JP2009161815A - Aerosol deposition apparatus, pole plate for electricity storage device, separator, and electricity storage device - Google Patents

Aerosol deposition apparatus, pole plate for electricity storage device, separator, and electricity storage device Download PDF

Info

Publication number
JP2009161815A
JP2009161815A JP2008000904A JP2008000904A JP2009161815A JP 2009161815 A JP2009161815 A JP 2009161815A JP 2008000904 A JP2008000904 A JP 2008000904A JP 2008000904 A JP2008000904 A JP 2008000904A JP 2009161815 A JP2009161815 A JP 2009161815A
Authority
JP
Japan
Prior art keywords
aerosol
deposition apparatus
powder
concentration
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008000904A
Other languages
Japanese (ja)
Inventor
Tatsuji Mino
辰治 美濃
Keiichi Takahashi
慶一 高橋
Masanori Yoshida
雅憲 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008000904A priority Critical patent/JP2009161815A/en
Publication of JP2009161815A publication Critical patent/JP2009161815A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Nozzles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aerosol deposition apparatus that forms a structure of a material powder on a substrate, by spraying an aerosol in which a powder formed of a brittle material is dispersed in a gas, onto the substrate. <P>SOLUTION: In an inner wall of a vessel 21 for stabilizing the aerosol concentration, arithmetic mean surface roughness Ra is controlled to 0.25 or less, in at least one wall surface among the inner wall in the vicinity of an inlet through which the aerosol is introduced, the inner wall in the vicinity of the face with which the aerosol collides at first, and the inner wall in the vicinity of an outlet from which the aerosol is discharged. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、脆性材料からなる粉体をガス中に分散させたエアロゾルを基板に噴霧し、材料粉体の構造物を基板上に形成させるエアロゾルデポジション装置に関する。   The present invention relates to an aerosol deposition apparatus in which an aerosol in which a powder made of a brittle material is dispersed in a gas is sprayed on a substrate to form a structure of material powder on the substrate.

近年、蓄電デバイスの一種である非水電解質二次電池の電極の製造方法として、活物質粒子(粉体)を溶融あるいは蒸発させずに気流中に分散させ、この気流を集電体に吹き付けて活物質粒子を集電体に衝突させ、衝撃力で活物質粒子を集電体表面に接着させる電極の製造方法が注目されている。この製造方法によれば、活物質粒子を直接的に集電体表面に接着できるので、集電性を高めることができ、電極の容量に寄与しないバインダーおよび導電材を不要にできるので、体積あたりの容量の高い電極が得られる。   In recent years, as a method for manufacturing an electrode of a non-aqueous electrolyte secondary battery, which is a kind of power storage device, active material particles (powder) are dispersed in an air stream without being melted or evaporated, and this air stream is sprayed on a current collector. An electrode manufacturing method in which active material particles collide with a current collector and the active material particles are bonded to the current collector surface by an impact force has attracted attention. According to this manufacturing method, since the active material particles can be directly bonded to the current collector surface, the current collecting property can be improved, and the binder and the conductive material that do not contribute to the capacity of the electrode can be eliminated. An electrode having a high capacity can be obtained.

上述の電極の製造方法の一つが、エアロゾルデポジション法と呼ばれる製造方法である。エアロゾルデポジション法では、活物質粒子である脆性材料からなる粉体をガス中に分散させてエアロゾルを発生させ、金属やガラス、セラミックやプラスチックなどの基板にそのエアロゾルをノズルから噴霧して、エアロゾルを基板に衝突させる。脆性材料からなる粉体は、衝突時の衝撃で変形・破砕されることで基板と接合し、基板上に粉体の構造物が形成される。加熱手段を必要としない常温で構造物が形成可能であり、焼成体と同等の機械的強度を有する構造物を得ることができる。   One of the above-described electrode manufacturing methods is a manufacturing method called an aerosol deposition method. In the aerosol deposition method, powder consisting of brittle materials, which are active material particles, is dispersed in a gas to generate an aerosol, and the aerosol is sprayed from a nozzle onto a substrate of metal, glass, ceramic, plastic, etc. Is made to collide with the substrate. The powder made of a brittle material is deformed and crushed by an impact at the time of collision, thereby joining to the substrate and forming a powder structure on the substrate. A structure can be formed at room temperature that does not require heating means, and a structure having mechanical strength equivalent to that of the fired body can be obtained.

エアロゾルデポジション法では、均一な粉体の層を形成するために、エアロゾルを長期的に安定して発生させることが重要となる。そこで、粉体をエアロゾル化して一定量に供給するために、エアロゾル発生器内壁、配管(経路)内部、成膜室内壁の少なくとも1箇所にフッ素樹脂または導電性フッ素樹脂コーティング、鏡面加工を施し、材料粒子の凝集や目詰まりを防止するエアロゾルデポジション装置が提案されている(例えば、特許文献1参照)。   In the aerosol deposition method, in order to form a uniform powder layer, it is important to stably generate aerosol over a long period of time. Therefore, in order to aerosolize the powder and supply it to a certain amount, at least one place of the inner wall of the aerosol generator, the inside of the pipe (path), the inner wall of the film forming film is subjected to fluororesin or conductive fluororesin coating, mirror finish, An aerosol deposition apparatus that prevents aggregation and clogging of material particles has been proposed (see, for example, Patent Document 1).

