JP2009159686A - Noncontact power feed adaptor - Google Patents

Noncontact power feed adaptor Download PDF

Info

Publication number
JP2009159686A
JP2009159686A JP2007332889A JP2007332889A JP2009159686A JP 2009159686 A JP2009159686 A JP 2009159686A JP 2007332889 A JP2007332889 A JP 2007332889A JP 2007332889 A JP2007332889 A JP 2007332889A JP 2009159686 A JP2009159686 A JP 2009159686A
Authority
JP
Japan
Prior art keywords
power supply
contact
contact power
unit
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007332889A
Other languages
Japanese (ja)
Inventor
Kazufumi Oki
一史 大木
Masahiro Yamamoto
政博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2007332889A priority Critical patent/JP2009159686A/en
Publication of JP2009159686A publication Critical patent/JP2009159686A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noncontact power feed adaptor which is adaptable to a noncontact power feed system and can supply power to an electrical apparatus mounted to the adaptor. <P>SOLUTION: The noncontact power feed adaptor Ua is attached on the front surface Pa of a panel P oppositely to a noncontact power feed portion 10 disposed on a position standardized in the panel P configuring a wall, a ceiling or a floor of a building or on the rear surface of the panel P and for generating a standardized high-frequency magnetic field. The adaptor Ua is provided with magnets M2a, M2b as an attaching means detachably attached on the front surface Pa of the panel oppositely to the noncontact power feed portion 10; a noncontact power receiving portion 20, having a standardized relative position with the noncontact power feed portion 10 and receiving power ina noncontact manner from the noncontact power feed portion 10, by utilizing electromagnetic induction on a high-frequency magnetic field generated by the noncontact power feed portion 10; a recess 210 for attaching an electrical apparatus Q; and a power feed portion 21a for feed the received power to the electrical apparatus Q attached in the recess 210 via a power feed terminal 220. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、非接触給電アダプタに関するものである。   The present invention relates to a non-contact power supply adapter.

従来、住宅やオフィス等の建屋内に配設される配電系統としては、商用電源を供給する交流の配電系統や、商用電源を直流電圧に変換した直流電源を供給する直流の配電系統がある。   2. Description of the Related Art Conventionally, power distribution systems disposed in buildings such as houses and offices include an AC power distribution system that supplies commercial power and a DC power distribution system that supplies DC power obtained by converting commercial power into DC voltage.

これらの建屋内に配設された配電系統は、建屋の壁面、天井面、床面を構成する建材に開口を設け、この開口に設置したコンセントや引掛シーリング等の接触式のアウトレットに、電気機器に直接設けた接触子(導体)または接続線を介して設けた接触子が直接接触することによって、各電気機器へ電源を供給していた(例えば、特許文献1,2参照)。   The power distribution system installed in these buildings has openings in the building materials that make up the walls, ceiling, and floor of the building, and electrical equipment is attached to contact outlets such as outlets and hook ceilings installed in these openings. A power supply is supplied to each electric device by a direct contact between a contact (conductor) provided directly on the contact or a contact provided via a connection line (see, for example, Patent Documents 1 and 2).

そして、携帯電話やシェーバや非常灯等のような電気機器は、コンセントにプラグを差し込んだアダプタを介して充電を行っていた(例えば、特許文献3参照)。
特開平2−276412号公報 特開平7−15835号公報 特開平6−54454号公報
And electric devices, such as a mobile phone, a shaver, an emergency light, etc. were charging via the adapter which plugged in the outlet (for example, refer patent document 3).
Japanese Patent Laid-Open No. 2-276212 Japanese Patent Laid-Open No. 7-15835 JP-A-6-54445

上記従来の技術では、ユーザは、接触式アウトレット(特にコンセント)に電気機器の接触子を接続する手間が必要となり、さらには給電のための導体が露出しているので感電の危険があった。そこで、上記コンセントの代わりに、高周波磁界を発生する非接触給電部を非接触式のアウトレットとして設置し、非接触給電部が発生する高周波磁界による電磁誘導を利用して非接触給電部から非接触で受電した電力を負荷へ供給する非接触受電部を非接触式給電部に対向して配置する非接触給電システムを用いることが考えられる。   In the above conventional technique, the user needs to connect the contact of the electric device to the contact outlet (particularly, the outlet), and further, there is a risk of electric shock because the conductor for power feeding is exposed. Therefore, instead of the outlet, a non-contact power supply unit that generates a high-frequency magnetic field is installed as a non-contact outlet, and the non-contact power supply unit uses a non-contact power supply unit for electromagnetic contact by the high-frequency magnetic field generated by the non-contact power supply unit. It is conceivable to use a non-contact power feeding system in which a non-contact power receiving unit that supplies the power received in step 1 to a load is disposed opposite to the non-contact power feeding unit.

しかし、携帯電話やシェーバや非常灯等のように充電が必要な電気機器は、充電するための電力をこれらの電気機器に供給するアダプタが必要であるが、従来、非接触式給電システムに適応したアダプタはなかった。   However, electrical devices that require charging, such as mobile phones, shavers, and emergency lights, require an adapter that supplies the power for charging to these electrical devices. There was no adapter.

本発明は、上記事由に鑑みてなされたものであり、その目的は、非接触式給電システムに適応して、アダプタに装着された電気機器に電源供給を行うことができる非接触給電アダプタを提供することにある。   The present invention has been made in view of the above-described reasons, and an object thereof is to provide a non-contact power supply adapter that can supply power to an electric device attached to the adapter, adapted to the non-contact power supply system. There is to do.

請求項1の発明は、建屋の壁または天井または床を構成する建材内または建材の一面において規格化された位置に配置されて規格化された高周波磁界を発生する非接触給電部に対向して建材の他面に取り付けられる非接触給電アダプタであって、非接触給電部に対向して建材の他面に着脱自在に取着する取付手段と、非接触給電部との相対位置を規格化されて非接触給電部が発生する高周波磁界による電磁誘導を利用して非接触給電部から非接触で電力を受電する非接触受電部と、電気機器を装着する機器装着部と、受電した電力を機器装着部に装着された電気機器に供給する電力供給部とを備えることを特徴とする。   The invention of claim 1 is opposed to a non-contact power feeding section that generates a standardized high-frequency magnetic field by being arranged at a standardized position in a building material or on one surface of a building material that constitutes a wall, ceiling, or floor of a building. A non-contact power supply adapter that is attached to the other surface of the building material, and the relative position between the non-contact power supply portion and the attachment means that is detachably attached to the other surface of the building material facing the non-contact power supply portion is standardized. The non-contact power receiving unit that receives power from the non-contact power feeding unit in a non-contact manner using electromagnetic induction generated by the high-frequency magnetic field generated by the non-contact power feeding unit, the device mounting unit that mounts the electrical device, and the received power And a power supply unit that supplies power to the electrical device mounted on the mounting unit.

この発明によれば、非接触式給電システムに適応して、アダプタに装着された電気機器に電源供給を行うことができる。   According to the present invention, it is possible to supply power to an electrical device attached to an adapter in conformity with the non-contact power feeding system.

請求項2の発明は、請求項1において、前記電力供給部は、出力電圧を所定電圧に制御することを特徴とする。   According to a second aspect of the present invention, in the first aspect, the power supply unit controls the output voltage to a predetermined voltage.

この発明によれば、一定電圧の入力が必要な負荷に使用することができる。   According to the present invention, it can be used for a load that requires constant voltage input.

請求項3の発明は、請求項2において、複数の所定電圧からいずれか1つを選択する電圧値選択手段を備え、前記電力供給部は、出力電圧を選択された所定電圧に制御することを特徴とする。   According to a third aspect of the present invention, in the second aspect of the present invention, the apparatus includes a voltage value selection unit that selects any one of a plurality of predetermined voltages, and the power supply unit controls the output voltage to the selected predetermined voltage. Features.

この発明によれば、1台の非接触給電アダプタを用いて、同形状且つ定格電圧の異なる複数の負荷に対応させることができ、ユーザは複数の非接触給電アダプタを準備する必要がなく、利便性が向上する。   According to the present invention, a single non-contact power supply adapter can be used to handle a plurality of loads having the same shape and different rated voltages, and the user does not need to prepare a plurality of non-contact power supply adapters. Improves.

請求項4の発明は、請求項1乃至3いずれかおいて、前記取付手段は、前記非接触受電部に設けられた磁石との間で吸引力を発生する磁石で構成されることを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the attachment means is constituted by a magnet that generates an attractive force with a magnet provided in the non-contact power receiving unit. To do.

この発明によれば、ねじや係止手段等の取付手段を別途設ける必要がなく、構成の簡略化、取付作業の簡易化を図ることができる。   According to the present invention, it is not necessary to separately provide attachment means such as screws and locking means, and the configuration can be simplified and the attachment work can be simplified.

以上説明したように、本発明では、非接触式給電システムに適応して、アダプタに装着された電気機器に電源供給を行うことができるという効果がある。   As described above, according to the present invention, there is an effect that it is possible to supply power to an electrical device attached to an adapter in conformity with the non-contact power feeding system.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
本実施形態では、住宅等の建屋H内に非接触給電システムを備え付け、従来のコンセントや引掛シーリング等の接触式のアウトレットに、電気機器(負荷)に直接設けた接触子(導体)または接続線を介して設けた接触子が直接接触することによって行われる電気機器への電力供給の代わりに、非接触で電気機器へ電力供給を行うものである。
(Embodiment 1)
In this embodiment, a contactless power supply system is provided in a building H such as a house, and contacts (conductors) or connecting wires provided directly on electrical equipment (loads) on contact outlets such as conventional outlets and hook ceilings. Instead of supplying electric power to the electric device performed by direct contact of the contact provided through the contact, electric power is supplied to the electric device in a non-contact manner.

