JP2009243968A - Exhaust gas analyzer and analyzing method - Google Patents

Exhaust gas analyzer and analyzing method Download PDF

Info

Publication number
JP2009243968A
JP2009243968A JP2008088631A JP2008088631A JP2009243968A JP 2009243968 A JP2009243968 A JP 2009243968A JP 2008088631 A JP2008088631 A JP 2008088631A JP 2008088631 A JP2008088631 A JP 2008088631A JP 2009243968 A JP2009243968 A JP 2009243968A
Authority
JP
Japan
Prior art keywords
exhaust gas
concentration
temperature
absorption spectrum
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008088631A
Other languages
Japanese (ja)
Inventor
Seiichi Matsumoto
清市 松本
Masahiro Yamakage
正裕 山蔭
Sei Fukada
聖 深田
Shinichiro Asaumi
慎一郎 浅海
Yoshihiro Deguchi
祥啓 出口
Kenji Muta
研二 牟田
Norihiro Fukuda
憲弘 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Toyota Motor Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Toyota Motor Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008088631A priority Critical patent/JP2009243968A/en
Publication of JP2009243968A publication Critical patent/JP2009243968A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas analyzer enhanced in the measuring precision of the concentration of a component even in a case that the concentration of a predetermined component is low under a low temperature condition, and an exhaust gas analyzing method. <P>SOLUTION: The exhaust gas analyzer has a temperature sensor 55 equipped with a measuring part 5 for irradiating the exhaust gas in an exhaustion route 3, which discharges the exhaust gas of an engine 20, with a laser beam to receive the laser beam transmitted through the exhaust gas and detecting the actually measured temperature T1 of the exhaust gas in the exhaustion route 3, a difference type photodetector 64 for detecting the absorption spectrum of the laser beam absorbed into the exhaust gas from the laser beam received by the measuring part 5, a temperature calculation part 70 for calculating the theoretical temperature T2 of the exhaust gas from the absorption spectrum detected by the difference type photodetector 64 and a component concentration calculation part 73 for calculating the concentration C of the component in the exhaust gas using the actually measured temperature T1 detected by the temperature sensor 55 in a case that the concentration of a predetermined component in the exhaust gas is low or using the theoretical temperature T2 calculated by the temperature calculation part 70 in a case that the concentration of the predetermined component in the exhaust gas is high. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の排ガスを排出する排気経路中の排ガスにレーザ光を照射し、排ガスを透過したレーザ光を受光することで排ガス中の成分濃度を測定する排ガス分析装置および排ガス分析方法の技術に関する。   The present invention relates to an exhaust gas analyzer and an exhaust gas analysis method for measuring a component concentration in exhaust gas by irradiating the exhaust gas in an exhaust path for discharging exhaust gas of an internal combustion engine with laser light and receiving the laser light transmitted through the exhaust gas. Regarding technology.

従来、エンジン等の内燃機関からの排ガス中に含まれる炭化水素(Hydro Carbon)濃度(以下、成分濃度)を測定するために、FID(Flame Ionization Detector)法やNDIR(Non‐Dispersive Infrared Red)法と呼ばれる測定方法を用いた排ガス分析装置が知られている。   Conventionally, in order to measure hydrocarbon (Hydro Carbon) concentration (hereinafter, component concentration) contained in exhaust gas from an internal combustion engine such as an engine, the FID (Frame Ionization Detector) method or the NDIR (Non-Dispersive Infrared Red) method 2. Description of the Related Art An exhaust gas analyzer that uses a measurement method called “K” is known.

特に、車載型の従来の排ガス分析装置としては、排気経路中の排ガスに特定の吸収波長を有する赤外レーザ光を照射して排ガス中を透過させ、その透過光を検出することで、排ガス中の成分濃度を測定する構成が公知である。このような赤外レーザ光を用いた成分濃度の計測方法(赤外線レーザ吸収法)では、光源からの赤外レーザ光が排ガスを構成する炭化水素類の吸収波長に調整された上で排気経路内の排ガスに向けて照射され、排ガス中を透過した透過光の光強度が受光センサにて検出され、透過光の吸収スペクトルに基づいて光強度(シグナル強度)が算出されることで、排ガス中の成分濃度が測定される。   In particular, as a conventional on-vehicle exhaust gas analyzer, the exhaust gas in the exhaust path is irradiated with infrared laser light having a specific absorption wavelength to transmit through the exhaust gas, and the transmitted light is detected. A configuration for measuring the component concentration of is known. In such a component concentration measurement method (infrared laser absorption method) using infrared laser light, the infrared laser light from the light source is adjusted to the absorption wavelength of the hydrocarbons constituting the exhaust gas, and then the inside of the exhaust path. The light intensity of the transmitted light that is irradiated toward the exhaust gas and transmitted through the exhaust gas is detected by the light receiving sensor, and the light intensity (signal intensity) is calculated based on the absorption spectrum of the transmitted light. The component concentration is measured.

ところで、上述した赤外線レーザ吸収法を用いた排ガス分析装置では、排気経路内の排ガス中の成分濃度が赤外レーザ光(透過光)の吸収スペクトルに基づいて算出されるが、この赤外レーザ光の吸収スペクトルは排ガスの温度の影響を受けるため、算出される濃度はこれらの温度に起因する誤差を有している。そのため、これまでにも、成分濃度の測定精度を高めるために、赤外レーザ光の吸収スペクトルを温度補正し、その結果を用いて成分濃度を測定するようにした排ガス分析方法が提案されているところである。   By the way, in the exhaust gas analyzer using the infrared laser absorption method described above, the component concentration in the exhaust gas in the exhaust path is calculated based on the absorption spectrum of infrared laser light (transmitted light). Since the absorption spectrum of is affected by the temperature of the exhaust gas, the calculated concentration has an error due to these temperatures. Therefore, in order to improve the measurement accuracy of the component concentration, an exhaust gas analysis method has been proposed in which the absorption spectrum of the infrared laser beam is corrected for temperature and the component concentration is measured using the result. By the way.

例えば、特許文献1には、排気経路に内燃機関より排出された排ガスが通過する排ガス通過孔に向けて赤外レーザ光を照射し、反射鏡により赤外レーザ光を多重反射させた後に、排ガス中を透過した赤外レーザ光を検出する測定部を直接配置することで、排ガス中の成分濃度等を測定するようにした排ガス分析装置において、検出された吸収スペクトルの内の所定成分としてHOの吸収スペクトルの光強度(シグナル強度)から排ガスの温度を算出し、算出された温度を用いて排ガス中の各分子の吸収スペクトルを補正して、排ガス中の成分濃度を測定する方法が開示されている。
特開2007−163422号公報
For example, Patent Document 1 discloses that an infrared laser beam is irradiated toward an exhaust gas passage hole through which an exhaust gas discharged from an internal combustion engine passes through an exhaust path, and the infrared laser beam is subjected to multiple reflections by a reflecting mirror. In the exhaust gas analyzer that measures the concentration of the component in the exhaust gas by directly arranging the measurement unit that detects the infrared laser beam transmitted through the inside, H 2 is used as a predetermined component in the detected absorption spectrum. Disclosed is a method for calculating the component concentration in exhaust gas by calculating the temperature of exhaust gas from the light intensity (signal intensity) of the absorption spectrum of O, correcting the absorption spectrum of each molecule in the exhaust gas using the calculated temperature. Has been.
JP 2007-163422 A

確かに、特許文献1に開示される従来の排ガス分析装置のように、排ガス中の所定成分としてとしてHOの吸収スペクトルの光強度から温度を算出し、算出された温度を用いて排ガス中の成分ごとの吸収スペクトルを補正する方法であれば、なるほど高応答の温度計測が可能であるため、ひいては成分濃度を高応答で測定することができる。 Certainly, like the conventional exhaust gas analyzer disclosed in Patent Document 1, the temperature is calculated from the light intensity of the absorption spectrum of H 2 O as a predetermined component in the exhaust gas, and the calculated temperature is used in the exhaust gas. If the method is to correct the absorption spectrum for each of the components, temperature measurement with higher response is possible, so that the component concentration can be measured with higher response.

しかしながら、エンジン始動前や始動直後等の低温条件で成分濃度を測定する際には、排ガス中の所定成分であるHOの濃度が低い(換言すると、HO分子の飽和蒸気圧が低い)ため、正確なHOの吸収スペクトルを検出することができず、高温条件で成分濃度を測定する際と比べて温度の算出精度が劣っていた。そのため、低温条件下では排ガス中の成分ごとの吸収スペクトルを精度よく温度補正できずに、ひいては成分濃度の測定精度が低下してしまうという課題があった。 However, when measuring the component concentration under low temperature conditions such as before engine start or immediately after engine start, the concentration of H 2 O as a predetermined component in the exhaust gas is low (in other words, the saturated vapor pressure of H 2 O molecules is low). Therefore, an accurate absorption spectrum of H 2 O could not be detected, and the temperature calculation accuracy was inferior compared to when measuring the component concentration under high temperature conditions. For this reason, there has been a problem that under low temperature conditions, the absorption spectrum of each component in the exhaust gas cannot be temperature-corrected accurately, and consequently the measurement accuracy of the component concentration is lowered.

なお、排ガスの温度測定方法としては、上述した方法の他に熱電対等の温度センサを用いて測定する方法が公知であるが、このような温度センサを用いた温度測定方法によると、確かに、温度変化が緩やかな条件では、上述したHOの吸収スペクトルから排ガスの温度を算出する方法と比べると、排気経路中を通過する排ガス温度の実測値であるため、その測定精度が高い。しかしながら、温度センサ自体の熱容量による応答遅れにより、エンジン始動直後などの温度が急激に変化する条件では、高応答で成分濃度を測定することが困難であった。 As a method for measuring the temperature of exhaust gas, in addition to the method described above, a method of measuring using a temperature sensor such as a thermocouple is known, but according to the temperature measuring method using such a temperature sensor, Under the condition where the temperature change is gentle, the measurement accuracy is high because it is an actual measurement value of the exhaust gas temperature passing through the exhaust passage, compared with the method of calculating the exhaust gas temperature from the above-described absorption spectrum of H 2 O. However, it is difficult to measure the component concentration with a high response under conditions where the temperature changes rapidly, such as immediately after engine startup, due to a response delay due to the heat capacity of the temperature sensor itself.

そこで、本発明においては、排ガス分析装置および排ガス分析方法に関し、前記従来の課題を解決するもので、低温条件下で所定成分の濃度が低い場合であっても成分濃度の測定精度を向上させた排ガス分析装置および排ガス分析方法を提供することを目的とする。   Therefore, the present invention relates to an exhaust gas analyzer and exhaust gas analysis method, which solves the above-described conventional problems, and improves the measurement accuracy of the component concentration even when the concentration of the predetermined component is low under low temperature conditions. An object of the present invention is to provide an exhaust gas analyzer and an exhaust gas analysis method.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.

すなわち、請求項1においては、内燃機関の排ガスを排出する排気経路中の排ガスにレーザ光を照射し、排ガスを透過したレーザ光を受光する測定部を具備してなり、前記測定部にて受光されたレーザ光に基づいて排ガス中の成分濃度を測定する排ガス分析装置であって、前記排気経路中の排ガスの実測温度を検出する温度検出手段と、前記測定部にて受光されたレーザ光より排ガス中に吸収されたレーザ光の吸収スペクトルを検出する吸収スペクトル検出手段と、前記吸収スペクトル検出手段により検出された吸収スペクトルから排ガスの理論温度を算出する温度算出手段と、排ガス中の所定成分の濃度が低い場合には前記温度検出手段により検出された実測温度を用いて排ガス中の成分濃度を算出し、排ガス中の所定成分の濃度が高い場合には前記温度算出手段により算出された理論温度を用いて排ガス中の成分濃度を算出する成分濃度算出手段とを有するものである。   That is, according to the first aspect of the invention, there is provided a measuring unit that irradiates the exhaust gas in the exhaust path for discharging the exhaust gas of the internal combustion engine with a laser beam and receives the laser beam that has passed through the exhaust gas. An exhaust gas analyzer that measures the concentration of a component in exhaust gas based on the emitted laser light, comprising temperature detection means for detecting an actual temperature of exhaust gas in the exhaust path, and laser light received by the measurement unit An absorption spectrum detecting means for detecting an absorption spectrum of laser light absorbed in the exhaust gas, a temperature calculating means for calculating a theoretical temperature of the exhaust gas from the absorption spectrum detected by the absorption spectrum detecting means, and a predetermined component in the exhaust gas. When the concentration is low, the component concentration in the exhaust gas is calculated using the measured temperature detected by the temperature detecting means, and the concentration of the predetermined component in the exhaust gas is high. The one having a component concentration calculating means for calculating a component concentration in the exhaust gas by using a theoretical temperature calculated by said temperature calculation means.

請求項2においては、前記吸収スペクトル検出手段により検出された吸収スペクトルから、前記所定成分の濃度としての排ガス中のHO濃度に基づいた基準値を算出する基準値算出手段と、前記基準値算出手段により算出された基準値が所定の閾値より小さい場合には前記所定成分の濃度としての排ガス中のHO濃度が低いと判定し、前記基準値算出手段により算出された基準値が所定の閾値より大きい場合には前記所定成分の濃度としての排ガス中のHO濃度が高いと判定する判定手段を有するものである。 In Claim 2, the reference value calculation means for calculating a reference value based on the H 2 O concentration in the exhaust gas as the concentration of the predetermined component from the absorption spectrum detected by the absorption spectrum detection means, and the reference value When the reference value calculated by the calculation means is smaller than a predetermined threshold, it is determined that the H 2 O concentration in the exhaust gas as the concentration of the predetermined component is low, and the reference value calculated by the reference value calculation means is a predetermined value. When it is larger than the threshold value, there is a determination means for determining that the H 2 O concentration in the exhaust gas as the concentration of the predetermined component is high.

請求項3においては、前記基準値算出手段にて、前記吸収スペクトル検出手段により検出されたHOの吸収スペクトルの面積値を基準値として算出し、前記判定手段にて、前記面積値が所定の閾値より小さい場合には排ガス中のHO濃度が低いと判定し、前記面積値が所定の閾値より大きい場合には排ガス中のHO濃度が高いと判定するものである。 According to a third aspect of the present invention, the reference value calculation means calculates the area value of the absorption spectrum of H 2 O detected by the absorption spectrum detection means as a reference value, and the determination means sets the area value to a predetermined value. When it is smaller than the threshold value, it is determined that the H 2 O concentration in the exhaust gas is low, and when the area value is larger than the predetermined threshold value, it is determined that the H 2 O concentration in the exhaust gas is high.

請求項4においては、前記基準値算出手段にて、前記吸収スペクトル検出手段により検出されたHOの吸収スペクトルのうち少なくとも一のピーク波長の光強度を基準値として算出し、前記判定手段にて、前記光強度が所定の閾値より小さい場合には排ガス中のHO濃度が低いと判定し、前記光強度が所定の閾値より大きい場合には排ガス中のHO濃度が高いと判定するものである。 According to a fourth aspect of the present invention, the reference value calculating means calculates the light intensity of at least one peak wavelength in the absorption spectrum of H 2 O detected by the absorption spectrum detecting means as a reference value, and When the light intensity is smaller than a predetermined threshold, it is determined that the H 2 O concentration in the exhaust gas is low, and when the light intensity is higher than the predetermined threshold, it is determined that the H 2 O concentration in the exhaust gas is high. To do.