同様に、エアロゾルを一定量供給するために、成膜室(第一のチャンバー)以外に、エアロゾルの濃度を安定化させ、エアロゾル濃度安定化容器(第二のチャンバー)を設けるエアロゾルデポジション装置が提案されている(例えば、特許文献2参照)。
特開2005−89826号公報 特開2006−200013号公報
Similarly, in order to supply a certain amount of aerosol, an aerosol deposition apparatus that stabilizes the concentration of aerosol and provides an aerosol concentration stabilizing container (second chamber) in addition to the film formation chamber (first chamber). It has been proposed (see, for example, Patent Document 2).
JP 2005-89826 A JP 2006-200013 A

エアロゾル発生器内壁、配管内部、成膜室内壁の少なくとも1箇所にフッ素樹脂または導電性フッ素樹脂コーティング、鏡面加工を施すことで、エアロゾル濃度をある程度安定化させることができる。しかしながら、フッ素樹脂または導電性フッ素樹脂コーティングを施した場合、粉体との摩擦で剥がれた樹脂コーティング層がエアロゾルとともに運ばれ、不純物として構造物に含まれる可能性がある。一方、鏡面加工では、不純物が混入する可能性はなくなるが、長期的には、エアロゾルの圧力変動等があるので、エアロゾルの濃度を安定化させて、エアロゾルを一定量で供給することは困難となる。   The aerosol concentration can be stabilized to some extent by applying fluororesin or conductive fluororesin coating and mirror finishing to at least one place on the inner wall of the aerosol generator, the pipe, and the film forming chamber wall. However, when a fluororesin or conductive fluororesin coating is applied, the resin coating layer peeled off by friction with the powder is carried along with the aerosol and may be contained in the structure as an impurity. On the other hand, in the mirror finishing, there is no possibility of impurities being mixed in, but in the long term, there is an aerosol pressure fluctuation, etc., so it is difficult to stabilize the concentration of the aerosol and supply a certain amount of aerosol. Become.

また、成膜室以外に、エアロゾル濃度安定化容器を設けることで、長期的にエアロゾル
濃度をある程度安定化させることができる。しかしながら、装置の運転を継続すると、粉体がエアロゾル濃度安定化容器の内壁に付着し、付着した粉体が容器内壁面に付着層を形成して厚みを増していき、エアロゾル濃度が不安定になる。更に、付着層から粉体の凝集粉が発生して、成膜室への配管やノズルに詰まりを生じさせるという課題がある。
Further, by providing an aerosol concentration stabilizing container in addition to the film formation chamber, the aerosol concentration can be stabilized to some extent over the long term. However, if the operation of the device is continued, the powder adheres to the inner wall of the aerosol concentration stabilization container, and the adhered powder forms an adhesion layer on the inner wall surface of the container to increase the thickness, resulting in an unstable aerosol concentration. Become. Furthermore, there is a problem that aggregated powder of the powder is generated from the adhesion layer, causing clogging of piping and nozzles to the film forming chamber.

すなわち、従来のエアロゾルデポジション装置では、エアロゾルを長期的に安定して発生させることができず、エアロゾル中の粉体の濃度が安定化しないので、基板上に粒子の構成材料からなる構造物を形成させる際に、形成速度が不安定となり、厚みにばらつきが生じる。更に装置の運転を継続すると、エアロゾル濃度安定器内では、容器内壁に形成された粒子の付着層が厚くなり、エアロゾル濃度の安定化が困難になる。また付着層の一部は凝集粉としてノズルに繋がる配管へ送られ、配管やノズルの目詰まりを生じさせるので、成膜を中断して配管やノズルの清掃を行う回数が増え、生産性を高めることができない状況であった。   That is, in the conventional aerosol deposition apparatus, the aerosol cannot be stably generated for a long time, and the concentration of the powder in the aerosol is not stabilized. When forming, the forming speed becomes unstable and the thickness varies. If the operation of the apparatus is continued, the particle adhesion layer formed on the inner wall of the container becomes thick in the aerosol concentration stabilizer, making it difficult to stabilize the aerosol concentration. Part of the adhesion layer is sent as aggregated powder to the pipe connected to the nozzle, causing clogging of the pipe and nozzle, increasing the number of times the pipe and nozzle are cleaned by interrupting film formation and increasing productivity. The situation was impossible.

上記課題を解決するため、本発明のエアロゾルデポジション装置は、粉体を収容し、ガスを導入して前記粉体のエアロゾルを発生させるエアロゾル発生器と、前記エアロゾルが導入される入口近傍の内壁面、前記エアロゾルが最初に衝突する面近傍の内壁面、および前記エアロゾルが排出される出口近傍の内壁面の少なくともいずれかが、算術平均表面粗さRaが0.25以下の面で構成される、前記エアロゾルの濃度を安定化させるエアロゾル濃度安定化容器と、前記エアロゾル濃度安定化器から供給される前記エアロゾルを基材に噴霧させるノズルと、前記ノズルが設けられる成膜室とを有する構成とする。   In order to solve the above problems, an aerosol deposition apparatus of the present invention includes an aerosol generator that contains powder and introduces a gas to generate an aerosol of the powder, and an inside of the vicinity of an inlet to which the aerosol is introduced. At least one of the wall surface, the inner wall surface in the vicinity of the surface where the aerosol first collides, and the inner wall surface in the vicinity of the outlet from which the aerosol is discharged is configured by a surface having an arithmetic average surface roughness Ra of 0.25 or less. An aerosol concentration stabilizing container that stabilizes the concentration of the aerosol, a nozzle that sprays the aerosol supplied from the aerosol concentration stabilizer on a substrate, and a film forming chamber in which the nozzle is provided. To do.

本発明によれば、粉体がエアロゾル濃度安定化容器の内壁に付着することを防止できるので、エアロゾル濃度を安定化できる。更に、粉体の凝集粉の発生を抑制できるので、配管やノズルの詰まりを防止し、エアロゾルを長期的に安定して発生させることを可能とする。その結果、基板上に粉体の構造物を形成させる際に、形成速度を一定に保つことができるので、構造物の厚みなどのばらつきを抑制でき、良好な構造物を形成することができる。更に、従来、成膜を中断し実施していた配管やノズルの清掃回数を低減できるので、生産性を高めることができる。   According to the present invention, since the powder can be prevented from adhering to the inner wall of the aerosol concentration stabilization container, the aerosol concentration can be stabilized. Furthermore, since generation | occurrence | production of the agglomerated powder of powder can be suppressed, clogging of piping and a nozzle is prevented, and it enables it to generate aerosol stably for a long term. As a result, when the powder structure is formed on the substrate, the formation speed can be kept constant, so that variations in the thickness of the structure can be suppressed and a good structure can be formed. Furthermore, since the number of cleanings of pipes and nozzles, which have been conventionally performed by interrupting film formation, can be reduced, productivity can be increased.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

(実施の形態1)
〈エアロゾルデポジション装置1の構成〉
図1は、本実施の形態1で用いたエアロゾルデポジション装置1の概略図である。
(Embodiment 1)
<Configuration of aerosol deposition device 1>
FIG. 1 is a schematic diagram of an aerosol deposition apparatus 1 used in the first embodiment.