なお、本実施形態においては、建屋H内の配電系統を直流配電系統で構成しており、最初にこの配電システムの概略について図8を用いて説明する。   In the present embodiment, the power distribution system in the building H is constituted by a DC power distribution system. First, an outline of this power distribution system will be described with reference to FIG.

以下に説明する実施形態は、本発明を適用する建物として戸建て住宅の家屋を想定して説明するが、本発明の技術思想を集合住宅に適用することを妨げるものではない。建屋Hには、図8に示すように、直流電力を出力する直流電力供給部101と、直流電力により駆動される電気機器である直流機器U’とが設けられ、直流電力供給部101の出力端部に接続した直流供給線路Wdcを通して直流機器U’に直流電力が供給される。直流電力供給部101と直流機器U’との間には、直流供給線路Wdcに流れる電流を監視し、異常を検知したときに直流給電線路Wdc上で直流電力供給部101から直流機器U’への給電を制限ないし遮断する直流ブレーカ114が設けられる。   The embodiments described below are described assuming a detached house as a building to which the present invention is applied, but this does not preclude the application of the technical idea of the present invention to an apartment house. As shown in FIG. 8, the building H is provided with a DC power supply unit 101 that outputs DC power and a DC device U ′ that is an electric device driven by the DC power. DC power is supplied to the DC device U ′ through the DC supply line Wdc connected to the end. A current flowing through the DC supply line Wdc is monitored between the DC power supply unit 101 and the DC device U ′, and when an abnormality is detected, the DC power supply unit 101 to the DC device U ′ is detected on the DC power supply line Wdc. A DC breaker 114 is provided to limit or cut off the power supply.

直流供給線路Wdcは、直流電力の給電路であるとともに通信路としても兼用されており、高周波の搬送波を用いてデータを伝送する通信信号を直流電圧に重畳することにより直流供給線路Wdcに接続された機器間での通信を可能にしている。この技術は、交流電力を供給する電力線において交流電圧に通信信号を重畳させる電力線搬送技術と類似した技術である。   The DC supply line Wdc is used as both a DC power supply path and a communication path, and is connected to the DC supply line Wdc by superimposing a communication signal for transmitting data on a DC voltage using a high-frequency carrier wave. Enables communication between devices. This technique is similar to a power line carrier technique in which a communication signal is superimposed on an AC voltage in a power line that supplies AC power.

直流供給線路Wdcは、直流電力供給部101を介して宅内サーバ116に接続される。宅内サーバ116は、宅内の通信網(以下、「宅内網」という)を構築する主装置であり、宅内網において直流機器U’が構築するサブシステムなどと通信を行う。   The DC supply line Wdc is connected to the home server 116 via the DC power supply unit 101. The home server 116 is a main device that constructs a home communication network (hereinafter referred to as “home network”), and communicates with a subsystem or the like constructed by the DC device U ′ in the home network.

図示例では、サブシステムとして、パーソナルコンピュータ、無線アクセスポイント、ルータ、IP電話機のような情報系の直流機器U’からなる情報機器システムK101、照明器具のような照明系の直流機器U’からなる照明システムK102,K105、来客対応や侵入者の監視などを行う直流機器U’からなるインターホンシステムK103、火災感知器のような警報系の直流機器U’からなる住警器システムK104などがある。各サブシステムは、自立分散システムを構成しており、サブシステム単独でも動作が可能になっている。   In the illustrated example, the subsystem includes an information equipment system K101 including an information system DC equipment U ′ such as a personal computer, a wireless access point, a router, and an IP telephone, and an illumination system DC equipment U ′ such as a lighting fixture. There are lighting systems K102 and K105, an intercom system K103 composed of a DC device U ′ for dealing with visitors and monitoring intruders, and a residential alarm system K104 composed of an alarm DC device U ′ such as a fire detector. Each subsystem constitutes a self-supporting distributed system, and can operate even with the subsystem alone.

上述した直流ブレーカ114は、サブシステムに関連付けて設けられており、図示例では、情報機器システムK101、照明システムK102およびインターホンシステムK103、住警器システムK104、照明システムK105に関連付けて4個の直流ブレーカ114を設けている。1台の直流ブレーカ114に複数個のサブシステムを関連付ける場合には、サブシステムごとに直流供給線路Wdcの系統を分割する接続ボックス121が設けられる。図示例においては、照明システムK102とインターホンシステムK103との間に接続ボックス121が設けられている。   The above-described DC breaker 114 is provided in association with a subsystem. In the illustrated example, four DCs are associated with the information equipment system K101, the lighting system K102 and the intercom system K103, the house alarm system K104, and the lighting system K105. A breaker 114 is provided. When a plurality of subsystems are associated with one DC breaker 114, a connection box 121 for dividing the system of the DC supply line Wdc is provided for each subsystem. In the illustrated example, a connection box 121 is provided between the illumination system K102 and the intercom system K103.

情報機器システムK101としては、壁コンセントあるいは床コンセントの形態で建屋Hに先行配置(建屋Hの建築時に施工)される直流コンセント131に接続される直流機器U’からなる情報機器システムK101が設けられる。   As the information equipment system K101, there is provided an information equipment system K101 comprising a direct current equipment U ′ connected to a direct current outlet 131 arranged in advance in the building H in the form of a wall outlet or a floor outlet (constructed during construction of the building H). .

照明システムK102、K105としては、建屋Hに先行配置される照明器具(直流機器U’)からなる照明システムK102と、天井に先行配置される引掛シーリング132に接続する照明器具(直流機器U’)からなる照明システムK105とが設けられる。引掛シーリング132には、建屋Hの内装施工時に施工業者が照明器具を取り付けるか、または家人自身が照明器具を取り付ける。   As the lighting systems K102 and K105, the lighting system K102 including a lighting fixture (DC device U ′) arranged in advance in the building H and the lighting fixture (DC device U ′) connected to the hook ceiling 132 arranged in advance on the ceiling. And an illumination system K105. At the time of interior construction of the building H, the contractor attaches the lighting fixture to the hook ceiling 132, or the resident himself attaches the lighting fixture.

照明システムK102を構成する直流機器U’である照明器具に対する制御の指示は、赤外線リモコン装置を用いて与えるほか、直流供給線路Wdcに接続されたスイッチ141から通信信号を用いて与えることができる。すなわち、スイッチ141は直流機器U’とともに通信の機能を有している。また、スイッチ141の操作によらず、宅内網の別の直流機器U’あるいは宅内サーバ116から通信信号により制御の指示がなされることもある。照明器具への指示には、点灯、消灯、調光、点滅点灯などがある。   In addition to using an infrared remote control device, a control instruction for the lighting apparatus that is the DC device U ′ constituting the lighting system K102 can be given using a communication signal from the switch 141 connected to the DC supply line Wdc. That is, the switch 141 has a communication function together with the DC device U ′. In addition, a control instruction may be given by a communication signal from another DC device U 'in the home network or the home server 116 regardless of the operation of the switch 141. The instructions to the lighting fixture include lighting, extinguishing, dimming, and blinking lighting.

上述した直流コンセント131、引掛シーリング132には、任意の直流機器U’を接続することができ、接続された直流機器U’に直流電力を出力するから、以下では直流コンセント131、引掛シーリング132を区別する必要がない場合には「直流アウトレット」と呼ぶ。   Arbitrary DC equipment U ′ can be connected to the DC outlet 131 and the hooking ceiling 132 described above, and since DC power is output to the connected DC equipment U ′, the DC outlet 131 and the hooking ceiling 132 will be described below. When it is not necessary to distinguish, it is called a “DC outlet”.

これらの直流アウトレットは、直流機器U’に直接設けた接触子(図示しないプラグの栓刃や導体片等)または接続線を介して設けた接触子が差し込まれる差込式の接続口が器体に開口し、接続口に差し込まれた接触子に直接接触する接触子受けが器体に保持された構造を有しており、接触式で給電を行う。直流アウトレットに接続された直流機器U’が通信機能を有する場合には、直流供給線路Wdcを通して通信信号を伝送することが可能になる。直流機器U’だけではなく直流アウトレットにも通信機能が設けられている。   These DC outlets have a contact (such as a plug blade or conductor piece of a plug (not shown)) directly provided on the DC device U ′ or a plug-in connection port into which a contact provided via a connection line is inserted. The contact holder that directly contacts the contact inserted into the connection port is held by the container, and power is supplied in a contact manner. When the DC device U 'connected to the DC outlet has a communication function, a communication signal can be transmitted through the DC supply line Wdc. A communication function is provided not only in the DC device U 'but also in the DC outlet.

