JP4042917B1 - Capacitor power supply abnormality determination method and abnormality determination apparatus - Google Patents

Capacitor power supply abnormality determination method and abnormality determination apparatus Download PDF

Info

Publication number
JP4042917B1
JP4042917B1 JP2007112568A JP2007112568A JP4042917B1 JP 4042917 B1 JP4042917 B1 JP 4042917B1 JP 2007112568 A JP2007112568 A JP 2007112568A JP 2007112568 A JP2007112568 A JP 2007112568A JP 4042917 B1 JP4042917 B1 JP 4042917B1
Authority
JP
Japan
Prior art keywords
deterioration
capacitor
degree
time
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007112568A
Other languages
Japanese (ja)
Other versions
JP2008268042A (en
Inventor
真一 山本
廸夫 岡村
敦 清水
Original Assignee
株式会社パワーシステム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社パワーシステム filed Critical 株式会社パワーシステム
Priority to JP2007112568A priority Critical patent/JP4042917B1/en
Application granted granted Critical
Publication of JP4042917B1 publication Critical patent/JP4042917B1/en
Publication of JP2008268042A publication Critical patent/JP2008268042A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】簡便にキャパシタ電源の劣化度を推定又は測定してキャパシタの異常を判別し、寿命を予測できるようにする。
【解決手段】キャパシタの静電容量又は内部抵抗が当初の値に対して劣化する割合を劣化度とし所定の劣化度まで劣化するのに要する時間を劣化時間として、劣化度と劣化時間の平方根との比の劣化係数を参照データ記憶手段3に格納し、キャパシタの電圧と温度を測定し劣化係数を参照データ記憶手段3から取得して推定劣化度演算手段4により稼働中のキャパシタの推定劣化度を求め、キャパシタを定電流により充放電して充放電の直前と直後及び充放電中の電圧を測定して実劣化度演算手段5によりキャパシタの静電容量又は内部抵抗の実劣化度を求め、推定劣化度と実劣化度との差を求めて差が基準値を越える場合にはキャパシタの異常を異常判定手段7により判定する。
【選択図】図1
An object of the present invention is to easily estimate or measure the degree of deterioration of a capacitor power source to determine abnormality of the capacitor and to predict the life.
The degradation rate and the square root of the degradation time are defined as the degradation time, where the rate of deterioration of the capacitance or internal resistance of the capacitor with respect to the initial value is the degradation level, and the time required for degradation to a predetermined degradation level is defined as the degradation time. Is stored in the reference data storage means 3, the voltage and temperature of the capacitor are measured, the deterioration coefficient is obtained from the reference data storage means 3, and the estimated deterioration degree of the active capacitor is obtained by the estimated deterioration degree calculation means 4. And charging / discharging the capacitor with a constant current, measuring the voltage immediately before and after charging / discharging and during charging / discharging, and determining the actual deterioration degree of the capacitance or internal resistance of the capacitor by the actual deterioration degree calculating means 5, When the difference between the estimated deterioration level and the actual deterioration level is obtained and the difference exceeds the reference value, abnormality of the capacitor is determined by the abnormality determination means 7.
[Selection] Figure 1

Description

本発明は、充電電源又は負荷の回生電力によりキャパシタに充電して、該充電したキャパシタから負荷の給電要求により放電し充放電の繰り返しにより使用されるキャパシタ電源の異常判別方法及び異常判別装置に関する。   The present invention relates to an abnormality determination method and an abnormality determination device for a capacitor power source that is charged by a charging power source or a regenerative electric power of a load, discharged from the charged capacitor according to a power feeding request of the load, and used by repeated charging and discharging.

複数の電気二重層キャパシタからなるキャパシタ電源は、充電電源や負荷の回生電力により充電され負荷の給電要求により放電される。キャパシタは、充放電の繰り返し使用と共に静電容量C、内部抵抗rの特性劣化があり、静電容量C又は内部抵抗rの劣化度が所定の設計値に達したことをもって寿命とされる。このようなキャパシタの劣化、寿命によりキャパシタ電源から給電を受けるシステムが突然の異常停止に至る前に、キャパシタを交換する等の処置を行うには、通常の使用環境における劣化度を推定又は測定することによりキャパシタの異常を判別し、寿命を予測することが必要となる。   A capacitor power source composed of a plurality of electric double layer capacitors is charged by a charging power source or a regenerative electric power of a load, and is discharged by a power supply request of the load. The capacitor has a characteristic deterioration of the capacitance C and the internal resistance r with repeated use of charging and discharging, and the life is reached when the degree of deterioration of the capacitance C or the internal resistance r reaches a predetermined design value. In order to take measures such as replacing a capacitor before the system that receives power from the capacitor power supply suddenly stops due to the deterioration and life of the capacitor, the degree of deterioration in a normal use environment is estimated or measured. Therefore, it is necessary to determine the abnormality of the capacitor and predict the lifetime.

キャパシタ使用回路に対しては、周波数特性の入力、等価回路モデル形成、その評価関数の合成、評価関数を最小化する回路定数の決定を行う各ステップによりコンデンサの等価回路モデルを導出する方法が提案されている(例えば、特許文献1参照)。また、1次電池や2次電池、コンデンサなどの蓄電装置に対しては、充電/放電させながら電圧特性の測定、所定周波数領域に対する特性インピーダンススペクトルの測定をそれぞれ行って、非線形等価回路モデルの特定因子を数値化する方法が提案されている(例えば、特許文献2参照)。
特開2002−259482号公報 特許第3190313号公報
For capacitors that use capacitors, a method is proposed to derive an equivalent circuit model of the capacitor by inputting frequency characteristics, forming an equivalent circuit model, synthesizing its evaluation function, and determining circuit constants that minimize the evaluation function. (For example, refer to Patent Document 1). Also, for power storage devices such as primary batteries, secondary batteries, and capacitors, voltage characteristics are measured while charging / discharging, and characteristic impedance spectra for a predetermined frequency region are measured to identify a nonlinear equivalent circuit model. A method for quantifying the factor has been proposed (see, for example, Patent Document 2).
JP 2002-259482 A Japanese Patent No. 3190313

しかし、上記従来の技術では、キャパシタ電源のシミュレーションを行うことはできるが、通常の負荷回路に使用している状態のキャパシタ電源に対して、劣化度を推定又は測定してキャパシタの異常を判別し、寿命を予測したり、その推定や予測を行いながらキャパシタ電源の異常を判別することはできない。   However, although the above-mentioned conventional technology can simulate a capacitor power supply, it is possible to determine the abnormality of the capacitor by estimating or measuring the degree of deterioration of the capacitor power supply used in a normal load circuit. It is impossible to determine the abnormality of the capacitor power supply while predicting the life or performing the estimation or prediction.

二次電池は、充放電で電圧があまり変動しないのに対し、キャパシタ電源は、充放電に応じて電圧が上下に大きく変動するので、所望の電力量を確保するためにどれだけの静電容量のキャパシタ電源が必要かが分かりにくい。また、キャパシタ電源は、二次電池に比べて出力密度が高く、短時間に大電力を充放電する用途への適用が期待されているが、使用電圧や使用状態によって劣化の程度に差が生じる。ゆえに、標準的な設計にしたがって寿命が設定された場合には、使用電圧や使用状態によって寿命満了時でもまだ十分な性能を残してしまい、無駄が生じて設計が難しいという問題がある。つまり、設計にしたがって寿命満了を判定すると、使用可能な性能を残しているキャパシタ電源が無駄に廃棄処分されてしまう。   The voltage of the secondary battery does not fluctuate very much due to charging / discharging, while the voltage of the capacitor power supply greatly fluctuates up and down according to charging / discharging, so how much capacitance is required to secure the desired amount of power. It is difficult to see if a capacitor power supply is required. Capacitor power supplies have a higher output density than secondary batteries and are expected to be applied to applications that charge and discharge large amounts of power in a short time. However, the degree of deterioration varies depending on the operating voltage and operating conditions. . Therefore, when the service life is set according to a standard design, there is a problem that sufficient performance is still left even when the service life is expired depending on the operating voltage and use state, resulting in waste and difficulty in designing. In other words, when the expiration of the life is determined according to the design, the capacitor power supply that remains usable is discarded wastefully.