エアロゾルデポジション装置1は、エアロゾルを発生させるための気体を供給するガスボンベ11、粉体である材料粒子20が納められるエアロゾル発生器13、エアロゾル発生器20で発生させたエアロゾルの濃度を安定化させるエアロゾル濃度安定化容器21、発生させたエアロゾルを基板に噴霧させて成膜(構造物を形成)させる成膜室である成膜チャンバー14で構成されている。また、ガスボンベ11は、配管12aを介してエアロゾル発生器13に連結されている。更に配管12bを介してエアロゾル濃度安定化容器21と連結されている。濃度安定化容器21と成膜チャンバー14とは、エアロゾルをノズル15に送り込むための配管12cで連結されている。なお、配管12cの一方の端部はエアロゾル濃度安定化容器21内に露出し、配管12cの他方の端部は成膜チャンバー14内に設置された、エアロゾルを噴霧させるノズル15に接続されている。   The aerosol deposition apparatus 1 stabilizes the concentration of the aerosol generated by the gas generator 11 for supplying the gas for generating the aerosol, the aerosol generator 13 for storing the material particles 20 as powder, and the aerosol generator 20. An aerosol concentration stabilizing container 21 and a film forming chamber 14 which is a film forming chamber for forming a film (forming a structure) by spraying the generated aerosol onto the substrate. Moreover, the gas cylinder 11 is connected to the aerosol generator 13 through the pipe 12a. Further, it is connected to the aerosol concentration stabilizing container 21 through the pipe 12b. The concentration stabilizing container 21 and the film forming chamber 14 are connected by a pipe 12 c for sending aerosol to the nozzle 15. One end of the pipe 12c is exposed in the aerosol concentration stabilizing container 21, and the other end of the pipe 12c is connected to a nozzle 15 installed in the film forming chamber 14 for spraying aerosol. .

なお、成膜チャンバー14は、基板16を設置する基板ホルダー17と、配管12dを介して接続されている排気ポンプ18を備えている。なお、基板ホルダー17は、横方向または縦方向に一定速度で移動させる機構(詳細は図示せず)を備え、ノズル15は、基板16に対向して配置されている。   The film forming chamber 14 includes a substrate holder 17 for installing the substrate 16 and an exhaust pump 18 connected via a pipe 12d. The substrate holder 17 includes a mechanism (not shown in detail) that moves in the horizontal direction or the vertical direction at a constant speed, and the nozzle 15 is disposed to face the substrate 16.

〈エアロゾルデポジション装置1の動作〉
次に、本実施の形態おけるエアロゾルデポジション装置1の動作を説明する。
<Operation of the aerosol deposition apparatus 1>
Next, operation | movement of the aerosol deposition apparatus 1 in this Embodiment is demonstrated.

ガスボンベ11からエアロゾルを発生させるための気体を、バルブ19を開き毎分数〜十数リットルの流量でエアロゾル発生器13に供給する。エアロゾル発生器13では、納められた材料粒子20を供給した気体で巻き上げ、エアロゾルを発生させる。発生させたエアロゾルは、エアロゾル濃度安定化容器21に送られ、エアロゾル濃度を安定化させた後、成膜チャンバー14に設置されたノズル15に供給される。この時、成膜チャンバー14内は、排気ポンプ18を動作させて真空度が調整されている。基板ホルダー17に設置した基板16に向けて、ノズル15からエアロゾルを噴霧させ、基板16上に材料粒子20からなる構造物を成膜する。   A gas for generating aerosol from the gas cylinder 11 is opened to supply the aerosol generator 13 with a flow rate of several to several tens of liters per minute. The aerosol generator 13 winds up the contained material particles 20 with the supplied gas to generate an aerosol. The generated aerosol is sent to the aerosol concentration stabilization container 21, and after stabilizing the aerosol concentration, it is supplied to the nozzle 15 installed in the film forming chamber 14. At this time, the degree of vacuum in the film forming chamber 14 is adjusted by operating the exhaust pump 18. The aerosol is sprayed from the nozzle 15 toward the substrate 16 placed on the substrate holder 17 to form a structure made of the material particles 20 on the substrate 16.

〈エアロゾル濃度安定化容器21の構成〉
次に、本実施の形態おける特徴的な構成を有するエアロゾル濃度安定化容器21について、詳細に説明する。
<Configuration of aerosol concentration stabilizing container 21>
Next, the aerosol concentration stabilizing container 21 having a characteristic configuration in the present embodiment will be described in detail.

図2、および3に、図1におけるエアロゾル濃度安定化容器21のX−X断面図、および図1におけるエアロゾル濃度安定化容器のY−Y断面図を示す。また、図4に、図3におけるエアロゾル濃度安定化容器21のZ−Z断面図を示す。各図において、エアロゾルの流れを矢印で示し、内壁面の算術平均表面粗さRa(表面粗さRaは、日本工業規格JIS0601−1994に定められる)が0.25以下の部分を、間隔の狭い斜線で示す。なお間隔の広い斜線は、他の内壁面の断面を示す。   2 and 3 show an XX sectional view of the aerosol concentration stabilizing container 21 in FIG. 1 and a YY sectional view of the aerosol concentration stabilizing container in FIG. 4 shows a ZZ cross-sectional view of the aerosol concentration stabilizing container 21 in FIG. In each figure, the flow of the aerosol is indicated by an arrow, and the portion where the arithmetic average surface roughness Ra of the inner wall surface (the surface roughness Ra is defined in Japanese Industrial Standard JIS0601-1994) is 0.25 or less is narrow. Shown with diagonal lines. In addition, the oblique line with a wide space | interval shows the cross section of another inner wall surface.