請求項5においては、前記基準値算出手段にて、前記吸収スペクトル検出手段により検出されたHOの実測吸収スペクトルと予め定義されたHOの理論吸収スペクトルとのフィッティング誤差を基準値として算出し、前記判定手段にて、前記フィッティング誤差が所定の閾値より大きい場合には排ガス中のHO濃度が低いと判定し、前記フィッティング誤差が所定の閾値より小さい場合には排ガス中のHO濃度が高いと判定するものである。 According to a fifth aspect of the present invention, the reference value calculation means uses a fitting error between the measured absorption spectrum of H 2 O detected by the absorption spectrum detection means and the predefined theoretical absorption spectrum of H 2 O as a reference value. The determination means determines that the H 2 O concentration in the exhaust gas is low when the fitting error is larger than a predetermined threshold, and the H in the exhaust gas when the fitting error is smaller than the predetermined threshold. It is determined that the 2 O concentration is high.

請求項6においては、前記基準値算出手段にて、前記温度算出手段により算出された理論温度を基準値として算出し、前記判定手段にて、前記理論温度が所定の閾値より小さい場合には排ガス中のHO濃度が低いと判定し、前記理論温度が所定の閾値より大きい場合には排ガス中のHO濃度が高いと判定するものである。 In claim 6, the reference value calculation means calculates the theoretical temperature calculated by the temperature calculation means as a reference value, and the determination means calculates exhaust gas when the theoretical temperature is lower than a predetermined threshold value. H 2 O concentration is determined to be lower in the case the theoretical temperature is greater than a predetermined threshold value is to determine the high H 2 O concentration in the exhaust gas.

請求項7においては、前記成分濃度算出手段は、前記吸収スペクトル検出手段により検出された吸収スペクトルから排ガス中の概算成分濃度を算出し、前記温度検出手段により検出された実測温度、又は前記温度算出手段により算出された理論温度を用いて、前記概算成分濃度を温度補正して排ガス中の成分濃度を算出するものである。   In Claim 7, the said component density | concentration calculation means calculates the approximate component density | concentration in waste gas from the absorption spectrum detected by the said absorption spectrum detection means, and the actual temperature detected by the said temperature detection means, or the said temperature calculation Using the theoretical temperature calculated by the means, the component concentration in the exhaust gas is calculated by correcting the temperature of the approximate component concentration.

請求項8においては、前記温度検出手段は、前記測定部に穿設された排ガス通過孔に配設され、前記排ガス通過孔を通過する排ガスの実測温度を検出する温度センサを有するものである。   According to an eighth aspect of the present invention, the temperature detecting means includes a temperature sensor that is disposed in the exhaust gas passage hole formed in the measurement unit and detects an actual temperature of the exhaust gas that passes through the exhaust gas passage hole.

請求項9においては、内燃機関の排ガスを排出する排気経路中の排ガスにレーザ光を照射し、排ガスを透過したレーザ光を受光することで排ガス中の成分濃度を測定する排ガス分析方法であって、前記排気経路中の排ガスの実測温度を検出する温度検出工程と、前記受光されたレーザ光より排ガス中に吸収されたレーザ光の吸収スペクトルを検出する吸収スペクトル検出工程と、前記吸収スペクトル検出工程により検出された吸収スペクトルから排ガスの理論温度を算出する温度算出工程と、排ガス中の所定成分の濃度が低い場合には前記温度検出工程により検出された実測温度を用いて排ガス中の成分濃度を算出し、排ガス中の所定成分の濃度が高い場合には前記温度算出工程により算出された理論温度を用いて排ガス中の成分濃度を算出する成分濃度算出工程とを有するものである。   According to claim 9, there is provided an exhaust gas analysis method for measuring a component concentration in exhaust gas by irradiating the exhaust gas in an exhaust path for discharging exhaust gas of an internal combustion engine with laser light and receiving the laser light transmitted through the exhaust gas. A temperature detecting step of detecting an actual temperature of exhaust gas in the exhaust path, an absorption spectrum detecting step of detecting an absorption spectrum of laser light absorbed in the exhaust gas from the received laser light, and the absorption spectrum detecting step A temperature calculation step for calculating the theoretical temperature of the exhaust gas from the absorption spectrum detected by the method, and when the concentration of the predetermined component in the exhaust gas is low, the component concentration in the exhaust gas is determined using the measured temperature detected in the temperature detection step. If the concentration of the specified component in the exhaust gas is high, the component concentration in the exhaust gas is calculated using the theoretical temperature calculated in the temperature calculation step. That is one having a component concentration calculation step.

請求項10においては、前記吸収スペクトル検出工程により検出された吸収スペクトルから、前記所定成分の濃度としての排ガス中のHO濃度に基づいた基準値を算出する基準値算出工程と、前記基準値算出工程により算出された基準値が所定の閾値より小さい場合には前記所定成分の濃度としての排ガス中のHO濃度が低いと判定し、前記基準値算出工程により算出された基準値が所定の閾値より大きい場合には前記所定成分の濃度としての排ガス中のHO濃度が高いと判定する判定工程を有するものである。 In Claim 10, from the absorption spectrum detected by the absorption spectrum detection step, a reference value calculation step of calculating a reference value based on the H 2 O concentration in the exhaust gas as the concentration of the predetermined component, and the reference value When the reference value calculated by the calculation step is smaller than a predetermined threshold, it is determined that the H 2 O concentration in the exhaust gas as the concentration of the predetermined component is low, and the reference value calculated by the reference value calculation step is a predetermined value. A determination step of determining that the concentration of H 2 O in the exhaust gas as the concentration of the predetermined component is high when the threshold value is greater than the threshold value.

請求項11においては、前記成分濃度算出工程は、前記吸収スペクトル検出工程により検出された吸収スペクトルから排ガス中の概算成分濃度を算出し、前記温度検出工程により検出された実測温度、又は前記温度算出工程により算出された理論温度を用いて、前記概算成分濃度を温度補正して排ガス中の成分濃度を算出するものである。   In Claim 11, the said component concentration calculation process calculates the approximate component density | concentration in waste gas from the absorption spectrum detected by the said absorption spectrum detection process, and the measured temperature detected by the said temperature detection process, or the said temperature calculation Using the theoretical temperature calculated in the process, the component concentration in the exhaust gas is calculated by correcting the temperature of the approximate component concentration.

本発明の効果としては、エンジン始動前や始動直後などのように排ガス中の所定成分の濃度が低く、吸収スペクトル検出手段により正確な吸収スペクトルを検出することができない場合であっても、温度検出手段による排ガスの実測温度を用いて成分濃度の温度補正を行うことで、排ガス中の成分ごとの吸収スペクトルを精度よく温度補正することができ、ひいては所定成分の濃度が低い低温条件下であっても成分濃度の測定精度を向上できる。   As an effect of the present invention, temperature detection is possible even when the concentration of a predetermined component in exhaust gas is low, such as before the engine is started or immediately after the start, and an accurate absorption spectrum cannot be detected by the absorption spectrum detection means. By performing temperature correction of the component concentration using the measured temperature of the exhaust gas by means, it is possible to accurately correct the temperature of the absorption spectrum for each component in the exhaust gas. Can improve the measurement accuracy of the component concentration.

次に、発明を実施するための最良の形態を説明する。
図1は本発明の一実施例に係る排ガス分析装置を車輌に搭載した状態を示した側面図、図2は測定部の取付構造を示した斜視図、図3は同じく図2の測定部の取付構造を示した側面図、図4は測定部の構成を示した斜視図、図5はコントローラの構成を示した機能ブロック図、図6はHOの検出ピークを含む波長帯におけるレーザ光の信号強度を示した図、図7はHOの検出ピークを含む波長帯におけるレーザ光の吸収スペクトルを示した図、図8はコンピュータ装置の構成を示した機能ブロック図、図9は吸収スペクトルに表れたHOの吸収に伴う各ピークの面積を示した図、図10は本実施例の排ガス分析装置を用いた排ガス分析方法を示したフローチャート、図11は吸収スペクトルに表れたHOの吸収に伴う各ピーク波長の光強度を示した図、図12は(a)は実測吸収スペクトルと理論吸収スペクトルとによって囲まれた境域の面積を示した図、(b)は理論吸収スペクトルの面積を示した図、図13は別実施例の測定部の取付構造を示した側面図である。
Next, the best mode for carrying out the invention will be described.
1 is a side view showing a state in which an exhaust gas analyzer according to an embodiment of the present invention is mounted on a vehicle, FIG. 2 is a perspective view showing a mounting structure of a measuring unit, and FIG. 3 is a perspective view of the measuring unit of FIG. FIG. 4 is a perspective view showing the configuration of the measurement unit, FIG. 5 is a functional block diagram showing the configuration of the controller, and FIG. 6 is a laser beam in a wavelength band including the detection peak of H 2 O. FIG. 7 is a diagram showing an absorption spectrum of laser light in a wavelength band including a detection peak of H 2 O, FIG. 8 is a functional block diagram showing the configuration of a computer device, and FIG. 9 is an absorption diagram. shows the area of each peak due to absorption of H 2 O which appears in the spectrum, FIG. 10 is a flowchart showing the exhaust gas analyzing method using the exhaust gas analyzer of the present embodiment, FIG. 11 appeared the absorption spectrum H each peak due to absorption of the 2 O FIG. 12 is a diagram showing a long light intensity, FIG. 12A is a diagram showing the area of the boundary surrounded by the measured absorption spectrum and the theoretical absorption spectrum, and FIG. 12B is a diagram showing the area of the theoretical absorption spectrum. FIG. 13 is a side view showing the mounting structure of the measuring part of another embodiment.

まず、本実施例の排ガス分析装置1の全体構成について、以下に概説する。
図1に示すように、本実施例の排ガス分析装置1は、自動車2に配置された内燃機関としてのエンジン20から排出される排ガス中の成分濃度や温度を測定して分析するものである。具体的には、排ガス分析装置1は、上述した排気経路3の複数箇所に配設された複数の測定部5・5・・・と、測定部5に接続されたレーザ発振・受光用のコントローラ6と、コントローラ6に接続されたコンピュータ装置7等とで構成されている。
First, the overall configuration of the exhaust gas analyzer 1 of the present embodiment will be outlined below.
As shown in FIG. 1, the exhaust gas analyzer 1 of the present embodiment measures and analyzes the component concentration and temperature in exhaust gas discharged from an engine 20 as an internal combustion engine disposed in an automobile 2. Specifically, the exhaust gas analyzer 1 includes a plurality of measuring units 5, 5... Disposed at a plurality of locations in the exhaust path 3 described above, and a laser oscillation / light receiving controller connected to the measuring unit 5. 6 and a computer device 7 connected to the controller 6.

自動車2には、エンジン20からの排ガスを機外に排出する排気経路3が敷設されており、排気経路3は、エキゾーストマニホールド30、排気管31、第一触媒装置32、第二触媒装置33、マフラー34、及び排気パイプ35等とから構成されている。また、排気経路3の各構成機器は、断面円形状の配管3aによって連結されている。   The automobile 2 is provided with an exhaust path 3 for discharging exhaust gas from the engine 20 to the outside of the machine. The exhaust path 3 includes an exhaust manifold 30, an exhaust pipe 31, a first catalyst device 32, a second catalyst device 33, A muffler 34, an exhaust pipe 35, and the like are included. In addition, each component device of the exhaust path 3 is connected by a pipe 3a having a circular cross section.

排気経路3においては、エンジン20の排ガスが、まずエキゾーストマニホールド30で合流され、排気管31を通じて第一触媒装置32及び第二触媒装置33に導入され、その後マフラー34を通じて排気パイプ35から大気中に放出される。このような排気経路3が形成されることによって、エンジン20からの排ガスは、二つの触媒装置32・33によって浄化され、マフラー34によって消音・減圧されて大気中に放出される。   In the exhaust path 3, the exhaust gas of the engine 20 is first merged in the exhaust manifold 30, introduced into the first catalyst device 32 and the second catalyst device 33 through the exhaust pipe 31, and then into the atmosphere from the exhaust pipe 35 through the muffler 34. Released. By forming such an exhaust path 3, the exhaust gas from the engine 20 is purified by the two catalytic devices 32 and 33, muffled and decompressed by the muffler 34, and released into the atmosphere.

測定部5・5・・・は、排気経路3において4箇所に配置されており、具体的には、第一触媒装置32の上流側のエンジン20と排気管31との間、第一触媒装置32と第二触媒装置33との間、第二触媒装置33とマフラー34との間、マフラー34の下流側の排気パイプ35の末端部にそれぞれ配置されている。そして、各測定部5において、コントローラ6によって(赤外)レーザ光が照射され、かつ排ガスを透過した後のレーザ光が受光されることで、排気経路3を流れる排ガスの成分濃度が連続的にリアルタイムで測定される。   The measuring units 5, 5... Are arranged at four locations in the exhaust path 3, specifically, between the engine 20 on the upstream side of the first catalyst device 32 and the exhaust pipe 31, the first catalyst device. 32 and the second catalyst device 33, between the second catalyst device 33 and the muffler 34, and at the end of the exhaust pipe 35 on the downstream side of the muffler 34. In each measuring unit 5, the controller 6 emits (infrared) laser light and receives the laser light after passing through the exhaust gas, so that the component concentration of the exhaust gas flowing through the exhaust path 3 is continuously increased. Measured in real time.

このように、本実施例の排ガス分析装置1では、各測定部5による排気経路3の一断面におけるスポット的な排ガスの測定が可能となっている。特に、本実施例のように、測定部5が排気経路3の複数箇所に設けられることで、排ガスが排気経路3の所定断面でどのように変化するかを瞬時に測定することができ、排ガスの状態をリアルタイムに連続して測定することができる。   Thus, in the exhaust gas analyzer 1 of the present embodiment, the spot exhaust gas can be measured in one section of the exhaust path 3 by each measuring unit 5. In particular, as in the present embodiment, by providing the measurement units 5 at a plurality of locations in the exhaust path 3, it is possible to instantaneously measure how the exhaust gas changes in a predetermined section of the exhaust path 3, and the exhaust gas Can be continuously measured in real time.

次に、測定部5について、以下に詳述する。
なお、本実施例の排ガス分析装置1では、排気経路3に配置された測定部5・5・・・は、それぞれ略同一に構成されているため、以下、一例として、第一触媒装置32と第二触媒装置33との間に配置された測定部5について説明する。
Next, the measurement unit 5 will be described in detail below.
In the exhaust gas analyzer 1 of the present embodiment, the measurement units 5, 5... Arranged in the exhaust path 3 are configured substantially the same. The measurement part 5 arrange | positioned between the 2nd catalyst apparatuses 33 is demonstrated.