本発明は、上記課題を解決するものであって、簡便にキャパシタ電源の劣化度を推定又は測定してキャパシタの異常を判別し、寿命を予測できるようにするものである。   The present invention solves the above-described problem, and makes it possible to easily estimate or measure the degree of deterioration of a capacitor power source to determine abnormality of the capacitor and to predict the lifetime.

そのために本発明は、充電電源又は負荷の回生電力によりキャパシタに充電して、該充電したキャパシタから負荷の給電要求により放電し充放電の繰り返しにより使用されるキャパシタ電源の異常判別方法であって、キャパシタの静電容量又は内部抵抗が当初の値に対して劣化する割合を劣化度とし所定の劣化度まで劣化するのに要する時間を劣化時間とし前記劣化度と劣化時間の平方根との比を劣化係数として、キャパシタの電圧と温度をパラメータとして与えた前記劣化係数を参照データに持ち、稼働中のキャパシタの電圧と温度を測定して、前記測定した電圧と温度に応じた劣化係数を前記参照データから取得して稼働中のキャパシタの推定劣化度を各時間毎に求めて積算し、キャパシタの充電又は放電による電流と電圧を測定して、前記測定した電流と電圧に基づき算出される蓄電量と電圧の変化幅からキャパシタの静電容量の実劣化度を求め、或いはキャパシタを一定時間に定電流により充電又は放電して前記充電又は放電の直前と直後及び前記充電又は放電中の電圧と電流を測定して、前記測定した電圧と電流に基づきキャパシタの静電容量又は内部抵抗の実劣化度を求め、前記積算した推定劣化度と前記実劣化度との差を求めて前記差が基準値を越える場合にはキャパシタの異常を判定することを特徴とする。 For this purpose, the present invention is a capacitor power supply abnormality determination method in which a capacitor is charged by a regenerative power of a charging power supply or a load, discharged from the charged capacitor according to a power feeding request of the load, and used by repeated charging and discharging, the ratio of the square root of the previous SL deterioration degree of degradation time and the time required for the electrostatic capacitance or internal resistance of the capacitor is deteriorated to a predetermined degree of deterioration and deterioration degree the rate of degradation with respect to the initial value as the deterioration time as deterioration coefficient has the deterioration coefficient given by the voltage and temperature of the capacitor as a parameter to the reference data, by measuring the voltage and temperature of the capacitor during operation, deterioration coefficient corresponding to the voltage and temperature as the measuring said acquired from the reference data by integrating seeking estimate the degree of deterioration of the capacitor in service every time, by measuring the current and voltage by the charging or discharging of the capacitor and, Determine the actual deterioration degree of the capacitance of the capacitor from the amount of stored electricity and the change in voltage calculated based on the measured current and voltage, or charge or discharge the capacitor with a constant current for a predetermined time. The voltage and current immediately before and after and during charging or discharging are measured, the actual deterioration degree of the capacitance or internal resistance of the capacitor is obtained based on the measured voltage and current, and the integrated estimated deterioration degree and the actual deterioration degree are obtained. A difference from the degree of deterioration is obtained, and when the difference exceeds a reference value, abnormality of the capacitor is determined.

また、充電電源又は負荷の回生電力によりキャパシタに充電して、該充電したキャパシタから負荷の給電要求により放電し充放電の繰り返しにより使用されるキャパシタ電源の異常判別装置であって、キャパシタの静電容量又は内部抵抗が当初の値に対して劣化する割合を劣化度とし所定の劣化度まで劣化するのに要する時間を劣化時間とし前記劣化度と劣化時間の平方根との比を劣化係数として、キャパシタの電圧と温度をパラメータとして与えた前記劣化係数を劣化推定用参照データとして格納する参照データ記憶手段と、稼働中のキャパシタの電圧と温度を測定して、前記測定した電圧と温度に応じた劣化係数を前記参照データ記憶手段から取得して稼働中のキャパシタの推定劣化度を各時間毎に求めて積算する推定劣化度演算手段と、キャパシタを一定時間に定電流により充電又は放電して前記充電又は放電の直前と直後及び前記充電又は放電中の電圧を測定して、前記測定した電圧と電流に基づきキャパシタの静電容量又は内部抵抗の実劣化度を求める実劣化度演算手段と、前記積算した推定劣化度と前記実劣化度との差を求めて前記差が基準値を越える場合にはキャパシタの異常を判定する異常判定手段とを備えたことを特徴とする。 Further, the capacitor power supply abnormality determination device is provided by charging a capacitor with a regenerative power of a charging power supply or a load, discharging the charged capacitor in response to a power feeding request of the load, and being used by repeated charging and discharging. as a ratio degradation coefficient between the square root of the previous SL deterioration degree of degradation time and the deterioration time period required to degrade and the percentage degradation of the capacity or the internal resistance is deteriorated with respect to the initial value to a predetermined degree of deterioration the reference data storing means for storing the deterioration coefficient given by the voltage and temperature of the capacitor and the parameters as degradation estimation reference data, by measuring the voltage and temperature of capacitor running, voltage and temperature as the measuring an estimated deterioration degree calculating means for estimating the degree of deterioration of the capacitor during operation is obtained from the reference data storing means degradation coefficient values are accumulated evaluated at every time in accordance with the Capacitor or internal resistance of the capacitor based on the measured voltage and current by measuring the voltage immediately before and immediately after the charging or discharging and during the charging or discharging by charging or discharging the capacitor with a constant current for a certain time. An actual deterioration degree calculating means for obtaining an actual deterioration degree of the battery, an abnormality determining means for obtaining a difference between the accumulated estimated deterioration degree and the actual deterioration degree and determining an abnormality of the capacitor when the difference exceeds a reference value; It is provided with.

さらに、前記推定劣化度演算手段は、前記推定劣化度と劣化時間から当該劣化時間における平均劣化係数を求めて寿命とする所定の劣化度までの劣化時間による予測寿命を求めることを特徴とし、前記平均劣化係数は、前記推定劣化度を求めた時点から一定時間を特定した劣化時間で求めたものであることを特徴とし、前記推定劣化度演算手段は、前記劣化推定用参照データに設定されていない中間の電圧と温度に対する劣化係数を前後のデータに基づき補間演算して求めることを特徴とする。   Further, the estimated deterioration degree calculating means obtains a predicted life by a deterioration time from the estimated deterioration degree and the deterioration time to a predetermined deterioration degree as a life by obtaining an average deterioration coefficient in the deterioration time, The average deterioration coefficient is obtained by a deterioration time specifying a certain time from the time when the estimated deterioration degree is obtained, and the estimated deterioration degree calculating means is set in the reference data for deterioration estimation. It is characterized in that a deterioration coefficient with respect to no intermediate voltage and temperature is obtained by interpolation calculation based on previous and subsequent data.

本発明によれば、稼働中の電圧、温度を測定しその測定データからキャパシタの推定劣化度を求めると共に、劣化検査による充放電量の測定データから直接静電容量又は内部抵抗の実劣化度を求めて、それらの推定劣化度と実劣化度とを比較して異常の判定を行うので、実劣化度が際立って悪化している場合や想定外の何らかの要因で劣化が加速している場合に簡便にその異常を判別することができる。さらに、推定劣化度に基づく予測寿命を求めるので、稼働中の電圧、温度に応じた劣化度の推定、寿命の予測ができ、キャパシタ電源の信頼性を高め、利用効率を高めることができる。   According to the present invention, the voltage and temperature during operation are measured, and the estimated deterioration degree of the capacitor is obtained from the measurement data, and the actual deterioration degree of the capacitance or internal resistance is directly obtained from the measurement data of the charge / discharge amount by the deterioration inspection. And determine the anomaly by comparing the estimated degradation level with the actual degradation level, so when the actual degradation level is remarkably worsening or when degradation is accelerating due to some unexpected factor The abnormality can be easily determined. Furthermore, since the estimated life based on the estimated deterioration degree is obtained, the deterioration degree according to the operating voltage and temperature can be estimated and the life can be predicted, and the reliability of the capacitor power supply can be improved and the utilization efficiency can be improved.