図2、3、および4に示すように、本実施の形態1では、エアロゾル濃度安定化容器21の内壁において、エアロゾル導入口211近傍の内壁面B領域、エアロゾルが最初に衝突する面近傍の内壁面C領域、およびエアロゾル排出口212近傍の内壁面A領域が、算術平均表面粗さRaが0.25以下となる面で構成されている。   As shown in FIGS. 2, 3, and 4, in the first embodiment, in the inner wall of the aerosol concentration stabilizing container 21, the inner wall B region in the vicinity of the aerosol inlet 211, the inner surface in the vicinity of the surface where the aerosol first collides The wall surface C region and the inner wall surface A region in the vicinity of the aerosol discharge port 212 are configured by surfaces having an arithmetic average surface roughness Ra of 0.25 or less.

次に、エアロゾル濃度安定化容器21におけるエアロゾルの流れを、図2、3、および4に基づき説明する。   Next, the aerosol flow in the aerosol concentration stabilization container 21 will be described with reference to FIGS.

まず、図3に示すように、エアロゾル発生器13で発生させたエアロゾルが、導入口211からエアロゾル濃度安定化容器21に送られる。この時、エアロゾル濃度安定化容器21内でエアロゾルが拡散され、導入口211近傍のB領域で乱流が発生する。また、エアロゾルが最初に当たる内壁面のC領域近傍でも、エアロゾルの流れ方向が変るため乱流が発生する。さらに、図2で示すように、配管12cへ排出される排出口212近傍のA領域でも、流れが収束するために乱流が発生する。エアロゾルの濃度を安定化させて均一化することにつながる、エアロゾルの撹拌は、上述の乱流の発生により行われていると思われる。一方で、乱流の発生箇所近傍の内壁面では、材料粒子20が激しく衝突する。そこで、本実施の形態1では、乱流の発生箇所近傍である上述の導入口211の近傍(B領域)、最初に壁に当たる近傍(C領域)、排出口212近傍(A領域)の内壁面の表面粗さを滑らか(算術平均表面粗さRaで0.25以下)にする。これにより、材料粒子の内壁への付着が抑制できるので、エアロゾルの濃度を安定化することができる。さらに、凝集粉の発生も抑制できるので、配管12a、12b、12cやノズル15での凝集粉による詰まりの発生確率も低下させることができる。また、エアロゾルを長期的に安定して発
生させることを可能とするので、基板16上に材料粒子20からなる構造物を形成させる際に、構造物の形成速度を一定に保つことができ、厚みなどのばらつきが抑えられた良好な構造物を形成することができる。更に、成膜を中断して配管やノズルの清掃を行う回数が低減され、生産性を高めることができる。
First, as shown in FIG. 3, the aerosol generated by the aerosol generator 13 is sent from the inlet 211 to the aerosol concentration stabilizing container 21. At this time, the aerosol is diffused in the aerosol concentration stabilizing container 21, and a turbulent flow is generated in the region B near the inlet 211. In addition, turbulence is generated even in the vicinity of the region C of the inner wall surface where the aerosol first hits because the flow direction of the aerosol changes. Further, as shown in FIG. 2, the turbulent flow is generated because the flow converges also in the area A in the vicinity of the discharge port 212 discharged to the pipe 12c. It seems that the stirring of the aerosol, which leads to stabilization and homogenization of the aerosol concentration, is performed by the generation of the turbulent flow described above. On the other hand, the material particles 20 collide violently on the inner wall surface in the vicinity of the turbulent flow generation location. Therefore, in the first embodiment, the inner wall surface in the vicinity of the introduction port 211 (B region), the vicinity that first hits the wall (C region), and the vicinity of the discharge port 212 (A region), which is the vicinity of the turbulent flow generation location. Is made smooth (arithmetic mean surface roughness Ra of 0.25 or less). Thereby, since the adhesion of the material particles to the inner wall can be suppressed, the concentration of the aerosol can be stabilized. Furthermore, since generation | occurrence | production of agglomerated powder can also be suppressed, generation | occurrence | production probability of the clogging by the agglomerated powder in piping 12a, 12b, 12c and the nozzle 15 can also be reduced. In addition, since it is possible to stably generate the aerosol for a long period of time, when forming the structure made of the material particles 20 on the substrate 16, the formation speed of the structure can be kept constant, and the thickness Thus, it is possible to form a favorable structure in which variations such as the above are suppressed. Furthermore, the number of times the film formation is interrupted and the piping and nozzles are cleaned is reduced, and the productivity can be increased.

なお、算術平均表面粗さRaは、材料粒子の内壁への付着を抑える観点から、0.25以下であることが好ましい。さらに、表面が荒れていないことが材料粒子の内壁への付着を抑える効果を奏するので、算術平均表面粗さRaは0.01〜0.03程度がより好ましい。なお、0.01〜0.03の算術平均表面粗さRaは、内壁面を鏡面研磨を施すことで得られる。   In addition, it is preferable that arithmetic mean surface roughness Ra is 0.25 or less from a viewpoint of suppressing adhesion to the inner wall of a material particle. Furthermore, since the effect of suppressing the adhesion of the material particles to the inner wall is exhibited when the surface is not rough, the arithmetic average surface roughness Ra is more preferably about 0.01 to 0.03. In addition, 0.01-0.03 arithmetic mean surface roughness Ra is obtained by mirror-polishing an inner wall surface.

また、算術平均表面粗さRaを0.25以下にする箇所については、エアロゾル導入口211近傍の内壁面B領域、エアロゾルが最初に衝突する面近傍の内壁面C領域、およびエアロゾル排出口212近傍の内壁面A領域の3箇所すべてではなく、3箇所の少なくともいずれかの箇所としても、すくなからず材料粒子の内壁への付着を抑える効果を得られる。   In addition, for locations where the arithmetic average surface roughness Ra is 0.25 or less, the inner wall surface B region in the vicinity of the aerosol introduction port 211, the inner wall surface C region in the vicinity of the surface where the aerosol first collides, and the aerosol discharge port 212 vicinity The effect of suppressing the adhesion of the material particles to the inner wall can be obtained not only at all but at least one of the three locations in the inner wall surface A region.