図2乃至図4に示すように、本実施例の測定部5は、矩形状の薄板材から形成され、略中心部に排気経路3中の排ガスが通過する円形の排ガス通過孔50aが貫通された本体部としてのセンサ本体50と、測定用のレーザ光を排ガス通過孔50a内に向けて照射する照射部51と、照射部51より照射されたレーザ光を多重反射させる一対の反射鏡52・52と、排ガス中を透過したレーザ光を検出する受光部53と、排気経路中の排ガスの実測温度T1を検出する温度検出手段としての温度センサ55等とで構成されている。測定部5においては、照射部51より排気経路3と直交する一断面に沿ってレーザ光が照射され、照射されたレーザ光が反射鏡52間で排気経路3を横切るように複数回反射されて、受光部53にて受光される。   As shown in FIGS. 2 to 4, the measurement unit 5 of the present embodiment is formed of a rectangular thin plate material, and a circular exhaust gas passage hole 50 a through which the exhaust gas in the exhaust path 3 passes is substantially penetrated at the center. A sensor body 50 as a main body, an irradiation unit 51 for irradiating laser light for measurement toward the exhaust gas passage hole 50a, and a pair of reflecting mirrors 52 for reflecting the laser light emitted from the irradiation unit 51 in multiple reflections. 52, a light receiving unit 53 that detects laser light that has passed through the exhaust gas, a temperature sensor 55 that serves as a temperature detection unit that detects the actual temperature T1 of the exhaust gas in the exhaust path, and the like. In the measurement unit 5, laser light is irradiated from the irradiation unit 51 along one cross section orthogonal to the exhaust path 3, and the irradiated laser light is reflected a plurality of times so as to cross the exhaust path 3 between the reflecting mirrors 52. The light receiving unit 53 receives the light.

測定部5は、センサ本体50が一対の管継手36・36に挟まれた状態で固定され、管継手36・36がそれぞれ第一触媒装置32及び第二触媒装置33に接続された配管3a・3aと接続されることで排気経路3に配設される。管継手36・36は、断面円形の貫通孔36aが穿設された筒状に形成され、一方の開口縁部にフランジ部36bが設けられている。測定部5(のセンサ本体50)は、一対の管継手36・36のフランジ部36bが設けられた側の開口端の離間に、ガスケット37を介して挟み込まれ、フランジ部36b・36bがボルト38・38によって締結されることで固定される。管継手36の貫通孔36aは、配管3aと同じ直径の円形に形成され、排ガスの流れが妨げられることがない。   The measuring unit 5 is fixed in a state where the sensor body 50 is sandwiched between a pair of pipe joints 36 and 36, and the pipe joints 36 and 36 are connected to the first catalyst device 32 and the second catalyst device 33, respectively. By being connected to 3a, it is disposed in the exhaust path 3. The pipe joints 36 and 36 are formed in a cylindrical shape with a through hole 36a having a circular cross section, and a flange portion 36b is provided at one opening edge. The measuring unit 5 (the sensor body 50) is sandwiched between the opening ends of the pair of pipe joints 36 and 36 on the side where the flange portion 36b is provided via the gasket 37, and the flange portions 36b and 36b are bolts 38. -It is fixed by being fastened by 38. The through hole 36a of the pipe joint 36 is formed in a circular shape having the same diameter as the pipe 3a, and the flow of exhaust gas is not hindered.

センサ本体50は、平面視円形に形成された薄板状の金属部材より構成され、排ガスの流れ方向と直交する対向面の略中央部に円形の排ガス通過孔50aが穿設されている。このセンサ本体50には、照射部51及び受光部53が投光面と受光面とがそれぞれ排ガス通過孔50aの中心方向に向くようにして組み付けられるとともに、反射鏡52・52が排ガス通過孔50aに面するように上下に対向して平行に配設され、照射部51より照射されるレーザ光が排ガス通過孔50a内を排気経路3に対して直交して横切るように平行状態に固定されている。   The sensor main body 50 is composed of a thin plate-like metal member formed in a circular shape in plan view, and a circular exhaust gas passage hole 50a is formed in a substantially central portion of an opposing surface orthogonal to the exhaust gas flow direction. The sensor body 50 is assembled with the irradiation unit 51 and the light receiving unit 53 such that the light projecting surface and the light receiving surface are directed toward the center of the exhaust gas passage hole 50a, and the reflecting mirrors 52 and 52 are provided with the exhaust gas passage hole 50a. The laser beam irradiated from the irradiation unit 51 is fixed in a parallel state so as to cross the exhaust gas passage hole 50a at right angles to the exhaust passage 3 so as to face each other. Yes.

照射部51からは、排気経路3と直交する一断面に沿ってレーザ光が照射され、照射部51から照射されたレーザ光が受光部53にて受光される。本実施例では、照射部51及び受光部53は、上述したコントローラ6に接続されており、コントローラ6から射出されたレーザ光が照射部51を介して排ガス通過孔50aに照射され、排ガス中を透過したレーザ光が受光部53で受光されてコントローラ6に受光信号が入力される。   Laser light is emitted from the irradiation unit 51 along a cross section orthogonal to the exhaust path 3, and the laser light emitted from the irradiation unit 51 is received by the light receiving unit 53. In the present embodiment, the irradiation unit 51 and the light receiving unit 53 are connected to the controller 6 described above, and the laser light emitted from the controller 6 is irradiated to the exhaust gas passage hole 50a via the irradiation unit 51 and passes through the exhaust gas. The transmitted laser light is received by the light receiving unit 53 and a light reception signal is input to the controller 6.

照射部51には、赤外線送信用の光ファイバ51aが設けられており、投光面がセンサ本体50の排ガス通過孔50aの中心に向くようにして取り付けられている。光ファイバ51aの他端は、上述したコントローラ6に接続されており、コントローラ6から射出されたレーザ光が光ファイバ51aより排ガス通過孔50a内に導入される。このように、照射部51は、光ファイバ51aの投光面が排ガス通過孔50aに対向され、レーザ光が排ガス通過孔50aと直交する一断面に向けて照射可能にセンサ本体50に取り付けられている。   The irradiation unit 51 is provided with an optical fiber 51 a for infrared transmission, and is attached so that the light projecting surface faces the center of the exhaust gas passage hole 50 a of the sensor body 50. The other end of the optical fiber 51a is connected to the controller 6 described above, and laser light emitted from the controller 6 is introduced into the exhaust gas passage hole 50a from the optical fiber 51a. Thus, the irradiation part 51 is attached to the sensor main body 50 so that the projection surface of the optical fiber 51a is opposed to the exhaust gas passage hole 50a and the laser light can be emitted toward one cross section orthogonal to the exhaust gas passage hole 50a. Yes.

受光部53には、レーザ光を検出するディテクタ53aと、一端がディテクタ53aに接続されるとともに、他端が上述したコントローラ6に接続された信号線53bとが設けられており、排ガス中を透過したレーザ光がディテクタ53aに受光されて、受光信号が信号線53bを介してコントローラ6に入力される。受光部53は、ディテクタ53aの受光面が排ガス通過孔50aに対向され、照射部51より排ガス通過孔50aと直交する一断面に向けて照射されたレーザ光を受光可能に照射部6と同一平面上に位置するようにしてセンサ本体50に取り付けられる。   The light receiving portion 53 is provided with a detector 53a for detecting laser light, and a signal line 53b having one end connected to the detector 53a and the other end connected to the controller 6 described above, and passes through the exhaust gas. The detected laser beam is received by the detector 53a, and the received light signal is input to the controller 6 through the signal line 53b. The light receiving unit 53 is flush with the irradiation unit 6 so that the light receiving surface of the detector 53a faces the exhaust gas passage hole 50a and can receive the laser light emitted from the irradiation unit 51 toward one section orthogonal to the exhaust gas passage hole 50a. The sensor body 50 is attached so as to be positioned above.

反射鏡52・52は、照射部51より照射されたレーザ光が一方の反射鏡52(図4において下方の)により他方の反射鏡52(図4において上方の)に向けて反射され、一対の反射鏡52・52により交互に反射されて受光側の受光部53に到達されるように配設される。このように一対の反射鏡52・52によって、照射部51により照射されたレーザ光が排気経路3に直交する一断面内を複数回反射してから受光部53で受光される。   The reflecting mirrors 52 and 52 are configured such that the laser light emitted from the irradiation unit 51 is reflected by one reflecting mirror 52 (lower in FIG. 4) toward the other reflecting mirror 52 (upward in FIG. 4). The reflectors 52 and 52 are alternately reflected so as to reach the light receiving portion 53 on the light receiving side. As described above, the laser beam irradiated by the irradiation unit 51 is reflected by the light receiving unit 53 after being reflected a plurality of times in one cross section orthogonal to the exhaust path 3 by the pair of reflecting mirrors 52 and 52.

このように、測定部5では、コントローラ6から照射されたレーザ光が照射部51の光ファイバ51aを介してセンサ本体50の排ガス通過孔50a内に照射され、排ガス中を透過したレーザ光が受光部53のディテクタ53aにて受光され、信号線53bを介してコントローラ6に入力されるように構成されている。   As described above, in the measurement unit 5, the laser light emitted from the controller 6 is irradiated into the exhaust gas passage hole 50 a of the sensor body 50 through the optical fiber 51 a of the irradiation unit 51, and the laser light transmitted through the exhaust gas is received. Light is received by the detector 53a of the unit 53 and is input to the controller 6 via the signal line 53b.

温度センサ55は、センサ本体50の排ガス通過孔50a内に配設されており、排ガス通過孔50aを通過する排ガスの実測温度T1が直接に検出される。温度センサ55の一端は後述するコンピュータ装置7に接続されており、検出された排ガスの実測温度T1がコンピュータ装置7に入力される(図3参照)。なお、本実施例の温度センサ55は、例えば、導線部分がエナメルやセラミック等の耐熱性素材により被覆された熱電対が用いられる。特に、熱電対が用いられる場合には、金属製の保護管等に収容された状態で排ガス通過孔50a内に配設されてもよい。   The temperature sensor 55 is disposed in the exhaust gas passage hole 50a of the sensor body 50, and the actual temperature T1 of the exhaust gas passing through the exhaust gas passage hole 50a is directly detected. One end of the temperature sensor 55 is connected to the computer device 7 described later, and the detected actual temperature T1 of the detected exhaust gas is input to the computer device 7 (see FIG. 3). The temperature sensor 55 of the present embodiment uses, for example, a thermocouple in which the conductor portion is covered with a heat resistant material such as enamel or ceramic. In particular, when a thermocouple is used, it may be disposed in the exhaust gas passage hole 50a while being accommodated in a metal protective tube or the like.

次に、コントローラ6について、以下に詳述する。
本実施例の排ガス分析装置1では、コントローラ6は、各排気経路3に配置された対応する測定部5・5・・・ごとにそれぞれ配設されており、各測定部5・5・・・に同様の波長の(赤外)レーザ光を供給するとともに、各測定部5・5・・・にて受光されたレーザ光の受光信号が受信されるように構成されている。以下では、第一触媒装置32と第二触媒装置33との間に配置された一の測定部5に注目して、かかる測定部5に接続されたコントローラ6の構成について説明するが、その他の測定部5に接続されるコントローラ6の構成についても略同様に構成される。
Next, the controller 6 will be described in detail below.
In the exhaust gas analyzer 1 of the present embodiment, the controller 6 is arranged for each of the corresponding measuring units 5, 5... Arranged in each exhaust path 3, and the measuring units 5, 5. Are supplied with the same wavelength (infrared) laser beam and receive the received light signal of the laser beam received by each of the measuring sections 5. Hereinafter, the configuration of the controller 6 connected to the measurement unit 5 will be described by focusing on one measurement unit 5 disposed between the first catalyst device 32 and the second catalyst device 33. The configuration of the controller 6 connected to the measurement unit 5 is configured in substantially the same manner.

図1及び図5に示すように、コントローラ6は、複数の波長のレーザ光を照射する照射装置及び所定のレーザ光を検出する光検出装置として構成されている。具体的には、複数の波長の赤外レーザ光を発生させるレーザ光源60と、レーザ光源60より照射されたレーザ光を分波する複数の分波器61・61・・・と、レーザ光源60より照射されたレーザ光(測定用レーザ光及び参照用レーザ光)を所定の波長帯のレーザ光に合波する合波器62・63と、測定部5により受光されて排ガス中を透過して減衰した測定用レーザ光と参照用レーザ光とが導光される差分型光検出器64等とで構成されている。   As shown in FIGS. 1 and 5, the controller 6 is configured as an irradiation device that irradiates laser light with a plurality of wavelengths and a light detection device that detects predetermined laser light. Specifically, a laser light source 60 that generates infrared laser light having a plurality of wavelengths, a plurality of demultiplexers 61, 61,... That demultiplex the laser light emitted from the laser light source 60, and a laser light source 60. The laser light (measurement laser light and reference laser light) emitted from the laser beam is multiplexed by the multiplexers 62 and 63 for combining the laser light of a predetermined wavelength band with the laser light of a predetermined wavelength band and received by the measurement unit 5 and transmitted through the exhaust gas. It comprises a differential photodetector 64 and the like through which attenuated measurement laser light and reference laser light are guided.

レーザ光源60は、ファンクションジェネレータ等の信号発信器65からの所定の周波数の信号が複数(本実施例では5個)のレーザダイオード66・66・・・に供給されることで、各レーザダイオード66・66・・・から特定波長の赤外レーザ光がそれぞれ照射される。レーザ光源60では、例えば、一のレーザダイオード66から波長が1300〜1330nm程度のレーザ光や、波長が1330〜1360nm程度のレーザ光がそれぞれ照射される。   The laser light source 60 is supplied with a signal of a predetermined frequency from a signal transmitter 65 such as a function generator to a plurality of (in this embodiment, five) laser diodes 66, 66.・ The infrared laser beam having a specific wavelength is irradiated from 66. In the laser light source 60, for example, laser light with a wavelength of about 1300 to 1330 nm and laser light with a wavelength of about 1330 to 1360 nm are emitted from one laser diode 66, respectively.

本実施例では、排ガス中に含まれる成分の内で、一酸化炭素(CO)、二酸化炭素(CO)、アンモニア(NH)、メタン(CH)、及び水(HO)の5種類を検出対象として設定されており、それぞれの成分のピーク波長が存在する波長帯を含むレーザ光が合成される。具体的には、NHを検出するのに適した波長は1530nm近傍であり、COを検出するのに適した波長は1560nm近傍であり、COを検出するのに適した波長は1580nm近傍であり、CHを検出するのに適した波長は1650nm近傍である。そして、HOを検出するのに適した波長が1380nm近傍である。 In this example, among the components contained in the exhaust gas, 5 of carbon monoxide (CO), carbon dioxide (CO 2 ), ammonia (NH 3 ), methane (CH 4 ), and water (H 2 O). The types are set as detection targets, and laser light including a wavelength band in which the peak wavelengths of the respective components exist is synthesized. Specifically, the wavelength suitable for detecting NH 3 is around 1530 nm, the wavelength suitable for detecting CO is around 1560 nm, and the wavelength suitable for detecting CO 2 is around 1580 nm. There is a suitable wavelength for detecting CH 4 in the vicinity of 1650 nm. A wavelength suitable for detecting H 2 O is around 1380 nm.