以下、本発明の実施の形態を図面を参照しつつ説明する。図1は本発明に係るキャパシタ電源の異常判別装置の実施の形態を説明する図、図2は本実施形態に係るキャパシタ電源の異常判別装置を備えたキャパシタ電源システム構成例を示す図である。図1において、1は劣化推定用測定データ、2は劣化検査用測定データ、3は劣化推定用参照データ、4は推定劣化度演算処理部、5は劣化度演算処理部、6は寿命予測処理部、7は異常判定処理部、8は予測寿命出力部、9は異常判別出力部、10は異常判別装置、11は充電・放電コンバータ、12は電流センサー、13は電圧計、14は温度計、15はキャパシタバンクを示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating an embodiment of a capacitor power supply abnormality determination device according to the present invention, and FIG. 2 is a diagram illustrating a configuration example of a capacitor power supply system including the capacitor power supply abnormality determination device according to the present embodiment. In FIG. 1, 1 is measurement data for deterioration estimation, 2 is measurement data for deterioration inspection, 3 is reference data for deterioration estimation, 4 is an estimated deterioration degree calculation processing unit, 5 is a deterioration degree calculation processing unit, and 6 is a life prediction process. , 7 is an abnormality determination processing unit, 8 is a predicted life output unit, 9 is an abnormality determination output unit, 10 is an abnormality determination device, 11 is a charge / discharge converter, 12 is a current sensor, 13 is a voltmeter, and 14 is a thermometer. , 15 indicate capacitor banks.

図1に示す本実施形態に係るキャパシタ電源の異常判別装置では、稼働中の電圧V、温度Tを測定したデータに基づき充放電の繰り返し使用により時々刻々劣化するキャパシタ電源の劣化度(劣化率)DE を推定する。他方、一定条件下での劣化検査モードにより静電容量C、内部抵抗rを測定しそのデータに基づきキャパシタ電源の実劣化度DR をより求める。そして、推定した劣化度DE と実劣化度DR とを比較して判定することによりキャパシタ電源の異常判別を行う。また、推定した劣化度DE から寿命とする所定の劣化度までの寿命予測を行う。 In the capacitor power supply abnormality determination device according to the present embodiment shown in FIG. 1, the deterioration degree (deterioration rate) of the capacitor power supply that deteriorates from time to time due to repeated use of charge and discharge based on data obtained by measuring operating voltage V and temperature T. Estimate D E. On the other hand, obtaining a more real deterioration degree D R of the capacitor power supply based on the data measured capacitance C, and the internal resistance r by deterioration check mode under certain conditions. Then, an abnormality determination of the capacitor power supply by determining by comparing the estimated deterioration degree D E and the actual deterioration degree D R. Further, a life prediction from the estimated deterioration degree D E to a predetermined deterioration degree as a life is performed.

図1において、劣化推定用測定データ1は、キャパシタの劣化の進む程度が稼働中の電圧Vや温度Tに依存することに鑑み、稼働中の電圧Vや温度Tを測定してその測定データを劣化推定用として格納する記憶部である。劣化検査用測定データ2は、実劣化度を静電容量C、内部抵抗rにより検査するためのデータとして、キャパシタ電源の充放電に伴う電圧V、電流Iを測定してその測定データを劣化検査用として格納する記憶部である。劣化推定用参照データ3は、電圧Vや温度Tをパラメータとして劣化係数αを求めるためのデータを格納する記憶部である。   In FIG. 1, measurement data 1 for estimation of deterioration is obtained by measuring the operating voltage V and temperature T in consideration of the degree of progress of capacitor deterioration depending on the operating voltage V and temperature T. It is a storage unit that stores data for deterioration estimation. The measurement data 2 for deterioration inspection is data for inspecting the actual deterioration degree with the capacitance C and the internal resistance r, and the voltage V and current I associated with charging / discharging of the capacitor power supply are measured and the measurement data is inspected for deterioration. This is a storage unit that stores data for use. The degradation estimation reference data 3 is a storage unit that stores data for obtaining the degradation coefficient α using the voltage V and the temperature T as parameters.

劣化度Dは、キャパシタの使用によりその静電容量Cが当初の値(100%)から経時的にどれだけ劣化するかを示す割合である。その劣化度Dまで劣化するのに要する劣化時間tとすると、劣化度Dは、劣化時間tの平方根に比例する。劣化度Dと劣化時間tの平方根との比は、温度や電圧に依存する一定の値を示し、これを劣化係数αとして、
〔数1〕
α=D/√t
により表す。したがって、劣化係数αが大きくなると、同じ劣化時間tでの劣化度Dは大きくなり、キャパシタの寿命は短くなる。
The degree of deterioration D is a ratio indicating how much the capacitance C deteriorates with time from the initial value (100%) by using the capacitor. When the deterioration time t required for deterioration to the deterioration degree D is assumed, the deterioration degree D is proportional to the square root of the deterioration time t. The ratio of the degradation degree D and the square root of the degradation time t shows a constant value depending on temperature and voltage, and this is regarded as the degradation coefficient α.
[Equation 1]
α = D / √t
Is represented by Therefore, as the deterioration coefficient α increases, the degree of deterioration D at the same deterioration time t increases, and the life of the capacitor decreases.

キャパシタにおける化学反応の速度は、温度Ta 、Tr (>Ta )によって大きく変化し、同じ劣化度Dまで劣化するのに要する劣化時間tは、温度差に比例して温度が低くなるほど長くなる。また、同じ劣化度Dまで劣化するのに要する劣化時間tは、電圧Vに関しても、電圧が低くなるほど長くなる。つまり、温度や電圧が低くなれば劣化時間tが長くなり寿命が延びる。 The speed of the chemical reaction in the capacitor greatly varies depending on the temperatures T a and T r (> T a ), and the degradation time t required for degradation to the same degradation degree D increases as the temperature decreases in proportion to the temperature difference. Become. Further, the deterioration time t required for deterioration to the same deterioration degree D also becomes longer with respect to the voltage V as the voltage is lower. That is, if the temperature or voltage is lowered, the deterioration time t becomes longer and the life is extended.

推定劣化度演算処理部4は、稼働中に測定され劣化推定用測定データ1に格納されたキャパシタの電圧V、温度Tと稼働時間tから劣化度DE を推定する。ここでは、劣化推定用参照データ3から電圧V、温度Tに対応した劣化係数αを取得して、〔数1〕の関係式から展開される稼働時間tの平方根との乗算式によりその時間当たりの劣化度を求めて積算し、それまでの劣化度DE を推定する。劣化度演算処理部5は、劣化検査モードにより測定され劣化検査用測定データ2に格納された電圧V、電流Iに基づき充放電量とその充放電に伴う電圧の変動量から現実の静電容量C、内部抵抗rを求めることにより当初の値からの実劣化度DR を求める。 The estimated deterioration degree calculation processing unit 4 estimates the deterioration degree D E from the capacitor voltage V, temperature T, and operation time t measured during operation and stored in the deterioration estimation measurement data 1. Here, the deterioration coefficient α corresponding to the voltage V and the temperature T is acquired from the deterioration estimation reference data 3, and the per-time basis is obtained by multiplying the square root of the operating time t developed from the relational expression [Equation 1]. The degree of deterioration is obtained and integrated, and the degree of deterioration DE so far is estimated. The deterioration degree calculation processing unit 5 calculates the actual capacitance based on the charge / discharge amount and the voltage fluctuation amount associated with the charge / discharge based on the voltage V and current I measured in the deterioration inspection mode and stored in the measurement data 2 for deterioration inspection. C, the actual deterioration degree D R from the initial value is obtained by obtaining the internal resistance r.