さらに、上述箇所に加えて他の箇所へ展開してもかまわない。例えば、エアロゾル濃度安定化容器21について図5に示すように内壁の上部と下部(算術平均表面粗さRaが0.25以下の部分を斜線で示す)、更に、図6に示すように内壁面全て(算術平均表面粗さRaが0.25以下の部分を斜線で示す)としても構わない。なお、エアロゾルデポジション装置21を構成するエアロゾル発生器13の流れも乱流状態であり、その内壁面も材料粒子の付着が顕著である。配管12a、12b、12cでのエアロゾルの流れは層流であるが、凝集粉が持ち込まれると管内部に付着することになる。従って、図1に示す配管12bと12cの内面、エアロゾル発生器13の内壁面や成膜チャンバー14の内壁面を滑らか(算術平均表面粗さRaを0.25以下)にすることも、凝集粉の発生を抑えることも効果的である。特に、ノズル15に近い配管12cの内面の表面粗さを滑らか(算術平均表面粗さRaを0.25以下)にすることが、ノズル15の目詰まり抑制に効果があるので好ましい。   Furthermore, in addition to the above-mentioned place, you may expand | deploy to another place. For example, as shown in FIG. 5, for the aerosol concentration stabilizing container 21, the upper and lower portions of the inner wall (the portions where the arithmetic average surface roughness Ra is 0.25 or less are indicated by diagonal lines), and further, the inner wall surface as shown in FIG. All (the portion where the arithmetic average surface roughness Ra is 0.25 or less is indicated by hatching) may be used. The flow of the aerosol generator 13 constituting the aerosol deposition apparatus 21 is also in a turbulent state, and the adhesion of material particles is also remarkable on the inner wall surface. The aerosol flow in the pipes 12a, 12b, and 12c is a laminar flow, but when the agglomerated powder is brought in, it adheres to the inside of the pipe. Therefore, the inner surfaces of the pipes 12b and 12c shown in FIG. 1, the inner wall surface of the aerosol generator 13 and the inner wall surface of the film forming chamber 14 can be made smooth (the arithmetic average surface roughness Ra is 0.25 or less). It is also effective to suppress the occurrence of this. In particular, it is preferable to make the surface roughness of the inner surface of the pipe 12 c close to the nozzle 15 smooth (the arithmetic average surface roughness Ra is 0.25 or less) because it is effective in suppressing clogging of the nozzle 15.

なお、エアロゾル濃度安定化容器21は、別途粉体の分級の機能もあり、凝集粉がエアロゾル発生器13から送られてきても、重量差により容器底部に落とされる。しかし、濃度安定化容器21内に材料粒子の付着部が存在すると、エアロゾル発生器13から送られた凝集粉が付着部にトラップされ、容器底部に落下されにくくなる。更にエアロゾル濃度安定化容器21の上部(エアロゾルの排出口212付近)で、凝縮粉がトラップされると、そのままエアロゾル濃度安定化容器21から出て行くことになり、ノズル15や配管12cで目詰まりを起こすことになる。つまり、エアロゾル濃度安定化容器21の分級の機能をよりよく得るためには、エアロゾル濃度安定化容器21の内壁面を特に滑らかにして、粒子付着が生じないようにすることが重要となる。   The aerosol concentration stabilizing container 21 also has a function of classifying powder separately. Even if the aggregated powder is sent from the aerosol generator 13, it is dropped to the bottom of the container due to the weight difference. However, if there are adhering portions of the material particles in the concentration stabilizing container 21, the agglomerated powder sent from the aerosol generator 13 is trapped in the adhering portions and is not easily dropped to the bottom of the container. Further, when the condensed powder is trapped in the upper part of the aerosol concentration stabilizing container 21 (near the aerosol discharge port 212), it will leave the aerosol concentration stabilizing container 21 as it is, and is clogged by the nozzle 15 and the pipe 12c. Will be caused. That is, in order to obtain the function of classifying the aerosol concentration stabilizing container 21 better, it is important to make the inner wall surface of the aerosol concentration stabilizing container 21 particularly smooth so that particle adhesion does not occur.

なお、本実施の形態1に示すエアロゾルデポジション装置1は、蓄電デバイスであるリチウムイオン電池用の正極や負極極板の活物質層形成、セパレータに多孔性電子絶縁層形成に用いることができる。例えば、材料粒子20となるリチウムイオン電池の正極活物質材料として用いられるリチウム含有複合酸化物は、特に脆性材料であり、さらに詳細には、LiNi0.81Co0.15Al0.04、LiNi0.33Co0.33Mn0.33などを用いる場合、本実施の形態1のエアロゾルデポジション装置1は、エアロゾル濃度安定化容器21の内壁に材料粒子20が付着することを防止できるので、エアロゾル濃度を安定化できることになる。その結果、構造物の厚みなどのばらつきを抑制でき、良好な構造物を形成することができる。すなわち、エアロゾルデポジション装置1により製造した正極、負極極板やセパレータを用いて蓄電デバイスを構成した場合、充放
電特性が安定化する蓄電デバイスを得ることができる。
The aerosol deposition apparatus 1 shown in the first embodiment can be used for forming an active material layer for a positive electrode or a negative electrode plate for a lithium ion battery, which is an electricity storage device, and for forming a porous electronic insulating layer in a separator. For example, the lithium-containing composite oxide used as the positive electrode active material material of the lithium ion battery that becomes the material particle 20 is particularly a brittle material, and more specifically, LiNi 0.81 Co 0.15 Al 0.04 O 2. In the case where LiNi 0.33 Co 0.33 Mn 0.33 O 2 or the like is used, the aerosol deposition apparatus 1 according to the first embodiment indicates that the material particles 20 adhere to the inner wall of the aerosol concentration stabilizing container 21. Therefore, the aerosol concentration can be stabilized. As a result, variations such as the thickness of the structure can be suppressed, and a favorable structure can be formed. That is, when an electricity storage device is configured using a positive electrode, a negative electrode plate, and a separator manufactured by the aerosol deposition apparatus 1, an electricity storage device with stable charge / discharge characteristics can be obtained.

