である電流パターン(符号11で示す)を示しており、図2〔b〕は、図2(a)の電流パターン11に対応して変化する応答電圧の変化である電圧パターン(符号12で示す)を示している。   FIG. 2 shows an example of pulse discharge performed in the second step S2 in the process flow of the battery state detection method of the present embodiment. FIG. 2 (a) shows a current pattern (indicated by reference numeral 11) which is a temporal change in the current discharged from the battery, and FIG. 2 (b) corresponds to the current pattern 11 in FIG. 2 (a). A voltage pattern (indicated by reference numeral 12), which is a change in response voltage that changes as shown in FIG.

図2(a)に示す電流パターン11は、電流の大きさ(振幅)を一定値のI0とし、100Hz以上の周波数で電流をパルス状に放電している。パルス放電を行う回数(サイクル数)は、事前に決められた回数Nだけ行う。   In the current pattern 11 shown in FIG. 2A, the magnitude (amplitude) of the current is a constant value I0, and the current is discharged in pulses at a frequency of 100 Hz or more. The number of times of pulse discharge (number of cycles) is N times determined in advance.

上記のパルス放電を行ったときの応答電圧パターン12は、電流パターン11と同じ周波数で略ステップ状に変化するが、周期毎の電圧は上下のピークともサイクル数が増えるの伴って低下していくのがわかる。但し、ピーク電圧の低下割合は、サイクル数とともに小さくなっている。   The response voltage pattern 12 when performing the above-described pulse discharge changes in a substantially step shape at the same frequency as the current pattern 11, but the voltage for each cycle decreases as the number of cycles increases at both the upper and lower peaks. I understand. However, the rate of decrease in peak voltage decreases with the number of cycles.

図2(b)に示すような応答電圧のパルスの繰り返しによる変化は、バッテリの応答が表れるまでに時間のかかる反応抵抗の大きさと対応していることから、本実施形態のバッテリ状態検知方法では、第4ステップS4においてパルス放電開始前の電圧V1とパルス放電終了直後の電圧V2とから、その間の電圧降下量ΔV=V1−V2を算出している。なおこのとき放電パルスの周波数を100Hz以上とすることによって明確に反応抵抗の大きさを他の抵抗成分と切り分けて検知することができる。バッテリの反応抵抗の劣化が進んで放電能力が低下すると、電圧降下量ΔVは大きくなることから、第5ステップでは電圧降下量ΔVをもとにバッテリの放電能力または劣化状態を推定してバッテリ状態が適切か(放電能力が十分あるか)を判定している。   Since the change due to the repetition of the response voltage pulse as shown in FIG. 2B corresponds to the magnitude of the reaction resistance which takes time until the battery response appears, in the battery state detection method of this embodiment, In the fourth step S4, a voltage drop amount ΔV = V1−V2 between the voltage V1 before the start of the pulse discharge and the voltage V2 immediately after the end of the pulse discharge is calculated. At this time, by setting the frequency of the discharge pulse to 100 Hz or more, it is possible to clearly detect the magnitude of the reaction resistance separately from other resistance components. As the battery reaction resistance deteriorates and the discharge capacity decreases, the voltage drop ΔV increases. Therefore, in the fifth step, the battery discharge state or the deterioration state is estimated based on the voltage drop ΔV. Is appropriate (is the discharge capacity sufficient).

バッテリの放電能力または劣化度を判定する方法の一例を以下に説明する。電圧降下量ΔVを所定の電圧降下許容値(=パルス放電開始前の電圧―許容最低電圧)と比較し、電圧降下許容値から電圧降下量ΔVを減算した電圧差(電圧降下余裕)に基づいて放電能力または劣化度を判定することができる。すなわち、電圧降下余裕が大きいときは放電能力が高いまたは劣化度が低いと判定し、電圧降下余裕が小さいときは放電能力が低いまたは劣化度が高いと判定する。さらに、電圧降下量ΔVが電圧降下許容値を超えているときは、バッテリ交換が必要等の判定を行うことができる。   An example of a method for determining the discharge capacity or the degree of deterioration of the battery will be described below. The voltage drop amount ΔV is compared with a predetermined voltage drop allowable value (= voltage before the start of pulse discharge−allowable minimum voltage), and based on a voltage difference (voltage drop margin) obtained by subtracting the voltage drop amount ΔV from the voltage drop allowable value. The discharge capacity or the degree of deterioration can be determined. That is, when the voltage drop margin is large, it is determined that the discharge capacity is high or the degree of deterioration is low, and when the voltage drop margin is small, it is determined that the discharge capacity is low or the degree of deterioration is high. Further, when the voltage drop amount ΔV exceeds the allowable voltage drop value, it can be determined that the battery needs to be replaced.