寿命予測処理部6は、推定劣化度演算処理部4により推定された劣化度DE から所定の劣化度DL 、例えば20%の劣化度まで劣化し、つまり劣化当初の値から80%の値まで劣化するのに要する劣化時間tL を寿命として予測する。この寿命の予測は、推定劣化度DE と対応する劣化時間tから平均劣化係数αを求め、その平均劣化係数αを使って所定の劣化度DL まで劣化するのに要する劣化時間tL を寿命とする。或いは後述するようにその時点から遡って一定の劣化時間とその間の劣化度から平均劣化係数を求め、つまり、推定劣化度を求めた時点から一定時間を特定した劣化時間で平均劣化係数を求めて、その平均劣化係数を使って所定の劣化度まで劣化するのに要する劣化時間を寿命とする。この予測寿命を出力するのが予測寿命出力部8である。 The lifetime prediction processing unit 6 deteriorates from the deterioration degree D E estimated by the estimated deterioration degree calculation processing unit 4 to a predetermined deterioration degree D L , for example, a deterioration degree of 20%, that is, a value of 80% from the initial value of deterioration. The deterioration time t L required for deterioration until the lifetime is predicted as the lifetime. In this life prediction, the average deterioration coefficient α is obtained from the estimated deterioration degree D E and the corresponding deterioration time t, and the deterioration time t L required for deterioration to the predetermined deterioration degree D L is calculated using the average deterioration coefficient α. Life is assumed. Alternatively, as will be described later, the average deterioration coefficient is obtained from a certain deterioration time and the degree of deterioration in the meantime, that is, the average deterioration coefficient is obtained at the deterioration time specified from the time when the estimated deterioration degree is obtained. Using the average degradation coefficient, the degradation time required for degradation to a predetermined degradation level is defined as the lifetime. The predicted life output unit 8 outputs this predicted life.

異常判定処理部7は、推定劣化度演算処理部4により推定された劣化度DE に対応して劣化度演算処理部5により求められた実劣化度DR が異常値を示しているか否かを判定する。本来、推定劣化度DE は、キャパシタの電圧V、温度Tをパラメータにして設定された劣化係数αを用い、キャパシタの稼働中に逐次劣化度を推定して積算されたものである。これに対し、劣化度演算処理部5により求められた実劣化度DR が大きく外れる場合には、キャパシタが設計された期待値を示していない、つまり異常状態になっているキャパシタとして判別する。したがって、この判定では、例えば推定劣化度DE と実劣化度DR との差が一定値より大きくなった場合に異常とする。この異常判定の結果を例えば警報として出力するのが異常判別出力部9である。 The abnormality determination processing unit 7 determines whether or not the actual deterioration degree D R obtained by the deterioration degree calculation processing unit 5 corresponding to the deterioration degree D E estimated by the estimated deterioration degree calculation processing unit 4 indicates an abnormal value. Determine. Originally, the estimated deterioration degree D E is obtained by using the deterioration coefficient α set with the capacitor voltage V and temperature T as parameters and sequentially estimating and integrating the deterioration degree during the operation of the capacitor. On the other hand, when the actual deterioration degree D R obtained by the deterioration degree calculation processing unit 5 greatly deviates, it is determined that the capacitor does not indicate the designed expected value, that is, is a capacitor in an abnormal state. Therefore, in this determination, for example, when the difference between the estimated deterioration level D E and the actual deterioration level D R becomes larger than a certain value, an abnormality is determined. The abnormality determination output unit 9 outputs the result of the abnormality determination as an alarm, for example.

本実施形態に係るキャパシタ電源の異常判別装置を備えたキャパシタ電源システムは、例えば図2に示すように構成される。図2において、キャパシタバンク15は、温度Tを検出する温度計14を内蔵し、充電・放電コンバータ11を通して充電電源や負荷の回生電力によって充電し、負荷の給電要求に応じて放電する。電流センサー12は、そのキャパシタバンク15の充電・放電電流Iを検出するものであり、電圧計13は、キャパシタバンク15の電圧Vを検出するものである。異常判別装置10は、充電・放電コンバータ11を制御信号Sg により監視制御して、電流センサー12、電圧計13、温度計14からそれぞれの測定データを取り込んで記憶部に格納して、上記のように推定劣化度DE 、実劣化度DR 、予測寿命tL を求め、異常判定を行うものである。 A capacitor power supply system including a capacitor power supply abnormality determination device according to the present embodiment is configured as shown in FIG. 2, for example. In FIG. 2, the capacitor bank 15 includes a thermometer 14 that detects the temperature T, is charged by the charging power source or the regenerative power of the load through the charging / discharging converter 11, and is discharged according to the power supply request of the load. The current sensor 12 detects the charging / discharging current I of the capacitor bank 15, and the voltmeter 13 detects the voltage V of the capacitor bank 15. The abnormality determination device 10 monitors and controls the charge / discharge converter 11 with the control signal Sg, takes in the respective measurement data from the current sensor 12, the voltmeter 13, and the thermometer 14 and stores them in the storage unit as described above. Then, the estimated deterioration degree D E , the actual deterioration degree D R , and the predicted life t L are obtained, and abnormality determination is performed.

異常判別装置10は、図1に示す構成を有する本実施形態に係るキャパシタ電源の異常判別装置であり、充電・放電コンバータ11の制御信号を取り込んでその動作を監視する。また、劣化検査モード時に制御信号Sg によりキャパシタバンク15を一定時間に定電流充電又は放電(パルス充電又は放電)するため充電・放電コンバータ11を制御する。さらに、稼働中は、例えば一定の時間間隔にしたがって定期的にキャパシタバンク15の電圧V、充電・放電電流I、温度Tの測定データを取り込む。劣化検査モード時には、充電又は放電直前、直後の電圧V、充電又は放電を開始した後の所定時間経過時の電圧V、電流Iの測定データを取り込む。そして、測定データに基づき推定劣化度DE 、実劣化度DR 、予測寿命tL 、異常判定の演算処理を行い、結果を出力する。 The abnormality determination device 10 is a capacitor power supply abnormality determination device according to the present embodiment having the configuration shown in FIG. 1, and takes in a control signal of the charge / discharge converter 11 and monitors its operation. Further, the charge / discharge converter 11 is controlled in order to charge or discharge (pulse charge or discharge) the capacitor bank 15 at a constant time by the control signal Sg in the deterioration inspection mode. Furthermore, during operation, for example, the measurement data of the voltage V, the charging / discharging current I, and the temperature T of the capacitor bank 15 are taken in periodically according to a certain time interval. In the deterioration inspection mode, the measurement data of the voltage V immediately before and after charging or discharging, the voltage V when the predetermined time has elapsed after starting charging or discharging, and the current I are captured. Then, based on the measurement data, an estimated deterioration degree D E , an actual deterioration degree D R , a predicted life t L , an abnormality determination calculation process are performed, and a result is output.

さらに、本実施形態に係るキャパシタ電源の異常判別装置の各種データ、劣化係数、異常判定について具体的に説明する。図3は測定データ及び参照データの構成例を示す図、図4は定電流によるパルス放電の電圧、電流波形と実劣化度を求めるための測定データを説明する図、図5はキャパシタの劣化係数を説明する図、図6は劣化度によるキャパシタ電源の異常判定を説明する図である。   Further, various data, deterioration coefficient, and abnormality determination of the abnormality determination device for the capacitor power supply according to the present embodiment will be specifically described. FIG. 3 is a diagram showing a configuration example of measurement data and reference data, FIG. 4 is a diagram for explaining measurement data for determining the voltage, current waveform, and actual degradation degree of pulse discharge by constant current, and FIG. 5 is a degradation coefficient of the capacitor. FIG. 6 is a diagram for explaining an abnormality determination of the capacitor power supply based on the degree of deterioration.

稼働条件に見合って劣化度DE を推定し、さらに寿命tL を予測するために必要な劣化推定用測定データ1は、例えば図3(a)に示すような時刻tE011、tE012、……とその時刻に測定した電圧VE011、VE012、……、温度TE011、TE012、……のデータが格納される。時刻は、一定の間隔であっても、一定の間隔でなくてもよい。 The degradation estimation measurement data 1 necessary for estimating the degradation degree D E in accordance with the operating conditions and predicting the life t L is, for example, times t E011 , t E012 ,... As shown in FIG. .. And data of voltages V E011 , V E012 ,..., Temperatures T E011 , T E012,. The time may or may not be a constant interval.