以下、本発明の実施例として、エアロゾル濃度安定化容器21の内壁の算術平均表面粗さRaを0.25と、0.40とした場合で、一定の時間内におけるノズル15の目詰まり発生の有無を調査した実施例と比較例について説明する。ノズル15の目詰まり発生の有無は、成膜を中断して配管やノズルの清掃を行うことを表し、生産性の比較の目安とした。なお、本発明は、実施例の構成に限定されない。   Hereinafter, as an example of the present invention, when the arithmetic average surface roughness Ra of the inner wall of the aerosol concentration stabilizing container 21 is set to 0.25 and 0.40, the nozzle 15 is clogged within a certain time. Examples and comparative examples in which presence / absence was investigated will be described. The presence or absence of clogging of the nozzle 15 indicates that the film formation is interrupted and the piping and nozzle are cleaned, and is used as a guideline for productivity comparison. In addition, this invention is not limited to the structure of an Example.

(実施例1)
図1に示すエアロゾルデポジション装置1を用いて、以下の方法によりアルミナ膜を作製した。
Example 1
Using the aerosol deposition apparatus 1 shown in FIG. 1, an alumina film was produced by the following method.

成膜チャンバー14にはHitzハイテクノロジー社製スパッタ装置を改造したものを用いた。エアロゾル発生器13は、ユニコントロールズ社製(容量2リットル)を用いた。   The film forming chamber 14 used was a modified sputtering system manufactured by Hitz High Technology. The aerosol generator 13 was made by Unicontrols (capacity 2 liters).

次に、エアロゾル発生器13から内径4mmの配管12bをHitzハイテクノロジー社製のエアロゾル濃度安定化容器21(容量2リットル)内に引き込み、そこから内径4mmの配管12cを介して成膜チャンバー14内とつなぎ、その先端に噴射ノズル15(スプレーイングシステムジャパン製:YB1/8MSSP37)を設置した。噴射ノズル15から2mm離れた位置に、基板16として市販のスライドガラスを設置した。なお、基板ホルダー17は横方向に移動、噴射ノズル15は縦方向に移動できる可動式とした。これにより成膜する面積を決めることができた。一方で、エアロゾル発生器13とアルゴンボンベ11を内径4mmの配管12aで繋いだ。   Next, a pipe 12b having an inner diameter of 4 mm is drawn from the aerosol generator 13 into an aerosol concentration stabilizing container 21 (capacity 2 liters) manufactured by Hitz High Technology, and from there into the film forming chamber 14 via a pipe 12c having an inner diameter of 4 mm. The spray nozzle 15 (product made from spraying system Japan: YB1 / 8MSSP37) was installed in the front-end | tip. A commercially available slide glass was installed as the substrate 16 at a position 2 mm away from the spray nozzle 15. The substrate holder 17 is movable, and the spray nozzle 15 is movable so as to be movable in the vertical direction. As a result, the area for film formation could be determined. On the other hand, the aerosol generator 13 and the argon cylinder 11 were connected by a pipe 12a having an inner diameter of 4 mm.

上記装置を用いて、平均粒径1μmのアルミナ粉(和光純薬工業株式会社製)200gをエアロゾル発生器13内に仕込んだ。次に、排気ポンプ18を作動させ、成膜チャンバー14からエアロゾル濃度安定化容器21、エアロゾル発生器13までを真空引きした。そして、エアロゾル発生器13内にアルゴンガスを送り込み、アルゴンガス中にアルミナ粒子を分散させてエアロゾルを発生させ、配管12b、エアロゾル濃度安定化容器21、配管12cを介して噴射ノズル15からエアロゾルを基板16に向けて噴霧した。このとき、アルゴンガスの流量は10〜20リットル/分とした。また、基板ホルダー17は横方向へ5mm、噴射ノズルは縦方向へ10mmの距離を、速度7mm/分で移動させ、基板16のスライドガラス上に面積50mmの長方形に構造物を重ねて成膜した。なお、成膜時間は3時間とし、アルミナ膜形成時における成膜チャンバー14内の真空度が、50Pa〜150Pa程度とした。ここで、エアロゾル濃度安定化容器21はステンレス製であり、内壁は電解研磨を施し、算術平均表面粗さRaを0.25とした。 200 g of alumina powder (manufactured by Wako Pure Chemical Industries, Ltd.) having an average particle diameter of 1 μm was charged into the aerosol generator 13 using the above apparatus. Next, the exhaust pump 18 was operated, and the vacuum was drawn from the film forming chamber 14 to the aerosol concentration stabilizing container 21 and the aerosol generator 13. Then, argon gas is sent into the aerosol generator 13, alumina particles are dispersed in the argon gas to generate an aerosol, and the aerosol is substrated from the injection nozzle 15 through the pipe 12b, the aerosol concentration stabilizing container 21, and the pipe 12c. Sprayed toward 16. At this time, the flow rate of argon gas was 10 to 20 liters / minute. The substrate holder 17 is moved 5 mm in the horizontal direction, and the spray nozzle is moved 10 mm in the vertical direction at a speed of 7 mm / min, and the structure is stacked on the slide glass of the substrate 16 in a rectangle with an area of 50 mm 2. did. The film formation time was 3 hours, and the degree of vacuum in the film formation chamber 14 when forming the alumina film was about 50 Pa to 150 Pa. Here, the aerosol concentration stabilizing container 21 is made of stainless steel, the inner wall is subjected to electrolytic polishing, and the arithmetic average surface roughness Ra is set to 0.25.

(比較例1)
ステンレス製のエアロゾル濃度安定化容器21の内壁にバフ研磨を施し、算術平均表面粗さRaを0.40とした以外、実施例1と同じエアロゾルデポジション装置1を用い、基板16上にアルミナ膜を作製した。
(Comparative Example 1)
Using the same aerosol deposition apparatus 1 as in Example 1, except that the inner wall of the stainless steel aerosol concentration stabilizing vessel 21 is buffed to have an arithmetic average surface roughness Ra of 0.40, an alumina film is formed on the substrate 16. Was made.