また場合によっては、電圧降下量ΔVから予め定めた所定の放電パターンで放電を行なったときの応答電圧を予測し、予測計算された応答電圧を所定の許容閾値と比較することによっても同様にバッテリの放電能力/劣化度を判定することが可能である。   In some cases, the battery can be similarly estimated by predicting a response voltage when discharging is performed with a predetermined discharge pattern from the voltage drop amount ΔV, and comparing the predicted response voltage with a predetermined allowable threshold value. Can be determined.

なお、上記実施例においてバッテリの放電能力または劣化度を判定するのに用いる電圧降下許容値は、パルス放電のサイクル数に応じて所定の補正を行なっているものとする。すなわち、パルス放電のサイクル数が十分でないと、図2(b)に示す応答電圧パターンが飽和した電圧に十分接近してしていない電圧を用いて判定を行うことになる。そこで、パルス放電のサイクル数が十分でない場合には、サイクル数に基づいてあらかじめ定めた補正を行うことで、バッテリの放電能力または劣化度を高精度に判定することができる。   In the above embodiment, the allowable voltage drop used for determining the discharge capability or the deterioration level of the battery is assumed to be corrected in accordance with the number of cycles of pulse discharge. That is, if the number of pulse discharge cycles is not sufficient, the determination is made using a voltage that is not sufficiently close to the voltage at which the response voltage pattern shown in FIG. Therefore, when the number of pulse discharge cycles is not sufficient, the discharge capability or the degree of deterioration of the battery can be determined with high accuracy by performing a predetermined correction based on the number of cycles.

バッテリの放電能力または劣化度を判定する別の方法を以下に説明する。この方法では、バッテリの反応抵抗値(Rxとする)を用いてバッテリの放電能力または劣化度を判定する。バッテリの反応抵抗値Rxは、電圧降下量ΔVを電流値I0で除することで算出することができる。算出した反応抵抗値Rxを所定の反応抵抗許容値と比較し、反応抵抗値Rxが反応抵抗許容値に対し十分小さいときを放電能力が高いまたは劣化度が低いと判定し、反応抵抗値Rxが反応抵抗許容値に近い値まで大きくなっているときは放電能力が低いまたは劣化度が高いと判定する。さらに、反応抵抗値Rxが反応抵抗許容値を超えているときは、バッテリ交換が必要等の判定を行うことができる。   Another method for determining the discharge capacity or the degree of deterioration of the battery will be described below. In this method, the discharge capability or the degree of deterioration of the battery is determined using the reaction resistance value (Rx) of the battery. The reaction resistance value Rx of the battery can be calculated by dividing the voltage drop amount ΔV by the current value I0. The calculated reaction resistance value Rx is compared with a predetermined reaction resistance allowable value, and when the reaction resistance value Rx is sufficiently smaller than the reaction resistance allowable value, it is determined that the discharge capacity is high or the deterioration degree is low, and the reaction resistance value Rx is When it has increased to a value close to the reaction resistance allowable value, it is determined that the discharge capacity is low or the degree of deterioration is high. Further, when the reaction resistance value Rx exceeds the reaction resistance allowable value, it can be determined that the battery needs to be replaced.

また場合によっては、反応抵抗値Rから予め定めた所定の放電パターンで放電を行なったときの応答電圧を予測し、予測計算された応答電圧を所定の許容閾値と比較することによっても同様にバッテリの放電能力/劣化度を判定することが可能である。   Further, in some cases, the battery can be similarly detected by predicting a response voltage when discharging with a predetermined discharge pattern determined from the reaction resistance value R and comparing the predicted response voltage with a predetermined allowable threshold value. Can be determined.

なお、上記実施例においても、パルス放電のサイクル数が十分多くない場合には、反応抵抗値Rxまたは反応抵抗許容値のいずれかに対し、サイクル数に基づいてあらかじめ定めた補正を行う。これにより、バッテリの放電能力または劣化度を高精度に判定することが可能となる。   Also in the above embodiment, when the number of pulse discharge cycles is not sufficiently large, either the reaction resistance value Rx or the reaction resistance allowable value is corrected in advance based on the number of cycles. Thereby, it becomes possible to determine the discharge capability or the deterioration degree of the battery with high accuracy.

本発明のバッテリ状態検知方法の第2の実施形態を、図3に示すフローチャートを用いて以下に説明する。本実施形態のバッテリ状態検知方法では、図3に示す第1ステップS11においてパルス放電開始前のバッテリの電圧を複数回測定して取得しており、第2ステップS12では、取得した複数の電圧の平均値を求め、これをV1としている。   A second embodiment of the battery state detection method of the present invention will be described below using the flowchart shown in FIG. In the battery state detection method of the present embodiment, the voltage of the battery before the start of pulse discharge is obtained by measuring a plurality of times in the first step S11 shown in FIG. 3, and in the second step S12, the obtained plurality of voltages are obtained. An average value is obtained and is set as V1.