分波器61は、上述したレーザ光源60のレーザダイオード66・66・・・より照射されたレーザ光を測定用レーザ光と参照用レーザ光とに分波する装置であって、本実施例では、上述したレーザダイオード66・66・・・に対応して複数個(本実施例では5個)の分波器61・61・・・がそれぞれ配設されている。なお、本実施例のコントローラ6には、分波器61にてレーザダイオード66・66・・・より照射されたレーザ光を測定用レーザ光と参照用レーザ光とに分波する前に、排ガス分析装置1を構成する各測定部5・5・・・に対してレーザ光を分波するための図示せぬ分波器が別途設けられている。   The demultiplexer 61 is a device that demultiplexes the laser light emitted from the laser diodes 66, 66,... Of the laser light source 60 into the measurement laser light and the reference laser light. , A plurality of (in the present embodiment, five) duplexers 61, 61,... Are disposed corresponding to the laser diodes 66, 66,. The controller 6 of the present embodiment includes an exhaust gas before demultiplexing the laser light emitted from the laser diodes 66, 66... By the demultiplexer 61 into the measurement laser light and the reference laser light. A separate splitter (not shown) for splitting the laser beam is separately provided for each of the measuring units 5, 5... Constituting the analyzer 1.

合波器62・63は、分波器61で測定用レーザ光と参照用レーザ光とに分波された各レーザ光を合波して、所定の波長帯のレーザ光に合波するものであって、合波器62により分波器61で分波された測定用レーザ光が合波され、合波器63により分波器61で分波された参照用レーザ光が合波される。このようにして合波器62・63により合波されたレーザ光は、排ガス中の複数の成分に合わせて700nm〜1800nm程度の波長帯を有するように調整されている。   The multiplexers 62 and 63 multiplex the laser beams demultiplexed into the measurement laser beam and the reference laser beam by the demultiplexer 61 and multiplex the laser beams with a predetermined wavelength band. Thus, the measurement laser beam demultiplexed by the demultiplexer 61 is multiplexed by the multiplexer 62, and the reference laser beam demultiplexed by the demultiplexer 61 is multiplexed by the multiplexer 63. The laser light combined by the multiplexers 62 and 63 in this way is adjusted to have a wavelength band of about 700 nm to 1800 nm in accordance with a plurality of components in the exhaust gas.

合波器62により合成された測定用レーザ光は、光ファイバ51aを介して測定部5の照射部51に導光され、測定部5にて反射鏡52・52で多重反射された後に受光部53のディテクタ53aにて受光され、信号線53bを介して後述する差分型光検出器64に導光される。一方、合波器63により合成された参照用レーザ光は、光ファイバ63aを介して後述する差分型光検出器64に導光される。   The measurement laser beam synthesized by the multiplexer 62 is guided to the irradiation unit 51 of the measurement unit 5 through the optical fiber 51a, and after being reflected by the reflection mirrors 52 and 52 in the measurement unit 5, the light receiving unit. The light is received by 53 detectors 53a and guided to a differential photodetector 64 described later via a signal line 53b. On the other hand, the reference laser beam synthesized by the multiplexer 63 is guided to the differential photodetector 64 described later via the optical fiber 63a.

差分型光検出器64は、測定部5にて受光されたレーザ光より排ガス中に吸収されたレーザ光の吸収スペクトルを検出する吸収スペクトル検出手段として構成されており、本実施例の差分型光検出器64では、入力された各レーザ光の信号強度と、両レーザ光の吸収スペクトルとが検出される。差分型光検出器64は、測定部5から延出された信号線53bと、分波器63から延出された光ファイバ63aとがそれぞれ接続されており、測定部5にて排ガス中を透過して減衰された測定用レーザ光と排ガス中を透過していない参照用レーザ光とが、フォトダイオード64a・64aに入力されて電気信号に変換された後に電気信号として入力され、各レーザ光の信号強度が検出される。   The differential light detector 64 is configured as an absorption spectrum detector that detects an absorption spectrum of the laser light absorbed in the exhaust gas from the laser light received by the measuring unit 5, and the differential light of this embodiment. The detector 64 detects the signal intensity of each input laser beam and the absorption spectrum of both laser beams. The differential photodetector 64 is connected to the signal line 53b extended from the measurement unit 5 and the optical fiber 63a extended from the duplexer 63, and passes through the exhaust gas in the measurement unit 5. The attenuated measurement laser light and the reference laser light that does not pass through the exhaust gas are input to the photodiodes 64a and 64a and converted into electrical signals, and then input as electrical signals. The signal strength is detected.

図6は、一例として、差分型光検出器64に入力された特定成分の測定用レーザ光及び参照用レーザ光の信号強度をそれぞれ示したものである。具体的には、HOの検出ピークを含む波長帯において、図6(a)は参照用レーザ光の信号強度を表したものであり、図6(b)は排ガス中を透過した後の測定用レーザ光(透過光)の信号強度を示したものである。特に、図6(b)に示した排ガス中を透過した後の測定用レーザ光の信号強度では、ピーク波長λ1、λ2、λ3においてHOの吸収に伴うシグナル光量の減少(ピークA・B・C)が確認される。 FIG. 6 shows, as an example, signal intensities of measurement laser light and reference laser light of a specific component input to the differential photodetector 64. Specifically, in the wavelength band including the detection peak of H 2 O, FIG. 6A shows the signal intensity of the reference laser beam, and FIG. 6B shows the signal after passing through the exhaust gas. It shows the signal intensity of the laser beam for measurement (transmitted light). In particular, in the signal intensity of the laser beam for measurement after passing through the exhaust gas shown in FIG. 6B, the signal light amount decreases due to the absorption of H 2 O at the peak wavelengths λ1, λ2, and λ3 (peaks A and B). -C) is confirmed.

また、差分型光検出器64では、入力された測定用レーザ光及び参照用レーザ光の入力信号に基づいて、測定用レーザ光及び参照用レーザ光の光強度の差をとって、測定用レーザ光(透過光)のうち所定の波長帯における吸収スペクトルが検出される。図7は、一例として、差分型光検出器64に入力された測定用レーザ光及び参照用レーザ光の特定成分の吸収スペクトルを示したものであり、図6(b)に示した排ガス中を透過した後の測定用レーザ光の信号強度のピークに対応して、ピーク波長λ1、λ2、λ3においてHOの吸収に伴うピークA・B・Cが確認される。 Further, the differential photodetector 64 calculates the difference in light intensity between the measurement laser beam and the reference laser beam based on the input input signals of the measurement laser beam and the reference laser beam, and measures the measurement laser beam. An absorption spectrum in a predetermined wavelength band of light (transmitted light) is detected. FIG. 7 shows, as an example, absorption spectra of specific components of the measurement laser beam and the reference laser beam input to the differential photodetector 64, and the exhaust gas shown in FIG. Corresponding to the peak of the signal intensity of the measurement laser light after transmission, peaks A, B, and C accompanying absorption of H 2 O are confirmed at peak wavelengths λ1, λ2, and λ3.

なお、差分型光検出器64にて検出されたレーザ光の吸収スペクトルは、電気信号として図示せぬプリアンプやA/D変換器を介して後述するコンピュータ装置7に入力される。   The absorption spectrum of the laser beam detected by the differential photodetector 64 is input as an electric signal to the computer apparatus 7 to be described later via a preamplifier and an A / D converter (not shown).

次に、コンピュータ装置7について、以下に詳述する。
図8に示すように、本実施例のコンピュータ装置7は、後述するように温度算出部70、基準値算出部71、判定部72、成分濃度算出部73、及び出力部74等とで構成されており、コントローラ6からの出力信号が解析されて、入力された複数の波長帯ごとの吸収スペクトルに基づいて排ガスの成分濃度Cが測定される。特に、本実施例のコンピュータ装置7では、上述した温度センサ55で検出された実測温度T1又は温度算出部70で算出される理論温度T2のいずれかを選択的に用いて温度補正して排ガスの成分濃度Cを算出するように構成されている。
Next, the computer device 7 will be described in detail below.
As shown in FIG. 8, the computer apparatus 7 of this embodiment includes a temperature calculation unit 70, a reference value calculation unit 71, a determination unit 72, a component concentration calculation unit 73, an output unit 74, and the like as will be described later. The output signal from the controller 6 is analyzed, and the component concentration C of the exhaust gas is measured based on the inputted absorption spectrum for each of the plurality of wavelength bands. In particular, in the computer device 7 of the present embodiment, the temperature of the exhaust gas is corrected by selectively using either the actually measured temperature T1 detected by the temperature sensor 55 described above or the theoretical temperature T2 calculated by the temperature calculation unit 70. The component concentration C is calculated.

コンピュータ装置7は、上述した差分型光検出器64及び温度センサ55と接続されており、差分型光検出器64にて検出された吸収スペクトルが電気信号として入力されるとともに、温度センサ55にて検出された排ガスの実測温度T1が電気信号として入力される。   The computer device 7 is connected to the above-described differential photodetector 64 and the temperature sensor 55, and the absorption spectrum detected by the differential photodetector 64 is input as an electrical signal, and the temperature sensor 55 The detected actual temperature T1 of the detected exhaust gas is input as an electric signal.

本実施例のコンピュータ装置7では、公知の方法を用いて排ガス中の成分濃度Cが算出される。一例として、排ガス中の成分濃度C(後述する概算成分濃度C1に相当する)は、排ガス中への入射光(参照用レーザ光)と、排ガス中を透過した後の透過光(測定用レーザ光)の光強度に基づいて、以下の数式(1)を用いて算出される。   In the computer apparatus 7 of the present embodiment, the component concentration C in the exhaust gas is calculated using a known method. As an example, the component concentration C in the exhaust gas (corresponding to an approximate component concentration C1 to be described later) includes incident light (reference laser light) into the exhaust gas and transmitted light after passing through the exhaust gas (measurement laser light). ) Is calculated using the following mathematical formula (1).

C=−ln(I/I)/k・L ・・・(1) C = −ln (I / I 0 ) / k · L (1)

数式(1)において、Iは透過光強度、Iは入射光強度、kは吸収率、Lは透過距離である。つまり、成分濃度Cは、参照用レーザ光である入射光の光強度Iに対する測定用レーザ光である透過光の光強度Iの比(I/I)に基づいて算出される。コンピュータ装置7では、差分型光検出器64にて検出された吸収スペクトルから透過光強度I(シグナル強度)及び入射光強度Iが算出されて成分濃度Cが算出される。 In Equation (1), I is the transmitted light intensity, I 0 is the incident light intensity, k is the absorptance, and L is the transmission distance. That is, the component concentration C is calculated based on the ratio (I / I 0 ) of the light intensity I of the transmitted light that is the measurement laser light to the light intensity I 0 of the incident light that is the reference laser light. In the computer device 7, the transmitted light intensity I (signal intensity) and the incident light intensity I 0 are calculated from the absorption spectrum detected by the differential photodetector 64, and the component concentration C is calculated.

また、本実施例のコンピュータ装置7では、排ガス中に常時存在しているHO水蒸気)が排ガス中の所定成分として設定されており、後述するように、かかる所定成分としてのHOの吸収スペクトルから排ガスの理論温度T2が算出されるとともに、排ガス中のHO濃度の大小に基づいて温度補正の際に用いられる温度が判定される(図10参照)。 Moreover, in the computer apparatus 7 of the present embodiment, H 2 O water vapor that is always present in the exhaust gas is set as a predetermined component in the exhaust gas, and as will be described later, H 2 O as the predetermined component is set. The theoretical temperature T2 of the exhaust gas is calculated from the absorption spectrum, and the temperature used for temperature correction is determined based on the magnitude of the H 2 O concentration in the exhaust gas (see FIG. 10).

温度算出部70は、差分型光検出器64により検出された吸収スペクトルから排ガスの理論温度T2を算出する温度算出手段として構成されている。吸収スペクトルから排ガスの理論温度T2を算出する方法としては、公知の方法が用いられる。一例として、本実施例では、特定の2波長の光強度の比率が温度のみに依存するため、図7で示された排ガス中を透過した後の測定用レーザ光の吸収スペクトルに表れた少なくとも2つのピーク波長の光強度(例えば、ピーク波長λ1・λ2の光強度I1・I2)を用いて、数式(1)からHO濃度が算出され、そして、算出された2つのHO濃度が等しいことから目的とする理論温度T2が算出される。 The temperature calculation unit 70 is configured as a temperature calculation unit that calculates the theoretical temperature T2 of the exhaust gas from the absorption spectrum detected by the differential photodetector 64. As a method for calculating the theoretical temperature T2 of the exhaust gas from the absorption spectrum, a known method is used. As an example, in this embodiment, since the ratio of the light intensity of two specific wavelengths depends only on the temperature, at least 2 appears in the absorption spectrum of the measurement laser light after passing through the exhaust gas shown in FIG. Using the light intensities at two peak wavelengths (for example, the light intensities I1 and I2 at the peak wavelengths λ1 and λ2), the H 2 O concentration is calculated from Equation (1), and the two calculated H 2 O concentrations are The target theoretical temperature T2 is calculated from the equality.

具体的には、上述した成分濃度Cを算出する数式(1)において、右辺の吸収率kが吸収線強度S(T)と圧力Pとの積で表され(k=S(T)・P)、吸収線強度S(T)が吸収率断面積αと、アボガドロ数Naと、気体定数Rと、温度Tとの関数で表される(S(T)=α・(Na/RT))ことに基づいて、これらが数式(1)の吸収率kに代入されることで、理論温度T2が算出される。   Specifically, in Equation (1) for calculating the component concentration C described above, the absorption rate k on the right side is represented by the product of the absorption line intensity S (T) and the pressure P (k = S (T) · P ), The absorption line intensity S (T) is expressed as a function of the absorptance cross-sectional area α, the Avogadro number Na, the gas constant R, and the temperature T (S (T) = α · (Na / RT)). Based on this, the theoretical temperature T2 is calculated by substituting these into the absorptance k in Equation (1).

基準値算出部71は、差分型光検出器64により検出された吸収スペクトルから、所定成分の濃度としての排ガス中のHO濃度に基づいた基準値を算出する基準値算出手段として構成されている。「排ガス中のHO濃度に基づいた基準値」は、HO濃度と相関性のある値のことをいい、本実施例では、HOの吸収スペクトルの面積値が排ガス中のHO濃度と相関関係にあることから、差分型光検出器64により検出されたHOの吸収スペクトルの面積値が基準値として設定されている。 The reference value calculator 71 is configured as a reference value calculator that calculates a reference value based on the H 2 O concentration in the exhaust gas as the concentration of the predetermined component from the absorption spectrum detected by the differential photodetector 64. Yes. The “reference value based on the H 2 O concentration in the exhaust gas” refers to a value having a correlation with the H 2 O concentration. In this example, the area value of the absorption spectrum of H 2 O is H 2 O in the exhaust gas. Since there is a correlation with the 2 O concentration, the area value of the absorption spectrum of H 2 O detected by the differential photodetector 64 is set as the reference value.

図9に示すように、HOの吸収スペクトルの面積値は、図7に示した排ガス中を透過した後の測定用レーザ光の吸収スペクトルを用いて、吸収スペクトルに表れたHOの吸収に伴うピークA・B・Cの積分値の合計値として算出される。ただし、このHOの吸収スペクトルの面積値は、単一ピークの積分値(例えば、ピーク波長λ1に基づくピークAの積分値)又は2以上のピークの積分値から算出されてもよい。 As shown in FIG. 9, the area value of the absorption spectrum of H 2 O, using the absorption spectrum of the measurement laser light after passing through the flue gas shown in FIG. 7, the H 2 O which appears in the absorption spectrum It is calculated as the total value of the integrated values of peaks A, B, and C accompanying absorption. However, the area value of the absorption spectrum of H 2 O may be calculated from an integrated value of a single peak (for example, an integrated value of peak A based on peak wavelength λ1) or an integrated value of two or more peaks.