(評価)
実施例1および比較例1において、成膜時間の3時間内におけるノズルの目詰まり発生の有無を調査、比較した。実施例1では、ノズル15に目詰まりは発生せず、厚み3μmのアルミナ膜が得られた。一方、比較例1では、約1時間30分経過後にノズル15に目詰まりが発生し、得られたアルミナ膜の厚みも1μm弱となった。成膜後、比較例1のエアロゾル濃度安定化容器21を大気に戻し、内壁を観察したところ、エアロゾルが供給さ
れる入口近傍の内壁面C領域と、供給されたエアロゾルが最初に当たる面近傍の内壁面B領域と、エアロゾルが排出される出口近傍の内壁面A領域付近にアルミナ粉が層状に付着していた。一方、実施例1のエアロゾル濃度安定化容器21の内壁には、アルミナ粉の付着が見られなかった。
(Evaluation)
In Example 1 and Comparative Example 1, the presence or absence of nozzle clogging within 3 hours of the film formation time was investigated and compared. In Example 1, the nozzle 15 was not clogged, and an alumina film having a thickness of 3 μm was obtained. On the other hand, in Comparative Example 1, the nozzle 15 was clogged after about 1 hour 30 minutes, and the thickness of the obtained alumina film was also less than 1 μm. After the film formation, the aerosol concentration stabilization container 21 of Comparative Example 1 was returned to the atmosphere, and the inner wall was observed. As a result, the inner wall C region in the vicinity of the inlet to which the aerosol was supplied and the inner surface in the vicinity of the surface to which the supplied aerosol first hit Alumina powder was deposited in layers near the wall surface B region and the inner wall surface A region near the outlet from which the aerosol was discharged. On the other hand, adhesion of alumina powder was not observed on the inner wall of the aerosol concentration stabilizing container 21 of Example 1.

以上より、エアロゾル濃度安定化容器21の内壁の算術平均表面粗さRaを0.25にすることの効果が確認された。すなわち、エアロゾル濃度安定化容器21において、エアロゾルが供給される入口近傍と、供給されたエアロゾルが最初に衝突する面の近傍、およびエアロゾルが排出される出口近傍の内壁面の算術平均表面粗さRaを小さくすることで、ノズル15の目詰まりの抑制が期待できることがわかる。   From the above, the effect of setting the arithmetic average surface roughness Ra of the inner wall of the aerosol concentration stabilizing container 21 to 0.25 was confirmed. That is, in the aerosol concentration stabilization container 21, the arithmetic mean surface roughness Ra of the inner wall near the inlet to which the aerosol is supplied, near the surface where the supplied aerosol first collides, and near the outlet from which the aerosol is discharged. It can be seen that the reduction of clogging of the nozzle 15 can be expected by reducing the value of.

本発明は、基板上に微粒子の粉体の構造物を形成させる際に、形成速度を一定に保ち、厚みなどのばらつきを抑制するため、エアロゾルを長期的に安定して発生させることが可能なエアロゾルデポジション装置として、産業上、有益に利用することが可能である。   In the present invention, when forming a fine particle powder structure on a substrate, it is possible to stably generate an aerosol for a long period of time in order to keep the formation speed constant and suppress variations in thickness and the like. As an aerosol deposition apparatus, it can be used beneficially industrially.

本発明のエアロゾルデポジション装置の一例を示す概略図Schematic showing an example of the aerosol deposition apparatus of the present invention 図1におけるエアロゾル濃度安定化容器のX−X断面図XX sectional drawing of the aerosol concentration stabilization container in FIG. 図1におけるエアロゾル濃度安定化容器のY−Y断面図YY sectional view of the aerosol concentration stabilizing container in FIG. 図3におけるエアロゾル濃度安定化容器のZ−Z断面図ZZ sectional view of the aerosol concentration stabilizing container in FIG. 本発明の別の形態エアロゾル濃度安定化容器を示す概略図Schematic showing another form aerosol concentration stabilization container of the present invention 本発明の別の形態エアロゾル濃度安定化容器を示す概略図Schematic showing another form aerosol concentration stabilization container of the present invention

符号の説明Explanation of symbols

1 エアロゾルデポジション装置
11 ガスボンベ
12a 配管
12b 配管
12c 配管
13 エアロゾル発生器
14 成膜チャンバー
15 ノズル
16 基板
17 基板ホルダー
18 排気ポンプ
19 バルブ
20 材料粒子
21 エアロゾル濃度安定化容器
211 エアロゾル導入口
212 エアロゾル排出口
DESCRIPTION OF SYMBOLS 1 Aerosol deposition apparatus 11 Gas cylinder 12a Piping 12b Piping 12c Piping 13 Aerosol generator 14 Deposition chamber 15 Nozzle 16 Substrate 17 Substrate holder 18 Exhaust pump 19 Valve 20 Material particle 21 Aerosol concentration stabilization vessel 211 Aerosol inlet 212 Aerosol outlet

Claims (9)