ステップS13でバッテリから所定のパルス放電を行わせた後、第4ステップS14ではパルス放電直後のバッテリの電圧を複数回測定して取得しており、第5ステップS15では、取得した複数の電圧の平均値を求め、これをV2としている。以降の第6ステップS16と第7ステップS17では、第1の実施形態のステップS4、S5と同様の処理を行ってバッテリの放電能力または劣化度を判定している。   After a predetermined pulse discharge is performed from the battery in step S13, the voltage of the battery immediately after the pulse discharge is measured and acquired a plurality of times in the fourth step S14, and in the fifth step S15, the acquired plurality of voltages are acquired. An average value is obtained and is set as V2. In subsequent 6th step S16 and 7th step S17, the process similar to step S4, S5 of 1st Embodiment is performed, and the discharge capability or deterioration degree of a battery is determined.

上記のとおり、本実施形態ではバッテリの状態検知に用いる電圧として、パルス放電前の電圧および直後の電圧をそれぞれ複数取得し、それぞれの平均値を求めることで、データのばらつきを低減して精度の高い電圧値を用いるようにしている。   As described above, in this embodiment, a plurality of voltages before and after the pulse discharge are obtained as voltages used for detecting the state of the battery, and an average value of each is obtained, thereby reducing variation in data and improving accuracy. A high voltage value is used.

本発明のバッテリ状態検知方法の第3の実施形態を、図4に示すフローチャートを用いて以下に説明する。本実施形態のバッテリ状態検知方法では、図2に示すようなパルス放電の各周期毎に、電流を放電していない期間の応答電圧を測定し、この応答電圧のパルス放電開始前の電圧V1からの電圧降下量(以下では周期毎電圧降下量とする)を算出する。   A third embodiment of the battery state detection method of the present invention will be described below using the flowchart shown in FIG. In the battery state detection method of the present embodiment, a response voltage during a period in which no current is discharged is measured for each period of pulse discharge as shown in FIG. 2, and this response voltage is determined from a voltage V1 before the start of pulse discharge. The voltage drop amount (hereinafter referred to as the voltage drop amount per cycle) is calculated.

すべての周期について周期毎電圧降下量を算出すると、これをパルス放電回数を変数とする所定の関数を用いてフィッティングして電圧降下近似式を作成する。この所定の関数は、収束性および比例性を有するものである。
この電圧降下近似式から、パルス放電を継続したときの収束電圧降下量、すなわちパルス回数を無限大としたときの収束電圧降下量を算出し、この収束電圧降下量からバッテリの放電能力または劣化度を判定する。
When the voltage drop amount for each cycle is calculated for all cycles, this is fitted using a predetermined function with the number of pulse discharges as a variable to create a voltage drop approximation formula. This predetermined function has convergence and proportionality.
From this voltage drop approximation formula, calculate the amount of convergence voltage drop when pulse discharge is continued, that is, the amount of convergence voltage drop when the number of pulses is infinite, and from this amount of convergent voltage drop, the discharge capacity or deterioration degree of the battery Determine.

図4に示すフローチャートにおいて、本実施形態のバッテリ状態検知方法の第1ステップS21として、パルス放電開始前のバッテリの電圧V1を測定して取得する。つぎの第2ステップS22でバッテリから所定のパルス放電を開始すると、つぎの第3ステップS23から第5ステップS25までをパルス放電の周期数だけ繰り返し実施する。   In the flowchart shown in FIG. 4, as the first step S21 of the battery state detection method of the present embodiment, the battery voltage V1 before the start of pulse discharge is measured and acquired. When predetermined pulse discharge is started from the battery in the next second step S22, the following third step S23 to fifth step S25 are repeated for the number of pulse discharge cycles.

第3ステップS23では、i番目の周期において電流を放電していないときの応答電圧V2iを測定して取得する。第4ステップS24では、パルス放電開始前の電圧V1と応答電圧V2iとの差ΔVi=V1−V2iを算出して周期毎電圧降下量とする。第5ステップS25では、パルス放電が終了したか否かを判定し、パルス放電が継続中の場合には第3ステップS23に戻ってつぎの周期の処理を行う。一方、第5ステップS25でパルス放電が終了したと判定されると、つぎの第6ステップS26の処理に進む。   In the third step S23, the response voltage V2i when the current is not discharged in the i-th cycle is measured and acquired. In the fourth step S24, the difference ΔVi = V1−V2i between the voltage V1 before the start of the pulse discharge and the response voltage V2i is calculated and set as the voltage drop amount per cycle. In the fifth step S25, it is determined whether or not the pulse discharge has ended. If the pulse discharge is continuing, the process returns to the third step S23 and the next cycle is performed. On the other hand, if it is determined in the fifth step S25 that the pulse discharge has ended, the process proceeds to the next sixth step S26.