判定部72は、基準値算出部71により算出された基準値が所定の閾値より小さい場合には所定成分の濃度としての排ガス中のHO濃度が低いと判定し、基準値算出部71により算出された基準値が所定の閾値より大きい場合には所定成分の濃度としての排ガス中のHO濃度が高いと判定する判定手段として構成されている。 The determination unit 72 determines that the H 2 O concentration in the exhaust gas as the concentration of the predetermined component is low when the reference value calculated by the reference value calculation unit 71 is smaller than the predetermined threshold, and the reference value calculation unit 71 When the calculated reference value is larger than a predetermined threshold value, the determination unit is configured to determine that the H 2 O concentration in the exhaust gas as the concentration of the predetermined component is high.

「HO濃度の閾値」は、後述するように、温度センサ55で検出された実測温度T1又は温度算出部70で算出される理論温度T2のいずれかを選択的に用いる際の閾値であって、排ガスの測定条件やピーク波長の検出精度等に応じて適宜設定される。また、「基準値の閾値」は、予め設定されたHO濃度の閾値に対応して適宜設定される。例えば、HO濃度の閾値が排ガス中における所定%濃度と予め設定されることで、かかるHO濃度の閾値に対応した基準値の閾値が設定される。 The “threshold value of H 2 O concentration” is a threshold value when selectively using either the actual temperature T1 detected by the temperature sensor 55 or the theoretical temperature T2 calculated by the temperature calculation unit 70, as will be described later. Thus, it is appropriately set according to the exhaust gas measurement conditions, the peak wavelength detection accuracy, and the like. Further, the “reference value threshold value” is appropriately set corresponding to a preset H 2 O concentration threshold value. For example, the threshold of the H 2 O concentration is preset to a predetermined% concentration in the exhaust gas, the threshold reference value corresponding to the threshold of such H 2 O concentration is set.

本実施例の判定部72では、上述した基準値算出部71にて算出されたHOの吸収スペクトルの面積値が所定の閾値より小さい場合には排ガス中のHO濃度が低いと判定され、面積値が所定の閾値より大きい場合には排ガス中のHO濃度が高いと判定される。このように、HOの吸収スペクトルの面積値と排ガス中のHO濃度と相関性を利用すれば、基準値算出部71にてHOの吸収スペクトルの面積値を基準値として算出することで、判定部72にてHO濃度の大小を容易に判定できる。 The determination unit 72 according to the present embodiment determines that the H 2 O concentration in the exhaust gas is low when the area value of the absorption spectrum of H 2 O calculated by the reference value calculation unit 71 described above is smaller than a predetermined threshold value. When the area value is larger than the predetermined threshold value, it is determined that the H 2 O concentration in the exhaust gas is high. Thus calculated, by using the correlation between H 2 O concentration in the area value and the exhaust gas of the absorption spectrum of H 2 O, the area value of the absorption spectrum of H 2 O by the reference value calculating section 71 as the reference value Thus, the determination unit 72 can easily determine the magnitude of the H 2 O concentration.

成分濃度算出部73は、排ガス中のHO濃度が低い場合には温度センサ55により検出された実測温度T1を用いて、又は排ガス中のHO濃度が高い場合には温度算出部70により算出された理論温度T2を用いて、排ガスの成分濃度を算出する成分濃度算出手段として構成されている。具体的には、本実施例の成分濃度算出部73では、差分型光検出器64により検出された吸収スペクトルから排ガスの概算成分濃度C1を一旦算出し、温度センサ55により検出された実測温度T1又は温度算出部70により算出された理論温度T2を用いて、概算成分濃度C1を温度補正して成分濃度Cが算出される。 The component concentration calculation unit 73 uses the measured temperature T1 detected by the temperature sensor 55 when the H 2 O concentration in the exhaust gas is low, or the temperature calculation unit 70 when the H 2 O concentration in the exhaust gas is high. Is used as a component concentration calculating means for calculating the component concentration of the exhaust gas using the theoretical temperature T2 calculated by the above. Specifically, in the component concentration calculation unit 73 of the present embodiment, the approximate component concentration C1 of the exhaust gas is temporarily calculated from the absorption spectrum detected by the differential photodetector 64 and the measured temperature T1 detected by the temperature sensor 55 is calculated. Alternatively, the component concentration C is calculated by correcting the approximate component concentration C1 using the theoretical temperature T2 calculated by the temperature calculation unit 70.

排ガスの概算成分濃度C1は、差分型光検出器64により検出された吸収スペクトルから上述した数式(1)を用いて算出される。「排ガスの概算成分濃度C1」とは、温度補正を行う前の排ガスの成分濃度のことである。そして、成分濃度算出部73では、上述した判定部72にて判定された判定結果に基づいて、排ガスの概算成分濃度C1が実測温度T1又は理論温度T2のいずれかを用いて温度補正されて、排ガスの成分濃度Cが算出される。   The approximate component concentration C1 of the exhaust gas is calculated from the absorption spectrum detected by the differential photodetector 64 using the above-described equation (1). The “approximate component concentration C1 of exhaust gas” is the component concentration of exhaust gas before temperature correction. Then, in the component concentration calculation unit 73, based on the determination result determined by the determination unit 72 described above, the approximate component concentration C1 of the exhaust gas is temperature-corrected using either the measured temperature T1 or the theoretical temperature T2, The component concentration C of the exhaust gas is calculated.

例えば、判定部72にて、基準値算出部71にて算出されたHOの吸収スペクトルの面積値が所定の閾値より小さく、したがって排ガス中のHO濃度が低いと判定された場合には、成分濃度算出部73にて実測温度T1を用いて概算成分濃度C1が温度補正されて、排ガス中の成分濃度Cが算出される。一方、判定部72にて、基準値算出部71にて算出されたHOの吸収スペクトルの面積値が所定の閾値より大きく、したがって排ガス中のHO濃度が高いと判定された場合には、成分濃度算出部73にて理論温度T2を用いて概算成分濃度C1が温度補正されて、排ガス中の成分濃度Cが算出される。 For example, when the determination unit 72 determines that the area value of the absorption spectrum of H 2 O calculated by the reference value calculation unit 71 is smaller than a predetermined threshold value, and thus the H 2 O concentration in the exhaust gas is low. The component concentration calculation unit 73 corrects the temperature of the approximate component concentration C1 using the measured temperature T1, and calculates the component concentration C in the exhaust gas. On the other hand, when the determination unit 72 determines that the area value of the absorption spectrum of H 2 O calculated by the reference value calculation unit 71 is larger than a predetermined threshold value, and thus the H 2 O concentration in the exhaust gas is high. The component concentration calculation unit 73 corrects the temperature of the approximate component concentration C1 using the theoretical temperature T2, and calculates the component concentration C in the exhaust gas.

概算成分濃度C1の温度補正の方法としては、公知の方法を用いることができ、一例として、本実施例では、排ガスの実測吸収スペクトルである吸収スペクトルを、温度・圧力・濃度毎に予め定義された理論吸収スペクトルとパターンマッチングを行うことで排ガスの成分濃度Cが算出される。具体的には、に示す特定成分の吸収スペクトルの形状と、予め算出された理論吸収スペクトルの形状とが比較されて、最も近似する吸収スペクトルが求められ、この吸収スペクトルの基づいて特定成分の成分濃度Cが算出される。なお、理論吸収スペクトルにおいて、所与の圧力と濃度毎に予め複数の理論吸収スペクトルが算出されている。   As a method of correcting the temperature of the approximate component concentration C1, a known method can be used. As an example, in this embodiment, an absorption spectrum that is an actually measured absorption spectrum of exhaust gas is defined in advance for each temperature, pressure, and concentration. The exhaust gas component concentration C is calculated by performing pattern matching with the theoretical absorption spectrum. Specifically, the shape of the absorption spectrum of the specific component shown in the above and the shape of the theoretical absorption spectrum calculated in advance are compared to obtain the closest absorption spectrum, and the component of the specific component based on this absorption spectrum The density C is calculated. In the theoretical absorption spectrum, a plurality of theoretical absorption spectra are calculated in advance for each given pressure and concentration.

出力部74は、CTRや液晶モニタなどの画像表示装置として構成されており、上述した各吸収スペクトルが画像表示されるとともに、排ガスの温度(実測温度T1及び理論温度T2)や濃度(概算成分濃度C1及び成分濃度C)などが表示される。   The output unit 74 is configured as an image display device such as a CTR or a liquid crystal monitor. The above-described absorption spectra are displayed as images, and the exhaust gas temperature (measured temperature T1 and theoretical temperature T2) and concentration (estimated component concentration). C1 and component concentration C) are displayed.

次に、本実施例の排ガス分析装置1を用いた排ガス分析方法について、以下に説明する。
図10に示すように、本実施例の排ガス分析方法は、上述した排ガス分析装置1を用いてエンジン20の排ガスを排出する排気経路3中の排ガスにレーザ光を照射し、排ガスを透過したレーザ光を受光することで排ガス中の成分濃度Cを測定する方法であって、測定が開始されてエンジン20からの排ガスが排気経路3に送られると、排ガス分析装置1が作動される。エンジン20から排出された排ガスは、やがて測定部5のセンサ本体50に穿設された排ガス通過孔50aを通過する。
Next, an exhaust gas analysis method using the exhaust gas analyzer 1 of the present embodiment will be described below.
As shown in FIG. 10, the exhaust gas analysis method of the present embodiment uses the above-described exhaust gas analyzer 1 to irradiate the exhaust gas in the exhaust passage 3 for exhausting the exhaust gas of the engine 20 with laser light and transmit the exhaust gas. In this method, the component concentration C in the exhaust gas is measured by receiving light. When the measurement is started and the exhaust gas from the engine 20 is sent to the exhaust path 3, the exhaust gas analyzer 1 is activated. The exhaust gas discharged from the engine 20 eventually passes through the exhaust gas passage hole 50a formed in the sensor body 50 of the measurement unit 5.

まず、測定部5では、排ガス通過孔50aを通過する排ガスに対して、レーザ光を照射し、排ガスを透過したレーザ光が受光される(S100)。具体的には、測定部5では、コントローラ6から照射されたレーザ光が照射部51の光ファイバ51aを介してセンサ本体50の排ガス通過孔50a内に照射され、一対の反射鏡52・52によって排気経路3に直交する一断面内を複数回反射されてから、受光部53のディテクタ53aにて受光され、信号線53bを介してコントローラ6に入力される。   First, in the measurement unit 5, the exhaust gas passing through the exhaust gas passage hole 50a is irradiated with laser light, and the laser light transmitted through the exhaust gas is received (S100). Specifically, in the measurement unit 5, the laser light emitted from the controller 6 is irradiated into the exhaust gas passage hole 50 a of the sensor main body 50 through the optical fiber 51 a of the irradiation unit 51, and the pair of reflecting mirrors 52 and 52 are used. After being reflected a plurality of times within one cross section orthogonal to the exhaust path 3, the light is received by the detector 53 a of the light receiving portion 53 and input to the controller 6 through the signal line 53 b.

コントローラ6では、測定部5にて排ガス中を透過して減衰された測定用レーザ光と排ガス中を透過していない参照用レーザ光とが電気信号に変換された後に電気信号として差分型光検出器64に入力されて、吸収スペクトルが検出される(S101)。差分型光検出器64にて検出されたレーザ光の吸収スペクトルは、電気信号として図示せぬコンピュータ装置7に入力される。   In the controller 6, after the measurement laser light transmitted through the exhaust gas and attenuated by the measurement unit 5 and the reference laser light not transmitted through the exhaust gas are converted into electrical signals, differential light detection is performed as an electrical signal. The absorption spectrum is detected by input to the device 64 (S101). The absorption spectrum of the laser beam detected by the differential photodetector 64 is input to the computer device 7 (not shown) as an electrical signal.

コンピュータ装置7では、まず、差分型光検出器64により検出された吸収スペクトルから排ガスの理論温度T2が算出される(S102)。本実施例では、排ガスの理論温度T2は、排ガス中の所定成分として設定されているHOの吸収スペクトル(図7参照)に表れた少なくとも2つのピーク波長の光強度から数式(1)を用いて算出される。HOの吸収スペクトルには、所定の波長帯において3つのピーク波長λ1、λ2、λ3においてピークA・B・Cが存在し、少なくとも2つのピーク波長の光強度が比較されるのである。 In the computer apparatus 7, first, the theoretical temperature T2 of the exhaust gas is calculated from the absorption spectrum detected by the differential photodetector 64 (S102). In the present embodiment, the theoretical temperature T2 of the exhaust gas is calculated from the light intensity of at least two peak wavelengths expressed in the absorption spectrum of H 2 O (see FIG. 7) set as a predetermined component in the exhaust gas. Is used to calculate. In the absorption spectrum of H 2 O, there are three peak wavelengths λ1, λ2, and λ3 in a predetermined wavelength band, and the light intensities of at least two peak wavelengths are compared.

また、エンジン20から排出された排ガスが測定部5のセンサ本体50に穿設された排ガス通過孔50aを通過する際には、排気経路3中の排ガスの実測温度T1が温度センサ55にて検出されて検出信号がコンピュータ装置7に送られる(S103)。   Further, when the exhaust gas discharged from the engine 20 passes through the exhaust gas passage hole 50 a formed in the sensor body 50 of the measuring unit 5, the measured temperature T 1 of the exhaust gas in the exhaust path 3 is detected by the temperature sensor 55. Then, a detection signal is sent to the computer device 7 (S103).

そして、本実施例では、以上のようにして検出又は算出された温度(実測温度T1又は理論温度T2)を用いて、具体的には、排ガス中の所定成分の濃度としての排ガス中のHO濃度が低い場合には実測温度T1を用いて、又は排ガス中の所定成分の濃度としての排ガス中のHO濃度が高い場合には理論温度T2を用いて、排ガスの成分濃度Cが算出される。この成分濃度Cは、以下のようにして算出される。 In the present embodiment, using the temperature (measured temperature T1 or theoretical temperature T2) detected or calculated as described above, specifically, H 2 in the exhaust gas as the concentration of a predetermined component in the exhaust gas. The component concentration C of the exhaust gas is calculated using the measured temperature T1 when the O concentration is low, or using the theoretical temperature T2 when the H 2 O concentration in the exhaust gas is high as the concentration of the predetermined component in the exhaust gas. Is done. This component concentration C is calculated as follows.