宅内サーバ116は、宅内網に接続されるだけではなく、インターネットを構築する広域網NTに接続される接続口を有している。宅内サーバ116が広域網NTに接続されている場合には、広域網NTに接続されたコンピュータサーバであるセンタサーバ200によるサービスを享受することができる。   The home server 116 not only is connected to the home network, but also has a connection port connected to the wide area network NT that constructs the Internet. When the in-home server 116 is connected to the wide area network NT, it is possible to receive services from the center server 200 that is a computer server connected to the wide area network NT.

センタサーバ200が提供するサービスには、広域網NTを通して宅内網に接続された機器(主として直流機器U’であるが通信機能を有した他の機器も含む)の監視や制御を可能にするサービスがある。このサービスにより、パーソナルコンピュータ、インターネットTV、移動体電話機などのブラウザ機能を備える通信端末(図示せず)を用いて宅内網に接続された機器の監視や制御が可能になる。   The service provided by the center server 200 is a service that enables monitoring and control of equipment (mainly DC equipment U ′ including other equipment having a communication function) connected to the home network through the wide area network NT. There is. This service makes it possible to monitor and control devices connected to the home network using a communication terminal (not shown) having a browser function such as a personal computer, Internet TV, or mobile phone.

宅内サーバ116は、広域網NTに接続されたセンタサーバ200との間の通信と、宅内網に接続された機器との間の通信との両方の機能を備え、宅内網の機器に関する識別情報(ここでは、IPアドレスを用いるものとする)の取得の機能を備える。   The in-home server 116 has both functions of communication with the center server 200 connected to the wide area network NT and communication with equipment connected to the home network, and identification information on equipment in the home network ( Here, it is assumed that an IP address is used).

宅内サーバ116は、センタサーバ200との通信機能を用いることにより、広域網NTに接続された通信端末からセンタサーバ200を通して宅内の機器の監視や制御を可能にする。センタサーバ200は、宅内の機器と広域網NT上の通信端末とを仲介する。   The home server 116 enables monitoring and control of home devices through the center server 200 from a communication terminal connected to the wide area network NT by using a communication function with the center server 200. The center server 200 mediates between home devices and communication terminals on the wide area network NT.

通信端末から宅内の機器の監視や制御を行う場合は、監視や制御の要求をセンタサーバ200に記憶させ、宅内の機器は定期的に片方向のポーリング通信を行うことにより、通信端末からの監視や制御の要求を受信する。この動作により、通信端末から宅内の機器の監視や制御が可能になる。   When monitoring and controlling home devices from a communication terminal, monitoring and control requests are stored in the center server 200, and the home device periodically performs one-way polling communication to monitor from the communication terminal. And receive control requests. With this operation, it is possible to monitor and control devices in the house from the communication terminal.

また、宅内の機器において火災検知など通信端末に通知すべきイベントが生じたときには、宅内の機器からセンタサーバ200に通知し、センタサーバ200から通信端末に対して電子メールによる通知を行う。   Further, when an event that should be notified to the communication terminal, such as a fire detection, occurs in the home device, the home device notifies the center server 200, and the center server 200 notifies the communication terminal by e-mail.

宅内サーバ116における宅内網との通信機能のうち重要な機能は、宅内網を構成する機器の検出と管理である。宅内サーバ116では、UPnP(Universal Plug and Play)を応用して宅内網に接続された機器を自動的に検出する。宅内サーバ116はブラウザ機能を有する表示器117を備え、検出した機器の一覧を表示器117に表示する。この表示器117はタッチパネル式もしくは操作部が付設された構成を有し、表示器117の画面に表示された選択肢から所望の内容を選択する操作が可能になっている。したがって、宅内サーバ116の利用者(施工業者あるいは家人)は、表示器117の画面上で機器の監視ないし制御が可能になる。表示器117は宅内サーバ116とは分離して設けてもよい。   An important function among the communication functions with the home network in the home server 116 is the detection and management of devices constituting the home network. The home server 116 automatically detects devices connected to the home network by applying UPnP (Universal Plug and Play). The home server 116 includes a display device 117 having a browser function, and displays a list of detected devices on the display device 117. The display device 117 has a configuration with a touch panel type or an operation unit, and can perform an operation of selecting desired contents from options displayed on the screen of the display device 117. Therefore, the user (contractor or householder) of the home server 116 can monitor or control the device on the screen of the display device 117. The display device 117 may be provided separately from the home server 116.

宅内サーバ116では、機器の接続に関する情報を管理しており、宅内網に接続された機器の種類や機能とアドレスとを把握する。したがって、宅内網の機器を連動動作させることができる。機器の接続に関する情報は上述のように自動的に検出されるが、機器を連動動作させるには、機器自身が保有する属性により自動的に関係付けを行うほか、宅内サーバ116にパーソナルコンピュータのような情報端末を接続し、情報端末のブラウザ機能を利用して機器の関係付けを行うこともできる。   The in-home server 116 manages information related to device connection, and grasps the type, function, and address of the device connected to the home network. Accordingly, the devices in the home network can be operated in conjunction with each other. Information on the connection of the device is automatically detected as described above. In order to operate the device in an interlocking manner, the device itself is automatically associated with the attribute held by the device itself, and the home server 116 is configured as a personal computer. It is also possible to connect various information terminals and use the browser function of the information terminals to associate devices.

機器の連動動作の関係は各機器がそれぞれ保持する。したがって、機器は宅内サーバ116を通すことなく連動動作することができる。各機器について、連動動作の関係付けを行うことにより、たとえば、機器であるスイッチの操作により、機器である照明器具の点灯あるいは消灯の動作を行うことが可能になる。また、連動動作の関係付けはサブシステム内で行うことが多いが、サブシステムを超える関係付けも可能である。   Each device holds the relationship of the interlocking operation of the devices. Therefore, the device can operate in an interlocked manner without passing through the home server 116. By associating the linked operations for each device, for example, by operating a switch that is a device, it is possible to turn on or off the lighting fixture that is the device. In many cases, the association of the interlocking operations is performed within the subsystem, but the association beyond the subsystem is also possible.

ところで、直流電力供給部101は、基本的には、商用電源のように宅外から供給される交流電源ACの電力変換により直流電力を生成する。図示する構成では、交流電源ACは、分電盤110に内器として取り付けられた主幹ブレーカ111を通して、スイッチング電源を含むAC/DCコンバータ112に入力される。AC/DCコンバータ112から出力される直流電力は、協調制御部113を通して各直流ブレーカ114に接続される。   By the way, the DC power supply unit 101 basically generates DC power by power conversion of an AC power supply AC supplied from outside the house like a commercial power supply. In the configuration shown in the figure, the AC power source AC is input to an AC / DC converter 112 including a switching power source through a main circuit breaker 111 attached to the distribution board 110 as an internal unit. The DC power output from the AC / DC converter 112 is connected to each DC breaker 114 through the cooperative control unit 113.

直流電力供給部101には、交流電源ACから電力が供給されない期間(たとえば、商用電源ACの停電期間)に備えて二次電池162が設けられている。また、直流電力を生成する太陽電池161や燃料電池163を併用することも可能になっている。交流電源ACから直流電力を生成するAC/DCコンバータ112を備える主電源に対して、太陽電池161や二次電池162や燃料電池163は分散電源になる。なお、図示例において、太陽電池161、二次電池162、燃料電池163は出力電圧を制御する回路部を含み、二次電池162は放電だけではなく充電を制御する回路部も含んでいる。   The DC power supply unit 101 is provided with a secondary battery 162 in preparation for a period in which power is not supplied from the AC power supply AC (for example, a power failure period of the commercial power supply AC). It is also possible to use a solar cell 161 or a fuel cell 163 that generates DC power. The solar battery 161, the secondary battery 162, and the fuel battery 163 are distributed power supplies with respect to the main power supply including the AC / DC converter 112 that generates DC power from the AC power supply AC. In the illustrated example, the solar cell 161, the secondary battery 162, and the fuel cell 163 include a circuit unit that controls the output voltage, and the secondary battery 162 includes a circuit unit that controls charging as well as discharging.

分散電源のうち太陽電池161や燃料電池163は必ずしも設けなくてもよいが、二次電池162は設けるのが望ましい。二次電池162は主電源や他の分散電源により適時充電され、二次電池162の放電は、交流電源ACから電力が供給されない期間だけではなく必要に応じて適時に行われる。二次電池162の充放電や主電源と分散電源との協調は、協調制御部113により行われる。すなわち、協調制御部113は、直流電力供給部101を構成する主電源および分散電源から直流機器U’への電力の配分を制御する直流電力制御部として機能する。なお、太陽電池161、二次電池162、燃料電池163の出力を交流電力に変換し、AC/DCコンバータ112の入力電力として用いる構成を採用してもよい。   Of the distributed power sources, the solar cell 161 and the fuel cell 163 are not necessarily provided, but the secondary battery 162 is preferably provided. The secondary battery 162 is charged in a timely manner by a main power source or other distributed power source, and the secondary battery 162 is discharged not only in a period in which power is not supplied from the AC power source AC but also in a timely manner as necessary. The cooperation control unit 113 performs charge / discharge of the secondary battery 162 and cooperation between the main power source and the distributed power source. That is, the cooperative control unit 113 functions as a DC power control unit that controls the distribution of power from the main power supply and the distributed power supply configuring the DC power supply unit 101 to the DC equipment U ′. Note that a configuration may be adopted in which the outputs of the solar cell 161, the secondary battery 162, and the fuel cell 163 are converted into AC power and used as input power of the AC / DC converter 112.