第6ステップS26では、パルス放電回数iを変数とする所定の関数を用いて第4ステップS24で算出した周期毎電圧降下量ΔViをフィッティングし、これを電圧降下近似式とする。第7ステップS27では、この電圧降下近似式からパルス放電回数iを無限大としたときの収束電圧降下量ΔV∞を算出し、第8ステップS28ではこの収束電圧降下量ΔV∞からバッテリの放電能力または劣化状態を推定してバッテリ状態が適切かを判定する。   In the sixth step S26, the predetermined voltage drop amount ΔVi calculated in the fourth step S24 is fitted using a predetermined function having the pulse discharge frequency i as a variable, and this is used as a voltage drop approximation formula. In the seventh step S27, the convergence voltage drop amount ΔV∞ when the number of pulse discharges i is set to infinity is calculated from this voltage drop approximation formula, and in the eighth step S28, the discharge capacity of the battery is calculated from this convergence voltage drop amount ΔV∞. Alternatively, the deterioration state is estimated to determine whether the battery state is appropriate.

なお、上記の処理の流れにおいて、第3ステップS23で測定した応答電圧V2iをメモリに保存し、第5ステップS25でパルス放電が終了したと判定された後に、第4ステップS24の周期毎電圧降下量ΔVi=V1−V2iの算出を行うようにしてもよい。
また、第8ステップS28のバッテリの放電能力または劣化度の判定は、第1の実施形態と同様に、収束電圧降下量ΔV∞を電圧降下許容値と比較して行うことができ、あるいは、収束電圧降下量ΔV∞からバッテリの反応抵抗値を算出し、これを用いて行うようにしてもよい。
In the above processing flow, the response voltage V2i measured in the third step S23 is stored in the memory, and it is determined in the fifth step S25 that the pulse discharge has ended, and then the voltage drop for each cycle in the fourth step S24. The amount ΔVi = V1−V2i may be calculated.
In addition, the determination of the discharge capability or the deterioration level of the battery in the eighth step S28 can be performed by comparing the converged voltage drop amount ΔV∞ with the allowable voltage drop value as in the first embodiment, or the convergence. The reaction resistance value of the battery may be calculated from the voltage drop amount ΔV∞, and this may be used.

第6ステップS26において、周期毎電圧降下量ΔViをフィッティングするための関数として、指数関数または逆数関数を用いることができる。指数関数を用いた電圧降下近似式として、たとえば次式を用いることができる。

Figure 2009244180
In the sixth step S26, an exponential function or a reciprocal function can be used as a function for fitting the periodical voltage drop amount ΔVi. As a voltage drop approximation expression using an exponential function, for example, the following expression can be used.
Figure 2009244180

上式を最小二乗法等を用いて周期数iおよび周期毎電圧降下量ΔViにフィッティングすることで、パラメータA1、A2を決定する。これにより、第7ステップS27で算出する収束電圧降下量ΔV∞をA2とすることができる。一例として、(式1)で周期毎電圧降下量ΔViを近似した結果を図5に示す。同図より、電圧降下近似式として指数関数(図5において符号21で示す曲線)を用いることで、周期毎電圧降下量ΔVi(図5において符号22で示す)を高精度に近似できることがわかる。   The parameters A1 and A2 are determined by fitting the above equation to the number of periods i and the amount of voltage drop ΔVi for each period using the least square method or the like. Thereby, the convergence voltage drop amount ΔV∞ calculated in the seventh step S27 can be set to A2. As an example, FIG. 5 shows a result obtained by approximating the voltage drop amount ΔVi for each cycle in (Equation 1). From the figure, it can be seen that by using an exponential function (curve indicated by reference numeral 21 in FIG. 5) as the voltage drop approximation formula, the periodical voltage drop amount ΔVi (indicated by reference numeral 22 in FIG. 5) can be approximated with high accuracy.

周期毎電圧降下量ΔViをフィッティングするための関数として、逆数関数を用いた実施例を図6に示す。図6は、周期毎電圧降下量ΔViを次式の逆数関数を用いて近似した結果を示している。

Figure 2009244180
FIG. 6 shows an embodiment using an inverse function as a function for fitting the periodical voltage drop amount ΔVi. FIG. 6 shows the result of approximating the voltage drop amount ΔVi for each cycle using the reciprocal function of the following equation.
Figure 2009244180

上式を最小二乗法等を用いて周期数iおよび周期毎電圧降下量ΔViにフィッティングすることで、パラメータB1、B2、B3を決定する。これにより、第7ステップS27で算出する収束電圧降下量ΔV∞をB3とすることができる。図6より、電圧降下近似式として逆数関数(図6において符号31で示す曲線)を用いた場合でも、周期毎電圧降下量ΔVi(図6において符号32で示す)を高精度に近似できることがわかる。   The parameters B1, B2, and B3 are determined by fitting the above equation to the number of periods i and the voltage drop amount ΔVi for each period using a least square method or the like. Thereby, the convergence voltage drop amount ΔV∞ calculated in the seventh step S27 can be set to B3. 6 that even when an inverse function (curve indicated by reference numeral 31 in FIG. 6) is used as the voltage drop approximation formula, the periodical voltage drop amount ΔVi (indicated by reference numeral 32 in FIG. 6) can be approximated with high accuracy. .