すなわち、まず、差分型光検出器64により検出された吸収スペクトルから、所定成分の濃度としての排ガス中のHO濃度に基づいた基準値が算出され、本実施例では差分型光検出器64により検出されたHOの吸収スペクトルの面積値が基準値として算出される(S104)。このHOの吸収スペクトルの面積値は、排ガス中を透過した後の測定用レーザ光の吸収スペクトル(図9参照)を用いて、吸収スペクトルに表れたHOの吸収に伴うピークA・B・Cの積分値の合計値として算出される。 That is, first, a reference value based on the H 2 O concentration in the exhaust gas as the concentration of the predetermined component is calculated from the absorption spectrum detected by the differential photodetector 64. In this embodiment, the differential photodetector 64 is used. The area value of the absorption spectrum of H 2 O detected by is calculated as a reference value (S104). The area value of the absorption spectrum of H 2 O is obtained by using the absorption spectrum (see FIG. 9) of the laser beam for measurement after passing through the exhaust gas, and the peak A · associated with the absorption of H 2 O appearing in the absorption spectrum. Calculated as the sum of the integral values of B and C.

そして、算出されたHOの吸収スペクトルの面積値が所定の閾値より小さい場合には排ガス中のHO濃度が低いと判定され、面積値が所定の閾値より大きい場合には排ガス中のHO濃度が高いと判定される(S105)。このように本実施例の排ガス分析方法では、HOの吸収スペクトルの面積値を基準値として用いることで、排ガス中のHO濃度の大小が判定されるのである。 Then, when the area value of the absorption spectra of the calculated H 2 O is smaller than the predetermined threshold value is determined to be low H 2 O concentration in the exhaust gas, the area value in the exhaust gas is greater than a predetermined threshold value It is determined that the H 2 O concentration is high (S105). Thus, in the exhaust gas analysis method of the present embodiment, the size of the H 2 O concentration in the exhaust gas is determined by using the area value of the absorption spectrum of H 2 O as a reference value.

そして、HOの吸収スペクトルの面積値が所定の閾値より小さく、したがって排ガス中のHO濃度が低いと判定された場合には、差分型光検出器64により検出された吸収スペクトルから上述した数式(1)を用いて排ガスの概算成分濃度C1が一旦算出され(S106)、この概算成分濃度C1が実測温度T1を用いて温度補正されることで(S107)、成分濃度Cが算出される(S108)。 When it is determined that the area value of the absorption spectrum of H 2 O is smaller than the predetermined threshold value, and therefore the H 2 O concentration in the exhaust gas is low, the above-described absorption spectrum detected by the differential photodetector 64 is used. The approximate component concentration C1 of the exhaust gas is once calculated using the mathematical formula (1) (S106), and the approximate component concentration C1 is temperature-corrected using the measured temperature T1 (S107), thereby calculating the component concentration C. (S108).

一方、HOの吸収スペクトルの面積値が所定の閾値より大きく、したがって排ガス中のHO濃度が高いと判定された場合には、差分型光検出器64により吸収スペクトルから上述した数式(1)を用いて排ガスの概算成分濃度C1が一旦算出され(S109)、この概算成分濃度C1が理論温度T2を用いて温度補正されることで(S110)、成分濃度Cが算出される(S111)。 On the other hand, when it is determined that the area value of the absorption spectrum of H 2 O is larger than the predetermined threshold value, and therefore the H 2 O concentration in the exhaust gas is high, the above-described formula ( 1) is used to temporarily calculate the approximate component concentration C1 of the exhaust gas (S109), and the approximate component concentration C1 is temperature-corrected using the theoretical temperature T2 (S110), thereby calculating the component concentration C (S111). ).

なお、本実施例では、概算成分濃度C1の温度補正の方法として、排ガスの実測スペクトルである吸収スペクトルを、圧力・濃度毎に予め定義された理論吸収スペクトルとパターンマッチングを行うことで排ガスの成分濃度Cが算出される。   In this embodiment, as a method of correcting the temperature of the approximate component concentration C1, the component of the exhaust gas is obtained by pattern-matching the absorption spectrum, which is an actually measured spectrum of the exhaust gas, with a theoretical absorption spectrum that is defined in advance for each pressure and concentration. The density C is calculated.

そして、算出された排ガスの温度(実測温度T1及び理論温度T2)や濃度(概算成分濃度C1及び成分濃度C)などがコンピュータ装置7の出力部74に出力される(S112)。   The calculated exhaust gas temperature (measured temperature T1 and theoretical temperature T2), concentration (estimated component concentration C1 and component concentration C), and the like are output to the output unit 74 of the computer device 7 (S112).

以上のように、本実施例の排ガス分析装置1は、エンジン20の排ガスを排出する排気経路3中の排ガスにレーザ光を照射し、排ガスを透過したレーザ光を受光する測定部5を具備してなり、測定部5にて受光されたレーザ光に基づいて排ガス中の成分濃度Cを測定する排ガス分析装置1であって、排気経路3中の排ガスの実測温度T1を検出する温度センサ55と、測定部5にて受光されたレーザ光より排ガス中に吸収されたレーザ光の吸収スペクトルを検出する差分型光検出器64と、差分型光検出器64により検出された吸収スペクトルから排ガスの理論温度T2を算出する温度算出部70と、排ガス中の所定成分の濃度が低い場合には温度センサ55により検出された実測温度T1を用いて排ガスの成分濃度Cを算出し、排ガス中の所定成分の濃度が高い場合には温度算出部70により算出された理論温度T2を用いて排ガスの成分濃度Cを算出する成分濃度算出部73とを有するように構成されているため、エンジン20の始動前や始動直後などのように排ガス中の所定成分の濃度が低く、差分型光検出器64により正確な吸収スペクトルを検出することができない場合であっても、温度センサ55による排ガスの実測温度T1を用いて成分濃度の温度補正を行うことで、排ガス中の成分ごとの吸収スペクトルを精度よく温度補正することができ、ひいては所定成分の濃度が低い低温条件下であっても成分濃度の測定精度を向上できるのである。   As described above, the exhaust gas analyzer 1 of the present embodiment includes the measuring unit 5 that irradiates the exhaust gas in the exhaust path 3 that exhausts the exhaust gas of the engine 20 with laser light and receives the laser light that has passed through the exhaust gas. An exhaust gas analyzer 1 that measures the component concentration C in the exhaust gas based on the laser light received by the measurement unit 5, and a temperature sensor 55 that detects the actual temperature T 1 of the exhaust gas in the exhaust path 3; The differential light detector 64 for detecting the absorption spectrum of the laser light absorbed in the exhaust gas from the laser light received by the measuring unit 5 and the theory of the exhaust gas from the absorption spectrum detected by the differential light detector 64 The temperature calculation unit 70 for calculating the temperature T2 and, when the concentration of the predetermined component in the exhaust gas is low, the component temperature C of the exhaust gas is calculated using the measured temperature T1 detected by the temperature sensor 55. When the concentration of the constant component is high, the engine 20 has a component concentration calculation unit 73 that calculates the component concentration C of the exhaust gas using the theoretical temperature T2 calculated by the temperature calculation unit 70. Even when the concentration of the predetermined component in the exhaust gas is low, such as immediately before the start or immediately after the start, and the differential absorption detector 64 cannot detect an accurate absorption spectrum, the actual temperature of the exhaust gas by the temperature sensor 55 is detected. By correcting the temperature of the component concentration using T1, it is possible to accurately correct the absorption spectrum of each component in the exhaust gas. As a result, the component concentration is measured even under low temperature conditions where the concentration of the predetermined component is low. The accuracy can be improved.

また、差分型光検出器64により検出された吸収スペクトルから、所定成分の濃度としての排ガス中のHO濃度に基づいた基準値を算出する基準値算出部71と、基準値算出部71により算出された基準値が所定の閾値より小さい場合には所定成分の濃度としての排ガス中のHO濃度が低いと判定し、基準値算出部71により算出された基準値が所定の閾値より大きい場合には所定成分の濃度としての排ガス中のHO濃度が高いと判定する判定部72を有するため、排ガス中に常時存在しているHOを排ガス中の所定成分とすることで、差分型光検出器64により検出された吸収スペクトルからの各種の算出が容易であり、分析精度や分析目的に応じてHO濃度に基づいた基準値として多用な基準値を設定することができる。 Further, a reference value calculation unit 71 that calculates a reference value based on the H 2 O concentration in the exhaust gas as the concentration of the predetermined component from the absorption spectrum detected by the differential photodetector 64, and a reference value calculation unit 71 When the calculated reference value is smaller than the predetermined threshold value, it is determined that the H 2 O concentration in the exhaust gas as the concentration of the predetermined component is low, and the reference value calculated by the reference value calculation unit 71 is larger than the predetermined threshold value. In this case, since the determination unit 72 determines that the H 2 O concentration in the exhaust gas as the concentration of the predetermined component is high, the H 2 O that is always present in the exhaust gas is used as the predetermined component in the exhaust gas. Various calculations from the absorption spectrum detected by the differential photodetector 64 are easy, and various reference values can be set as reference values based on the H 2 O concentration according to the analysis accuracy and the analysis purpose. .

特に、本実施例の排ガス分析装置1は、基準値算出部71にて、差分型光検出器64により検出されたHOの吸収スペクトルの面積値を基準値として算出し、判定部72にて、前記面積値が所定の閾値より小さい場合には排ガス中のHO濃度が低いと判定し、前記面積値が所定の閾値より大きい場合には排ガス中のHO濃度が高いと判定するため、基準値算出部71にて基準値の算出が容易であり、かつ判定部72にてHO濃度の大小を容易に判定することができる。 In particular, in the exhaust gas analyzer 1 of the present embodiment, the reference value calculation unit 71 calculates the area value of the absorption spectrum of H 2 O detected by the differential photodetector 64 as a reference value, and the determination unit 72 When the area value is smaller than the predetermined threshold, it is determined that the H 2 O concentration in the exhaust gas is low, and when the area value is larger than the predetermined threshold, it is determined that the H 2 O concentration in the exhaust gas is high. Therefore, the reference value calculation unit 71 can easily calculate the reference value, and the determination unit 72 can easily determine the magnitude of the H 2 O concentration.

また、本実施例の排ガス分析装置1では、測定部5に穿設された排ガス通過孔50aに配設され、排ガス通過孔50aを通過する排ガスの実測温度T1を検出する温度センサを用いることで、簡易な構成で排ガス中の実測温度T1を高精度で検出することができる。   Further, in the exhaust gas analyzer 1 of the present embodiment, a temperature sensor is used which is disposed in the exhaust gas passage hole 50a formed in the measurement unit 5 and detects the actual temperature T1 of the exhaust gas passing through the exhaust gas passage hole 50a. The measured temperature T1 in the exhaust gas can be detected with high accuracy with a simple configuration.

なお、本実施例の排ガス分析装置1及び排ガス分析方法としては、上述した構成等に限定されない。   Note that the exhaust gas analyzer 1 and the exhaust gas analysis method of the present embodiment are not limited to the configuration described above.

例えば、上述した実施例の排ガス分析装置1では、コンピュータ装置7の構成において、基準値算出部71にて、差分型光検出器64により検出されたHOの吸収スペクトルの面積値を基準値として算出し、判定部72にて、前記面積値が所定の閾値より小さい場合には排ガス中のHO濃度が低いと判定し、前記面積値が所定の閾値より大きい場合には排ガス中のHO濃度が高いと判定するように構成されるが、基準値算出部71及び判定部72の構成としてはこれに限定されない。すなわち、所定成分の濃度としての排ガス中のHO濃度に基づいた基準値としては、以下に示す実施例のように別の値を用いることができる。 For example, in the exhaust gas analyzer 1 of the above-described embodiment, the area value of the absorption spectrum of H 2 O detected by the differential photodetector 64 in the reference value calculation unit 71 in the configuration of the computer device 7 is the reference value. When the area value is smaller than a predetermined threshold value, the determination unit 72 determines that the H 2 O concentration in the exhaust gas is low, and when the area value is larger than the predetermined threshold value, Although it is configured to determine that the H 2 O concentration is high, the configurations of the reference value calculation unit 71 and the determination unit 72 are not limited to this. That is, as the reference value based on the H 2 O concentration in the exhaust gas as the concentration of the predetermined component, another value can be used as in the following examples.

例えば、別の実施例について図11を参照して説明すると、HO濃度に基づいた基準値としては、差分型光検出器64により検出されたHOの吸収スペクトルのうち少なくとも一のピーク波長の光強度を用いてもよい。具体的には、基準値算出部71にて、差分型光検出器64により検出されたHOの吸収スペクトルのうち少なくとも一のピーク波長の光強度を基準値として算出し、判定部72にて、前記光強度が所定の閾値より小さい場合には排ガス中のHO濃度が低いと判定され、前記光強度が所定の閾値より大きい場合には排ガス中のHO濃度が高いと判定される。 For example, another embodiment will be described with reference to FIG. 11. As a reference value based on the H 2 O concentration, at least one peak in the absorption spectrum of H 2 O detected by the differential photodetector 64 is used. The light intensity of the wavelength may be used. Specifically, the reference value calculation unit 71 calculates the light intensity of at least one peak wavelength in the absorption spectrum of H 2 O detected by the differential photodetector 64 as a reference value, and the determination unit 72 When the light intensity is smaller than a predetermined threshold, it is determined that the H 2 O concentration in the exhaust gas is low, and when the light intensity is higher than the predetermined threshold, it is determined that the H 2 O concentration in the exhaust gas is high. Is done.

Oの吸収スペクトルにおける所定のピーク波長の光強度は、排ガス中を透過した後の測定用レーザ光の吸収スペクトル(図11参照)を用いて、HOの吸収に伴ういずれかのピーク波長λ1、λ2、λ3のうち少なくとも一のピーク波長の光強度(例えば、ピーク波長λ1の光強度I1)として算出される。そして、この所定のピーク波長の光強度は、HOの吸収スペクトルの面積値と同じく排ガス中のHO濃度と相関関係にあり、所定のピーク波長の光強度が増減することで、排ガス中のHO濃度もこれに相関して増減する。 Light intensity of a given peak wavelength in the absorption spectrum of H 2 O, using the absorption spectrum of the measurement laser light after passing through the flue gas (see Fig. 11), one of the peaks due to the absorption of H 2 O It is calculated as the light intensity of at least one peak wavelength among the wavelengths λ1, λ2, and λ3 (for example, the light intensity I1 of the peak wavelength λ1). Then, the light intensity of the predetermined peak wavelength is in a well correlated with H 2 O concentration in the exhaust gas and the area value of the absorption spectrum of H 2 O, by the light intensity of the predetermined peak wavelength increases or decreases, the exhaust gas The H 2 O concentration in the medium also increases or decreases in correlation with this.

このように、HOの吸収スペクトルにおいて所定のピーク波長の光強度と排ガス中のHO濃度との相関性を利用すれば、基準値算出部71にてHOの吸収スペクトルにおいて所定のピーク波長の光強度を基準値として算出することで、基準値算出部71にて基準値の算出が容易となり、かつ判定部72にてHO濃度の大小を容易に判定することができる。 Predetermined Thus, by utilizing the correlation between H 2 O concentration of the light intensity and the exhaust gas of predetermined peak wavelength in the absorption spectrum of H 2 O, by the reference value calculating unit 71 in the absorption spectrum of H 2 O By calculating the light intensity at the peak wavelength as the reference value, the reference value calculation unit 71 can easily calculate the reference value, and the determination unit 72 can easily determine the magnitude of the H 2 O concentration. .