直流機器U’の駆動電圧は機器に応じた複数種類の電圧から選択されるから、協調制御部113にDC/DCコンバータを設け、主電源および分散電源から得られる直流電圧を必要な電圧に変換するのが望ましい。通常は、1系統のサブシステム(もしくは1台の直流ブレーカ114に接続された直流機器U’)に対して1種類の電圧が供給されるが、1系統のサブシステムに対して3線以上を用いて複数種類の電圧を供給するように構成してもよい。あるいはまた、直流供給線路Wdcを2線式とし、線間に印加する電圧を時間経過に伴って変化させる構成を採用することも可能である。DC/DCコンバータは、直流ブレーカと同様に複数に分散して設けてもよい。   Since the driving voltage of the DC device U ′ is selected from a plurality of types of voltages depending on the device, a DC / DC converter is provided in the cooperative control unit 113 to convert the DC voltage obtained from the main power source and the distributed power source into the necessary voltage. It is desirable to do. Normally, one type of voltage is supplied to one subsystem (or DC equipment U ′ connected to one DC breaker 114), but three or more wires are supplied to one subsystem. A plurality of types of voltages may be used. Alternatively, it is possible to adopt a configuration in which the DC supply line Wdc is of a two-wire type and the voltage applied between the lines is changed with time. The DC / DC converter may be provided in a plurality of dispersed manners like the DC breaker.

上述の構成例では、AC/DCコンバータ112を1個だけ図示しているが、複数個のAC/DCコンバータ112を並設することが可能であり、複数個のAC/DCコンバータ112を設けるときには、負荷の大きさに応じて運転するAC/DCコンバータ112の台数を増減させるのが望ましい。   In the above configuration example, only one AC / DC converter 112 is illustrated, but a plurality of AC / DC converters 112 can be arranged in parallel, and when a plurality of AC / DC converters 112 are provided. It is desirable to increase or decrease the number of AC / DC converters 112 that are operated according to the magnitude of the load.

上述したAC/DCコンバータ112、協調制御部113、直流ブレーカ114、太陽電池161、二次電池162、燃料電池163には通信機能が設けられており、主電源および分散電源や直流機器U’を含む負荷の状態に対処する連携動作を行うことを可能にしている。この通信に用いる通信信号は、直流機器U’に用いる通信信号と同様に直流電圧に重畳する形式で伝送する。   The AC / DC converter 112, the cooperative control unit 113, the DC breaker 114, the solar cell 161, the secondary battery 162, and the fuel cell 163 described above are provided with a communication function, and the main power source, the distributed power source, and the DC device U ′ are connected. It is possible to perform a cooperative operation to deal with the load status including it. The communication signal used for this communication is transmitted in the form of being superimposed on the DC voltage in the same manner as the communication signal used for the DC device U '.

上述の例では主幹ブレーカ111から出力された交流電力をAC/DCコンバータ112により直流電力に変換するために、AC/DCコンバータ112を分電盤110内に配置しているが、主幹ブレーカ111の出力側において分電盤110内に設けた分岐ブレーカ(図示せず)で交流供給線路を複数系統に分岐し、各系統の交流供給線路にAC/DCコンバータを設けて系統ごとに直流電力に変換する構成を採用してもよい。   In the above example, the AC / DC converter 112 is arranged in the distribution board 110 in order to convert the AC power output from the main breaker 111 into DC power by the AC / DC converter 112. On the output side, a branch breaker (not shown) provided in the distribution board 110 branches the AC supply line into a plurality of systems, and an AC / DC converter is provided on the AC supply line of each system to convert it into DC power for each system. You may employ | adopt the structure to do.

この場合、建屋Hの各階や各部屋を単位としてAC/DCコンバータを設けることができるから、AC/DCコンバータを系統別に管理することができ、しかも、直流電力を利用する直流機器U’との間の直流供給線路Wdcの距離が小さくなるから、直流供給線路Wdcでの電圧降下による電力損失を低減させることができる。また、主幹ブレーカ111および分岐ブレーカを分電盤110に収納し、AC/DCコンバータ112と協調制御部113と直流ブレーカ114と宅内サーバ116とを分電盤110とは別の盤に収納してもよい。   In this case, since the AC / DC converter can be provided for each floor or room of the building H, the AC / DC converter can be managed for each system, and the DC device U ′ using DC power can be managed. Since the distance of the direct current supply line Wdc is reduced, the power loss due to the voltage drop in the direct current supply line Wdc can be reduced. Also, the main breaker 111 and the branch breaker are housed in the distribution board 110, and the AC / DC converter 112, the cooperative control unit 113, the DC breaker 114, and the home server 116 are housed in a separate board from the distribution board 110. Also good.

本実施形態では、上記配電システムにおいて直流機器へ直流電力を供給する直流配電系統に非接触給電システムを適用しており、図3は建屋H内の部屋R1の概略図を示す。部屋R1は、四方に設けた壁パネルP1(図3では、3方の壁パネルP1のみを示す)、上方に設けた天井パネルP2、下方に設けた床パネルP3の各建材によって囲まれている。   In the present embodiment, a non-contact power supply system is applied to a DC distribution system that supplies DC power to DC devices in the above distribution system, and FIG. 3 shows a schematic diagram of a room R1 in the building H. The room R1 is surrounded by building materials such as a wall panel P1 provided on four sides (only three wall panels P1 are shown in FIG. 3), a ceiling panel P2 provided above, and a floor panel P3 provided below. .

そして、壁パネルP1、天井パネルP2、床パネルP3(まとめてパネルPと称す)内には、非接触給電システムに用いる複数の非接触給電部10が各々組み込まれており、上記接触式の直流アウトレットである直流コンセント131や引掛シーリング132等の代わりに、直流電力を供給する非接触式の直流アウトレットを構成している。この非接触給電部10は、図4に示すように、上記直流供給線路Wdcを介して供給される直流電力を高周波電力に変換する高周波電力発生回路11と、高周波電力発生回路11から高周波電力を供給されることによって高周波磁界を発生する一次コイルL1とで構成される。また、壁パネルP1、天井パネルP2、床パネルP3の部屋R1に面する各側を表面P1a、P2a、P3a(まとめてパネル表面Paと称す)とすると、非接触給電部10に対向する壁表面P1a、天井表面P2a、床表面P3a上に給電ポイントXを示す印が施され、部屋R1内のユーザは視覚的に給電ポイントXを認識できる。   In the wall panel P1, ceiling panel P2, and floor panel P3 (collectively referred to as panel P), a plurality of non-contact power feeding units 10 used for the non-contact power feeding system are respectively incorporated. Instead of the DC outlet 131 and the hooking ceiling 132 that are outlets, a non-contact type DC outlet that supplies DC power is configured. As shown in FIG. 4, the non-contact power supply unit 10 includes a high frequency power generation circuit 11 that converts DC power supplied via the DC supply line Wdc into high frequency power, and high frequency power from the high frequency power generation circuit 11. It is comprised with the primary coil L1 which generate | occur | produces a high frequency magnetic field by being supplied. Moreover, if each side facing the room R1 of the wall panel P1, the ceiling panel P2, and the floor panel P3 is a surface P1a, P2a, P3a (collectively referred to as a panel surface Pa), the wall surface facing the non-contact power feeding unit 10 A mark indicating the feeding point X is provided on P1a, the ceiling surface P2a, and the floor surface P3a, and the user in the room R1 can visually recognize the feeding point X.

高周波電力発生回路11は、内部に具備したスイッチング素子(図示なし)を高周波数でスイッチングさせることで直流電圧を高周波電圧に変換し、当該高周波電圧を一次コイルL1の両端に印加して一次コイルL1に高周波電流を供給し、一次コイルL1は、高周波電流によって高周波磁界を発生する。なお、スイッチング素子を用いて直流電圧を高周波電圧に変換する回路構成については周知であり、説明は省略する。   The high frequency power generation circuit 11 converts a DC voltage into a high frequency voltage by switching an internal switching element (not shown) at a high frequency, and applies the high frequency voltage to both ends of the primary coil L1 to apply the high frequency voltage to the primary coil L1. A high frequency current is supplied to the primary coil L1, and the primary coil L1 generates a high frequency magnetic field by the high frequency current. Note that a circuit configuration for converting a DC voltage into a high-frequency voltage using a switching element is well known, and a description thereof will be omitted.

また、図3に示すように、壁表面P1a、天井表面P2a、床表面P3a上には、直流機器Uが設置されている。壁表面P1aには、本発明の非接触給電アダプタUa、補助照明用のLEDライトU1等が設置され、天井表面P2aには、主照明用のシーリングライトU2、補助照明用のスポットライトU3、空調用のファンU4、セキュリティシステムに用いる人感センサU5、ワイヤレスの通信手段を備えて音出力を行うスピーカU6、無線LANに用いるアクセスポイントU7等が設置され、床表面P3aには、補助照明用のスタンドライトU8、暖房用のマットヒータU9等が設置される。   Further, as shown in FIG. 3, a DC device U is installed on the wall surface P1a, the ceiling surface P2a, and the floor surface P3a. The wall surface P1a is provided with the non-contact power supply adapter Ua of the present invention, the LED light U1 for auxiliary lighting, and the ceiling surface P2a has a ceiling light U2 for main lighting, a spotlight U3 for auxiliary lighting, an air conditioner. Fan U4, human sensor U5 used in the security system, speaker U6 that provides wireless communication means and outputs sound, access point U7 used in the wireless LAN, etc. are installed on the floor surface P3a for auxiliary lighting. A standlight U8, a mat heater U9 for heating, and the like are installed.