本発明の実施の形態に係るバッテリ状態検知装置及びバッテリ電源システムの概略の構成を図7に示す。同図は、本実施形態に係るバッテリ電源システム100及びバッテリ状態検知装置110の概略構成を示すブロック図である。バッテリ電源システム100は、バッテリ101と、電圧測定部102と、電流測定部103と、本実施形態のバッテリ状態検知装置110とを備える構成となっている。   FIG. 7 shows a schematic configuration of the battery state detection device and the battery power supply system according to the embodiment of the present invention. FIG. 2 is a block diagram showing a schematic configuration of the battery power supply system 100 and the battery state detection device 110 according to the present embodiment. The battery power supply system 100 includes a battery 101, a voltage measurement unit 102, a current measurement unit 103, and the battery state detection device 110 of the present embodiment.

また、本実施形態のバッテリ状態検知装置110は、演算制御部111と、記憶部112と、パルス放電回路113と、制御部114を備える構成となっている。制御部114は、演算制御部111からの要求に従って、バッテリ101から周波数100Hz以上で一定値の電流を所定回数パルス放電させるようにパルス放電回路113を制御することができる。   In addition, the battery state detection device 110 according to the present embodiment includes an arithmetic control unit 111, a storage unit 112, a pulse discharge circuit 113, and a control unit 114. The control unit 114 can control the pulse discharge circuit 113 so that a predetermined current is pulse-discharged a predetermined number of times at a frequency of 100 Hz or more from the battery 101 in accordance with a request from the arithmetic control unit 111.

演算制御部111は、上記の本発明のバッテリ状態検知方法の第1の実施形態から第3の実施形態のいずれかの処理を行う。演算制御部111は、電圧測定部102および電流測定部103からそれぞれ電圧測定値および電流測定値を入力可能に構成されている。また、制御部114に対しては、パルス放電回路113にパルス放電を行わせるための条件、すなわち、パルス放電の周波数、放電回数、放電電流値等の条件を設定することができ、パルス放電の開始指示も行う構成としている。   The arithmetic control unit 111 performs any one of the processes from the first embodiment to the third embodiment of the battery state detection method of the present invention described above. The calculation control unit 111 is configured to be able to input a voltage measurement value and a current measurement value from the voltage measurement unit 102 and the current measurement unit 103, respectively. In addition, the controller 114 can set conditions for causing the pulse discharge circuit 113 to perform pulse discharge, that is, conditions such as the frequency of pulse discharge, the number of discharges, and the discharge current value. The start instruction is also given.

上記のように構成することで、本実施形態のバッテリ電源システム100およびバッテリ状態検知装置110では、演算制御部111からの指示でバッテリ101のパルス放電を行わせ、その間の電圧・電流を電圧測定部102、電流測定部103から入力してたとえば記憶部112に一時的に保存しておき、パルス放電終了後に記憶部112から電圧等を読み込んでバッテリ101の状態検知を行うことができる。さらに、状態検知に用いる電圧降下許容値、反応抵抗許容値、電圧降下近似式のフィッティングパラメータ等を記憶部112に記憶させておき、必要時に読み込んで用いるようにすることができる。   With the configuration as described above, the battery power supply system 100 and the battery state detection device 110 according to the present embodiment cause the battery 101 to perform pulse discharge in response to an instruction from the arithmetic control unit 111, and measure the voltage and current during the voltage measurement. For example, the state of the battery 101 can be detected by reading the voltage from the storage unit 112 after the pulse discharge is completed. Furthermore, a voltage drop tolerance, a reaction resistance tolerance, a voltage drop approximation equation fitting parameter, and the like used for state detection may be stored in the storage unit 112 and read and used when necessary.

なお、本実施の形態における記述は、本発明に係るバッテリ状態検知方法及びバッテリ状態検知装置の一例を示すものであり、これに限定されるものではない。本実施の形態におけるバッテリ状態検知方法等の細部構成及び詳細な動作等に関しては、本発明の趣旨を逸脱しない範囲で適宜変更可能である。   In addition, the description in this Embodiment shows an example of the battery state detection method and battery state detection apparatus which concern on this invention, and is not limited to this. The detailed configuration and detailed operation of the battery state detection method and the like in the present embodiment can be changed as appropriate without departing from the spirit of the present invention.