また、別の実施例について図12を参照して説明すると、HO濃度に基づいた基準値としては、差分型光検出器64により検出されたHOの実測吸収スペクトルと予め定義されたHOの理論吸収スペクトルとのフィッティング誤差を用いてもよい。具体的には、基準値算出部71にて、差分型光検出器64により検出されたHOの実測吸収スペクトル(差分吸収スペクトル)と、温度・圧力ごとに予め定義されたHOの理論吸収スペクトルとのフィッティング誤差を基準値として算出し、判定部72にて、フィッティング誤差が所定の閾値より大きい場合には排ガス中のHO濃度が低いと判定され、フィッティング誤差が所定の閾値より小さい場合には排ガス中のHO濃度が高いと判定される。 Another example will be described with reference to FIG. 12. The reference value based on the H 2 O concentration is defined in advance as an actually measured absorption spectrum of H 2 O detected by the differential photodetector 64. A fitting error with the theoretical absorption spectrum of H 2 O may be used. Specifically, in the reference-value calculating section 71, and the measured absorption spectrum of H 2 O, which is detected by the differential optical detector 64 (differential absorption spectrum), predefined of H 2 O per temperature and pressure A fitting error with the theoretical absorption spectrum is calculated as a reference value. When the fitting error is larger than a predetermined threshold value, the determination unit 72 determines that the H 2 O concentration in the exhaust gas is low, and the fitting error is a predetermined threshold value. When it is smaller, it is determined that the H 2 O concentration in the exhaust gas is high.

フィッティング誤差は、HOの実測吸収スペクトルと予め定義されたHOの理論吸収スペクトルとの形状に基づいた相対誤差として算出される。例えば、一例として、まず、実測吸収スペクトルの形状と理論吸収スペクトルの形状とが比較されてパターンマッチングが行われ、最も近似する理論吸収スペクトルが求められる。次いで、実測吸収スペクトルと理論吸収スペクトルとが重ねられ、実測吸収スペクトルと理論吸収スペクトルとによって囲まれた境域の面積値A1(積分値)(図12(a)参照)を、理論吸収スペクトルの面積値B1(積分値)(図12(b)参照)で割ることでフィッティング誤差が算出される。 The fitting error is calculated as a relative error based on the shapes of the measured absorption spectrum of H 2 O and the predefined theoretical absorption spectrum of H 2 O. For example, as an example, first, the shape of the measured absorption spectrum and the shape of the theoretical absorption spectrum are compared to perform pattern matching, and the theoretical absorption spectrum that is most approximated is obtained. Next, the measured absorption spectrum and the theoretical absorption spectrum are overlapped, and the area value A1 (integrated value) (see FIG. 12A) of the boundary surrounded by the measured absorption spectrum and the theoretical absorption spectrum is determined as the area of the theoretical absorption spectrum. The fitting error is calculated by dividing by the value B1 (integral value) (see FIG. 12B).

そして、このフィッティング誤差は、上述したHOの吸収スペクトルの面積値と同じく排ガス中のHO濃度と相関関係にあり、フィッティング誤差が増減することで、排ガス中のHO濃度もこれに相関して増減し、具体的には、フィッティング誤差が大きくなるとHO濃度が小さくなり、一方でフィッティング誤差が小さくなるとHO濃度が大きくなる。 Then, the fitting error is in well correlation with H 2 O concentration in the exhaust gas and the area value of the absorption spectrum of H 2 O as described above, since the fitting error is increased or decreased, also H 2 O concentration in the exhaust gas Specifically, when the fitting error increases, the H 2 O concentration decreases. On the other hand, when the fitting error decreases, the H 2 O concentration increases.

このように、フィッティング誤差と排ガス中のHO濃度との相関性を利用すれば、基準値算出部71にてフィッティング誤差を基準値として算出することで、判定部72にてHO濃度の大小を容易に判定することができる。 As described above, when the correlation between the fitting error and the H 2 O concentration in the exhaust gas is used, the reference value calculating unit 71 calculates the fitting error as the reference value, and the determining unit 72 calculates the H 2 O concentration. Can be easily determined.

さらに、別の実施例について説明すると、HO濃度に基づいた基準値としては、温度算出部70により算出された理論温度T2を基準値として用いてもよい。具体的には、基準値算出部71にて、温度算出部70により算出された理論温度T2を基準値として算出し、判定部72にて、理論温度T2が所定の閾値より小さい場合には排ガス中のHO濃度が低いと判定され、理論温度T2が所定の閾値より大きい場合には排ガス中のHO濃度が高いと判定される。 Further, another example will be described. As the reference value based on the H 2 O concentration, the theoretical temperature T2 calculated by the temperature calculation unit 70 may be used as the reference value. Specifically, the reference value calculation unit 71 calculates the theoretical temperature T2 calculated by the temperature calculation unit 70 as a reference value. If the determination unit 72 determines that the theoretical temperature T2 is smaller than a predetermined threshold, the exhaust gas When the H 2 O concentration in the exhaust gas is determined to be low and the theoretical temperature T2 is higher than a predetermined threshold, it is determined that the H 2 O concentration in the exhaust gas is high.

理論温度T2は、分析対象である排ガスにおいてエンジン20の始動時から温度が上昇するとともに、排ガス中のHO濃度も高くなっていくことから、上述したHOの吸収スペクトルの面積値と同じく排ガス中のHO濃度と相関関係にあり、理論温度T2が増減することで、排ガス中のHO濃度もこれに相関して増減する。 Theoretical temperature T2, the temperature is raised from the start of the engine 20 in the exhaust gas to be analyzed, since becomes higher also H 2 O concentration in the exhaust gas, and the area value of the absorption spectrum of H 2 O as described above Similarly, there is a correlation with the H 2 O concentration in the exhaust gas, and when the theoretical temperature T2 increases or decreases, the H 2 O concentration in the exhaust gas also increases or decreases in correlation with this.

このように、理論温度T2と排ガス中のHO濃度との相関性を利用すれば、基準値算出部71にて理論温度T2を基準値として算出することで、温度算出部70にて算出される理論温度T2を基準値算出部71にてそのまま基準値として設定すればよいため簡易であり、かつ判定部72にてHO濃度の大小を容易に判定することができる。 In this way, if the correlation between the theoretical temperature T2 and the H 2 O concentration in the exhaust gas is used, the temperature calculation unit 70 calculates the theoretical temperature T2 as the reference value by the reference value calculation unit 71. The theoretical temperature T2 is simply set as the reference value by the reference value calculation unit 71, and is simple. The determination unit 72 can easily determine the magnitude of the H 2 O concentration.

以上の実施例で説明した構成の他に、例えば、上述した実施例(図3参照)の排ガス分析装置1では、温度センサ55は、測定部5に穿設された排ガス通過孔50aに配設されて、排ガス通過孔50aを通過する排ガスの実測温度T1を検出するように構成されているが、温度センサ55の配置構成としてはこれに限定されない。すなわち、図13に示すように、排気経路3中の対象となる測定部5に対して上流側の配管3aに温度センサ55が配設され、排ガス通過孔50aを通過する直前の排ガスの実測温度T1を検出するように構成されてもよい。このような配置構成とすることで、温度センサ55にて検出される実測温度T1の応答遅れを防止しして、実測温度T1の検出精度を高め、ひいては排ガス中の成分濃度Cの測定精度を向上できる。   In addition to the configuration described in the above embodiment, for example, in the exhaust gas analyzer 1 of the above-described embodiment (see FIG. 3), the temperature sensor 55 is disposed in the exhaust gas passage hole 50a formed in the measurement unit 5. Thus, the actual temperature T1 of the exhaust gas passing through the exhaust gas passage hole 50a is detected, but the arrangement configuration of the temperature sensor 55 is not limited to this. That is, as shown in FIG. 13, the temperature sensor 55 is disposed in the upstream pipe 3a with respect to the target measurement unit 5 in the exhaust path 3, and the measured temperature of the exhaust gas immediately before passing through the exhaust gas passage hole 50a. It may be configured to detect T1. By adopting such an arrangement configuration, the response delay of the actual temperature T1 detected by the temperature sensor 55 is prevented, the detection accuracy of the actual temperature T1 is increased, and consequently the measurement accuracy of the component concentration C in the exhaust gas is increased. It can be improved.

コントローラ6は、他の排ガス中の成分濃度を測定する場合には、対象となる成分の数に合わせた波長の赤外レーザ光を照射可能なレーザ光源60を適宜用いることで、検出対象となる成分を追加若しくは変更等することができる。   When measuring the component concentration in other exhaust gas, the controller 6 becomes a detection target by appropriately using a laser light source 60 that can irradiate infrared laser light having a wavelength that matches the number of target components. Ingredients can be added or changed.

コンピュータ装置7は、上述した実施例では、成分濃度算出部73による排ガスの成分濃度Cの算出方法として、数式(1)により算出された概算成分濃度C1から実測吸収スペクトルを温度・圧力・成分濃度により一義的に決まる理論吸収スペクトルの形状と比較したパターンマッチングにより成分濃度Cを算出(温度補正)する方法を説明したが、排ガスの成分濃度Cの算出方法としてはこれに限定されない。また、温度算出部71における理論温度T2の算出方法についても、上述した実施例で示した方法に限定されない。   In the embodiment described above, the computer device 7 calculates the measured absorption spectrum from the approximate component concentration C1 calculated by the equation (1) as the method of calculating the component concentration C of the exhaust gas by the component concentration calculation unit 73. The method of calculating (temperature correction) the component concentration C by pattern matching compared with the theoretical absorption spectrum shape uniquely determined by the above has been described, but the method of calculating the exhaust gas component concentration C is not limited to this. Further, the calculation method of the theoretical temperature T2 in the temperature calculation unit 71 is not limited to the method shown in the above-described embodiment.

本発明の一実施例に係る排ガス分析装置を車輌に搭載した状態を示した側面図。The side view which showed the state which mounted the exhaust gas analyzer which concerns on one Example of this invention in the vehicle. 測定部の取付構造を示した斜視図。The perspective view which showed the attachment structure of the measurement part. 同じく図2の測定部の取付構造を示した側面図。The side view which similarly showed the attachment structure of the measurement part of FIG. 測定部の構成を示した斜視図。The perspective view which showed the structure of the measurement part. コントローラの構成を示した機能ブロック図。The functional block diagram which showed the structure of the controller. Oの検出ピークを含む波長帯におけるレーザ光の信号強度を示した図。It shows the signal intensity of the laser beam in a wavelength band including the detected peak of H 2 O. Oの検出ピークを含む波長帯におけるレーザ光の吸収スペクトルを示した図。It shows the absorption spectrum of the laser beam in a wavelength band including the detected peak of H 2 O. コンピュータ装置の構成を示した機能ブロック図。The functional block diagram which showed the structure of the computer apparatus. 吸収スペクトルに表れたHOの吸収に伴う各ピークの面積を示した図。It shows the area of each peak due to absorption of H 2 O which appears in the absorption spectrum. 本実施例の排ガス分析装置を用いた排ガス分析方法を示したフローチャート。The flowchart which showed the exhaust gas analysis method using the exhaust gas analyzer of a present Example. 吸収スペクトルに表れたHOの吸収に伴う各ピーク波長の光強度を示した図。It illustrates the optical intensity of each peak wavelength due to absorption of H 2 O which appears in the absorption spectrum. (a)は実測吸収スペクトルと理論吸収スペクトルとによって囲まれた境域の面積を示した図、(b)は理論吸収スペクトルの面積を示した図。(A) is the figure which showed the area of the boundary area enclosed by the measurement absorption spectrum and the theoretical absorption spectrum, (b) is the figure which showed the area of the theoretical absorption spectrum. 別実施例の測定部の取付構造を示した側面図。The side view which showed the attachment structure of the measurement part of another Example.

符号の説明Explanation of symbols

1 排ガス分析装置
3 排気経路
5 測定部
6 コントローラ
7 コンピュータ装置
20 エンジン(内燃機関)
50 センサ本体
50a 排ガス通過孔
51 照射部
53 受光部
55 温度センサ(温度検出手段)
64 差分型光検出器(吸収スペクトル検出手段)
70 温度算出部(温度算出手段)
71 基準値算出部(基準値算出手段)
72 判定部(判定手段)
73 成分濃度算出部(成分濃度算出手段)
DESCRIPTION OF SYMBOLS 1 Exhaust gas analyzer 3 Exhaust path 5 Measuring part 6 Controller 7 Computer apparatus 20 Engine (internal combustion engine)
DESCRIPTION OF SYMBOLS 50 Sensor main body 50a Exhaust gas passage hole 51 Irradiation part 53 Light-receiving part 55 Temperature sensor (temperature detection means)
64 Difference type photodetector (absorption spectrum detecting means)
70 Temperature calculation part (temperature calculation means)
71 Reference value calculation unit (reference value calculation means)
72 determination unit (determination means)
73 Component concentration calculation unit (component concentration calculation means)

Claims (11)