劣化検査モード時にキャパシタバンク15を一定時間に定電流充電又は放電して実劣化度DR を求めるために必要な劣化検査用測定データ2は、例えば図3(b)に示すような充電開始直前のある時刻tss01とその時刻に測定した電圧Vss01、充電開始時刻ds01、充電開始した後の所定時間経過時刻tds02とその時刻に測定した電圧Vds02、電流Id0、充電終了時刻tde01、充電終了直後のある時刻tse01とその時刻に測定した電圧Vse01のデータが格納される。 In the deterioration inspection mode, the deterioration inspection measurement data 2 necessary for obtaining the actual deterioration degree D R by charging or discharging the capacitor bank 15 at a constant time for a predetermined time is, for example, immediately before the start of charging as shown in FIG. At a certain time t ss01 , a voltage V ss01 measured at that time, a charging start time ds 01 , a predetermined time elapsed after starting charging t ds02 , a voltage V ds02 measured at that time, a current I d0 , a charging end time t de01 The data of a certain time t se01 immediately after the end of charging and the voltage V se01 measured at that time are stored.

そして、劣化推定用測定データ1から劣化度DE を推定するために参照する劣化推定用参照データ3は、例えば図3(c)に示すような電圧Vと温度Tをパラメータとして与えられる劣化係数αのデータである。劣化係数αは、劣化度Dと劣化時間tの平方根との比であり、先に述べたように電圧Vが低くなるほど小さくなり、温度Tが低くなるほど小さくなる係数である。したがって、図3(c)のテーブルの例では、α11が最も小さく、α45が最も大きく、図示右方、下方に向かって大きくなる傾向の係数となる。劣化係数αを図5に示すと、点線で示す急勾配の劣化係数αの方が緩勾配の劣化係数αより大きい値を示す。劣化推定用参照データ3は、図3(c)に示すような電圧Vと温度TをパラメータとするルックアップテーブルLUTとして、電圧V、温度Tの刻みを細かくすることにより、電圧Vと温度Tで近い劣化係数αを選択して読み出すように用いることができる。しかし、電圧V、温度Tの刻みが粗くした場合には、中間の電圧V、温度Tに対して、前後のデータから関数で補間演算して劣化係数αを求めるようにしてもよい。 The deterioration estimation reference data 3 referred to in order to estimate the deterioration degree D E from the deterioration estimation measurement data 1 is, for example, a deterioration coefficient given by using the voltage V and the temperature T as parameters as shown in FIG. It is the data of α. The deterioration coefficient α is a ratio between the deterioration degree D and the square root of the deterioration time t, and is a coefficient that decreases as the voltage V decreases and decreases as the temperature T decreases as described above. Therefore, in the example of the table in FIG. 3C, α 11 is the smallest, α 45 is the largest, and the coefficient tends to increase toward the right and downward in the figure. When the deterioration coefficient α is shown in FIG. 5, the steep deterioration coefficient α indicated by the dotted line is larger than the gentle gradient deterioration coefficient α. The reference data 3 for deterioration estimation is obtained as a look-up table LUT having parameters of the voltage V and the temperature T as shown in FIG. Can be used to select and read a deterioration coefficient α close to. However, when the increments of the voltage V and the temperature T are rough, the deterioration coefficient α may be obtained by performing an interpolating operation on the intermediate voltage V and temperature T from the preceding and succeeding data.

劣化度DE の推定は、劣化係数αと時間tから、D=α√tにより求まるので、これを各時間で積算することにより、その時点における劣化度DE が推定されることになる。したがって、各時間毎の劣化度を図6に示すように連結して積算することにより、その時々の推定値が得られる。図6において、実線で示す劣化度DE の推定値に対して測定値が点線で示す測定値Iの場合にはキャパシタバンク15は正常と判定され、測定値IIの場合には、異常と判定される。なお、各時間毎の劣化度は、図3(a)に示す劣化推定用測定データ1の各時刻毎に求めてもよいが、ある一定の時間(tEi−tE011)の平均電圧、平均温度で劣化度の推定値を求めるようにしてもよい。 The estimation of the degree of degradation D E is obtained from the degradation coefficient α and time t by D = α√t, and by integrating this at each time, the degree of degradation D E at that time is estimated. Therefore, the estimated value at each time can be obtained by connecting and integrating the degree of deterioration for each time as shown in FIG. In FIG. 6, when the measured value is the measured value I indicated by the dotted line with respect to the estimated value of the deterioration degree D E indicated by the solid line, the capacitor bank 15 is determined to be normal, and in the case of the measured value II, it is determined to be abnormal. Is done. The degree of deterioration for each time may be obtained for each time of the measurement data 1 for deterioration estimation shown in FIG. 3A, but the average voltage and average for a certain time (t Ei −t E011 ). You may make it obtain | require the estimated value of deterioration degree with temperature.

実劣化度DR は、例えば図4に示すような一定時間の定電流Id による放電(パルス放電)の時間Δtd (=tde01−tds01)、パルス放電前後の電圧Vss01、Vse01、電圧の下降幅Δvd (=Vss01−Vse01)、放電開始時刻tds01、放電開始後の所定の時刻tds02とその時の電圧Vds02に基づき静電容量C、内部抵抗rを求めることができる。放電開始時や放電終了時は電流、電圧に図4に示すようななまりがあるが、放電開始後の所定の時刻tds02とその時の電圧Vds02を使うと、なまりに影響されずに簡便に精度よく内部抵抗rを求めることができる。実劣化度DR は、これら静電容量C、内部抵抗rの値が当初の値からどれだけ劣化したかを求めたものとなる。 Actual deterioration degree D R, for example time Δt d (= t de01 -t ds01 ) of the discharge by a constant current I d of a predetermined time as shown in FIG. 4 (pulse discharge), pulse discharge voltage of approximately V SS01, V seOl The capacitance C and the internal resistance r are obtained based on the voltage drop width Δv d (= V ss01 −V se01 ), the discharge start time t ds01 , the predetermined time t ds02 after the discharge start and the voltage V ds02 at that time. Can do. At the start of discharge and at the end of discharge, the current and voltage are rounded as shown in FIG. 4. However, if a predetermined time t ds02 after the start of discharge and the voltage V ds02 at that time are used, the current and voltage are not affected by the round and can be simplified. The internal resistance r can be obtained with high accuracy. The actual deterioration degree D R is obtained by determining how much the values of the capacitance C and the internal resistance r have deteriorated from the initial values.

例えば静電容量Cは、
〔数2〕
C=Id ×Δtd /Δvd
内部抵抗rは、
〔数3〕
r=[{Vss01−Δvd ×(tds02−tds01)/Δtd }−Vds02]/Id
により求めることができる。これらの値から、当初の静電容量C0 に対する実劣化度DRCは、
〔数4〕
RC=100×(C0 −C)/C0
同様に、当初の内部抵抗r0 に対する実劣化度DRrは、
〔数5〕
Rr=100×(r0 −r)/r0
となる。
For example, the capacitance C is
[Equation 2]
C = I d × Δt d / Δv d
The internal resistance r is
[Equation 3]
r = [{V ss01 −Δv d × (t ds02 −t ds01 ) / Δt d } −V ds02 ] / I d
It can ask for. From these values, the actual degradation degree D RC with respect to the initial capacitance C 0 is
[Equation 4]
D RC = 100 × (C 0 −C) / C 0
Similarly, the actual deterioration degree D Rr with respect to the initial internal resistance r 0 is
[Equation 5]
D Rr = 100 × (r 0 −r) / r 0
It becomes.

予測寿命tL は、図6に示すように設計値の劣化度DL を20%とすると、測定値Iが得られている1000時間から設計値の劣化度DL まで劣化するのに要する劣化時間tL を求める。図6において、当初からの1000時間を劣化時間としてその時の劣化度から劣化係数(平均劣化係数)を求める場合と、例えば1000時間までの500時間を劣化時間として500時間と1000時間との間の劣化度から劣化係数(特定期間の平均劣化係数)を求める場合があることは先に述べたとおりである。 Expected life t L, when 20% of the deterioration degree D L of the design value as shown in FIG. 6, the degradation required to deteriorated to the deterioration degree D L of the design value from 1000 hours to measure I is obtained Time t L is obtained. In FIG. 6, when the deterioration factor (average deterioration factor) is obtained from the deterioration degree at that time, with 1000 hours from the beginning as the deterioration time, for example, between 500 hours and 1000 hours with 500 hours up to 1000 hours as the deterioration time. As described above, the deterioration coefficient (average deterioration coefficient for a specific period) may be obtained from the deterioration degree.