本発明の第1の実施形態に係るバッテリ状態検知方法の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the battery state detection method which concerns on the 1st Embodiment of this invention. パルス放電時のバッテリの電圧・電流の変化を示す図であり、(a)電流パターン、(b)電圧パターンを示す。It is a figure which shows the change of the voltage and electric current of the battery at the time of pulse discharge, (a) A current pattern and (b) a voltage pattern are shown. 本発明の第2の実施形態におけるバッテリ状態検知方法の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the battery state detection method in the 2nd Embodiment of this invention. 本発明の第3の実施形態におけるバッテリ状態検知方法の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the battery state detection method in the 3rd Embodiment of this invention. 指数関数を用いた電圧降下近似式と周期毎電圧降下量とを比較する図である。It is a figure which compares the voltage drop approximate expression using an exponential function, and the voltage drop amount for every period. 逆数関数を用いた電圧降下近似式と周期毎電圧降下量とを比較する図である。It is a figure which compares the voltage drop approximate expression using a reciprocal function, and the voltage drop amount for every period. 本発明の実施の形態に係るバッテリ状態検知装置及びバッテリ電源システムの概略の構成を示すブロック図である。It is a block diagram which shows the schematic structure of the battery state detection apparatus and battery power supply system which concern on embodiment of this invention.

符号の説明Explanation of symbols

100 バッテリ電源システム
101 バッテリ
102 電圧測定部
103 電流測定部
110 バッテリ状態検知装置
111 演算制御部
112 記憶部
113 パルス放電回路
114 制御部
DESCRIPTION OF SYMBOLS 100 Battery power supply system 101 Battery 102 Voltage measurement part 103 Current measurement part 110 Battery state detection apparatus 111 Operation control part 112 Storage part 113 Pulse discharge circuit 114 Control part

Claims (9)

バッテリから周波数100Hz以上で一定電流を所定回数パルス放電させ、
前記パルス放電の開始前の電圧と終了直後の電圧との差である電圧差を算出し、
前記電圧差から前記バッテリの放電能力または劣化度を判定する
ことを特徴とするバッテリ状態検知方法。
A predetermined current is pulse-discharged a predetermined number of times at a frequency of 100 Hz or more from the battery
Calculate a voltage difference that is the difference between the voltage before the start of the pulse discharge and the voltage immediately after the end,
The battery state detection method characterized by determining the discharge capability or the deterioration degree of the battery from the voltage difference.
前記電圧差と前記一定電流とから反応抵抗値を算出し、
前記反応抵抗値から前記バッテリの放電能力または劣化度を判定する
ことを特徴とする請求項1に記載のバッテリ状態検知方法。
Calculate a reaction resistance value from the voltage difference and the constant current,
The battery state detection method according to claim 1, wherein a discharge capability or a deterioration degree of the battery is determined from the reaction resistance value.
前記パルス放電の開始前の電圧は、前記パルス放電開始前に複数回測定された電圧の平均値であり、
前記パルス放電の終了直後の電圧は、前記パルス放電終了直後に複数回測定された電圧の平均値である
ことを特徴とする請求項1また2に記載のバッテリ状態検知方法。
The voltage before the start of the pulse discharge is an average value of the voltage measured a plurality of times before the start of the pulse discharge,
3. The battery state detection method according to claim 1, wherein the voltage immediately after the end of the pulse discharge is an average value of voltages measured a plurality of times immediately after the end of the pulse discharge.
バッテリから周波数100Hz以上で一定電流を所定回数パルス放電させ、
前記パルス放電開始前の電圧とパルス放電1周期内の電流停止期間の電圧との差を算出して周期毎電圧差とし、
前記周期毎電圧差を所定の関数を用いてパルス回数でフィッティングして電圧差近似式を作成し、
前記電圧差近似式から前記パルス放電を継続したときの収束電圧差を算出し、
前記収束電圧差から前記バッテリの放電能力または劣化度を判定する
ことを特徴とするバッテリ状態検知方法。
A predetermined current is pulse-discharged a predetermined number of times at a frequency of 100 Hz or more from the battery
The difference between the voltage before the start of the pulse discharge and the voltage during the current stop period within one cycle of the pulse discharge is calculated as the voltage difference for each cycle,
Fitting the voltage difference for each period with the number of pulses using a predetermined function to create a voltage difference approximation formula,
Calculate the convergence voltage difference when the pulse discharge is continued from the voltage difference approximation formula,
The battery state detection method characterized by determining the discharge capacity or the deterioration degree of the battery from the convergence voltage difference.
前記収束電圧差と前記一定電流とから反応抵抗値を算出し、
前記反応抵抗値から前記バッテリの放電能力または劣化度を判定する
ことを特徴とする請求項4に記載のバッテリ状態検知方法。
Calculate a reaction resistance value from the convergence voltage difference and the constant current,
The battery state detection method according to claim 4, wherein a discharge capability or a deterioration degree of the battery is determined from the reaction resistance value.
前記所定の関数は、指数関数または逆数関数であることを特徴とする請求項4または5に記載のバッテリ状態検知方法。   The battery state detection method according to claim 4, wherein the predetermined function is an exponential function or an inverse function. バッテリの電圧を測定する電圧測定部と、
前記バッテリに流れる電流を測定する電流測定部と、
前記バッテリをパルス放電させるパルス放電回路と、
前記パルス放電回路を所定の周期で動作させる制御部と、
前記パルス放電回路で前記パルス放電を行う期間を含む所定の期間の前記バッテリの電圧の測定値および電流の測定値をそれぞれ前記電圧測定部および前記電流測定部から入力し、前記電圧の測定値および前記電流の測定値から前記バッテリの反応抵抗値を算出してバッテリ状態を検知する演算制御部と、を備える
ことを特徴とするバッテリ状態検知装置。
A voltage measuring unit for measuring the voltage of the battery;
A current measuring unit for measuring a current flowing through the battery;
A pulse discharge circuit for pulse discharging the battery;
A controller for operating the pulse discharge circuit at a predetermined period;
The measured voltage value and the measured current value of the battery for a predetermined period including the period for performing the pulse discharge in the pulse discharge circuit are input from the voltage measuring unit and the current measuring unit, respectively, and the measured voltage value and A battery state detection apparatus comprising: an arithmetic control unit that detects a battery state by calculating a reaction resistance value of the battery from the measured value of the current.
前記制御部は、前記演算制御部からの要求により前記バッテリから周波数100Hz以上で一定値の電流を所定回数パルス放電させるように前記パルス放電回路を制御する
ことを特徴とする請求項7に記載のバッテリ状態検知装置。
8. The control unit according to claim 7, wherein the control unit controls the pulse discharge circuit so that a constant current is pulse-discharged a predetermined number of times at a frequency of 100 Hz or more from the battery in response to a request from the arithmetic control unit. Battery state detection device.
前記制御部は、前記演算制御部からの要求により前記パルス放電回路によるパルス放電の開始および終了を制御する
ことを特徴とする請求項7または8に記載のバッテリ状態検知装置。
The battery state detection device according to claim 7 or 8, wherein the control unit controls start and end of pulse discharge by the pulse discharge circuit in response to a request from the arithmetic control unit.
JP2008092790A 2008-03-31 2008-03-31 Battery state detection method and battery state detection device Active JP5342160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008092790A JP5342160B2 (en) 2008-03-31 2008-03-31 Battery state detection method and battery state detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008092790A JP5342160B2 (en) 2008-03-31 2008-03-31 Battery state detection method and battery state detection device