各直流機器Uは、図4に示すように、非接触給電システムに用いる非接触受電部20と、各直流機器の機能部21(例えば、充電機能、照明機能、空調機能、センサ機能、通信機能、スピーカ機能、LANのハブ機能、暖房機能等)とを備えている。なお、非接触受電部20は、直流機器Uに機能部21と一体に組み込まれた構成(図3中の直流機器Ua,U1〜U8)以外に、非接触受電部20を単体で形成し、機能部21を備える機器本体に電源コードCDを介して動作電源を供給する構成(図3中の直流機器U9)でもよい。非接触受電部20を単体で形成した場合、機器本体は非接触給電部10の位置に関わらず任意に配置でき、非接触受電部20の着脱も容易に行うことができる。   As shown in FIG. 4, each DC device U includes a non-contact power receiving unit 20 used in a non-contact power feeding system and a function unit 21 (for example, a charging function, an illumination function, an air conditioning function, a sensor function, and a communication function) of each DC device. Speaker function, LAN hub function, heating function, etc.). In addition, the non-contact power receiving unit 20 forms the single unit of the non-contact power receiving unit 20 in addition to the configuration (DC devices Ua, U1 to U8 in FIG. 3) integrated with the functional unit 21 in the DC device U, A configuration (DC device U9 in FIG. 3) may be employed in which operating power is supplied to the device body including the functional unit 21 via the power cord CD. When the non-contact power receiving unit 20 is formed as a single unit, the device main body can be arbitrarily arranged regardless of the position of the non-contact power feeding unit 10, and the non-contact power receiving unit 20 can be easily attached and detached.

非接触受電部20は、壁パネルP1、天井パネルP2、床パネルP3内の各非接触給電部10に対向する壁表面P1a、天井表面P2a、床表面P3aの各位置(給電ポイントX)に配置される。この非接触受電部20は、非接触給電部10の一次コイルL1に電磁気的に結合して、非接触給電部10が発生した高周波磁界が鎖交すると電磁誘導によって二次電圧が誘起する二次コイルL2と、二次コイルL2の両端に発生した二次電圧を全波整流する整流部DBと、整流部DBの正側の整流出力に直列接続されたインダクタLaと、インダクタLaを介した整流電圧を平滑する平滑コンデンサCaとで構成され、平滑コンデンサCaの両端電圧が機能部21に供給されて、機能部21の動作電源となる。また、平滑コンデンサCaの出力にシリーズレギュレータまたはチョッパ回路を設けて定電圧機能を付加してもよい。さらに、図4に破線で示すように、二次コイルL2に並列に共振コンデンサC2を接続して、一次コイルL1からの受電能力を向上させてもよい。   The non-contact power receiving unit 20 is disposed at each position (feed point X) of the wall surface P1a, the ceiling surface P2a, and the floor surface P3a facing the non-contact power feeding unit 10 in the wall panel P1, the ceiling panel P2, and the floor panel P3. Is done. The non-contact power receiving unit 20 is electromagnetically coupled to the primary coil L1 of the non-contact power feeding unit 10 and a secondary voltage is induced by electromagnetic induction when the high frequency magnetic field generated by the non-contact power feeding unit 10 is linked. A coil L2, a rectifier DB for full-wave rectification of the secondary voltage generated at both ends of the secondary coil L2, an inductor La connected in series to the rectified output on the positive side of the rectifier DB, and rectification via the inductor La A smoothing capacitor Ca that smoothes the voltage is supplied. The voltage across the smoothing capacitor Ca is supplied to the function unit 21 and serves as an operating power source for the function unit 21. Further, a constant voltage function may be added by providing a series regulator or chopper circuit at the output of the smoothing capacitor Ca. Further, as indicated by a broken line in FIG. 4, a resonance capacitor C2 may be connected in parallel to the secondary coil L2 to improve the power reception capability from the primary coil L1.

上記構成を有する直流機器Uの一形態として非接触給電アダプタUaがあり、非接触給電アダプタUaの機能部21(以降、電力供給部21aと称す)は携帯電話やシェーバ等の充電式の電気機器Qへの充電機能を有しており、壁パネルP1に設けた非接触給電部10に対向してパネル表面P1aに配置されている。なお、本実施形態ではユーザが実際に使用する上での容易性から壁パネルP1に非接触給電アダプタUaを配置する構成を例示するが、ユーザが使用可能であれば天井パネルP2、床パネルP3であってもよい。   There is a non-contact power supply adapter Ua as one form of the DC device U having the above configuration, and the functional unit 21 (hereinafter referred to as a power supply unit 21a) of the non-contact power supply adapter Ua is a rechargeable electric device such as a mobile phone or a shaver. Q has a charging function to Q, and is arranged on the panel surface P1a so as to face the non-contact power feeding portion 10 provided on the wall panel P1. In the present embodiment, the configuration in which the non-contact power supply adapter Ua is arranged on the wall panel P1 is illustrated for ease of use by the user. However, if the user can use the ceiling panel P2, the floor panel P3. It may be.

図1、図2(a)〜(c)は非接触給電アダプタUaの構成を示し、非接触給電アダプタUaは、前面および上面を開放した凹部210を有する矩形函状のハウジング200で外郭を構成し、ハウジング200の略平面状に形成された後壁201には非接触受電部20が収納され、底部204に電力供給部21を収納している。   1 and 2 (a) to 2 (c) show the configuration of the non-contact power supply adapter Ua, and the non-contact power supply adapter Ua is configured by a rectangular box-shaped housing 200 having a recess 210 whose front surface and upper surface are open. The non-contact power receiving unit 20 is stored in the rear wall 201 formed in a substantially flat shape of the housing 200, and the power supply unit 21 is stored in the bottom 204.

そして、凹部210は、電気機器Qを装着する機器装着部を構成しており、凹部210の前面には、ハウジング200の両側面202,202から各々延設された保持面203,203が形成され、ハウジング200の両側面202,202とともに、携帯電話やシェーバ等に充電式の電気機器Qを上方から挿入するときや、上方へ取り外すときの摺動ガイドとして機能する。   The recess 210 constitutes a device mounting portion for mounting the electrical device Q, and holding surfaces 203, 203 extending from both side surfaces 202, 202 of the housing 200 are formed on the front surface of the recess 210, respectively. Together with both side surfaces 202, 202 of the housing 200, it functions as a sliding guide when the rechargeable electrical device Q is inserted into a cellular phone or a shaver from above or removed upward.

さらに、凹部210の底面211には、電気機器Qの下面に設けた一対の受電用端子(図示なし)に接触する給電用端子220が設けられており、電力供給部21aは、非接触受電部20から出力される直流電圧を所定電圧に一定制御して、この所定電圧を給電用端子220から電気機器Qに供給し、電気機器Qは供給された直流電力によって内蔵した二次電池(図示なし)を充電する。そして、電力供給部21aは充電電流を監視しており、充電中はLED素子221を点灯し、充電完了を検知するとLED素子221を消灯する。   Further, the bottom surface 211 of the recess 210 is provided with a power feeding terminal 220 that contacts a pair of power receiving terminals (not shown) provided on the lower surface of the electrical device Q. The power supply unit 21a is a non-contact power receiving unit. The DC voltage output from 20 is constantly controlled to a predetermined voltage, and this predetermined voltage is supplied from the power supply terminal 220 to the electric device Q. The electric device Q is a secondary battery (not shown) built in by the supplied DC power. ). The power supply unit 21a monitors the charging current, turns on the LED element 221 during charging, and turns off the LED element 221 when the completion of charging is detected.

そして、非接触給電アダプタUaは、非接触給電部10の前面に着脱自在に取り付けられる取付手段をハウジング200内に備えている。   The non-contact power supply adapter Ua includes an attachment means in the housing 200 that is detachably attached to the front surface of the non-contact power supply unit 10.

この取付手段は、図5(a),(b)に示すように、非接触給電部10に設けた磁石M1a,M1bと、非接触給電アダプタUaの非接触受電部20に設けた磁石M2a,M2bとで構成される。非接触給電部10に設けた磁石M1a,M1bは略L型に各々形成され、一辺がS極、他辺がN極に各々着磁されており、磁石M1a,M1bの互いに異極となる端面同士を対向させて形成される矩形枠の内側に非接触給電部10を取り付ける。また、非接触受電部20に設けた磁石M2a,M2bは略L型に各々形成され、一辺がS極、他辺がN極に各々着磁されており、磁石M2a,M2bの互いに異極となる端面同士を対向させて形成される矩形枠の内側に非接触受電部20を取り付ける。   As shown in FIGS. 5A and 5B, the attachment means includes magnets M1a and M1b provided in the non-contact power supply unit 10 and magnets M2a provided in the non-contact power reception unit 20 of the non-contact power supply adapter Ua. M2b. The magnets M1a and M1b provided in the non-contact power feeding unit 10 are each formed in a substantially L shape, one side is magnetized to the S pole and the other side is magnetized to the N pole, and the end surfaces of the magnets M1a and M1b that are different from each other The non-contact power feeding unit 10 is attached to the inside of a rectangular frame formed so as to face each other. Further, the magnets M2a and M2b provided in the non-contact power receiving unit 20 are each formed in a substantially L shape, and one side is magnetized to an S pole and the other side is an N pole, and the magnets M2a and M2b are different from each other. The non-contact power receiving unit 20 is attached to the inside of a rectangular frame formed by facing the end faces.