次に、劣化推定用測定データを読み込んで劣化度DE の推定を行い、寿命tL の予測を行う寿命の予測処理及び劣化検査用測定データを読み込んで実劣化度DR を求め推定劣化度DE との比較により異常の判定を行う異常の判定処理の例を説明する。図7は寿命の予測処理の例を説明する図、図8は異常の判定処理の例を説明する図である。 Next, the measurement data for deterioration estimation is read to estimate the deterioration degree D E , the life prediction process for predicting the life t L and the measurement data for deterioration inspection are read to obtain the actual deterioration degree D R, and the estimated deterioration degree An example of an abnormality determination process for determining abnormality by comparison with D E will be described. FIG. 7 is a diagram for explaining an example of a lifetime prediction process, and FIG. 8 is a diagram for explaining an example of an abnormality determination process.

劣化度の推定を行い、寿命の予測を行う寿命の予測処理は、例えば図7に示すように測定時刻tEiになるのを待って(ステップS11)、電圧VEiの測定値を読み込み(ステップS12)、続けて温度TEiの測定値を読み込む(ステップS13)。そして、この読み込んだ電圧VEiと温度TEiに対応した劣化係数αEiを読み込み(ステップS14)、前回の測定時刻tEi-1から今回の測定時刻tEiまでの単位時間Δtにおける劣化度ΔDEiを求めて(ステップS15)、積算する(ステップS16)。しかる後、積算した推定劣化度DE から予測寿命tL を求める(ステップS17)。 In the life prediction process in which the deterioration degree is estimated and the life is predicted, for example, as shown in FIG. 7, after waiting for the measurement time t Ei (step S11), the measured value of the voltage V Ei is read (step S11). S12) Subsequently , the measured value of the temperature T Ei is read (step S13). Then, the deterioration coefficient α Ei corresponding to the read voltage V Ei and temperature T Ei is read (step S14), and the deterioration degree ΔD in the unit time Δt from the previous measurement time t Ei-1 to the current measurement time t Ei. Ei is obtained (step S15) and integrated (step S16). Thereafter, a predicted life t L is obtained from the accumulated estimated deterioration degree D E (step S17).

実劣化度DR を求め推定劣化度DE との比較により異常の判定を行う異常の判定処理では、例えば図8に示すようにまず、電圧Vss01の測定値を読み込んで(ステップS21)、しかる後、定電流放電を開始する(ステップS22)。そして、所定時間経過する(tds02)のを待って(ステップS23)、電圧Vds02の測定値及び定電流放電での電流Id の測定値も読み込む(ステップS24)。さらに、所定時間経過するのを待って(ステップS25)、放電を停止し(ステップS26)、その直後に放電停止状態における電圧Vse01の測定値を読み込む(ステップS27)。以上の処理により得られた定電流放電の時間(Δtd )、電流Id 、放電開始前後の電圧Vss01、Vse01、電圧の下降幅Δvd 、放電開始時刻tds01、放電開始後の所定の時刻tds02とその時の電圧Vds02に基づき静電容量C、内部抵抗rを求めて(ステップS28)、その劣化度DR を求める(ステップS29)。この求めた実劣化度DR を推定劣化度DE と比較し(ステップS30)、求めた実劣化度DR が異常であるか否かを判定して(ステップS31)、異常と判定された場合には異常判定結果を出力する(ステップS32)。 In the abnormality determination process in which the actual deterioration degree D R is obtained and the abnormality is determined by comparison with the estimated deterioration degree D E , for example, as shown in FIG. 8, first, the measured value of the voltage V ss01 is read (step S21). Thereafter, constant current discharge is started (step S22). Then, after a predetermined time elapses (t ds02 ) (step S23), the measured value of voltage V ds02 and the measured value of current I d in constant current discharge are also read (step S24). Further, after waiting for a predetermined time (step S25), the discharge is stopped (step S26), and immediately after that, the measured value of the voltage V se01 in the discharge stopped state is read (step S27). Constant current discharge time (Δt d ), current I d , voltages V ss01 and V se01 before and after the start of discharge, voltage drop width Δv d , discharge start time t ds01 , predetermined after the start of discharge the capacitance C based time t DS02 and the voltage V DS02 at that time, seeking the internal resistance r (step S28), obtains the deterioration degree D R (step S29). The obtained actual deterioration degree D R is compared with the estimated deterioration degree D E (step S30), and it is determined whether or not the obtained actual deterioration degree D R is abnormal (step S31). In that case, an abnormality determination result is output (step S32).

なお、本発明は、上記実施の形態に限定されるものではなく、種々の変形が可能である。例えば上記実施の形態では、測定により実劣化度DR を静電容量C、内部抵抗rから求めるように説明したが、静電容量C、内部抵抗rのいずれかを測定するだけで、実劣化度DR を求めるようにしてもよい。この場合、静電容量Cは、充放電量と電圧の変化幅から求めることができるので、定電流充電又は放電を一定時間行わなくても、充放電時の電圧の変化幅とその間の電圧と電流により充放電量を積算して測定できればよい。したがって、劣化検査モードは、何時でも実行できるが、一定時間の定電流充放電を行って内部抵抗rを求める場合には、稼働中ではなく、例えば待機中、定期的に劣化検査サイクルを設けて実行することが必要になる。また、上記実施の形態では、推定劣化度DE から予測寿命tL を求めて出力するものとして説明したが、推定劣化度DE と実劣化度DR との比較によりキャパシタの異常を判定してその結果を出力するだけのものであってもよい。 In addition, this invention is not limited to the said embodiment, A various deformation | transformation is possible. For example, in the above-described embodiment, it has been described that the actual deterioration degree D R is obtained from the capacitance C and the internal resistance r by measurement. However, the actual deterioration can be obtained only by measuring either the capacitance C or the internal resistance r. it may be obtained degree D R. In this case, since the capacitance C can be obtained from the charge / discharge amount and the change width of the voltage, the change width of the voltage at the time of charge / discharge and the voltage therebetween can be obtained without performing constant current charging or discharging for a certain period of time. It suffices if the charge / discharge amount can be integrated and measured by the current. Therefore, the deterioration inspection mode can be executed at any time. However, when the internal resistance r is obtained by performing constant current charge / discharge for a certain time, a deterioration inspection cycle is provided periodically during standby, for example, during standby. It is necessary to execute. In the above embodiment, the estimated life t L is obtained from the estimated deterioration degree D E and output. However, the abnormality of the capacitor is determined by comparing the estimated deterioration degree D E with the actual deterioration degree D R. It is also possible to simply output the result.

本発明に係るキャパシタ電源の異常判別装置の実施の形態を説明する図。The figure explaining embodiment of the abnormality determination apparatus of the capacitor power supply which concerns on this invention. 本実施形態に係るキャパシタ電源の異常判別装置を備えたキャパシタ電源システム構成例を示す図。The figure which shows the capacitor power supply system structural example provided with the abnormality determination apparatus of the capacitor power supply which concerns on this embodiment. 測定データ及び参照データの構成例を示す図。The figure which shows the structural example of measurement data and reference data. 定電流によるパルス放電の電圧、電流波形と実劣化度を求めるための測定データを説明する図。The figure explaining the measurement data for calculating | requiring the voltage of a pulse discharge by a constant current, a current waveform, and an actual deterioration degree. キャパシタの劣化係数を説明する図。The figure explaining the degradation coefficient of a capacitor. 劣化度によるキャパシタ電源の異常判定を説明する図。The figure explaining the abnormality determination of the capacitor power supply by a deterioration degree. 寿命の予測処理の例を説明する図。The figure explaining the example of a lifetime prediction process. 異常の判定処理の例を説明する図。The figure explaining the example of the determination process of abnormality.