Publications (2)

Publication Number Publication Date
JP2009244180A true JP2009244180A (en) 2009-10-22
JP5342160B2 JP5342160B2 (en) 2013-11-13

Family

ID=41306226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008092790A Active JP5342160B2 (en) 2008-03-31 2008-03-31 Battery state detection method and battery state detection device

Country Status (1)

Country Link
JP (1) JP5342160B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102193031A (en) * 2010-03-16 2011-09-21 横河电机株式会社 AC impedance measuring device
WO2014136593A1 (en) 2013-03-07 2014-09-12 古河電気工業株式会社 Secondary battery state detecting device and secondary battery state detecting method
WO2014141796A1 (en) 2013-03-14 2014-09-18 古河電気工業株式会社 Secondary cell state detection device and method for detecting secondary cell state
KR20160101323A (en) * 2015-02-16 2016-08-25 세방전지(주) System of estimating state of health for battery and method thereof
CN106405424A (en) * 2016-08-19 2017-02-15 上海绿耳新能源科技有限公司 Method and device for metering residual electric quantity of lithium ion battery
JPWO2015151848A1 (en) * 2014-04-01 2017-04-13 古河電気工業株式会社 Secondary battery state detection device and secondary battery state detection method
WO2020054924A1 (en) * 2018-09-12 2020-03-19 한국전력공사 Apparatus and method for diagnosing state of battery in cell unit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110785A (en) * 1990-08-31 1992-04-13 Fujitsu Ltd Battery alarm device
JPH09121473A (en) * 1995-10-27 1997-05-06 Japan Storage Battery Co Ltd Ac power supply device
JPH1014003A (en) * 1996-06-17 1998-01-16 Hino Motors Ltd Information transmitter for battery mounted on vehicle
JPH11215725A (en) * 1998-01-29 1999-08-06 Oki Electric Ind Co Ltd Charging state discriminating method/device and charging device
JP2001160421A (en) * 1999-12-03 2001-06-12 Tamachi Denki Kk Measuring method of degradation rate in cellular phone cell pack and cellular phone cell pack measurement equipment using the method
JP2002156427A (en) * 2000-11-21 2002-05-31 Gs-Melcotec Co Ltd Method for evaluating capacity of secondary battery
JP2006275846A (en) * 2005-03-30 2006-10-12 Furukawa Electric Co Ltd:The Method and device for determining deterioration of secondary battery, and power source system
WO2007141876A1 (en) * 2006-06-09 2007-12-13 The Furukawa Electric Co., Ltd. Method for judging deterioration state of battery, deterioration judgment device and power supply system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110785A (en) * 1990-08-31 1992-04-13 Fujitsu Ltd Battery alarm device
JPH09121473A (en) * 1995-10-27 1997-05-06 Japan Storage Battery Co Ltd Ac power supply device
JPH1014003A (en) * 1996-06-17 1998-01-16 Hino Motors Ltd Information transmitter for battery mounted on vehicle
JPH11215725A (en) * 1998-01-29 1999-08-06 Oki Electric Ind Co Ltd Charging state discriminating method/device and charging device
JP2001160421A (en) * 1999-12-03 2001-06-12 Tamachi Denki Kk Measuring method of degradation rate in cellular phone cell pack and cellular phone cell pack measurement equipment using the method
JP2002156427A (en) * 2000-11-21 2002-05-31 Gs-Melcotec Co Ltd Method for evaluating capacity of secondary battery
JP2006275846A (en) * 2005-03-30 2006-10-12 Furukawa Electric Co Ltd:The Method and device for determining deterioration of secondary battery, and power source system
WO2007141876A1 (en) * 2006-06-09 2007-12-13 The Furukawa Electric Co., Ltd. Method for judging deterioration state of battery, deterioration judgment device and power supply system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102193031A (en) * 2010-03-16 2011-09-21 横河电机株式会社 AC impedance measuring device
US8878549B2 (en) 2010-03-16 2014-11-04 Yokogawa Electric Corporation AC impedance measuring device
WO2014136593A1 (en) 2013-03-07 2014-09-12 古河電気工業株式会社 Secondary battery state detecting device and secondary battery state detecting method