したがって、非接触給電部10と非接触受電部20とが壁パネルP1、天井パネルP2、床パネルP3を介して互いに対向したときに、磁石M1a,M1bと磁石M2a,M2bとの各異極同士が互いに対向すれば、磁石M1a,M1bと磁石M2a,M2bとの間に磁気による吸引力が発生して、非接触受電部20は、給電ポイントX上で非接触給電部10に対向して正しい取付方向で設置される。取り付け方向が例えば90度ずれた場合には、磁石M1a,M1bと磁石M2a,M2bとの各同極同士が対向し、磁石M1a,M1bと磁石M2a,M2bとの間に磁気による反発力が発生して、給電ポイントX上で非接触受電部20を非接触給電部10に対向して設置することはできない。これは、一次コイルL1および二次コイルL2の各コア形状に起因して互いの電磁気的な結合が最大となる取付方向があることから、非接触受電部20を必ず正しい取付方向に設置させるためであり、上述の正しい取付方向とは、一次コイルL1と二次コイルL2との電磁気的な結合度が最も高くなる方向のことである。このときの磁気による吸引力は、非接触給電アダプタUaを、壁表面P1a、天井表面P2a、床表面P3aに取付可能な力を発生する。   Therefore, when the non-contact power feeding unit 10 and the non-contact power receiving unit 20 face each other through the wall panel P1, the ceiling panel P2, and the floor panel P3, the magnets M1a and M1b and the magnets M2a and M2b have different polarities. Are opposed to each other, a magnetic attractive force is generated between the magnets M1a and M1b and the magnets M2a and M2b, and the non-contact power receiving unit 20 is correctly opposed to the non-contact power feeding unit 10 on the feeding point X. Installed in the mounting direction. For example, when the mounting direction is shifted by 90 degrees, the same polarity of the magnets M1a, M1b and the magnets M2a, M2b are opposed to each other, and a magnetic repulsive force is generated between the magnets M1a, M1b and the magnets M2a, M2b. Thus, the non-contact power receiving unit 20 cannot be installed on the power feeding point X so as to face the non-contact power feeding unit 10. This is because there is an attachment direction in which the mutual electromagnetic coupling is maximized due to the respective core shapes of the primary coil L1 and the secondary coil L2. The correct mounting direction described above is the direction in which the degree of electromagnetic coupling between the primary coil L1 and the secondary coil L2 is the highest. At this time, the magnetic attractive force generates a force capable of attaching the non-contact power supply adapter Ua to the wall surface P1a, the ceiling surface P2a, and the floor surface P3a.

したがってユーザは、非接触受電部20を具備した非接触給電アダプタUaを給電ポイントX上に近付ければ、上記磁気による吸引力によって、非接触受電部20が非接触給電部10に対向して正しく取り付けられる。そして、非接触給電部10が発生する高周波磁界による電磁誘導によって、非接触受電部20は非接触給電部10から非接触で受電し、非接触給電アダプタUaの電力供給部21へ電源を供給する。   Therefore, when the user brings the non-contact power supply adapter Ua including the non-contact power reception unit 20 close to the power supply point X, the non-contact power reception unit 20 is correctly opposed to the non-contact power supply unit 10 by the magnetic attraction force. It is attached. The non-contact power receiving unit 20 receives power from the non-contact power feeding unit 10 in a non-contact manner by electromagnetic induction by a high-frequency magnetic field generated by the non-contact power feeding unit 10 and supplies power to the power supply unit 21 of the non-contact power feeding adapter Ua. .

このように、非接触給電アダプタUaは非接触式給電システムに適応しており、非接触給電部10から非接触で給電された電力を、非接触給電アダプタUaに装着された電気機器Qに供給して充電することができる。   As described above, the non-contact power supply adapter Ua is adapted to the non-contact power supply system, and supplies the electric power supplied from the non-contact power supply unit 10 in a non-contact manner to the electric device Q attached to the non-contact power supply adapter Ua. And can be charged.

ここで、非接触給電部10内の一次コイルL1と非接触受電部20の二次コイルL2との相対位置および設置環境や、一次コイルL1が発生する高周波磁界の周波数および大きさおよび範囲や、磁石M1a,M1bおよび磁石M2a,M2bからなる取付手段の構成は、規格によって統一されている。すなわち、上記非接触給電部10が発生する高周波磁界は、所定の規格に基づく所定周波数、所定強度の磁界が所定範囲内に発生するものであり、パネルPに非接触給電部10を設置する位置も所定の規格によって決められており、また上記非接触給電アダプタUaをパネル表面Paに設置する際に、非接触給電部10との相対位置(距離、方向等)も所定の規格で決められている。したがって、非接触給電アダプタUaが非接触給電部10から受電する電力は規定の範囲内に収まり、電力供給部21aの構成を簡略化することができる(例えば、動作可能入力範囲を狭く設計できる等)。   Here, the relative position and installation environment of the primary coil L1 in the non-contact power feeding unit 10 and the secondary coil L2 of the non-contact power receiving unit 20, the frequency and size and range of the high-frequency magnetic field generated by the primary coil L1, The configuration of the attachment means composed of the magnets M1a and M1b and the magnets M2a and M2b is unified according to the standard. That is, the high-frequency magnetic field generated by the non-contact power supply unit 10 is a magnetic field having a predetermined frequency and a predetermined intensity based on a predetermined standard within a predetermined range, and the position where the non-contact power supply unit 10 is installed on the panel P. Also, when the non-contact power supply adapter Ua is installed on the panel surface Pa, the relative position (distance, direction, etc.) with the non-contact power supply unit 10 is also determined by the predetermined standard. Yes. Therefore, the power received by the non-contact power supply adapter Ua from the non-contact power supply unit 10 is within a specified range, and the configuration of the power supply unit 21a can be simplified (for example, the operable input range can be designed to be narrow, etc.) ).

また、非接触給電部10は、壁パネルP1、天井パネルP2、床パネルP3内の複数箇所に各々組み込まれており、上記各部の規格化と併せて、ユーザは使用する非接触給電アダプタUaに応じて適切な位置に非接触給電アダプタUaを容易に設置することができ、優れた使い勝手を得ることができる。   Moreover, the non-contact electric power feeding part 10 is each integrated in the several location in the wall panel P1, the ceiling panel P2, and the floor panel P3, and a user is attached to the non-contact electric power feeding adapter Ua to be used with the standardization of each said part. Accordingly, the non-contact power supply adapter Ua can be easily installed at an appropriate position, and excellent usability can be obtained.

また、二次電池を具備して充電される電気機器Qとしては、携帯電話、シェーバ、乾電池、音楽プレイヤー、電動歯ブラシ、非常用ランプ等があり、非接触給電アダプタUaのハウジング200の形状(特に電気機器Qを装着する機器装着部の形状)は、装着される電気機器Qによって異なる。   Further, the electric device Q that is charged with the secondary battery includes a mobile phone, a shaver, a dry battery, a music player, an electric toothbrush, an emergency lamp, and the like, and the shape of the housing 200 of the non-contact power supply adapter Ua (particularly The shape of the device mounting portion on which the electrical device Q is mounted differs depending on the electrical device Q to be mounted.

さらに、非接触給電アダプタUaから電気機器Qへの充電形態は、上記のように給電用端子220を介して充電する接触式の充電方法を例示しているが、電力供給部21aが高周波磁界を発生し、この高周波磁界による電磁誘導を利用して非接触給電アダプタUaから電気機器Qへ非接触で電力を供給する方法でもよい。   Further, the charging form from the non-contact power supply adapter Ua to the electric device Q illustrates a contact-type charging method in which charging is performed via the power supply terminal 220 as described above, but the power supply unit 21a generates a high-frequency magnetic field. A method may be used in which electric power is generated from the non-contact power supply adapter Ua to the electric device Q in a non-contact manner by using electromagnetic induction caused by the high-frequency magnetic field.

なお、他の直流機器Uも上記同様に非接触受電部20に設けた磁石M2a,M2bを備えており、磁気による吸引力によって、非接触受電部20が非接触給電部10に対向して正しく取り付けられ、さらに各構成を上記同様に規格化すれば機能部21の構成を簡略化できる。   Other DC devices U also include magnets M <b> 2 a and M <b> 2 b provided in the non-contact power receiving unit 20 in the same manner as described above, and the non-contact power receiving unit 20 faces the non-contact power feeding unit 10 correctly by the magnetic attraction force. If the components are attached and the respective components are standardized in the same manner as described above, the configuration of the functional unit 21 can be simplified.