内燃機関の排ガスを排出する排気経路中の排ガスにレーザ光を照射し、排ガスを透過したレーザ光を受光する測定部を具備してなり、前記測定部にて受光されたレーザ光に基づいて排ガス中の成分濃度を測定する排ガス分析装置であって、
前記排気経路中の排ガスの実測温度を検出する温度検出手段と、
前記測定部にて受光されたレーザ光より排ガス中に吸収されたレーザ光の吸収スペクトルを検出する吸収スペクトル検出手段と、
前記吸収スペクトル検出手段により検出された吸収スペクトルから排ガスの理論温度を算出する温度算出手段と、
排ガス中の所定成分の濃度が低い場合には前記温度検出手段により検出された実測温度を用いて排ガス中の成分濃度を算出し、排ガス中の所定成分の濃度が高い場合には前記温度算出手段により算出された理論温度を用いて排ガス中の成分濃度を算出する成分濃度算出手段とを有することを特徴とする排ガス分析装置。
An exhaust gas in an exhaust path for exhausting exhaust gas from an internal combustion engine is irradiated with laser light, and a measurement unit that receives the laser light transmitted through the exhaust gas is provided. The exhaust gas is emitted based on the laser light received by the measurement unit. An exhaust gas analyzer for measuring the concentration of components in
Temperature detecting means for detecting the measured temperature of the exhaust gas in the exhaust path;
An absorption spectrum detecting means for detecting an absorption spectrum of the laser light absorbed in the exhaust gas from the laser light received by the measurement unit;
Temperature calculating means for calculating the theoretical temperature of the exhaust gas from the absorption spectrum detected by the absorption spectrum detecting means;
When the concentration of the predetermined component in the exhaust gas is low, the component concentration in the exhaust gas is calculated using the measured temperature detected by the temperature detection unit, and when the concentration of the predetermined component in the exhaust gas is high, the temperature calculation unit An exhaust gas analyzing apparatus comprising: a component concentration calculating means for calculating a component concentration in the exhaust gas using the theoretical temperature calculated by the above.
前記吸収スペクトル検出手段により検出された吸収スペクトルから、前記所定成分の濃度としての排ガス中のHO濃度に基づいた基準値を算出する基準値算出手段と、
前記基準値算出手段により算出された基準値が所定の閾値より小さい場合には前記所定成分の濃度としての排ガス中のHO濃度が低いと判定し、前記基準値算出手段により算出された基準値が所定の閾値より大きい場合には前記所定成分の濃度としての排ガス中のHO濃度が高いと判定する判定手段を有することを特徴とする請求項1に記載の排ガス分析装置。
Reference value calculating means for calculating a reference value based on the H 2 O concentration in the exhaust gas as the concentration of the predetermined component from the absorption spectrum detected by the absorption spectrum detecting means;
When the reference value calculated by the reference value calculation means is smaller than a predetermined threshold, it is determined that the H 2 O concentration in the exhaust gas as the concentration of the predetermined component is low, and the reference calculated by the reference value calculation means The exhaust gas analyzer according to claim 1, further comprising a determination unit that determines that the H 2 O concentration in the exhaust gas as the concentration of the predetermined component is high when the value is larger than a predetermined threshold.
前記基準値算出手段にて、前記吸収スペクトル検出手段により検出されたHOの吸収スペクトルの面積値を基準値として算出し、
前記判定手段にて、前記面積値が所定の閾値より小さい場合には排ガス中のHO濃度が低いと判定し、前記面積値が所定の閾値より大きい場合には排ガス中のHO濃度が高いと判定することを特徴とする請求項2に記載の排ガス分析装置。
The reference value calculation means calculates the area value of the absorption spectrum of H 2 O detected by the absorption spectrum detection means as a reference value,
The determination means determines that the H 2 O concentration in the exhaust gas is low when the area value is smaller than a predetermined threshold, and the H 2 O concentration in the exhaust gas when the area value is larger than the predetermined threshold. The exhaust gas analyzer according to claim 2, wherein the exhaust gas analyzer is determined to be high.
前記基準値算出手段にて、前記吸収スペクトル検出手段により検出されたHOの吸収スペクトルのうち少なくとも一のピーク波長の光強度を基準値として算出し、
前記判定手段にて、前記光強度が所定の閾値より小さい場合には排ガス中のHO濃度が低いと判定し、前記光強度が所定の閾値より大きい場合には排ガス中のHO濃度が高いと判定することを特徴とする請求項2に記載の排ガス分析装置。
The reference value calculation means calculates, as a reference value, the light intensity of at least one peak wavelength in the absorption spectrum of H 2 O detected by the absorption spectrum detection means,
The determination means determines that the H 2 O concentration in the exhaust gas is low when the light intensity is smaller than a predetermined threshold, and the H 2 O concentration in the exhaust gas when the light intensity is higher than a predetermined threshold. The exhaust gas analyzer according to claim 2, wherein the exhaust gas analyzer is determined to be high.
前記基準値算出手段にて、前記吸収スペクトル検出手段により検出されたHOの実測吸収スペクトルと予め定義されたHOの理論吸収スペクトルとのフィッティング誤差を基準値として算出し、
前記判定手段にて、前記フィッティング誤差が所定の閾値より大きい場合には排ガス中のHO濃度が低いと判定し、前記フィッティング誤差が所定の閾値より小さい場合には排ガス中のHO濃度が高いと判定することを特徴とする請求項2に記載の排ガス分析装置。
In the reference value calculation means, a fitting error between the measured absorption spectrum of H 2 O detected by the absorption spectrum detection means and a predefined theoretical absorption spectrum of H 2 O is calculated as a reference value,
By the determination means, wherein when the fitting error is larger than a predetermined threshold value is determined to be low H 2 O concentration in the exhaust gas, H 2 O concentration in the exhaust gas when the fitting error is smaller than a predetermined threshold value The exhaust gas analyzer according to claim 2, wherein the exhaust gas analyzer is determined to be high.
前記基準値算出手段にて、前記温度算出手段により算出された理論温度を基準値として算出し、
前記判定手段にて、前記理論温度が所定の閾値より小さい場合には排ガス中のHO濃度が低いと判定し、前記理論温度が所定の閾値より大きい場合には排ガス中のHO濃度が高いと判定することを特徴とする請求項2に記載の排ガス分析装置。
The reference value calculation means calculates the theoretical temperature calculated by the temperature calculation means as a reference value,
The determination means determines that the H 2 O concentration in the exhaust gas is low when the theoretical temperature is lower than a predetermined threshold, and the H 2 O concentration in the exhaust gas when the theoretical temperature is higher than a predetermined threshold. The exhaust gas analyzer according to claim 2, wherein the exhaust gas analyzer is determined to be high.
前記成分濃度算出手段は、
前記吸収スペクトル検出手段により検出された吸収スペクトルから排ガス中の概算成分濃度を算出し、前記温度検出手段により検出された実測温度、又は前記温度算出手段により算出された理論温度を用いて、前記概算成分濃度を温度補正して排ガス中の成分濃度を算出することを特徴とする請求項1乃至請求項6のいずれか一項に記載の排ガス分析装置。
The component concentration calculation means
Calculate the approximate component concentration in the exhaust gas from the absorption spectrum detected by the absorption spectrum detection means, and use the measured temperature detected by the temperature detection means or the theoretical temperature calculated by the temperature calculation means. The exhaust gas analyzer according to any one of claims 1 to 6, wherein the component concentration in the exhaust gas is calculated by correcting the temperature of the component concentration.
前記温度検出手段は、前記測定部に穿設された排ガス通過孔に配設され、前記排ガス通過孔を通過する排ガスの実測温度を検出する温度センサを有することを特徴とする請求項1乃至請求項7のいずれか一項に記載の排ガス分析装置。   The temperature detection means includes a temperature sensor that is disposed in an exhaust gas passage hole formed in the measurement unit and detects an actual temperature of exhaust gas that passes through the exhaust gas passage hole. Item 8. The exhaust gas analyzer according to any one of Items 7. 内燃機関の排ガスを排出する排気経路中の排ガスにレーザ光を照射し、排ガスを透過したレーザ光を受光することで排ガス中の成分濃度を測定する排ガス分析方法であって、
前記排気経路中の排ガスの実測温度を検出する温度検出工程と、
前記受光されたレーザ光より排ガス中に吸収されたレーザ光の吸収スペクトルを検出する吸収スペクトル検出工程と、
前記吸収スペクトル検出工程により検出された吸収スペクトルから排ガスの理論温度を算出する温度算出工程と、
排ガス中の所定成分の濃度が低い場合には前記温度検出工程により検出された実測温度を用いて排ガス中の成分濃度を算出し、排ガス中の所定成分の濃度が高い場合には前記温度算出工程により算出された理論温度を用いて排ガス中の成分濃度を算出する成分濃度算出工程とを有することを特徴とする排ガス分析方法。
An exhaust gas analysis method for measuring a component concentration in exhaust gas by irradiating the exhaust gas in an exhaust path for discharging exhaust gas of an internal combustion engine with laser light and receiving the laser light transmitted through the exhaust gas,
A temperature detection step of detecting an actual temperature of exhaust gas in the exhaust path;
An absorption spectrum detecting step of detecting an absorption spectrum of the laser light absorbed in the exhaust gas from the received laser light;
A temperature calculating step for calculating a theoretical temperature of the exhaust gas from the absorption spectrum detected by the absorption spectrum detecting step;
When the concentration of the predetermined component in the exhaust gas is low, the component concentration in the exhaust gas is calculated using the measured temperature detected by the temperature detection step, and when the concentration of the predetermined component in the exhaust gas is high, the temperature calculation step And a component concentration calculation step of calculating a component concentration in the exhaust gas using the theoretical temperature calculated by the exhaust gas analysis method.
前記吸収スペクトル検出工程により検出された吸収スペクトルから、前記所定成分の濃度としての排ガス中のHO濃度に基づいた基準値を算出する基準値算出工程と、
前記基準値算出工程により算出された基準値が所定の閾値より小さい場合には前記所定成分の濃度としての排ガス中のHO濃度が低いと判定し、前記基準値算出工程により算出された基準値が所定の閾値より大きい場合には前記所定成分の濃度としての排ガス中のHO濃度が高いと判定する判定工程を有することを特徴とする請求項9に記載の排ガス分析方法。
A reference value calculation step of calculating a reference value based on the H 2 O concentration in the exhaust gas as the concentration of the predetermined component from the absorption spectrum detected by the absorption spectrum detection step;
When the reference value calculated by the reference value calculation step is smaller than a predetermined threshold, it is determined that the H 2 O concentration in the exhaust gas as the concentration of the predetermined component is low, and the reference calculated by the reference value calculation step The exhaust gas analysis method according to claim 9, further comprising a determination step of determining that the H 2 O concentration in the exhaust gas as the concentration of the predetermined component is high when the value is larger than a predetermined threshold.
前記成分濃度算出工程は、
前記吸収スペクトル検出工程により検出された吸収スペクトルから排ガス中の概算成分濃度を算出し、前記温度検出工程により検出された実測温度、又は前記温度算出工程により算出された理論温度を用いて、前記概算成分濃度を温度補正して排ガス中の成分濃度を算出することを特徴とする請求項9又は請求項10に記載の排ガス分析方法。
The component concentration calculation step includes:
Calculate the approximate component concentration in the exhaust gas from the absorption spectrum detected by the absorption spectrum detection step, and use the measured temperature detected by the temperature detection step or the theoretical temperature calculated by the temperature calculation step. The exhaust gas analysis method according to claim 9 or 10, wherein the component concentration in the exhaust gas is calculated by correcting the temperature of the component concentration.
JP2008088631A 2008-03-28 2008-03-28 Exhaust gas analyzer and analyzing method Pending JP2009243968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008088631A JP2009243968A (en) 2008-03-28 2008-03-28 Exhaust gas analyzer and analyzing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008088631A JP2009243968A (en) 2008-03-28 2008-03-28 Exhaust gas analyzer and analyzing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013001881A Division JP2013061358A (en) 2013-01-09 2013-01-09 Exhaust gas analyzer and exhaust gas analyzing method

Publications (1)

Publication Number Publication Date
JP2009243968A true JP2009243968A (en) 2009-10-22

Family

ID=41306050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008088631A Pending JP2009243968A (en) 2008-03-28 2008-03-28 Exhaust gas analyzer and analyzing method

Country Status (1)

Country Link
JP (1) JP2009243968A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137467A (en) * 2009-12-31 2011-07-14 General Electric Co <Ge> System and device for monitoring and controlling selective catalytic reduction process
JP2012012255A (en) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd Co removing system and method for removing co
JP2013130488A (en) * 2011-12-22 2013-07-04 Horiba Ltd Sample gas analyzer and program for sample gas analyzer
WO2014196363A1 (en) * 2013-06-07 2014-12-11 コニカミノルタ株式会社 Spectroscopic system and method
JP2015055486A (en) * 2013-09-10 2015-03-23 株式会社島津製作所 Gas analyzer
WO2015141767A1 (en) * 2014-03-19 2015-09-24 豊文 梅川 Concentration meter and method for measuring concentration
US10302563B2 (en) 2013-08-21 2019-05-28 Tokushima University Apparatus and method of gas analysis using laser light
CN112964662A (en) * 2021-02-07 2021-06-15 中国科学院长春光学精密机械与物理研究所 Method for measuring concentration and temperature of high-temperature fuel gas of aircraft engine
CN115523958A (en) * 2022-10-15 2022-12-27 浙江大学 Gas temperature and concentration synchronous measurement method based on spectrum fast-slow separation principle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074830A (en) * 1998-08-28 2000-03-14 Horiba Ltd High-speed measuring method and measuring system for temperature, concentration and chemical species by use of semiconductor laser spectroscopy
JP2000206041A (en) * 1999-01-19 2000-07-28 Japan Radio Co Ltd Detecting method for concentration of content in sample by using laser spectroscopy
JP2007163422A (en) * 2005-12-16 2007-06-28 Toyota Motor Corp Exhaust gas analytical method, and exhaust gas analyzer
JP2007285721A (en) * 2006-04-12 2007-11-01 Toyota Motor Corp Calibration device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074830A (en) * 1998-08-28 2000-03-14 Horiba Ltd High-speed measuring method and measuring system for temperature, concentration and chemical species by use of semiconductor laser spectroscopy
JP2000206041A (en) * 1999-01-19 2000-07-28 Japan Radio Co Ltd Detecting method for concentration of content in sample by using laser spectroscopy
JP2007163422A (en) * 2005-12-16 2007-06-28 Toyota Motor Corp Exhaust gas analytical method, and exhaust gas analyzer
JP2007285721A (en) * 2006-04-12 2007-11-01 Toyota Motor Corp Calibration device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137467A (en) * 2009-12-31 2011-07-14 General Electric Co <Ge> System and device for monitoring and controlling selective catalytic reduction process
JP2012012255A (en) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd Co removing system and method for removing co
JP2013130488A (en) * 2011-12-22 2013-07-04 Horiba Ltd Sample gas analyzer and program for sample gas analyzer
WO2014196363A1 (en) * 2013-06-07 2014-12-11 コニカミノルタ株式会社 Spectroscopic system and method
JP6061031B2 (en) * 2013-06-07 2017-01-18 コニカミノルタ株式会社 Spectroscopic analysis system and method
US10302563B2 (en) 2013-08-21 2019-05-28 Tokushima University Apparatus and method of gas analysis using laser light
JP2015055486A (en) * 2013-09-10 2015-03-23 株式会社島津製作所 Gas analyzer
WO2015141767A1 (en) * 2014-03-19 2015-09-24 豊文 梅川 Concentration meter and method for measuring concentration
JPWO2015141767A1 (en) * 2014-03-19 2017-08-31 豊文 梅川 Densitometer and concentration measuring method
CN112964662A (en) * 2021-02-07 2021-06-15 中国科学院长春光学精密机械与物理研究所 Method for measuring concentration and temperature of high-temperature fuel gas of aircraft engine
CN112964662B (en) * 2021-02-07 2022-07-15 中国科学院长春光学精密机械与物理研究所 Method for measuring concentration and temperature of high-temperature fuel gas of aircraft engine
CN115523958A (en) * 2022-10-15 2022-12-27 浙江大学 Gas temperature and concentration synchronous measurement method based on spectrum fast-slow separation principle

Similar Documents

Publication Publication Date Title
JP4199766B2 (en) Exhaust gas analysis method and exhaust gas analyzer
JP2009243968A (en) Exhaust gas analyzer and analyzing method
JP4713227B2 (en) Exhaust gas analyzer and exhaust gas analysis method
US8085404B2 (en) Gas analyzer and gas analyzing method
JP4673887B2 (en) Exhaust gas analyzer
US7926332B2 (en) Exhaust gas analyzer and exhaust gas analyzing method
US10408745B2 (en) Method and device for measuring the concentration of substances in gaseous or fluid media through optical spectroscopy using broadband light sources
US8237926B2 (en) Method and apparatus for measuring density
JP2013061358A (en) Exhaust gas analyzer and exhaust gas analyzing method
JP5532608B2 (en) Laser gas analysis method
JP4485345B2 (en) Exhaust gas analyzer
JP5155913B2 (en) Exhaust gas analyzer
JP4490333B2 (en) Exhaust gas analyzer
JP2009243954A (en) Exhaust gas analyzer and analyzing method
JP2009175058A (en) Exhaust gas analyzer
WO2007119872A1 (en) Exhaust gas analyzer
JP4906477B2 (en) Gas analyzer and gas analysis method
JP6919887B2 (en) Gas concentration measuring device and method
JP4878981B2 (en) Gas analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120