CN105026944A (en) * 2013-03-07 2015-11-04 古河电气工业株式会社 Secondary battery state detecting device and secondary battery state detecting method
US10393820B2 (en) 2013-03-07 2019-08-27 Furukawa Electric Co., Ltd. Secondary battery state detecting device and secondary battery state detecting method
JPWO2014136593A1 (en) * 2013-03-07 2017-02-09 古河電気工業株式会社 Secondary battery state detection device and secondary battery state detection method
WO2014141796A1 (en) 2013-03-14 2014-09-18 古河電気工業株式会社 Secondary cell state detection device and method for detecting secondary cell state
US10466302B2 (en) 2013-03-14 2019-11-05 Furukawa Electric Co., Ltd. Secondary battery state detecting device and secondary battery state detecting method
JPWO2015151848A1 (en) * 2014-04-01 2017-04-13 古河電気工業株式会社 Secondary battery state detection device and secondary battery state detection method
KR101668287B1 (en) * 2015-02-16 2016-10-24 세방전지(주) System of estimating state of health for battery and method thereof
KR20160101323A (en) * 2015-02-16 2016-08-25 세방전지(주) System of estimating state of health for battery and method thereof
CN106405424A (en) * 2016-08-19 2017-02-15 上海绿耳新能源科技有限公司 Method and device for metering residual electric quantity of lithium ion battery
WO2020054924A1 (en) * 2018-09-12 2020-03-19 한국전력공사 Apparatus and method for diagnosing state of battery in cell unit

Also Published As

Publication number Publication date
JP5342160B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5342160B2 (en) Battery state detection method and battery state detection device
JP6479650B2 (en) Secondary battery state detection device and secondary battery state detection method
US11346893B2 (en) Method and assessment unit for determining the remaining service life of a capacitor, and system
JP6044114B2 (en) State determination device, power storage device, and state determination method
JP4865523B2 (en) Battery charge rate estimation method, battery charge rate estimation device, and battery power supply system
KR101414890B1 (en) Capacity estimating apparatus for secondary battery
JP4645382B2 (en) Battery state detection device and battery state detection method
JP4042917B1 (en) Capacitor power supply abnormality determination method and abnormality determination apparatus
US20150355288A1 (en) Secondary battery degradation determination method and secondary battery degradation determination device
JP4956476B2 (en) Battery discharge duration prediction method, battery state detection method, battery state detection device, and battery power supply system
JP2007179968A (en) Battery status control device
US20140119084A1 (en) AC Input Voltage Detection Circuit and AC/DC Power Source
JP2012154839A (en) Life prediction evaluation device and life prediction evaluation method
JP2007108063A (en) Method and device for determining secondary battery degradation, and power supply system
EP1632782A1 (en) Method and apparatus for battery monitoring
WO2012046285A1 (en) Battery status estimation method and power supply system
JP5554310B2 (en) Internal resistance measuring device and internal resistance measuring method
JP4805192B2 (en) Battery internal resistance measuring device
JP2011091940A (en) Battery voltage monitoring method
JP6350215B2 (en) Secondary battery diagnostic device
JP2008260506A (en) Startability predicting device and power control device
JP5203496B2 (en) Battery state detection method, battery state detection device, and battery power supply system
JP5137885B2 (en) Battery state estimation method and power supply system
KR20170041379A (en) Apparatus for analyzing aging states of battery
JP6655453B2 (en) Secondary battery state detection device and secondary battery state detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130809

R151 Written notification of patent or utility model registration

Ref document number: 5342160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350