粉体を収容し、ガスを導入して前記粉体のエアロゾルを発生させるエアロゾル発生器と、
前記エアロゾルが導入される入口近傍の内壁面、前記エアロゾルが最初に衝突する面近傍の内壁面、および前記エアロゾルが排出される出口近傍の内壁面の少なくともいずれかが、算術平均表面粗さRaが0.25以下の面で構成される、前記エアロゾルの濃度を安定化させるエアロゾル濃度安定化容器と、
前記エアロゾル濃度安定化器から供給される前記エアロゾルを基材に噴霧させるノズルと、
前記ノズルが設けられる成膜室とを有するエアロゾルデポジション装置。
An aerosol generator for containing powder and introducing gas to generate aerosol of the powder;
The arithmetic average surface roughness Ra is at least one of an inner wall surface near the inlet where the aerosol is introduced, an inner wall surface near the surface where the aerosol first collides, and an inner wall surface near the outlet where the aerosol is discharged. An aerosol concentration stabilizing container configured to stabilize the concentration of the aerosol, which is configured with a surface of 0.25 or less;
A nozzle that sprays the aerosol supplied from the aerosol concentration stabilizer on a substrate;
An aerosol deposition apparatus having a film forming chamber provided with the nozzle.
前記エアロゾル安定化器の内壁面全面の算術平均表面粗さRaが、0.25以下である請求項1に記載のエアロゾルデポジション装置。   2. The aerosol deposition apparatus according to claim 1, wherein an arithmetic average surface roughness Ra of the entire inner wall surface of the aerosol stabilizer is 0.25 or less. 前記エアロゾルを流通させる内面の算術平均表面粗さRaが0.25以下である、前記エアロゾル濃度安定化容器と前記ノズルとを結ぶ経路を有する請求項1または2に記載のエアロゾルデポジション装置。   The aerosol deposition apparatus according to claim 1 or 2, further comprising a path connecting the aerosol concentration stabilizing container and the nozzle, wherein an arithmetic average surface roughness Ra of an inner surface through which the aerosol is circulated is 0.25 or less. 前記エアロゾルを流通させる内面の算術平均表面粗さRaが0.25以下である、前記エアロゾル発生器と前記エアロゾル濃度安定化容器とを結ぶ経路を有する請求項1から3のいずれかに記載のエアロゾルデポジション装置。   The aerosol according to any one of claims 1 to 3, further comprising a path connecting the aerosol generator and the aerosol concentration stabilizing container, wherein an arithmetic average surface roughness Ra of an inner surface through which the aerosol is circulated is 0.25 or less. Deposition device. 前記エアロゾル発生器、および前記成膜室の内壁面の算術平均表面粗さRaが、0.25以下である請求項1から4のいずれかに記載のエアロゾルデポジション装置。   The aerosol deposition apparatus according to any one of claims 1 to 4, wherein an arithmetic average surface roughness Ra of the aerosol generator and the inner wall surface of the film forming chamber is 0.25 or less. 活物質層が、
請求項1から5のいずれかに記載のエアロゾルデポジション装置を用いて、集電体である前記基板に活物質である前記粉体が噴霧されて構成される蓄電デバイス用極板。
The active material layer
An electrode plate for an electricity storage device configured by spraying the powder as an active material onto the substrate as a current collector using the aerosol deposition apparatus according to claim 1.
多孔性電子絶縁層が、
請求項1から5のいずれかに記載のエアロゾルデポジション装置を用いて、前記基板に無機粒子である前記粉体が噴霧されて構成されるセパレータ。
Porous electronic insulation layer
The separator comprised by spraying the said powder which is an inorganic particle on the said board | substrate using the aerosol deposition apparatus in any one of Claim 1 to 5.
セパレータと、
正極、および負極のいずれかに請求項6に記載の蓄電デバイス用極板を備える蓄電デバイス。
A separator;
An electrical storage device provided with the electrode plate for electrical storage devices of Claim 6 in any one of a positive electrode and a negative electrode.
請求項7に記載のセパレータと、
正極極板、および負極極板を備える蓄電デバイス。
A separator according to claim 7;
An electricity storage device comprising a positive electrode plate and a negative electrode plate.
JP2008000904A 2008-01-08 2008-01-08 Aerosol deposition apparatus, pole plate for electricity storage device, separator, and electricity storage device Pending JP2009161815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008000904A JP2009161815A (en) 2008-01-08 2008-01-08 Aerosol deposition apparatus, pole plate for electricity storage device, separator, and electricity storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008000904A JP2009161815A (en) 2008-01-08 2008-01-08 Aerosol deposition apparatus, pole plate for electricity storage device, separator, and electricity storage device

Publications (1)

Publication Number Publication Date
JP2009161815A true JP2009161815A (en) 2009-07-23

Family

ID=40964752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008000904A Pending JP2009161815A (en) 2008-01-08 2008-01-08 Aerosol deposition apparatus, pole plate for electricity storage device, separator, and electricity storage device

Country Status (1)

Country Link
JP (1) JP2009161815A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195947A (en) * 2010-03-17 2011-10-06 Dong-A Univ Research Foundation For Industry-Academy Cooperation Color austenitic stainless steel material having corrosion resistance and high hardness and method of manufacturing the same
JP7043774B2 (en) 2016-10-04 2022-03-30 日本製鉄株式会社 Aerosol film forming equipment and aerosol film forming method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195947A (en) * 2010-03-17 2011-10-06 Dong-A Univ Research Foundation For Industry-Academy Cooperation Color austenitic stainless steel material having corrosion resistance and high hardness and method of manufacturing the same
JP7043774B2 (en) 2016-10-04 2022-03-30 日本製鉄株式会社 Aerosol film forming equipment and aerosol film forming method

Similar Documents

Publication Publication Date Title
JP5049625B2 (en) Structure manufacturing method and structure manufacturing apparatus using the same
US8337948B2 (en) Method for manufacturing film-formed body
KR101257177B1 (en) Method for forming zirconia film
US9034438B2 (en) Deposition method using an aerosol gas deposition for depositing particles on a substrate
TW201831053A (en) Plasma spraying device and method for manufacturing battery electrode
JP2010073339A (en) Nonaqueous electrolyte secondary battery and its electrode
JP2007204810A (en) Powder treatment device
JP2009161815A (en) Aerosol deposition apparatus, pole plate for electricity storage device, separator, and electricity storage device
JP2010133031A (en) Film formation method and film formation apparatus
RU2371379C1 (en) Plating method of nano-coating and device for its implementation
JP2008045191A (en) Apparatus and method for depositing coating film
JP2006198577A (en) Classification method of finely divided particle and film forming method
WO2012134594A1 (en) High power, wide-temperature range electrode materials, electrodes, related devices and methods of manufacture
KR100988175B1 (en) Apparatus For Forming Ceramic Coated Layer
JP2008184647A (en) Composite structure manufacturing method
JP4590594B2 (en) Aerosol deposition system
KR101986306B1 (en) Vacuum suspension plasma spray aparattus and vacuum suspension plasma spray method
JP5712474B2 (en) Aerosol deposition apparatus and aerosol deposition method
JP5590450B2 (en) Electrode material film forming method and electrode material film forming method
JP2008285743A (en) Film formation system
JP4496380B2 (en) Aerosol deposition system
WO2016039399A1 (en) Laminate and laminate manufacturing method
JP2008181802A (en) Manufacturing method of electrode for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2008248340A (en) Aerosol deposition system
US11951495B2 (en) Process for coating a carrier material with an active material for the production of an electrode foil of a battery cell