そして、非接触給電部10は、非接触給電部10の表面をパネル表面Paと面一に配置する形態や、非接触給電部10をパネルP内に組み込む形態があるが、いずれの形態であってもパネル表面Paに給電部材が突出しないので、複数の非接触給電部10を設置した場合に室内の意匠性および空間性を害することなく、例えば、部屋R1内の側壁、天井、床の見栄えをよくできる、家具等を壁に密着させて据え付けることが可能になる、邪魔にならない等の効果を奏し得る。   The non-contact power supply unit 10 includes a form in which the surface of the non-contact power supply unit 10 is disposed flush with the panel surface Pa and a form in which the non-contact power supply unit 10 is incorporated in the panel P. However, since the power supply member does not protrude on the panel surface Pa, for example, the appearance of the side walls, the ceiling, and the floor in the room R1 does not harm the design and space of the room when a plurality of non-contact power supply units 10 are installed. It is possible to improve the performance, to make it possible to install furniture and the like in close contact with the wall, and to obtain an effect that does not get in the way.

このように、本実施形態では、直流配電システム(図8参照)において、部屋R1内の直流機器Uに非接触で給電できるので、直流コンセント131や引掛シーリング132等のような接触式の直流アウトレットを建屋Hに設ける必要がなく、施工を簡略化できるとともに、パネル表面Paに給電部材が突出しないので建屋Hの側壁、天井、床面の見栄えがよくなり、さらには邪魔にもならない。また、ユーザは使用したい直流機器Uを給電ポイントXに取り付けるだけで直流機器Uを動作させることができるので、使い易いものとなり、さらに給電のための導体が露出していないので感電の危険性がない。而して、本実施形態では、配電系統による建屋Hの意匠性および空間性の悪化を防止できるとともに、直流機器Uへの電源供給が容易で高い安全性を得ることができる。   As described above, in the present embodiment, in the DC power distribution system (see FIG. 8), since the DC equipment U in the room R1 can be supplied in a non-contact manner, a contact type DC outlet such as the DC outlet 131 or the hooking ceiling 132 is used. Is not required in the building H, the construction can be simplified, and since the power feeding member does not protrude from the panel surface Pa, the appearance of the side wall, ceiling, and floor surface of the building H is improved, and further, it does not get in the way. In addition, since the user can operate the DC device U simply by attaching the DC device U to be used to the power supply point X, it is easy to use and there is no danger of electric shock because the conductor for power supply is not exposed. Absent. Thus, in this embodiment, it is possible to prevent deterioration of the design and space of the building H due to the power distribution system, and it is easy to supply power to the DC device U and to obtain high safety.

さらには、非接触給電アウトレットを構成する非接触給電部10の配置や負荷側の非接触受電部20の配置、建屋Hにおける家具等の備品の配置を自由にできる、所謂レイアウトフリーが実現されている。   Furthermore, so-called layout-free is realized in which the arrangement of the non-contact power feeding unit 10 constituting the non-contact power feeding outlet, the arrangement of the non-contact power receiving unit 20 on the load side, and the arrangement of furniture and the like in the building H can be freely performed. Yes.

また、磁気による吸着力を用いて直流機器Uの非接触受電部20を、壁パネルP1、天井パネルP2、床パネルP3内の非接触給電部10に対向して取り付けるので、ねじや係止手段等の取付手段を別途設ける必要がなく、構成の簡略化、取付作業の簡易化を図ることができる。   Further, the non-contact power receiving unit 20 of the DC device U is attached to the non-contact power feeding unit 10 in the wall panel P1, the ceiling panel P2, and the floor panel P3 by using magnetic attraction force. It is not necessary to separately provide a mounting means such as the above, and the structure can be simplified and the mounting work can be simplified.

また、ねじ、面ファスナ、吸盤、粘着性樹脂、両面テープ等の取付手段によって、直流機器Uや非接触受電部20単体を壁表面P1a、天井表面P2a、床表面P3aに取り付ける構成でもよく、さらにはこれらの取付手段を上記磁石を用いた取付手段と併用してもよい。   Further, the DC device U or the non-contact power receiving unit 20 alone may be attached to the wall surface P1a, the ceiling surface P2a, and the floor surface P3a by attaching means such as screws, hook-and-loop fasteners, suction cups, adhesive resin, and double-sided tape. These attachment means may be used in combination with the attachment means using the magnet.

さらに、壁パネルP1、天井パネルP2、床パネルP3内に複数の非接触給電部10を組み込む代わりに、図6に示すように、壁パネルP1、天井パネルP2、床パネルP3の部屋R1に面しない各裏面P1b、P2b、P3b(まとめてパネル裏面Pbと称す)上に複数の非接触給電部10を組み込んだシートYを敷設する構成でもよい。この場合、給電ポイントXの追加、削除は、シートSを壁裏面P1b、天井裏面P2b、床裏面P3b上に追加、削除することで行うことができ、レイアウト変更等による給電ポイントの変更を容易に行うことができる。   Furthermore, instead of incorporating a plurality of non-contact power feeding units 10 in the wall panel P1, ceiling panel P2, and floor panel P3, as shown in FIG. 6, the wall panel P1, ceiling panel P2, and floor panel P3 face the room R1. A configuration in which a sheet Y incorporating a plurality of non-contact power feeding units 10 is laid on each back surface P1b, P2b, P3b (collectively referred to as a panel back surface Pb). In this case, the addition and deletion of the feeding point X can be performed by adding and deleting the sheet S on the wall back surface P1b, the ceiling back surface P2b, and the floor back surface P3b. It can be carried out.

(実施形態2)
本実施形態の非接触給電アダプタUaは、電力供給部21aとして以下の機能を有する点が実施形態1とは異なり、同様の構成には同一の符号を付して説明は省略する。
(Embodiment 2)
The non-contact power supply adapter Ua of the present embodiment is different from the first embodiment in that it has the following functions as the power supply unit 21a, and the same components are denoted by the same reference numerals and description thereof is omitted.

電力供給部21aは、非接触受電部20から出力される直流電圧を複数の所定電圧(例えば、5V,12V,24V)に一定制御する機能を有する。そして、ハウジング200の底部204の前面から操作部を露出させた切替スイッチ222を設けており、この切替スイッチ222によって選択された所定電圧に一定制御して、この所定電圧を給電用端子220から電気機器Qに供給し、電気機器Qは供給された直流電力によって内蔵した二次電池(図示なし)を充電する。そして、電力供給部21aは充電電流を監視しており、充電中はLED素子221を点灯し、充電完了を検知するとLED素子221を消灯する。   The power supply unit 21a has a function of constantly controlling the DC voltage output from the non-contact power receiving unit 20 to a plurality of predetermined voltages (for example, 5V, 12V, 24V). A change-over switch 222 having an operation portion exposed from the front surface of the bottom portion 204 of the housing 200 is provided. The change-over switch 222 is controlled to a predetermined voltage selected by the change-over switch 222 so that the predetermined voltage is electrically supplied from the power supply terminal 220. The electric device Q charges the built-in secondary battery (not shown) with the supplied DC power. The power supply unit 21a monitors the charging current, turns on the LED element 221 during charging, and turns off the LED element 221 when the completion of charging is detected.

したがって、1台の非接触給電アダプタUaを用いて、同形状且つ定格電圧の異なる複数の電気機器Qに対応させることができ、ユーザは複数の非接触給電アダプタを準備する必要がなく、利便性が向上する。   Therefore, the single contactless power supply adapter Ua can be used for a plurality of electrical devices Q having the same shape and different rated voltages, and the user does not need to prepare a plurality of contactless power supply adapters. Will improve.

なお、非接触給電アダプタUaの電力供給部21aが有する機能は充電機能に限定されず、電気機器Qに直流電力を供給することで各種動作(照明、音楽再生等)を行わせる機能であってもよい。   The function of the power supply unit 21a of the non-contact power supply adapter Ua is not limited to the charging function, and is a function of performing various operations (lighting, music playback, etc.) by supplying DC power to the electrical device Q. Also good.

また、上記実施形態1,2では、図8に示す配電システムにおいて直流配電系統に非接触給電システムを適用しているが、図示しない交流配電系統に各実施形態と同様の非接触給電システムを適用してもよい。この場合、非接触給電部10の入力段に商用電源を整流する整流手段を設け、非接触受電部20の出力段にインバータ装置等のDC/AC変換装置を設ける。   In the first and second embodiments, the non-contact power feeding system is applied to the DC power distribution system in the power distribution system shown in FIG. 8, but the same non-contact power feeding system as that of each embodiment is applied to the AC power distribution system (not shown). May be. In this case, a rectifying means for rectifying the commercial power supply is provided at the input stage of the non-contact power supply unit 10, and a DC / AC conversion device such as an inverter device is provided at the output stage of the non-contact power reception unit 20.

実施形態1の非接触給電アダプタの構成を示す斜視図である。1 is a perspective view illustrating a configuration of a non-contact power supply adapter according to Embodiment 1. FIG. (a)〜(c)同上の構成を示す平面図である。(A)-(c) It is a top view which shows the structure same as the above. 非接触給電システムを用いた部屋の概略構成を示す図である。It is a figure which shows schematic structure of the room using a non-contact electric power feeding system. 非接触給電システムの回路構成を示す図である。It is a figure which shows the circuit structure of a non-contact electric power feeding system. (a)は同上の非接触給電部が具備する磁石の配置、(b)は非接触受電部が具備する磁石の配置を各々示す図である。(A) is the figure which shows arrangement | positioning of the magnet which the non-contact electric power feeding part same as the above comprises, (b) is a figure which respectively shows arrangement | positioning of the magnet which the non-contact electric power receiving part comprises. 同上の非接触給電部の配置の別の構成を示す図である。It is a figure which shows another structure of arrangement | positioning of a non-contact electric power feeding part same as the above. 実施形態2の非接触給電アダプタの構成を示す平面図である。It is a top view which shows the structure of the non-contact electric power feeding adapter of Embodiment 2. 配電システムの全体構成を示す図である。It is a figure which shows the whole structure of a power distribution system.