符号の説明Explanation of symbols

1…劣化推定用測定データ、2…劣化検査用測定データ、3…劣化推定用参照データ、4…推定劣化度演算処理部、5…劣化度演算処理部、6…寿命予測処理部、7…異常判定処理部、8…予測寿命出力部、9…異常判別出力部、10…異常判別装置、11…充電・放電コンバータ、12…電流センサー、13…電圧計、14…温度計、15…キャパシタバンク   DESCRIPTION OF SYMBOLS 1 ... Degradation estimation measurement data, 2 ... Degradation inspection measurement data, 3 ... Degradation estimation reference data, 4 ... Estimated degradation level calculation processing unit, 5 ... Degradation level calculation processing unit, 6 ... Life prediction processing unit, 7 ... Abnormality determination processing unit, 8 ... Predicted life output unit, 9 ... Abnormality determination output unit, 10 ... Abnormality determination device, 11 ... Charge / discharge converter, 12 ... Current sensor, 13 ... Voltmeter, 14 ... Thermometer, 15 ... Capacitor bank

Claims (6)

充電電源又は負荷の回生電力によりキャパシタに充電して、該充電したキャパシタから負荷の給電要求により放電し充放電の繰り返しにより使用されるキャパシタ電源の異常判別方法であって、
キャパシタの静電容量又は内部抵抗が当初の値に対して劣化する割合を劣化度とし所定の劣化度まで劣化するのに要する時間を劣化時間とし前記劣化度と劣化時間の平方根との比を劣化係数として、キャパシタの電圧と温度をパラメータとして与えた前記劣化係数を参照データに持ち、
稼働中のキャパシタの電圧と温度を測定して、前記測定した電圧と温度に応じた劣化係数を前記参照データから取得して稼働中のキャパシタの推定劣化度を各時間毎に求めて積算し、
キャパシタの充電又は放電による電流と電圧を測定して、前記測定した電流と電圧に基づき算出される蓄電量と電圧の変化幅からキャパシタの静電容量の実劣化度を求め、
前記積算した推定劣化度と前記実劣化度との差を求めて前記差が基準値を越える場合にはキャパシタの異常を判定することを特徴とするキャパシタ電源の異常判別方法。
A capacitor power supply is charged by regenerative power of a charging power supply or a load, discharged from the charged capacitor according to a power supply request of the load, and used for repeated charging and discharging, and a method for determining abnormality of a capacitor power supply,
The ratio of the square root of the previous SL deterioration degree of degradation time and the time required for the electrostatic capacitance or internal resistance of the capacitor is deteriorated to a predetermined degree of deterioration and deterioration degree the rate of degradation with respect to the initial value as the deterioration time as deterioration coefficient has the deterioration coefficient given by the voltage and temperature of the capacitor as a parameter to the reference data,
By measuring the voltage and temperature of capacitor running, the deterioration coefficient corresponding to the voltage and temperature as the measured estimate the degree of deterioration of the capacitor during operation is obtained from the reference data integrating asking each time,
Measure the current and voltage due to charging or discharging of the capacitor, determine the actual deterioration degree of the capacitance of the capacitor from the amount of stored electricity and the change width of the voltage calculated based on the measured current and voltage,
A method for determining an abnormality of a capacitor power source, wherein a difference between the accumulated estimated deterioration level and the actual deterioration level is obtained, and a capacitor abnormality is determined when the difference exceeds a reference value.
充電電源又は負荷の回生電力によりキャパシタに充電して、該充電したキャパシタから負荷の給電要求により放電し充放電の繰り返しにより使用されるキャパシタ電源の異常判別方法であって、
キャパシタの静電容量又は内部抵抗が当初の値に対して劣化する割合を劣化度とし所定の劣化度まで劣化するのに要する時間を劣化時間とし前記劣化度と劣化時間の平方根との比を劣化係数として、キャパシタの電圧と温度をパラメータとして与えた前記劣化係数を参照データに持ち、
稼働中のキャパシタの電圧と温度を測定して、前記測定した電圧と温度に応じた劣化係数を前記参照データから取得して稼働中のキャパシタの推定劣化度を各時間毎に求めて積算し、
キャパシタを一定時間に定電流により充電又は放電して前記充電又は放電の直前と直後及び前記充電又は放電中の電圧と電流を測定して、前記測定した電圧と電流に基づきキャパシタの静電容量又は内部抵抗の実劣化度を求め、
前記積算した推定劣化度と前記実劣化度との差を求めて前記差が基準値を越える場合にはキャパシタの異常を判定することを特徴とするキャパシタ電源の異常判別方法。
A capacitor power supply is charged by regenerative power of a charging power supply or a load, discharged from the charged capacitor according to a power supply request of the load, and used for repeated charging and discharging, and a method for determining abnormality of a capacitor power supply,
The ratio of the square root of the previous SL deterioration degree of degradation time and the time required for the electrostatic capacitance or internal resistance of the capacitor is deteriorated to a predetermined degree of deterioration and deterioration degree the rate of degradation with respect to the initial value as the deterioration time as deterioration coefficient has the deterioration coefficient given by the voltage and temperature of the capacitor as a parameter to the reference data,
By measuring the voltage and temperature of capacitor running, the deterioration coefficient corresponding to the voltage and temperature as the measured estimate the degree of deterioration of the capacitor during operation is obtained from the reference data integrating asking each time,
The capacitor is charged or discharged with a constant current at a constant time, and the voltage and current immediately before and immediately after the charging or discharging and during the charging or discharging are measured. Based on the measured voltage and current, the capacitance of the capacitor or Find the actual deterioration degree of internal resistance,
A method for determining an abnormality of a capacitor power source, wherein a difference between the accumulated estimated deterioration level and the actual deterioration level is obtained, and a capacitor abnormality is determined when the difference exceeds a reference value.
充電電源又は負荷の回生電力によりキャパシタに充電して、該充電したキャパシタから負荷の給電要求により放電し充放電の繰り返しにより使用されるキャパシタ電源の異常判別装置であって、
キャパシタの静電容量又は内部抵抗が当初の値に対して劣化する割合を劣化度とし所定の劣化度まで劣化するのに要する時間を劣化時間とし前記劣化度と劣化時間の平方根との比を劣化係数として、キャパシタの電圧と温度をパラメータとして与えた前記劣化係数を劣化推定用参照データとして格納する参照データ記憶手段と、
稼働中のキャパシタの電圧と温度を測定して、前記測定した電圧と温度に応じた劣化係数を前記参照データ記憶手段から取得して稼働中のキャパシタの推定劣化度を各時間毎に求めて積算する推定劣化度演算手段と、
キャパシタを一定時間に定電流により充電又は放電して前記充電又は放電の直前と直後及び前記充電又は放電中の電圧を測定して、前記測定した電圧と電流に基づきキャパシタの静電容量又は内部抵抗の実劣化度を求める実劣化度演算手段と、、
前記積算した推定劣化度と前記実劣化度との差を求めて前記差が基準値を越える場合にはキャパシタの異常を判定する異常判定手段と
を備えたことを特徴とするキャパシタ電源の異常判別装置。
The capacitor is charged with a regenerative power of a charging power supply or a load, discharged from the charged capacitor according to a power supply request of the load, and used for repeated charging and discharging, and a capacitor power supply abnormality determination device,
The ratio of the square root of the previous SL deterioration degree of degradation time and the time required for the electrostatic capacitance or internal resistance of the capacitor is deteriorated to a predetermined degree of deterioration and deterioration degree the rate of degradation with respect to the initial value as the deterioration time as deterioration coefficient, and reference data storing means for storing the voltage and temperature of the capacitor to the deterioration coefficient given as a parameter as degradation estimation reference data,
By measuring the voltage and temperature of capacitor running, integrating seeking estimating the degree of deterioration of the capacitor during operation to obtain the degradation coefficient corresponding to the voltage and temperature as the measurement from the reference data storing means for each time an estimated deterioration degree calculating means for,
Capacitor or internal resistance of the capacitor based on the measured voltage and current by measuring the voltage immediately before and immediately after the charging or discharging and during the charging or discharging by charging or discharging the capacitor with a constant current for a certain time. An actual deterioration degree calculating means for obtaining the actual deterioration degree of
An abnormality determination unit for a capacitor power supply, comprising: an abnormality determination unit that obtains a difference between the accumulated estimated deterioration degree and the actual deterioration degree and determines a capacitor abnormality when the difference exceeds a reference value. apparatus.
前記推定劣化度演算手段は、前記推定劣化度と劣化時間から当該劣化時間における平均劣化係数を求めて寿命とする所定の劣化度までの劣化時間による予測寿命を求めることを特徴とする請求項3記載のキャパシタ電源の異常判別装置。 4. The estimated deterioration degree calculating means obtains a predicted life based on a deterioration time up to a predetermined deterioration degree as a life by obtaining an average deterioration coefficient in the deterioration time from the estimated deterioration degree and the deterioration time. The capacitor power supply abnormality determination device according to the description. 前記平均劣化係数は、前記推定劣化度を求めた時点から一定時間を特定した劣化時間で求めたものであることを特徴とする請求項4記載のキャパシタ電源の異常判別装置。 5. The abnormality determination device for a capacitor power supply according to claim 4, wherein the average deterioration coefficient is obtained by a deterioration time that specifies a predetermined time from the time when the estimated deterioration degree is obtained. 前記推定劣化度演算手段は、前記劣化推定用参照データに設定されていない中間の電圧と温度に対する劣化係数を前後のデータに基づき補間演算して求めることを特徴とする請求項3記載のキャパシタ電源の異常判別装置。 4. The capacitor power supply according to claim 3, wherein the estimated deterioration degree calculating means obtains a deterioration coefficient with respect to an intermediate voltage and temperature not set in the reference data for deterioration estimation by interpolating based on preceding and following data. Abnormality determination device.
JP2007112568A 2007-04-23 2007-04-23 Capacitor power supply abnormality determination method and abnormality determination apparatus Expired - Fee Related JP4042917B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007112568A JP4042917B1 (en) 2007-04-23 2007-04-23 Capacitor power supply abnormality determination method and abnormality determination apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007112568A JP4042917B1 (en) 2007-04-23 2007-04-23 Capacitor power supply abnormality determination method and abnormality determination apparatus