符号の説明Explanation of symbols

Ua 非接触給電アダプタ
20 非接触受電部
21a 電力供給部
200 ハウジング
210 凹部
220 給電用端子
M2a,M2b 磁石
10 非接触給電部
Q 電気機器
P パネル
Pa パネル表面
Ua Non-contact power supply adapter 20 Non-contact power receiving unit 21a Power supply unit 200 Housing 210 Recessed portion 220 Power supply terminal M2a, M2b Magnet 10 Non-contact power supply unit Q Electrical equipment P Panel Pa Panel surface

Claims (4)

建屋の壁または天井または床を構成する建材内または建材の一面において規格化された位置に配置されて規格化された高周波磁界を発生する非接触給電部に対向して建材の他面に取り付けられる非接触給電アダプタであって、
非接触給電部に対向して建材の他面に着脱自在に取着する取付手段と、
非接触給電部との相対位置を規格化されて非接触給電部が発生する高周波磁界による電磁誘導を利用して非接触給電部から非接触で電力を受電する非接触受電部と、
電気機器を装着する機器装着部と、
受電した電力を機器装着部に装着された電気機器に供給する電力供給部と
を備えることを特徴とする非接触給電アダプタ。
Attached to the other surface of the building material facing the non-contact power feeding part that generates a standardized high-frequency magnetic field by being placed at a standardized position in the building material constituting the wall or ceiling or floor of the building or on one surface of the building material A non-contact power supply adapter,
Mounting means for detachably attaching to the other surface of the building material facing the non-contact power feeding unit;
A non-contact power receiving unit that receives power from the non-contact power feeding unit in a non-contact manner using electromagnetic induction caused by a high-frequency magnetic field generated by the non-contact power feeding unit that is standardized relative to the non-contact power feeding unit;
A device mounting part for mounting electrical devices;
A non-contact power feeding adapter comprising: a power supply unit that supplies received power to an electrical device mounted on the device mounting unit.
前記電力供給部は、出力電圧を所定電圧に制御することを特徴とする請求項1記載の非接触給電アダプタ。   The contactless power supply adapter according to claim 1, wherein the power supply unit controls an output voltage to a predetermined voltage. 複数の所定電圧からいずれか1つを選択する電圧値選択手段を備え、前記電力供給部は、出力電圧を選択された所定電圧に制御することを特徴とする請求項2記載の非接触給電アダプタ。   3. The non-contact power feeding adapter according to claim 2, further comprising voltage value selection means for selecting any one of a plurality of predetermined voltages, wherein the power supply unit controls the output voltage to the selected predetermined voltage. . 前記取付手段は、前記非接触受電部に設けられた磁石との間で吸引力を発生する磁石で構成されることを特徴とする請求項1乃至3いずれか記載の非接触給電アダプタ。   The contactless power supply adapter according to any one of claims 1 to 3, wherein the attachment means is configured by a magnet that generates an attractive force with a magnet provided in the contactless power receiving unit.
JP2007332889A 2007-12-25 2007-12-25 Noncontact power feed adaptor Pending JP2009159686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007332889A JP2009159686A (en) 2007-12-25 2007-12-25 Noncontact power feed adaptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007332889A JP2009159686A (en) 2007-12-25 2007-12-25 Noncontact power feed adaptor

Publications (1)

Publication Number Publication Date
JP2009159686A true JP2009159686A (en) 2009-07-16

Family

ID=40963089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007332889A Pending JP2009159686A (en) 2007-12-25 2007-12-25 Noncontact power feed adaptor

Country Status (1)

Country Link
JP (1) JP2009159686A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147513A (en) * 2010-01-19 2011-08-04 Panasonic Electric Works Co Ltd Furniture with non-contact power supplying function
JP2012252283A (en) * 2011-06-06 2012-12-20 Daiwa House Industry Co Ltd Media reproduction system for building
KR101234871B1 (en) 2011-05-03 2013-02-19 심경준 Non-contact charging system and method
JP2013165630A (en) * 2012-01-10 2013-08-22 Panasonic Corp Non-contact power supply system for illumination and lighting apparatus
WO2014020917A1 (en) * 2012-08-02 2014-02-06 パナソニック株式会社 Wireless charger and automobile
JP2015061444A (en) * 2013-09-19 2015-03-30 トヨタホーム株式会社 Building wall structure
JP2016049016A (en) * 2011-09-22 2016-04-07 パナソニックIpマネジメント株式会社 Contactless power supply device and contactless power supply system
JP2018174621A (en) * 2017-03-31 2018-11-08 日本電気株式会社 Charger and charging unit
JP2021087336A (en) * 2019-11-29 2021-06-03 株式会社Lixil Power supply unit and wireless power supply system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04361507A (en) * 1991-05-31 1992-12-15 Talent Lab Inc Concealment type power supply-information receptacle
JP2001230034A (en) * 2000-02-18 2001-08-24 Hitachi Koki Co Ltd Adapter for direct-current power source device
JP2005057311A (en) * 2001-07-04 2005-03-03 God Co Ltd Data transfer apparatus for connecting to charging adaptor of mobile phone
JP2005110409A (en) * 2003-09-30 2005-04-21 Sharp Corp Power supply system
JP2006102055A (en) * 2004-10-04 2006-04-20 Cleanup Corp Cordless power source apparatus
JP2006136045A (en) * 2004-11-02 2006-05-25 Sharp Corp Power supply system and power supply service using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04361507A (en) * 1991-05-31 1992-12-15 Talent Lab Inc Concealment type power supply-information receptacle
JP2001230034A (en) * 2000-02-18 2001-08-24 Hitachi Koki Co Ltd Adapter for direct-current power source device
JP2005057311A (en) * 2001-07-04 2005-03-03 God Co Ltd Data transfer apparatus for connecting to charging adaptor of mobile phone
JP2005110409A (en) * 2003-09-30 2005-04-21 Sharp Corp Power supply system
JP2006102055A (en) * 2004-10-04 2006-04-20 Cleanup Corp Cordless power source apparatus
JP2006136045A (en) * 2004-11-02 2006-05-25 Sharp Corp Power supply system and power supply service using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147513A (en) * 2010-01-19 2011-08-04 Panasonic Electric Works Co Ltd Furniture with non-contact power supplying function
JP2015083148A (en) * 2010-01-19 2015-04-30 パナソニックIpマネジメント株式会社 Furniture with noncontact power feed function
KR101234871B1 (en) 2011-05-03 2013-02-19 심경준 Non-contact charging system and method
JP2012252283A (en) * 2011-06-06 2012-12-20 Daiwa House Industry Co Ltd Media reproduction system for building
JP2016049016A (en) * 2011-09-22 2016-04-07 パナソニックIpマネジメント株式会社 Contactless power supply device and contactless power supply system
JP2013165630A (en) * 2012-01-10 2013-08-22 Panasonic Corp Non-contact power supply system for illumination and lighting apparatus
WO2014020917A1 (en) * 2012-08-02 2014-02-06 パナソニック株式会社 Wireless charger and automobile
JP2015061444A (en) * 2013-09-19 2015-03-30 トヨタホーム株式会社 Building wall structure
JP2018174621A (en) * 2017-03-31 2018-11-08 日本電気株式会社 Charger and charging unit
JP2021087336A (en) * 2019-11-29 2021-06-03 株式会社Lixil Power supply unit and wireless power supply system
JP7390174B2 (en) 2019-11-29 2023-12-01 株式会社Lixil Power supply unit and wireless power supply system

Similar Documents

Publication Publication Date Title
JP5314278B2 (en) Contactless power supply system
JP2009159686A (en) Noncontact power feed adaptor
JP2009159683A (en) Building with noncontact power feed function, and noncontact power feed outlet
JP2009159675A (en) Noncontact power feed panel
JP4858429B2 (en) Wash basin
US9214773B2 (en) Configurable safety light receptacle
US9520671B2 (en) Configurable safety light receptacle
US9912100B2 (en) Low voltage buss system
US20080073117A1 (en) Configurable safety light receptacle
JP5314277B2 (en) Bathtub with non-contact power supply function
US9642222B2 (en) Light bulb adapter
JP2010040389A (en) Wiring device, and feeding system using wiring device
US10483796B2 (en) Power control system
JP5255268B2 (en) Contactless power supply adapter
US20160156378A1 (en) Electronic Smart Device Holder
JP5032969B2 (en) DC outlet
JP2009146777A (en) Dc connecting device
JP2009142012A (en) Direct-current power distribution system
JP2009146827A (en) Dc receptacle
JP2009165250A (en) Dc power distribution system
JP7470915B2 (en) Battery Storage System
JP2009158297A (en) Switch for dc power supply
JP7390572B2 (en) Control device and power conversion system
JP4591440B2 (en) Wiring system
JP2010039853A (en) Wiring apparatus adapter and power supply system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100812

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110425

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111212

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111228

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111