Publications (2)

Publication Number Publication Date
JP4042917B1 true JP4042917B1 (en) 2008-02-06
JP2008268042A JP2008268042A (en) 2008-11-06

Family

ID=39124529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007112568A Expired - Fee Related JP4042917B1 (en) 2007-04-23 2007-04-23 Capacitor power supply abnormality determination method and abnormality determination apparatus

Country Status (1)

Country Link
JP (1) JP4042917B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027696A (en) * 2008-07-15 2010-02-04 Murata Mfg Co Ltd Failure time evaluating method for laminated ceramic capacitor
CN103660961A (en) * 2012-08-30 2014-03-26 马自达汽车株式会社 Control device for power-source apparatus for vehicle and control method of the same
CN104204828A (en) * 2012-03-27 2014-12-10 三菱电机株式会社 Capacitor device life diagnosis method
CN109511281A (en) * 2016-09-21 2019-03-22 日立汽车系统株式会社 Secondary battery control apparatus
CN110416646A (en) * 2018-04-26 2019-11-05 株式会社日立制作所 The method and apparatus that charge and discharge control is carried out to battery pack

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5116787B2 (en) * 2009-03-05 2013-01-09 住友重機械工業株式会社 Hybrid work machine
JP5660763B2 (en) * 2009-03-30 2015-01-28 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X-ray CT system
JP5390981B2 (en) * 2009-08-03 2014-01-15 富士通テレコムネットワークス株式会社 Power backup device
JP5655744B2 (en) * 2011-09-07 2015-01-21 トヨタ自動車株式会社 Secondary battery degradation estimation apparatus and degradation estimation method
JP5880008B2 (en) * 2011-12-19 2016-03-08 マツダ株式会社 In-vehicle power supply controller
JP2014230389A (en) * 2013-05-22 2014-12-08 株式会社村田製作所 Power supply circuit and method of application of electric double-layer capacitor
JP6488538B2 (en) * 2013-07-23 2019-03-27 日本電気株式会社 Deterioration coefficient determination system, deterioration prediction system, deterioration coefficient determination method and program
JP6206031B2 (en) * 2013-09-20 2017-10-04 株式会社Gsユアサ Storage device lifetime estimation device, lifetime estimation method, and storage system
KR101651883B1 (en) * 2014-12-31 2016-08-29 주식회사 효성 Method for monitoring state of capacitor in modular converter
WO2018139135A1 (en) * 2017-01-26 2018-08-02 株式会社村田製作所 Power storage device and method for controlling charging of electric double-layer capacitor
JP7096008B2 (en) * 2018-02-19 2022-07-05 旭化成株式会社 Capacity deterioration rate estimation method for non-aqueous lithium-type power storage elements, capacity deterioration rate estimation device, and system
KR102081184B1 (en) * 2018-10-05 2020-02-25 (주)큐랩스 Electronic device life prediction system and prediction method thereof
JP7031649B2 (en) 2019-11-18 2022-03-08 株式会社Gsユアサ Evaluation device, computer program and evaluation method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027696A (en) * 2008-07-15 2010-02-04 Murata Mfg Co Ltd Failure time evaluating method for laminated ceramic capacitor
CN104204828A (en) * 2012-03-27 2014-12-10 三菱电机株式会社 Capacitor device life diagnosis method
CN104204828B (en) * 2012-03-27 2016-08-24 三菱电机株式会社 The diagnosing method for service life of electric energy storage device
CN103660961A (en) * 2012-08-30 2014-03-26 马自达汽车株式会社 Control device for power-source apparatus for vehicle and control method of the same
CN103660961B (en) * 2012-08-30 2016-03-30 马自达汽车株式会社 The control setup of vehicle power and control method
CN109511281A (en) * 2016-09-21 2019-03-22 日立汽车系统株式会社 Secondary battery control apparatus
CN110416646A (en) * 2018-04-26 2019-11-05 株式会社日立制作所 The method and apparatus that charge and discharge control is carried out to battery pack

Also Published As

Publication number Publication date
JP2008268042A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP4042917B1 (en) Capacitor power supply abnormality determination method and abnormality determination apparatus
US7012434B2 (en) Method for determining the amount of charge which can be drawn from a storage battery and monitoring device
JP5382208B2 (en) Deterioration estimation device and degradation estimation method for storage element
JP4570991B2 (en) Battery management system
US7688032B2 (en) Battery remaining capacity detecting apparatus and battery remaining capacity detecting method
JP6256609B2 (en) Battery degradation level estimation device and battery degradation level estimation method
US20200309857A1 (en) Methods, systems, and devices for estimating and predicting battery properties
JP7145865B2 (en) Rechargeable battery short-circuit prediction device and rechargeable battery short-circuit prediction method
JPH03122581A (en) Method and apparatus for predicting bat- tery discharge holding time
JP6440377B2 (en) Secondary battery state detection device and secondary battery state detection method
JP2004163360A (en) Battery capacity calculation method, battery capacity calculation device, and battery capacity calculation program
US20010035738A1 (en) Method for determining the state of charge of lead-acid rechargeable batteries
JP2007024687A (en) Battery management system
KR102101002B1 (en) Method for battery lifetime prediction
WO2008072436A1 (en) Secondary battery deterioration judging device and backup power supply
EP3379277B1 (en) Capacity maintenance rate estimation apparatus or capacity maintenance rate estimation method
JP2014025738A (en) Residual capacity estimation device
JP2006226788A (en) Battery management system
JP2012253975A (en) Charging/discharging control method for alkali storage battery, and charging/discharging system
JP2010139260A (en) System of estimating remaining life of secondary battery and method for estimating remaining life thereof
CN103424708A (en) Open circuit voltage estimation device, condition estimation device, and method of estimating open circuit voltage
JP2012154839A (en) Life prediction evaluation device and life prediction evaluation method
EP3977146A1 (en) Method for estimating state of health of a battery
JP4799941B2 (en) Battery state management device
CN113075558A (en) Battery SOC estimation method, device and system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees