JP2009159675A - Noncontact power feed panel - Google Patents

Noncontact power feed panel Download PDF

Info

Publication number
JP2009159675A
JP2009159675A JP2007332826A JP2007332826A JP2009159675A JP 2009159675 A JP2009159675 A JP 2009159675A JP 2007332826 A JP2007332826 A JP 2007332826A JP 2007332826 A JP2007332826 A JP 2007332826A JP 2009159675 A JP2009159675 A JP 2009159675A
Authority
JP
Japan
Prior art keywords
contact power
unit
contact
power supply
power feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007332826A
Other languages
Japanese (ja)
Inventor
Kazufumi Oki
一史 大木
Masahiro Yamamoto
政博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2007332826A priority Critical patent/JP2009159675A/en
Publication of JP2009159675A publication Critical patent/JP2009159675A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noncontact power feed panel which can be simply installed on a power distribution system and readily feeds power to the loads with high safety. <P>SOLUTION: The noncontact power feeding panel P is provided with: an elongated casing 1 set on an installation surface of a structure; a plurality of noncontact power feed sections 10 disposed on a plurality of positions along the longitudinal direction in the casing 1 and each generating a high-frequency magnetic field; and an attaching means for attaching a noncontact power receiving section 20 feeding the power received in a noncontact manner from the noncontact power feeding sections 10 to a DC apparatus U to the external surface of the casing 1 opposing each of the noncontact power feed sections 10 by utilizing electromagnetic induction caused by the high-frequency magnetic field generated from each of the noncontact power feed sections 10. The attaching means includes magnets M1a, M1b of the noncontact power feed section 10 and magnets M2a, M2b of the noncontact power receiving section 20. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、非接触給電用パネルに関するものである。   The present invention relates to a non-contact power supply panel.

従来、住宅やオフィス等の建屋内に配設される配電系統としては、商用電源を供給する交流の配電系統や、商用電源を直流電圧に変換した直流電源を供給する直流の配電系統がある。   2. Description of the Related Art Conventionally, power distribution systems disposed in buildings such as houses and offices include an AC power distribution system that supplies commercial power and a DC power distribution system that supplies DC power obtained by converting commercial power into DC voltage.

これらの建屋内に配設された配電系統は、建屋の壁面、天井面、床面を構成する建材の施工面に開口を設け、この開口に設置したコンセントや引掛シーリング等の接触式のアウトレットに、電気機器に直接設けた接触子(導体)または接続線を介して設けた接触子が直接接触することによって、各電気機器へ電源を供給していた(例えば、特許文献1,2参照)。
特開平2−276412号公報 特開平7−15835号公報
The distribution system installed in these buildings has openings in the construction surfaces of the building materials that make up the walls, ceilings, and floors of the building, and contact outlets such as outlets and hook ceilings installed in these openings. In addition, a contact (conductor) provided directly on an electrical device or a contact provided via a connection line is in direct contact to supply power to each electrical device (see, for example, Patent Documents 1 and 2).
Japanese Patent Laid-Open No. 2-276212 Japanese Patent Laid-Open No. 7-15835

しかし、上記従来の技術では、コンセント等のアウトレットを設置するために、建屋の壁面、天井面、床面に開口を設ける必要があり、さらに設置後の建屋内の見栄えがよくなかった。また、ユーザは、コンセント等のアウトレットに、電気機器の接触子を接続する手間が必要となり、さらには給電のための導体が露出しているので感電の危険があった。   However, in the above conventional technique, in order to install outlets such as outlets, it is necessary to provide openings in the wall surface, ceiling surface, and floor surface of the building, and the appearance of the building after installation is not good. In addition, the user needs to connect a contact of an electric device to an outlet such as an outlet, and there is a risk of electric shock because a conductor for power feeding is exposed.

本発明は、上記事由に鑑みてなされたものであり、その目的は、配電系統の施工を簡易にできるとともに、負荷への電源供給が容易で安全性の高い非接触給電用パネルを提供することにある。   The present invention has been made in view of the above reasons, and an object thereof is to provide a non-contact power supply panel that can simplify the construction of a power distribution system and can easily supply power to a load and has high safety. It is in.

請求項1の発明は、構造物の施工面に設置された長尺状の筐体と、筐体内の長手方向に沿った複数の位置に設置されて高周波磁界を各々発生する複数の非接触給電部と、各非接触給電部が発生する高周波磁界による電磁誘導を利用して非接触給電部から非接触で受電した電力を負荷へ供給する非接触受電部を各非接触給電部に対向する筐体外面に取り付ける取付手段とを備えたことを特徴とする。   The invention according to claim 1 is a long housing installed on a construction surface of a structure, and a plurality of non-contact power feedings that are installed at a plurality of positions along the longitudinal direction in the housing to generate high-frequency magnetic fields. And a non-contact power receiving unit that supplies non-contact power received from the non-contact power supply unit to the load using electromagnetic induction by a high-frequency magnetic field generated by each non-contact power supply unit. And mounting means for attaching to the outer surface of the body.

この発明によれば、非接触給電用パネルを設置することによって負荷に非接触で給電できるので、コンセントや引掛シーリング等のような接触式のアウトレットを設ける必要がなく、施工を簡略化できる。また、ユーザは非接触受電部を非接触給電部に対向して取り付けるだけで負荷を動作させることができるので、使い易いものとなり、さらに給電のための導体が露出していないので感電の危険性がない。而して、本実施形態の非接触給電用パネルを用いることで、配電系統の施工を簡易にできるとともに、負荷への電源供給が容易で安全性の高い配電システムを実現できる。   According to the present invention, since a non-contact power supply panel can be installed to supply power to the load in a non-contact manner, it is not necessary to provide a contact outlet such as an outlet or a hook ceiling, and the construction can be simplified. In addition, the user can operate the load simply by mounting the non-contact power receiving unit opposite to the non-contact power feeding unit, which makes it easy to use and does not expose the conductor for power feeding. There is no. Thus, by using the non-contact power supply panel of this embodiment, it is possible to simplify the construction of the power distribution system, and to realize a power distribution system that is easy to supply power to the load and has high safety.

請求項2の発明は、請求項1において、前記取付手段は、前記非接触給電部と非接触受電部との間に前記筐体を介した吸引力を発生させ、当該吸引力によって、筐体外面において非接触給電部に対向する位置に非接触受電部を着脱自在に取り付けることを特徴とする。   According to a second aspect of the present invention, in the first aspect, the attachment means generates a suction force via the housing between the non-contact power feeding unit and the non-contact power receiving unit, and the housing is generated by the suction force. A non-contact power receiving unit is detachably attached at a position facing the non-contact power feeding unit on the outer surface.

この発明によれば、ねじや係止手段等の取付手段を別途設ける必要がなく、構成の簡略化、取付作業の簡易化を図ることができる。   According to the present invention, it is not necessary to separately provide attachment means such as screws and locking means, and the configuration can be simplified and the attachment work can be simplified.

請求項3の発明は、請求項2において、前記取付手段は、前記非接触給電部と非接触受電部とに各々設けられた磁石間に発生する吸引力によって、筐体外面において非接触給電部に対向する位置に非接触受電部を着脱自在に取り付けることを特徴とする。   According to a third aspect of the present invention, in the second aspect of the present invention, the attachment means includes a non-contact power feeding unit on an outer surface of the housing by an attractive force generated between magnets provided in the non-contact power feeding unit and the non-contact power receiving unit. A non-contact power receiving unit is detachably attached at a position opposite to.

この発明によれば、ねじや係止手段等の取付手段を別途設ける必要がなく、構成の簡略化、取付作業の簡易化を図ることができる。   According to the present invention, it is not necessary to separately provide attachment means such as screws and locking means, and the configuration can be simplified and the attachment work can be simplified.

請求項4の発明は、請求項1乃至3いずれかにおいて、前記非接触給電部は、高周波電流を供給されることで高周波磁界を発生するコイルを具備し、前記各非接触給電部に非接触受電部が対向して配置されたか否かを検出する駆動対象検出手段と、非接触受電部が対向して配置された非接触給電部のコイルに所定の高周波電流を供給して高周波磁界を発生させる駆動手段とを備えることを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the non-contact power feeding unit includes a coil that generates a high-frequency magnetic field when supplied with a high-frequency current, and is non-contact with each non-contact power feeding unit. A high-frequency magnetic field is generated by supplying a predetermined high-frequency current to a drive target detection unit that detects whether or not the power reception unit is disposed opposite to the coil of the non-contact power supply unit that is disposed opposite to the non-contact power reception unit And a driving means for making it happen.

この発明によれば、全ての非接触給電部を常時駆動するのではなく、非接触受電部が対向して配置されている非接触給電部のみを駆動するので、不必要な電力を消費することなく、省エネルギー化を図ることができる。   According to the present invention, not all the non-contact power feeding units are driven at all times, but only the non-contact power feeding units arranged so that the non-contact power receiving units are opposed to each other are driven, so that unnecessary power is consumed. Energy saving.

請求項5の発明は、請求項4において、前記駆動対象検出手段は、前記複数の非接触給電部のうち1つのみを駆動する検出可能期間を、駆動する非接触給電部を順次切り換えて一定時間毎に発生させ、検出可能期間において駆動中の非接触給電部から受電側をみたインピーダンスを測定し、当該測定したインピーダンスに基づいて当該非接触給電部に非接触受電部が対向して配置されているか否かを判断することを特徴とする。   According to a fifth aspect of the present invention, in the fourth aspect of the present invention, the drive target detecting means is configured to switch a non-contact power feeding unit to be driven in a constant period during which only one of the plurality of non-contact power feeding units is driven. It is generated every hour, and the impedance viewed from the non-contact power feeding unit being driven during the detectable period is measured, and the non-contact power receiving unit is arranged to face the non-contact power feeding unit based on the measured impedance. It is characterized by determining whether or not.

この発明によれば、各非接触給電部に非接触受電部が対向して配置されているか否かを確実に検出することができる。   According to the present invention, it is possible to reliably detect whether or not the non-contact power receiving unit is arranged to face each non-contact power feeding unit.

請求項6の発明は、請求項1乃至5いずれかにおいて、前記筐体は、筐体内の長手方向に沿った複数の位置に前記非接触給電部の設置位置を予め設定しており、筐体の外面は各設置位置に対応する箇所にLED素子を設け、各LED素子に対応する設置位置に非接触給電部が設置された場合にLED素子を点灯させる点灯手段を備えることを特徴とする。   A sixth aspect of the present invention provides the housing according to any one of the first to fifth aspects, wherein the housing has the installation positions of the non-contact power feeding portions set in advance at a plurality of positions along the longitudinal direction in the housing. The LED has an LED element at a location corresponding to each installation position, and includes a lighting unit that lights the LED element when a non-contact power feeding unit is installed at the installation position corresponding to each LED element.

この発明によれば、ユーザは、LED素子が点灯している位置に非接触受電部を取り付ければよく、設置位置が容易にわかる。   According to this invention, the user only needs to attach the non-contact power receiving unit to the position where the LED element is lit, and the installation position can be easily understood.

請求項7の発明は、請求項1乃至5いずれかにおいて、前記筐体は、筐体内の長手方向に沿った複数の位置に前記非接触給電部の設置位置を予め設定しており、筐体の外面は各設置位置に対応する箇所にLED素子を設け、各LED素子は、当該LED素子に対応する設置位置の非接触給電部の給電状態を表示することを特徴とする。   A seventh aspect of the present invention provides the housing according to any one of the first to fifth aspects, wherein the housing has the installation positions of the non-contact power feeding portions set in advance at a plurality of positions along the longitudinal direction in the housing. LED elements are provided at locations corresponding to the respective installation positions, and each LED element displays the power supply state of the non-contact power feeding unit at the installation position corresponding to the LED element.

この発明によれば、ユーザは、負荷に給電されているか否かを容易に認識できる。   According to this invention, the user can easily recognize whether or not power is being supplied to the load.

以上説明したように、本発明では、配電系統の施工を簡易にできるとともに、負荷への電源供給が容易で安全性を得ることができるという効果がある。   As described above, according to the present invention, it is possible to simplify the construction of the power distribution system, and to easily supply power to the load and to obtain safety.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
本実施形態では、住宅等の建屋H内に非接触給電システムを備え付け、従来のコンセントや引掛シーリング等の接触式のアウトレットに、電気機器(負荷)に直接設けた接触子(導体)または接続線を介して設けた接触子が直接接触することによって行われる電気機器への電力供給の代わりに、非接触で電気機器へ電力供給を行うものである。
(Embodiment 1)
In this embodiment, a contactless power supply system is provided in a building H such as a house, and contacts (conductors) or connecting wires provided directly on electrical equipment (loads) on contact outlets such as conventional outlets and hook ceilings. Instead of supplying electric power to the electric device performed by direct contact of the contact provided through the contact, electric power is supplied to the electric device in a non-contact manner.

なお、本実施形態においては、建屋H内の配電系統を直流配電系統で構成しており、最初にこの配電システムの概略について図9を用いて説明する。   In the present embodiment, the power distribution system in the building H is constituted by a DC power distribution system. First, an outline of this power distribution system will be described with reference to FIG.

以下に説明する実施形態は、本発明を適用する建物として戸建て住宅の家屋を想定して説明するが、本発明の技術思想を集合住宅に適用することを妨げるものではない。建屋Hには、図9に示すように、直流電力を出力する直流電力供給部101と、直流電力により駆動される電気機器である直流機器U’とが設けられ、直流電力供給部101の出力端部に接続した直流供給線路Wdcを通して直流機器U’に直流電力が供給される。直流電力供給部101と直流機器U’との間には、直流供給線路Wdcに流れる電流を監視し、異常を検知したときに直流給電線路Wdc上で直流電力供給部101から直流機器U’への給電を制限ないし遮断する直流ブレーカ114が設けられる。   The embodiments described below are described assuming a detached house as a building to which the present invention is applied, but this does not preclude the application of the technical idea of the present invention to an apartment house. As shown in FIG. 9, the building H is provided with a DC power supply unit 101 that outputs DC power and a DC device U ′ that is an electric device driven by the DC power. DC power is supplied to the DC device U ′ through the DC supply line Wdc connected to the end. A current flowing through the DC supply line Wdc is monitored between the DC power supply unit 101 and the DC device U ′, and when an abnormality is detected, the DC power supply unit 101 to the DC device U ′ is detected on the DC power supply line Wdc. A DC breaker 114 is provided to limit or cut off the power supply.

直流供給線路Wdcは、直流電力の給電路であるとともに通信路としても兼用されており、高周波の搬送波を用いてデータを伝送する通信信号を直流電圧に重畳することにより直流供給線路Wdcに接続された機器間での通信を可能にしている。この技術は、交流電力を供給する電力線において交流電圧に通信信号を重畳させる電力線搬送技術と類似した技術である。   The DC supply line Wdc is used as both a DC power supply path and a communication path, and is connected to the DC supply line Wdc by superimposing a communication signal for transmitting data on a DC voltage using a high-frequency carrier wave. Enables communication between devices. This technique is similar to a power line carrier technique in which a communication signal is superimposed on an AC voltage in a power line that supplies AC power.

直流供給線路Wdcは、直流電力供給部101を介して宅内サーバ116に接続される。宅内サーバ116は、宅内の通信網(以下、「宅内網」という)を構築する主装置であり、宅内網において直流機器U’が構築するサブシステムなどと通信を行う。   The DC supply line Wdc is connected to the home server 116 via the DC power supply unit 101. The home server 116 is a main device that constructs a home communication network (hereinafter referred to as “home network”), and communicates with a subsystem or the like constructed by the DC device U ′ in the home network.

図示例では、サブシステムとして、パーソナルコンピュータ、無線アクセスポイント、ルータ、IP電話機のような情報系の直流機器U’からなる情報機器システムK101、照明器具のような照明系の直流機器U’からなる照明システムK102,K105、来客対応や侵入者の監視などを行う直流機器U’からなるインターホンシステムK103、火災感知器のような警報系の直流機器U’からなる住警器システムK104などがある。各サブシステムは、自立分散システムを構成しており、サブシステム単独でも動作が可能になっている。   In the illustrated example, the subsystem includes an information equipment system K101 including an information system DC equipment U ′ such as a personal computer, a wireless access point, a router, and an IP telephone, and an illumination system DC equipment U ′ such as a lighting fixture. There are lighting systems K102 and K105, an intercom system K103 composed of a DC device U ′ for dealing with visitors and monitoring intruders, a residential alarm system K104 composed of an alarm DC device U ′ such as a fire detector, and the like. Each subsystem constitutes a self-supporting distributed system, and can operate even with the subsystem alone.

上述した直流ブレーカ114は、サブシステムに関連付けて設けられており、図示例では、情報機器システムK101、照明システムK102およびインターホンシステムK103、住警器システムK104、照明システムK105に関連付けて4個の直流ブレーカ114を設けている。1台の直流ブレーカ114に複数個のサブシステムを関連付ける場合には、サブシステムごとに直流供給線路Wdcの系統を分割する接続ボックス121が設けられる。図示例においては、照明システムK102とインターホンシステムK103との間に接続ボックス121が設けられている。   The above-described DC breaker 114 is provided in association with a subsystem. In the illustrated example, four DCs are associated with the information equipment system K101, the lighting system K102 and the intercom system K103, the house alarm system K104, and the lighting system K105. A breaker 114 is provided. When a plurality of subsystems are associated with one DC breaker 114, a connection box 121 for dividing the system of the DC supply line Wdc is provided for each subsystem. In the illustrated example, a connection box 121 is provided between the illumination system K102 and the intercom system K103.

情報機器システムK101としては、壁コンセントあるいは床コンセントの形態で建屋Hに先行配置(建屋Hの建築時に施工)される直流コンセント131に接続される直流機器U’からなる情報機器システムK101が設けられる。   As the information equipment system K101, there is provided an information equipment system K101 comprising a direct current equipment U ′ connected to a direct current outlet 131 arranged in advance in the building H in the form of a wall outlet or a floor outlet (constructed during construction of the building H). .

照明システムK102、K105としては、建屋Hに先行配置される照明器具(直流機器U’)からなる照明システムK102と、天井に先行配置される引掛シーリング132に接続する照明器具(直流機器U’)からなる照明システムK105とが設けられる。引掛シーリング132には、建屋Hの内装施工時に施工業者が照明器具を取り付けるか、または家人自身が照明器具を取り付ける。   As the lighting systems K102 and K105, the lighting system K102 composed of a lighting fixture (DC device U ′) arranged in advance in the building H and the lighting fixture (DC appliance U ′) connected to the hook ceiling 132 arranged in advance on the ceiling. And an illumination system K105. At the time of interior construction of the building H, the contractor attaches the lighting fixture to the hook ceiling 132, or the resident himself attaches the lighting fixture.

照明システムK102を構成する直流機器U’である照明器具に対する制御の指示は、赤外線リモコン装置を用いて与えるほか、直流供給線路Wdcに接続されたスイッチ141から通信信号を用いて与えることができる。すなわち、スイッチ141は直流機器U’とともに通信の機能を有している。また、スイッチ141の操作によらず、宅内網の別の直流機器U’あるいは宅内サーバ116から通信信号により制御の指示がなされることもある。照明器具への指示には、点灯、消灯、調光、点滅点灯などがある。   In addition to using an infrared remote control device, a control instruction for the lighting apparatus that is the DC device U ′ constituting the lighting system K102 can be given using a communication signal from the switch 141 connected to the DC supply line Wdc. That is, the switch 141 has a communication function together with the DC device U ′. In addition, a control instruction may be given by a communication signal from another DC device U 'in the home network or the home server 116 regardless of the operation of the switch 141. The instructions to the lighting fixture include lighting, extinguishing, dimming, and blinking lighting.

上述した直流コンセント131、引掛シーリング132には、任意の直流機器U’を接続することができ、接続された直流機器U’に直流電力を出力するから、以下では直流コンセント131、引掛シーリング132を区別する必要がない場合には「直流アウトレット」と呼ぶ。   Arbitrary DC equipment U ′ can be connected to the DC outlet 131 and the hooking ceiling 132 described above, and since DC power is output to the connected DC equipment U ′, the DC outlet 131 and the hooking ceiling 132 will be described below. When it is not necessary to distinguish, it is called a “DC outlet”.

これらの直流アウトレットは、直流機器U’に直接設けた接触子(図示しないプラグの栓刃や導体片等)または接続線を介して設けた接触子が差し込まれる差込式の接続口が器体に開口し、接続口に差し込まれた接触子に直接接触する接触子受けが器体に保持された構造を有しており、接触式で給電を行う。直流アウトレットに接続された直流機器U’が通信機能を有する場合には、直流供給線路Wdcを通して通信信号を伝送することが可能になる。直流機器U’だけではなく直流アウトレットにも通信機能が設けられている。   These DC outlets have a contact (such as a plug blade or conductor piece of a plug (not shown)) directly provided on the DC device U ′ or a plug-in connection port into which a contact provided via a connection line is inserted. The contact holder that directly contacts the contact inserted into the connection port is held by the container, and power is supplied in a contact manner. When the DC device U 'connected to the DC outlet has a communication function, a communication signal can be transmitted through the DC supply line Wdc. A communication function is provided not only in the DC device U 'but also in the DC outlet.

宅内サーバ116は、宅内網に接続されるだけではなく、インターネットを構築する広域網NTに接続される接続口を有している。宅内サーバ116が広域網NTに接続されている場合には、広域網NTに接続されたコンピュータサーバであるセンタサーバ200によるサービスを享受することができる。   The home server 116 not only is connected to the home network, but also has a connection port connected to the wide area network NT that constructs the Internet. When the in-home server 116 is connected to the wide area network NT, it is possible to receive services from the center server 200 that is a computer server connected to the wide area network NT.

センタサーバ200が提供するサービスには、広域網NTを通して宅内網に接続された機器(主として直流機器U’であるが通信機能を有した他の機器も含む)の監視や制御を可能にするサービスがある。このサービスにより、パーソナルコンピュータ、インターネットTV、移動体電話機などのブラウザ機能を備える通信端末(図示せず)を用いて宅内網に接続された機器の監視や制御が可能になる。   The service provided by the center server 200 is a service that enables monitoring and control of equipment (mainly DC equipment U ′ including other equipment having a communication function) connected to the home network through the wide area network NT. There is. This service makes it possible to monitor and control devices connected to the home network using a communication terminal (not shown) having a browser function such as a personal computer, Internet TV, or mobile phone.

宅内サーバ116は、広域網NTに接続されたセンタサーバ200との間の通信と、宅内網に接続された機器との間の通信との両方の機能を備え、宅内網の機器に関する識別情報(ここでは、IPアドレスを用いるものとする)の取得の機能を備える。   The in-home server 116 has both functions of communication with the center server 200 connected to the wide area network NT and communication with equipment connected to the home network, and identification information on equipment in the home network ( Here, it is assumed that an IP address is used).

宅内サーバ116は、センタサーバ200との通信機能を用いることにより、広域網NTに接続された通信端末からセンタサーバ200を通して宅内の機器の監視や制御を可能にする。センタサーバ200は、宅内の機器と広域網NT上の通信端末とを仲介する。   The home server 116 enables monitoring and control of home devices through the center server 200 from a communication terminal connected to the wide area network NT by using a communication function with the center server 200. The center server 200 mediates between home devices and communication terminals on the wide area network NT.

通信端末から宅内の機器の監視や制御を行う場合は、監視や制御の要求をセンタサーバ200に記憶させ、宅内の機器は定期的に片方向のポーリング通信を行うことにより、通信端末からの監視や制御の要求を受信する。この動作により、通信端末から宅内の機器の監視や制御が可能になる。   When monitoring and controlling home devices from a communication terminal, monitoring and control requests are stored in the center server 200, and the home device periodically performs one-way polling communication to monitor from the communication terminal. And receive control requests. With this operation, it is possible to monitor and control devices in the house from the communication terminal.

また、宅内の機器において火災検知など通信端末に通知すべきイベントが生じたときには、宅内の機器からセンタサーバ200に通知し、センタサーバ200から通信端末に対して電子メールによる通知を行う。   Further, when an event that should be notified to the communication terminal, such as a fire detection, occurs in the home device, the home device notifies the center server 200, and the center server 200 notifies the communication terminal by e-mail.

宅内サーバ116における宅内網との通信機能のうち重要な機能は、宅内網を構成する機器の検出と管理である。宅内サーバ116では、UPnP(Universal Plug and Play)を応用して宅内網に接続された機器を自動的に検出する。宅内サーバ116はブラウザ機能を有する表示器117を備え、検出した機器の一覧を表示器117に表示する。この表示器117はタッチパネル式もしくは操作部が付設された構成を有し、表示器117の画面に表示された選択肢から所望の内容を選択する操作が可能になっている。したがって、宅内サーバ116の利用者(施工業者あるいは家人)は、表示器117の画面上で機器の監視ないし制御が可能になる。表示器117は宅内サーバ116とは分離して設けてもよい。   An important function among the communication functions with the home network in the home server 116 is the detection and management of devices constituting the home network. The home server 116 automatically detects devices connected to the home network by applying UPnP (Universal Plug and Play). The home server 116 includes a display device 117 having a browser function, and displays a list of detected devices on the display device 117. The display device 117 has a configuration with a touch panel type or an operation unit, and can perform an operation of selecting desired contents from options displayed on the screen of the display device 117. Therefore, the user (contractor or householder) of the home server 116 can monitor or control the device on the screen of the display device 117. The display device 117 may be provided separately from the home server 116.

宅内サーバ116では、機器の接続に関する情報を管理しており、宅内網に接続された機器の種類や機能とアドレスとを把握する。したがって、宅内網の機器を連動動作させることができる。機器の接続に関する情報は上述のように自動的に検出されるが、機器を連動動作させるには、機器自身が保有する属性により自動的に関係付けを行うほか、宅内サーバ116にパーソナルコンピュータのような情報端末を接続し、情報端末のブラウザ機能を利用して機器の関係付けを行うこともできる。   The in-home server 116 manages information related to device connection, and grasps the type, function, and address of the device connected to the home network. Accordingly, the devices in the home network can be operated in conjunction with each other. Information on the connection of the device is automatically detected as described above. In order to operate the device in an interlocking manner, the device itself is automatically associated with the attribute held by the device itself, and the home server 116 is configured as a personal computer. It is also possible to connect various information terminals and use the browser function of the information terminals to associate devices.

機器の連動動作の関係は各機器がそれぞれ保持する。したがって、機器は宅内サーバ116を通すことなく連動動作することができる。各機器について、連動動作の関係付けを行うことにより、たとえば、機器であるスイッチの操作により、機器である照明器具の点灯あるいは消灯の動作を行うことが可能になる。また、連動動作の関係付けはサブシステム内で行うことが多いが、サブシステムを超える関係付けも可能である。   Each device holds the relationship of the interlocking operation of the devices. Therefore, the device can operate in an interlocked manner without passing through the home server 116. By associating the linked operations for each device, for example, by operating a switch that is a device, it is possible to turn on or off the lighting fixture that is the device. In many cases, the association of the interlocking operations is performed within the subsystem, but the association beyond the subsystem is also possible.

ところで、直流電力供給部101は、基本的には、商用電源のように宅外から供給される交流電源ACの電力変換により直流電力を生成する。図示する構成では、交流電源ACは、分電盤110に内器として取り付けられた主幹ブレーカ111を通して、スイッチング電源を含むAC/DCコンバータ112に入力される。AC/DCコンバータ112から出力される直流電力は、協調制御部113を通して各直流ブレーカ114に接続される。   By the way, the DC power supply unit 101 basically generates DC power by power conversion of an AC power supply AC supplied from outside the house like a commercial power supply. In the configuration shown in the figure, the AC power source AC is input to an AC / DC converter 112 including a switching power source through a main circuit breaker 111 attached to the distribution board 110 as an internal unit. The DC power output from the AC / DC converter 112 is connected to each DC breaker 114 through the cooperative control unit 113.

直流電力供給部101には、交流電源ACから電力が供給されない期間(たとえば、商用電源ACの停電期間)に備えて二次電池162が設けられている。また、直流電力を生成する太陽電池161や燃料電池163を併用することも可能になっている。交流電源ACから直流電力を生成するAC/DCコンバータ112を備える主電源に対して、太陽電池161や二次電池162や燃料電池163は分散電源になる。なお、図示例において、太陽電池161、二次電池162、燃料電池163は出力電圧を制御する回路部を含み、二次電池162は放電だけではなく充電を制御する回路部も含んでいる。   The DC power supply unit 101 is provided with a secondary battery 162 in preparation for a period in which power is not supplied from the AC power supply AC (for example, a power failure period of the commercial power supply AC). It is also possible to use a solar cell 161 or a fuel cell 163 that generates DC power. The solar battery 161, the secondary battery 162, and the fuel battery 163 are distributed power supplies with respect to the main power supply including the AC / DC converter 112 that generates DC power from the AC power supply AC. In the illustrated example, the solar cell 161, the secondary battery 162, and the fuel cell 163 include a circuit unit that controls the output voltage, and the secondary battery 162 includes a circuit unit that controls charging as well as discharging.

分散電源のうち太陽電池161や燃料電池163は必ずしも設けなくてもよいが、二次電池162は設けるのが望ましい。二次電池162は主電源や他の分散電源により適時充電され、二次電池162の放電は、交流電源ACから電力が供給されない期間だけではなく必要に応じて適時に行われる。二次電池162の充放電や主電源と分散電源との協調は、協調制御部113により行われる。すなわち、協調制御部113は、直流電力供給部101を構成する主電源および分散電源から直流機器U’への電力の配分を制御する直流電力制御部として機能する。なお、太陽電池161、二次電池162、燃料電池163の出力を交流電力に変換し、AC/DCコンバータ112の入力電力として用いる構成を採用してもよい。   Of the distributed power sources, the solar cell 161 and the fuel cell 163 are not necessarily provided, but the secondary battery 162 is preferably provided. The secondary battery 162 is charged in a timely manner by a main power source or other distributed power source, and the secondary battery 162 is discharged not only in a period in which power is not supplied from the AC power source AC but also in a timely manner as necessary. The cooperation control unit 113 performs charge / discharge of the secondary battery 162 and cooperation between the main power source and the distributed power source. That is, the cooperative control unit 113 functions as a DC power control unit that controls the distribution of power from the main power supply and the distributed power supply configuring the DC power supply unit 101 to the DC equipment U ′. Note that a configuration may be adopted in which the outputs of the solar cell 161, the secondary battery 162, and the fuel cell 163 are converted into AC power and used as input power of the AC / DC converter 112.

直流機器U’の駆動電圧は機器に応じた複数種類の電圧から選択されるから、協調制御部113にDC/DCコンバータを設け、主電源および分散電源から得られる直流電圧を必要な電圧に変換するのが望ましい。通常は、1系統のサブシステム(もしくは1台の直流ブレーカ114に接続された直流機器U’)に対して1種類の電圧が供給されるが、1系統のサブシステムに対して3線以上を用いて複数種類の電圧を供給するように構成してもよい。あるいはまた、直流供給線路Wdcを2線式とし、線間に印加する電圧を時間経過に伴って変化させる構成を採用することも可能である。DC/DCコンバータは、直流ブレーカと同様に複数に分散して設けてもよい。   Since the driving voltage of the DC device U ′ is selected from a plurality of types of voltages depending on the device, a DC / DC converter is provided in the cooperative control unit 113 to convert the DC voltage obtained from the main power source and the distributed power source into the necessary voltage. It is desirable to do. Normally, one type of voltage is supplied to one subsystem (or DC equipment U ′ connected to one DC breaker 114), but three or more wires are supplied to one subsystem. A plurality of types of voltages may be used. Alternatively, it is possible to adopt a configuration in which the DC supply line Wdc is of a two-wire type and the voltage applied between the lines is changed with time. The DC / DC converter may be provided in a plurality of dispersed manners like the DC breaker.

上述の構成例では、AC/DCコンバータ112を1個だけ図示しているが、複数個のAC/DCコンバータ112を並設することが可能であり、複数個のAC/DCコンバータ112を設けるときには、負荷の大きさに応じて運転するAC/DCコンバータ112の台数を増減させるのが望ましい。   In the above configuration example, only one AC / DC converter 112 is illustrated, but a plurality of AC / DC converters 112 can be arranged in parallel, and when a plurality of AC / DC converters 112 are provided. It is desirable to increase or decrease the number of AC / DC converters 112 that are operated according to the magnitude of the load.

上述したAC/DCコンバータ112、協調制御部113、直流ブレーカ114、太陽電池161、二次電池162、燃料電池163には通信機能が設けられており、主電源および分散電源や直流機器U’を含む負荷の状態に対処する連携動作を行うことを可能にしている。この通信に用いる通信信号は、直流機器U’に用いる通信信号と同様に直流電圧に重畳する形式で伝送する。   The AC / DC converter 112, the cooperative control unit 113, the DC breaker 114, the solar cell 161, the secondary battery 162, and the fuel cell 163 described above are provided with a communication function, and the main power source, the distributed power source, and the DC device U ′ are connected. It is possible to perform a cooperative operation to deal with the load status including it. The communication signal used for this communication is transmitted in the form of being superimposed on the DC voltage in the same manner as the communication signal used for the DC device U '.

上述の例では主幹ブレーカ111から出力された交流電力をAC/DCコンバータ112により直流電力に変換するために、AC/DCコンバータ112を分電盤110内に配置しているが、主幹ブレーカ111の出力側において分電盤110内に設けた分岐ブレーカ(図示せず)で交流供給線路を複数系統に分岐し、各系統の交流供給線路にAC/DCコンバータを設けて系統ごとに直流電力に変換する構成を採用してもよい。   In the above example, the AC / DC converter 112 is arranged in the distribution board 110 in order to convert the AC power output from the main breaker 111 into DC power by the AC / DC converter 112. On the output side, a branch breaker (not shown) provided in the distribution board 110 branches the AC supply line into a plurality of systems, and an AC / DC converter is provided on the AC supply line of each system to convert it into DC power for each system. You may employ | adopt the structure to do.

この場合、建屋Hの各階や各部屋を単位としてAC/DCコンバータを設けることができるから、AC/DCコンバータを系統別に管理することができ、しかも、直流電力を利用する直流機器U’との間の直流供給線路Wdcの距離が小さくなるから、直流供給線路Wdcでの電圧降下による電力損失を低減させることができる。また、主幹ブレーカ111および分岐ブレーカを分電盤110に収納し、AC/DCコンバータ112と協調制御部113と直流ブレーカ114と宅内サーバ116とを分電盤110とは別の盤に収納してもよい。   In this case, since the AC / DC converter can be provided for each floor or room of the building H, the AC / DC converter can be managed for each system, and the DC device U ′ using DC power can be managed. Since the distance of the direct current supply line Wdc is reduced, the power loss due to the voltage drop in the direct current supply line Wdc can be reduced. Also, the main breaker 111 and the branch breaker are housed in the distribution board 110, and the AC / DC converter 112, the cooperative control unit 113, the DC breaker 114, and the home server 116 are housed in a separate board from the distribution board 110. Also good.

本実施形態では、上記配電システムにおいて電気機器Kへ直流電力を供給する直流配電系統に非接触給電システムを適用しており、図2は建屋H内の部屋R1の概略図を示す。部屋R1は、壁面G1(図2では、3方の壁面のみを示す)、上方に設けた天井面G2、下方に設けた床面G3によって囲まれている。   In the present embodiment, a non-contact power supply system is applied to a DC distribution system that supplies DC power to the electrical equipment K in the above distribution system, and FIG. 2 is a schematic diagram of a room R1 in the building H. The room R1 is surrounded by a wall surface G1 (only three wall surfaces are shown in FIG. 2), a ceiling surface G2 provided above, and a floor surface G3 provided below.

そして、構造物の施工面たる壁面G1、天井面G2、床面G3(まとめて施工面Gと称す)に、本実施形態の非接触給電用パネルPを設置する。非接触給電用パネルPは、図1に示すように、長尺状の樹脂で形成された筐体1を外郭とし、筐体1は、長尺の矩形函状に形成されて前面を開口したベースプレート1aと、長尺の矩形函状に形成されて後面を開口した化粧カバー1bとを備えて、ベースプレート1aの前面開口に化粧カバー1bの後面開口が覆設することで構成される。そして、ベースプレート1aの後面が施工面Gにねじ留め等の取付手段を用いて固定される。   And the panel P for non-contact electric power feeding of this embodiment is installed in the wall surface G1, the ceiling surface G2, and the floor surface G3 (collectively called the construction surface G) which are the construction surfaces of a structure. As shown in FIG. 1, the non-contact power feeding panel P has a casing 1 formed of a long resin as an outer shell, and the casing 1 is formed in a long rectangular box shape and has a front surface opened. It comprises a base plate 1a and a decorative cover 1b that is formed in a long rectangular box shape and has a rear surface opened, and the rear surface opening of the decorative cover 1b covers the front opening of the base plate 1a. Then, the rear surface of the base plate 1a is fixed to the construction surface G by using attachment means such as screwing.

筐体1内のベースプレート1a側には、上記直流供給線路Wdcが長手方向に沿って配設され、さらに非接触給電システムに用いる複数の非接触給電部10が所定の間隔で長手方向に沿って配置されており、各非接触給電部10が直流供給線路Wdcに接続することで、上記接触式の直流アウトレットである直流コンセント131や引掛シーリング132等の代わりに、非接触式のアウトレットを構成している。また、非接触給電部10の配置位置は予め決められており、各配置位置に対応するベースプレート1aの側面には2個のLED素子2a,2bが設けられている。   The DC supply line Wdc is disposed along the longitudinal direction on the base plate 1a side in the housing 1, and a plurality of non-contact power feeding units 10 used in the non-contact power feeding system are disposed along the longitudinal direction at predetermined intervals. Each non-contact power feeding unit 10 is connected to the DC supply line Wdc, so that a non-contact outlet is configured in place of the DC outlet 131 and the hooking ceiling 132 which are the contact-type DC outlets. ing. Further, the arrangement position of the non-contact power feeding unit 10 is determined in advance, and two LED elements 2a and 2b are provided on the side surface of the base plate 1a corresponding to each arrangement position.

この非接触給電部10は、図3に示すように、上記直流供給線路Wdcを介して供給される直流電力を高周波電力に変換する高周波電力発生回路11と、非接触給電部10の通電状態や給電状態を検出して当該検出信号を出力する状態検出回路12と、高周波電力発生回路11から高周波電力を供給されることによって高周波磁界を発生する一次コイルL1とで構成される。   As shown in FIG. 3, the non-contact power supply unit 10 includes a high-frequency power generation circuit 11 that converts DC power supplied via the DC supply line Wdc into high-frequency power, The state detection circuit 12 detects a power supply state and outputs the detection signal, and the primary coil L1 that generates a high-frequency magnetic field when high-frequency power is supplied from the high-frequency power generation circuit 11.

高周波電力発生回路11は、内部に具備したスイッチング素子(図示なし)を高周波数でスイッチングさせることで直流電圧を高周波電圧に変換し、当該高周波電圧を一次コイルL1の両端に印加して一次コイルL1に高周波電流を供給し、一次コイルL1は、高周波電流によって高周波磁界を発生する。なお、スイッチング素子を用いて直流電圧を高周波電圧に変換する回路構成については周知であり、説明は省略する。   The high frequency power generation circuit 11 converts a DC voltage into a high frequency voltage by switching an internal switching element (not shown) at a high frequency, and applies the high frequency voltage to both ends of the primary coil L1 to apply the high frequency voltage to the primary coil L1. A high frequency current is supplied to the primary coil L1, and the primary coil L1 generates a high frequency magnetic field by the high frequency current. Note that a circuit configuration for converting a DC voltage into a high-frequency voltage using a switching element is well known, and a description thereof will be omitted.

状態検出回路12は、直流供給線路Wdcから高周波電力発生回路11に直流電源が供給されている場合には通電状態であると判断して、LED素子2aを点灯させ、さらに高周波電力発生回路11が一次コイルL1に高周波電流を供給しているときには給電状態であると判断して、LED素子2bを点灯させる。なおLED素子2aは、非接触給電部10への通電確認とともに、非接触給電用パネルPにおける非接触給電部10の設置位置を知らせている。   The state detection circuit 12 determines that the DC power supply is supplied from the DC supply line Wdc to the high frequency power generation circuit 11, determines that the state is energized, turns on the LED element 2a, and the high frequency power generation circuit 11 When the high-frequency current is supplied to the primary coil L1, it is determined that the power supply state is present, and the LED element 2b is turned on. In addition, the LED element 2a notifies the installation position of the non-contact power supply unit 10 in the non-contact power supply panel P together with confirmation of energization to the non-contact power supply unit 10.

そして、非接触給電用パネルPには直流機器Uが取り付けられ、図2に示すように、壁面G1に設置された非接触給電用パネルP1には、補助照明用のLEDライトU1等が取り付けられ、天井面G2に設置された非接触給電用パネルP2には、主照明用のシーリングライトU2、セキュリティシステムに用いる人感センサU3、無線LANに用いるアクセスポイントU4等が取り付けられ、床面G3に設置された非接触給電用パネルP3には、テレビ装置U5、暖房用のマットヒータU6等が取り付けられる。   Then, a DC device U is attached to the non-contact power supply panel P. As shown in FIG. 2, an auxiliary illumination LED light U1 or the like is attached to the non-contact power supply panel P1 installed on the wall surface G1. The non-contact power feeding panel P2 installed on the ceiling surface G2 is attached with a ceiling light U2 for main illumination, a human sensor U3 used for a security system, an access point U4 used for a wireless LAN, and the like on the floor G3. A television device U5, a heating mat heater U6, and the like are attached to the installed non-contact power supply panel P3.

各直流機器Uは、図3に示すように、非接触給電システムに用いる非接触受電部20と、各直流機器の機能部21(例えば、照明機能、センサ機能、通信機能、LANのハブ機能、暖房機能等)とを備えている。なお、非接触受電部20は、直流機器Uに機能部21と一体に組み込まれた構成(図2中の直流機器U1〜U4)や、非接触受電部20を単体で形成し、機能部21を備える機器本体に電源コードCDを介して動作電源を供給する構成(図2中の直流機器U5,U6)がある。非接触受電部20を単体で形成した場合、機器本体は非接触給電部10の位置に関わらず任意に配置でき、非接触受電部20の着脱も容易に行うことができる。   As shown in FIG. 3, each DC device U includes a non-contact power receiving unit 20 used in a non-contact power supply system, and a functional unit 21 of each DC device (for example, a lighting function, a sensor function, a communication function, a LAN hub function, Heating function, etc.). The non-contact power receiving unit 20 includes a configuration (DC devices U1 to U4 in FIG. 2) integrated with the functional unit 21 in the DC device U, and the non-contact power receiving unit 20 as a single unit. There is a configuration (direct-current devices U5 and U6 in FIG. 2) for supplying operating power to a device body provided with a power cord CD. When the non-contact power receiving unit 20 is formed as a single unit, the device main body can be arbitrarily arranged regardless of the position of the non-contact power feeding unit 10, and the non-contact power receiving unit 20 can be easily attached and detached.

非接触受電部20は、非接触給電用パネルP内の各非接触給電部10に対向して、非接触給電用パネルPの前面に取り付けられる。この非接触受電部20は、非接触給電部10の一次コイルL1に電磁気的に結合して、非接触給電部10が発生した高周波磁界が鎖交すると電磁誘導によって二次電圧が誘起する二次コイルL2と、二次コイルL2の両端に発生した二次電圧を全波整流する整流部DBと、整流部DBの正側の整流出力に直列接続されたインダクタLaと、インダクタLaを介した整流電圧を平滑する平滑コンデンサCaとで構成され、平滑コンデンサCaの両端電圧が機能部21に供給されて、機能部21の動作電源となる。また、平滑コンデンサCaの出力にシリーズレギュレータまたはチョッパ回路を設けて定電圧機能を付加してもよい。さらに、図3に破線で示すように、二次コイルL2に並列に共振コンデンサC2を接続して、一次コイルL1からの受電能力を向上させてもよい。   The non-contact power reception unit 20 is attached to the front surface of the non-contact power supply panel P so as to face each non-contact power supply unit 10 in the non-contact power supply panel P. The non-contact power receiving unit 20 is electromagnetically coupled to the primary coil L1 of the non-contact power feeding unit 10 and a secondary voltage is induced by electromagnetic induction when the high frequency magnetic field generated by the non-contact power feeding unit 10 is linked. A coil L2, a rectifier DB for full-wave rectification of the secondary voltage generated at both ends of the secondary coil L2, an inductor La connected in series to the rectified output on the positive side of the rectifier DB, and rectification via the inductor La A smoothing capacitor Ca that smoothes the voltage is supplied. The voltage across the smoothing capacitor Ca is supplied to the function unit 21 to serve as an operating power supply for the function unit 21. Further, a constant voltage function may be added by providing a series regulator or chopper circuit at the output of the smoothing capacitor Ca. Furthermore, as indicated by a broken line in FIG. 3, a resonance capacitor C2 may be connected in parallel to the secondary coil L2 to improve the power receiving capability from the primary coil L1.

そして、本実施形態では、内蔵した非接触給電部10に対向した非接触給電用パネルPの前面(LED素子2aが配置されている位置)に、非接触受電部20、および非接触受電部20を具備した直流機器Uを着脱自在に取り付ける取付手段を備えている。なお、ユーザは、LED素子2a(非接触給電部10の位置表示および通電確認)が点灯している位置に直流機器Uを取り付ければよく、直流機器Uの設置位置が容易にわかる。   In the present embodiment, the non-contact power reception unit 20 and the non-contact power reception unit 20 are provided on the front surface of the non-contact power supply panel P facing the built-in non-contact power supply unit 10 (position where the LED element 2a is disposed). There is provided attachment means for detachably attaching the DC device U comprising The user only needs to attach the DC device U to a position where the LED element 2a (position display and energization confirmation of the non-contact power supply unit 10) is lit, and the installation position of the DC device U can be easily understood.

この取付手段は、図4(a),(b)に示すように、非接触給電部10に設けた磁石M1a,M1bと、非接触受電部20に設けた磁石M2a,M2bとで構成される。非接触給電部10に設けた磁石M1a,M1bは略L型に各々形成され、一辺がS極、他辺がN極に各々着磁されており、磁石M1a,M1bの互いに異極となる端面同士を対向させて形成される矩形枠の内側に非接触給電部10を取り付ける。また、非接触受電部20に設けた磁石M2a,M2bは略L型に各々形成され、一辺がS極、他辺がN極に各々着磁されており、磁石M2a,M2bの互いに異極となる端面同士を対向させて形成される矩形枠の内側に非接触受電部20を取り付ける。   As shown in FIGS. 4A and 4B, the attachment means includes magnets M1a and M1b provided in the non-contact power feeding unit 10 and magnets M2a and M2b provided in the non-contact power receiving unit 20. . The magnets M1a and M1b provided in the non-contact power feeding unit 10 are each formed in a substantially L shape, one side is magnetized to the S pole, and the other side is magnetized to the N pole. The non-contact power feeding unit 10 is attached to the inside of a rectangular frame formed so as to face each other. Further, the magnets M2a and M2b provided in the non-contact power receiving unit 20 are each formed in a substantially L shape, and one side is magnetized to an S pole and the other side is an N pole, and the magnets M2a and M2b are different from each other. The non-contact power receiving unit 20 is attached to the inside of a rectangular frame formed by facing the end faces.

したがって、非接触給電部10と非接触受電部20とが非接触給電用パネルPを介して互いに対向したときに、磁石M1a,M1bと磁石M2a,M2bとの各異極同士が互いに対向すれば、磁石M1a,M1bと磁石M2a,M2bとの間に磁気による吸引力が発生して、非接触受電部20は、非接触給電部10に対向して正しい取付方向で設置される。取り付け方向が例えば90度ずれた場合には、磁石M1a,M1bと磁石M2a,M2bとの各同極同士が対向し、磁石M1a,M1bと磁石M2a,M2bとの間に磁気による反発力が発生して、非接触受電部20を非接触給電部10に対向して設置することはできない。これは、一次コイルL1および二次コイルL2の各コア形状に起因して互いの電磁気的な結合が最大となる取付方向があることから、非接触受電部20を必ず正しい取付方向に設置させるためであり、上述の正しい取付方向とは、一次コイルL1と二次コイルL2との電磁気的な結合度が最も高くなる方向のことである。このときの磁気による吸引力は、非接触受電部20を組み込んだ各直流機器Uや非接触受電部20単体を非接触給電用パネルPの前面に取付可能な力を発生する。   Therefore, when the non-contact power feeding unit 10 and the non-contact power receiving unit 20 face each other through the non-contact power feeding panel P, the different polarities of the magnets M1a and M1b and the magnets M2a and M2b face each other. A magnetic attraction force is generated between the magnets M1a and M1b and the magnets M2a and M2b, and the non-contact power receiving unit 20 is installed in the correct mounting direction so as to face the non-contact power feeding unit 10. For example, when the mounting direction is shifted by 90 degrees, the same polarity of the magnets M1a, M1b and the magnets M2a, M2b are opposed to each other, and a magnetic repulsive force is generated between the magnets M1a, M1b and the magnets M2a, M2b. Thus, the non-contact power receiving unit 20 cannot be installed facing the non-contact power feeding unit 10. This is because there is a mounting direction in which the mutual electromagnetic coupling is maximized due to the respective core shapes of the primary coil L1 and the secondary coil L2, so that the non-contact power receiving unit 20 is always installed in the correct mounting direction. The correct mounting direction described above is the direction in which the degree of electromagnetic coupling between the primary coil L1 and the secondary coil L2 is the highest. At this time, the magnetic attractive force generates a force capable of attaching each DC device U incorporating the non-contact power receiving unit 20 or the non-contact power receiving unit 20 alone to the front surface of the non-contact power feeding panel P.

したがってユーザは、非接触受電部20を具備した直流機器Uや非接触受電部20単体を非接触給電用パネルPのLED素子2a付近に近付ければ、上記磁気による吸引力によって、非接触受電部20が非接触給電部10に対向して正しく取り付けられる。そして、非接触給電部10が発生する高周波磁界による電磁誘導によって、非接触受電部20は非接触給電部10から非接触で受電し、直流機器Uの機能部21へ動作電源を供給する。   Therefore, if the user brings the DC device U provided with the non-contact power receiving unit 20 or the non-contact power receiving unit 20 alone near the LED element 2a of the non-contact power feeding panel P, the non-contact power receiving unit is caused by the magnetic attraction force. 20 is correctly attached facing the non-contact power feeding unit 10. Then, the non-contact power receiving unit 20 receives power from the non-contact power feeding unit 10 in a non-contact manner by electromagnetic induction by a high-frequency magnetic field generated by the non-contact power feeding unit 10 and supplies operating power to the functional unit 21 of the DC device U.

また、非接触給電部10内の一次コイルL1と非接触受電部20の二次コイルL2との相対位置および設置環境や、一次コイルL1が発生する高周波磁界の周波数および大きさおよび範囲や、磁石M1a,M1bおよび磁石M2a,M2bからなる取付手段の構成は、規格によって統一されている。すなわち、上記非接触給電部10が発生する高周波磁界は、所定の規格に基づく所定周波数、所定強度の磁界が所定範囲内に発生するものであり、非接触給電用パネルP内に非接触給電部10を組み込む位置も所定の規格によって決められており、また上記非接触受電部20を非接触給電用パネルPに設置する際に、非接触給電部10との相対位置(距離、方向等)も所定の規格で決められている。したがって、非接触受電部20が非接触給電部10から受電する電力は規定の範囲内に収まり、機能部21の構成を簡略化することができる(例えば、動作可能入力範囲を狭く設計できる等)。   Further, the relative position and installation environment of the primary coil L1 in the non-contact power feeding unit 10 and the secondary coil L2 of the non-contact power receiving unit 20, the frequency, size and range of the high-frequency magnetic field generated by the primary coil L1, magnets The structure of the attaching means comprising M1a, M1b and magnets M2a, M2b is standardized according to the standard. That is, the high-frequency magnetic field generated by the non-contact power supply unit 10 is a magnetic field having a predetermined frequency and a predetermined intensity based on a predetermined standard within a predetermined range. The position where 10 is incorporated is also determined by a predetermined standard, and when the non-contact power receiving unit 20 is installed on the non-contact power feeding panel P, the relative position (distance, direction, etc.) with the non-contact power feeding unit 10 is also determined. It is determined by a predetermined standard. Therefore, the power received by the non-contact power receiving unit 20 from the non-contact power feeding unit 10 is within a specified range, and the configuration of the functional unit 21 can be simplified (for example, the operable input range can be designed to be narrow). .

そして、非接触給電部10は、非接触給電用パネルP内の複数箇所に各々組み込まれており、上記各部の規格化と併せて、ユーザは使用する直流機器Uに応じて適切な位置に直流機器Uまたは非接触受電部20単体を容易に設置することができ、優れた使い勝手を得ることができる。   And the non-contact electric power feeding part 10 is each integrated in the several location in the panel P for non-contact electric power feeding, and a user is direct-current-directed to an appropriate position according to the direct current | flow apparatus U to be used with the standardization of said each part. The device U or the non-contact power receiving unit 20 alone can be easily installed, and excellent usability can be obtained.

このように、本実施形態では、直流配電システム(図9参照)において、非接触給電用パネルPを部屋R1に設置することによって、部屋R1内の直流機器Uに非接触で給電できるので、直流コンセント131や引掛シーリング132等のような接触式の直流アウトレットを建屋Hに設ける必要がなく、施工を簡略化できる。また、ユーザは使用したい直流機器Uを非接触給電用パネルPに取り付けるだけで直流機器Uを動作させることができるので、使い易いものとなり、さらに給電のための導体が露出していないので感電の危険性がない。而して、本実施形態の非接触給電用パネルPを用いることで、配電系統の施工を簡易にできるとともに、直流機器Uへの電源供給が容易で安全性の高い配電システムを実現している。   As described above, in the present embodiment, in the DC power distribution system (see FIG. 9), by installing the non-contact power supply panel P in the room R1, it is possible to supply power to the DC device U in the room R1 in a non-contact manner. It is not necessary to provide a contact type DC outlet such as the outlet 131 or the hooking ceiling 132 in the building H, and the construction can be simplified. Further, since the user can operate the DC device U simply by attaching the DC device U to be used to the non-contact power supply panel P, it is easy to use, and the electric conductor for power supply is not exposed. There is no danger. Thus, by using the non-contact power supply panel P of the present embodiment, it is possible to simplify the construction of the power distribution system and realize a power distribution system that is easy to supply power to the DC equipment U and has high safety. .

また、磁気による吸着力を用いて直流機器Uや非接触受電部20単体を、非接触給電用パネルP内の非接触給電部10に対向して取り付けるので、ねじや係止手段等の取付手段を別途設ける必要がなく、構成の簡略化、取付作業の簡易化を図ることができる。   Further, since the DC device U and the non-contact power receiving unit 20 alone are mounted opposite to the non-contact power feeding unit 10 in the non-contact power feeding panel P by using magnetic attraction force, mounting means such as screws and locking means There is no need to provide a separate structure, and the configuration can be simplified and the mounting operation can be simplified.

また、ねじ、面ファスナ、吸盤、粘着性樹脂、両面テープ段等の取付手段によって、直流機器Uや非接触受電部20単体を非接触給電用パネルPに取り付ける構成でもよく、さらにはこれらの取付手段を上記磁石を用いた取付手段と併用してもよい。   Further, the DC device U or the non-contact power receiving unit 20 alone may be attached to the non-contact power feeding panel P by attaching means such as screws, hook-and-loop fasteners, suction cups, adhesive resin, and double-sided tape steps. You may use a means together with the attachment means using the said magnet.

次に、本実施形態では、複数の非接触給電部10を1つの非接触給電用パネルP内に配置しているが、全ての非接触給電部10を常時駆動するのではなく、非接触受電部20が対向して配置されている非接触給電部10のみを駆動する構成を備えており、図5を用いて以下説明する。   Next, in the present embodiment, a plurality of non-contact power supply units 10 are arranged in one non-contact power supply panel P. However, not all the non-contact power supply units 10 are always driven, but non-contact power reception is performed. The structure which drives only the non-contact electric power feeding part 10 with which the part 20 is arrange | positioned facing is provided, and it demonstrates below using FIG.

まず、非接触給電用パネルP内の非接触給電部10を1つのブロックBとし(図5では4つの非接触給電部10a〜10dが非接触給電用パネルP内に配置されてブロックBを構成する)、非接触給電部10a〜10dには、リレー31a〜31dの各接点311を介して直流供給線路Wdcから直流電力が各々供給される。そして、リレー31a〜31dの各リレーコイル312は、制御電源Vccとグランドレベルとの間にトランジスタ32a〜32dの各コレクタ−エミッタを介して接続されており、トランジスタ32a〜32dの各ベースはコントローラ40の出力部に接続されている。   First, the non-contact power supply unit 10 in the non-contact power supply panel P is set as one block B (in FIG. 5, four non-contact power supply units 10a to 10d are arranged in the non-contact power supply panel P to form the block B. DC power is supplied from the DC supply line Wdc to the non-contact power feeding units 10a to 10d via the contacts 311 of the relays 31a to 31d. The relay coils 312 of the relays 31a to 31d are connected between the control power source Vcc and the ground level via the collectors and emitters of the transistors 32a to 32d, and the bases of the transistors 32a to 32d are connected to the controller 40. Connected to the output.

コントローラ40は、トランジスタ32a〜32dの各ベースへの出力を個別に制御して、トランジスタ32a〜32dを各々オン・オフさせており、オンしたトランジスタ32(32a〜32d)にリレーコイル312を接続したリレー31(31a〜31d)は接点311がオンし、対応する非接触給電部10(10a〜10d)に直流電力が供給され、当該非接触給電部10が駆動される。   The controller 40 individually controls the outputs to the bases of the transistors 32a to 32d to turn on and off the transistors 32a to 32d. The relay coil 312 is connected to the turned-on transistors 32 (32a to 32d). In the relay 31 (31a to 31d), the contact 311 is turned on, DC power is supplied to the corresponding non-contact power supply unit 10 (10a to 10d), and the non-contact power supply unit 10 is driven.

そして、上記リレー31a〜31d、トランジスタ32a〜32d、コントローラ40で駆動制御部Aを構成し、駆動制御部Aは、非接触給電部10a〜10dに非接触受電部20が対向して配置されたか否かを検出する駆動対象検出手段と、非接触受電部20が対向して配置された非接触給電部10の一次コイルL1に定格電流を供給して高周波磁界を発生させる駆動手段とを形成している。なお、この駆動制御部Aは、非接触給電用パネルP内に収納されている。   The relays 31a to 31d, the transistors 32a to 32d, and the controller 40 constitute the drive control unit A. In the drive control unit A, the non-contact power reception unit 20 is disposed so as to face the non-contact power supply units 10a to 10d. Driving object detecting means for detecting whether or not, and driving means for generating a high-frequency magnetic field by supplying a rated current to the primary coil L1 of the non-contact power feeding section 10 disposed so as to face the non-contact power receiving section 20 are formed. ing. The drive control unit A is housed in the non-contact power feeding panel P.

まず、コントローラ40は、4つのトランジスタ32a〜32dのうち1つのみをオンさせる期間を、通常の給電動作中に一定時間毎に生成することで、4つの非接触給電部10a〜10dのうち1つのみを駆動して他を停止させる検出可能期間を、駆動する非接触給電部10を順次切り換えて一定時間毎に発生させる。すなわち、非接触給電部10aのみが駆動する検出可能期間T1 → 非接触給電部10bのみが駆動する検出可能期間T2 → 非接触給電部10cのみが駆動する検出可能期間T3 → 非接触給電部10dのみが駆動する検出可能期間T4を順次、通常の給電動作中に一定時間毎に発生させ、この動作を繰り返す。   First, the controller 40 generates a period during which only one of the four transistors 32a to 32d is turned on at regular intervals during a normal power feeding operation, so that one of the four non-contact power feeding units 10a to 10d. A detectable period in which only one is driven and the others are stopped is generated at regular intervals by sequentially switching the non-contact power feeding unit 10 to be driven. That is, a detectable period T1 in which only the non-contact power supply unit 10a is driven → a detectable period T2 in which only the non-contact power supply unit 10b is driven → a detectable period T3 in which only the non-contact power supply unit 10c is driven → only the non-contact power supply unit 10d Detectable periods T4 during which are driven are sequentially generated at regular intervals during normal power feeding operation, and this operation is repeated.

そして、コントローラ40の入力部は、非接触給電部10a〜10dの各一次コイルL1の両端間に接続しており(図3参照)、検出可能期間T1〜T4においてコントローラ40は非接触給電部10a〜10dから受電側を見たインピーダンス(以降、受電側インピーダンスと称す)を各々測定する。この受電側インピーダンスは、非接触給電部10に対向して非接触受電部20が設置されていない場合と、非接触給電部10に対向して非接触受電部20が設置された場合とでは互いに異なる値となり、コントローラ40は、受電側インピーダンスが通常値(非接触受電部20が設置されていない場合の受電側インピーダンス)から所定値(非接触受電部20が設置された場合の受電側インピーダンス)に変化した場合に非接触受電部20が設置されたと判断する。非接触受電部20の設置前と設置後の受電側インピーダンスの変化パターンは、一次コイルL1および二次コイルL2の各設定(自己インダクタンス、相互インダクタンス等)や、非接触受電部20および機能部21の回路構成によって、予め所定のパターンで変化するように設計されており、例えば、非接触給電部10に対向して金属板や磁性体等が配置された場合には、受電側インピーダンスの変化パターンが上記所定のパターンとは異なるため、コントローラ40は当該非接触給電部10を駆動しない。   And the input part of the controller 40 is connected between the both ends of each primary coil L1 of non-contact electric power feeding part 10a-10d (refer FIG. 3), and the controller 40 is non-contact electric power feeding part 10a in the detectable period T1-T4. -10d, the impedance of the power reception side (hereinafter referred to as power reception side impedance) is measured. The power receiving side impedance is different between the case where the non-contact power receiving unit 20 is not installed facing the non-contact power feeding unit 10 and the case where the non-contact power receiving unit 20 is installed facing the non-contact power feeding unit 10. The controller 40 has different values, and the controller 40 has a normal value (power-receiving-side impedance when the non-contact power-receiving unit 20 is not installed) to a predetermined value (power-receiving-side impedance when the non-contact power-receiving unit 20 is installed). It is determined that the non-contact power receiving unit 20 has been installed when the change is made. The change pattern of the power-receiving-side impedance before and after installation of the non-contact power receiving unit 20 includes each setting of the primary coil L1 and the secondary coil L2 (self-inductance, mutual inductance, etc.), the non-contact power receiving unit 20 and the functional unit 21. For example, when a metal plate, a magnetic body, or the like is arranged facing the non-contact power feeding unit 10, the power receiving side impedance change pattern is designed so as to change in a predetermined pattern. Is different from the predetermined pattern, the controller 40 does not drive the non-contact power feeding unit 10.

このように、コントローラ40は、通常の給電動作中に一定時間毎に発生する検出可能期間T1〜T4において、各非接触給電部10に対向して非接触受電部20が設置されているか否かを順次判断することができ、検出可能期間T1〜T4以外では、非接触受電部20が対向して設置されている全ての非接触給電部10を駆動して、非接触受電部20への通常の給電動作を行う。   In this manner, the controller 40 determines whether or not the non-contact power receiving unit 20 is installed facing each non-contact power feeding unit 10 in the detectable periods T1 to T4 that occur at regular intervals during a normal power feeding operation. The non-contact power receiving unit 20 is driven to drive all the non-contact power feeding units 10 opposed to each other, and the normal to the non-contact power receiving unit 20 except for the detectable periods T1 to T4. The power feeding operation is performed.

つまり、コントローラ40は図6に示すフローチャートのように、まず4つのトランジスタ32a〜32dのうちいずれか1つのみをオンさせ(S1)、対応する1つの非接触給電部10を駆動して、当該非接触給電部10からみた受電側インピーダンスを測定し(S2)、当該非接触給電部10に対向して非接触受電部20が設置されているか否かを、測定した受電側インピーダンスに基づいて判断する(S3)。そして、この判断結果に基づいて当該非接触給電部10の出力調整を行い、非接触受電部20が設置されている場合には当該非接触給電部10の駆動状態を継続して定格出力にし、非接触受電部20が設置されていない場合にはステップS1でオンしたトランジスタ32をオフさせて、当該非接触給電部10を駆動停止して出力を零にする(S4)。以降、非接触受電部20が対向して設置されている全ての非接触給電部10を駆動する通常給電を行い(S5)、一定時間の経過後(S6)に4つのトランジスタ32a〜32dのうち次の1つをオンさせて(S7)、上記処理S2〜S7を繰り返す。   That is, as shown in the flowchart of FIG. 6, the controller 40 first turns on only one of the four transistors 32 a to 32 d (S 1), drives the corresponding non-contact power feeding unit 10, and The power receiving side impedance viewed from the non-contact power feeding unit 10 is measured (S2), and whether or not the non-contact power receiving unit 20 is installed facing the non-contact power feeding unit 10 is determined based on the measured power receiving side impedance. (S3). And based on this determination result, the output of the non-contact power feeding unit 10 is adjusted, and when the non-contact power receiving unit 20 is installed, the driving state of the non-contact power feeding unit 10 is continuously set to the rated output, If the non-contact power receiving unit 20 is not installed, the transistor 32 that was turned on in step S1 is turned off to stop driving the non-contact power feeding unit 10 and make the output zero (S4). Thereafter, normal power feeding is performed to drive all the non-contact power feeding units 10 that are installed so that the non-contact power receiving unit 20 is opposed to each other (S5), and after a certain period of time (S6), among the four transistors 32a to 32d The next one is turned on (S7), and the above steps S2 to S7 are repeated.

また、検出可能期間T1〜T4においては、非接触給電部10a〜10dのうち1つのみを駆動し、他の非接触給電部10を停止させるため、他の非接触給電部10に対向して設置された非接触受電部20には、通常の給電動作中に一定時間毎に受電不可能な期間が生じる。そこで、非接触受電部20の平滑コンデンサCaは、この検出可能期間T1〜T4においても機能部21へ給電可能な容量に設定されており、この受電不可能期間における給電動作を補償している。   In addition, in the detectable period T1 to T4, only one of the non-contact power supply units 10a to 10d is driven and the other non-contact power supply unit 10 is stopped. The non-contact power receiving unit 20 installed has a period during which the power cannot be received at regular intervals during a normal power feeding operation. Therefore, the smoothing capacitor Ca of the non-contact power receiving unit 20 is set to a capacity capable of supplying power to the functional unit 21 in the detectable periods T1 to T4, and compensates for the power supply operation in the non-power receiving period.

また、状態検出回路12は、高周波電力発生回路11から一次コイルL1に高周波電流を供給しているときには給電状態であると判断して、LED素子2bを点灯させるので、ユーザは、直流機器Uに給電されているか否かを容易に認識できる。   Further, the state detection circuit 12 determines that the power supply state is present when the high-frequency power is supplied from the high-frequency power generation circuit 11 to the primary coil L1, and turns on the LED element 2b. It can be easily recognized whether or not power is supplied.

このように、全ての非接触給電部10を常時駆動するのではなく、非接触受電部20が対向して配置されている非接触給電部10のみを駆動するので、不必要な電力を消費することなく、省エネルギー化を図ることができる。   In this way, not all the non-contact power supply units 10 are driven all the time, but only the non-contact power supply unit 10 disposed so that the non-contact power reception unit 20 is opposed to each other is driven, and thus unnecessary power is consumed. Energy saving can be achieved.

また、本実施形態の非接触給電用パネルPを建屋H内の風呂場等の水周りや、建屋Hの外部に面した箇所に設置してもよい。   Moreover, you may install the panel P for non-contact electric power feeding of this embodiment in the location which faces the water circumferences, such as a bathroom in the building H, and the exterior of the building H. FIG.

(実施形態2)
本実施形態の非接触給電用パネルPは、実施形態1と略同様の構成を備えるが、非接触給電部10に非接触受電部20が対向して配置されたか否かを検出する構成が異なる。なお、実施形態1と同様の構成には同一の符号を付して説明は省略する。
(Embodiment 2)
The non-contact power feeding panel P of the present embodiment has substantially the same configuration as that of the first embodiment, but the configuration for detecting whether or not the non-contact power receiving unit 20 is disposed facing the non-contact power feeding unit 10 is different. . In addition, the same code | symbol is attached | subjected to the structure similar to Embodiment 1, and description is abbreviate | omitted.

本実施形態の非接触給電部10は、直流供給線路Wdcに常時接続しており、高周波電力発生回路11は一次コイルL1に流す高周波電流を、定格電流、待機電流、ゼロに切り換えることができる(定格電流>待機電流>ゼロ)。そして、非接触給電部10に非接触受電部20が対向して配置されていない待機状態では、定格電流より小さい待機電流を一次コイルL1に流しておく。   The contactless power supply unit 10 of the present embodiment is always connected to the DC supply line Wdc, and the high frequency power generation circuit 11 can switch the high frequency current flowing through the primary coil L1 to the rated current, standby current, and zero ( Rated current> standby current> zero). In a standby state in which the non-contact power receiving unit 20 is not disposed so as to face the non-contact power feeding unit 10, a standby current smaller than the rated current is passed through the primary coil L1.

非接触受電部20は、図7に示すように二次コイルL2の両端に接続した変調部22を設けており、非接触給電部10に対向して設置されると一次コイルL1の待機電流によって二次コイルL2の両端に二次電圧が発生し、この二次電圧を整流平滑した電圧を動作電源として、給電要求信号を二次電圧に重畳して変調をかける(例えば、正弦波状の二次電圧の波形を、所定周期毎に変化させる)。すると、非接触給電部10の一次コイルL1の両端には、この二次電圧に重畳された給電要求信号によって誘起された信号が発生し、高周波電力発生回路11は、一次コイルL1の両端電圧からこの誘起された信号を復調することによって、非接触受電部20が対向して配置されていることを検出する。そして、高周波電力発生回路11は、非接触受電部20が対向して配置されていることを検出すると、一次コイルL1に定格電流を流して、非接触受電部20への通常給電を開始する。   As shown in FIG. 7, the non-contact power receiving unit 20 includes a modulation unit 22 connected to both ends of the secondary coil L <b> 2. When the non-contact power receiving unit 20 is installed facing the non-contact power feeding unit 10, A secondary voltage is generated at both ends of the secondary coil L2, and a voltage obtained by rectifying and smoothing the secondary voltage is used as an operation power supply, and a power supply request signal is superimposed on the secondary voltage to be modulated (for example, a sinusoidal secondary voltage). The voltage waveform is changed every predetermined period). Then, a signal induced by the power supply request signal superimposed on the secondary voltage is generated at both ends of the primary coil L1 of the non-contact power supply unit 10, and the high-frequency power generation circuit 11 starts from the voltage at both ends of the primary coil L1. By demodulating the induced signal, it is detected that the non-contact power reception unit 20 is disposed facing the signal. And if the high frequency electric power generation circuit 11 detects that the non-contact power receiving part 20 is arrange | positioned facing, a rated current will be sent through the primary coil L1, and the normal electric power feeding to the non-contact power receiving part 20 will be started.

通常給電中でも、高周波電力発生回路11は、一次コイルL1の両端電圧に対する上記復調処理を継続しており、上記誘起信号が検出されなくなると、非接触受電部20が取り外されたと判断して、一次コイルL1に流す電流を待機電流に切り換える。   Even during normal power feeding, the high-frequency power generation circuit 11 continues the demodulation process for the voltage across the primary coil L1, and when the induced signal is no longer detected, it determines that the non-contact power receiving unit 20 has been removed, The current flowing through the coil L1 is switched to the standby current.

すなわち、高周波電力発生回路11と変調部22とで、非接触給電部10a〜10dに非接触受電部20が対向して配置されたか否かを検出する駆動対象検出手段を形成し、高周波電力発生回路11で、非接触受電部20が対向して配置された非接触給電部10の一次コイルL1に定格電流を供給して高周波磁界を発生させる駆動手段を形成している。   That is, the high-frequency power generation circuit 11 and the modulation unit 22 form driving target detection means for detecting whether or not the non-contact power receiving unit 20 is disposed so as to face the non-contact power feeding units 10a to 10d. The circuit 11 forms drive means for generating a high-frequency magnetic field by supplying a rated current to the primary coil L1 of the non-contact power feeding unit 10 disposed so as to face the non-contact power receiving unit 20.

この検出方法では、他の非接触給電部10が非接触受電部20への給電を継続した状態で、非接触受電部20の設置状態を検出することができるので、実施形態1のように、非接触受電部20の平滑コンデンサCaの容量を大きくする必要がない。さらに、コントローラ40を設ける必要がなくなる。   In this detection method, since the other non-contact power supply unit 10 can detect the installation state of the non-contact power reception unit 20 in a state where power supply to the non-contact power reception unit 20 is continued, as in the first embodiment, There is no need to increase the capacity of the smoothing capacitor Ca of the non-contact power receiving unit 20. Furthermore, it is not necessary to provide the controller 40.

また、全ての非接触給電部10が定格電流を一次コイルL1に常時流すのではなく、非接触受電部20が対向して配置されている非接触給電部10のみが定格電流を一次コイルL1に流し、他の非接触受電部は定格電流より小さい待機電流を一次コイルL1に流すので、不要な電力消費を抑制でき、省エネルギー化を図ることができる。   Moreover, not all the non-contact electric power feeding parts 10 always flow a rated current to the primary coil L1, but only the non-contact electric power feeding part 10 with which the non-contact electric power receiving part 20 is arrange | positioned facing is applied to a primary coil L1. Since the other non-contact power receiving unit flows a standby current smaller than the rated current to the primary coil L1, unnecessary power consumption can be suppressed and energy saving can be achieved.

(実施形態3)
本実施形態の非接触給電用パネルPは、実施形態1と略同様の構成を備えるが、非接触給電部10に非接触受電部20が対向して配置されたか否かを検出する構成が異なる。なお、実施形態1または2と同様の構成には同一の符号を付して説明は省略する。
(Embodiment 3)
The non-contact power feeding panel P of the present embodiment has substantially the same configuration as that of the first embodiment, but the configuration for detecting whether or not the non-contact power receiving unit 20 is disposed facing the non-contact power feeding unit 10 is different. . In addition, the same code | symbol is attached | subjected to the structure similar to Embodiment 1 or 2, and description is abbreviate | omitted.

本実施形態の非接触給電部10は、直流供給線路Wdcに常時接続しており、高周波電力発生回路11は一次コイルL1に流す高周波電流を、定格電流、待機電流、ゼロに切り換えることができる(定格電流>待機電流>ゼロ)。そして、非接触給電部10に非接触受電部20が対向して配置されていない待機状態では、定格電流より小さい待機電流を一次コイルL1に流しておく。   The contactless power supply unit 10 of the present embodiment is always connected to the DC supply line Wdc, and the high frequency power generation circuit 11 can switch the high frequency current flowing through the primary coil L1 to the rated current, standby current, and zero ( Rated current> standby current> zero). In a standby state in which the non-contact power receiving unit 20 is not disposed so as to face the non-contact power feeding unit 10, a standby current smaller than the rated current is passed through the primary coil L1.

さらに図8に示すように、非接触給電部10には無線受信部13を設け、非接触受電部20には無線送信部23を設けており、無線送信部23と無線受信部13との間では、電波による無線信号の授受が行われる。   Further, as shown in FIG. 8, the wireless power receiving unit 10 is provided with a wireless receiving unit 13, and the wireless power receiving unit 20 is provided with a wireless transmitting unit 23, between the wireless transmitting unit 23 and the wireless receiving unit 13. Then, transmission / reception of radio signals by radio waves is performed.

そして、非接触受電部20は、非接触給電部10に対向して設置されると一次コイルL1の待機電流によって二次コイルL2の両端に二次電圧が発生し、この二次電圧を整流平滑した電圧を動作電源として、無線送信部23から給電要求信号を送信する。すると、非接触給電部10の無線受信部13はこの給電要求信号を受信し、高周波電力発生回路11は、この給電要求信号によって非接触受電部20が対向して配置されていることを検出する。そして、高周波電力発生回路11は、非接触受電部20が対向して配置されていることを検出すると、一次コイルL1に定格電流を流して、非接触受電部20への通常給電を開始する。   When the non-contact power receiving unit 20 is installed facing the non-contact power feeding unit 10, a secondary voltage is generated at both ends of the secondary coil L2 by the standby current of the primary coil L1, and the secondary voltage is rectified and smoothed. The power transmission request signal is transmitted from the wireless transmission unit 23 using the obtained voltage as an operating power source. Then, the wireless reception unit 13 of the non-contact power supply unit 10 receives this power supply request signal, and the high-frequency power generation circuit 11 detects that the non-contact power reception unit 20 is disposed facing the power supply request signal. . And if the high frequency electric power generation circuit 11 detects that the non-contact power receiving part 20 is arrange | positioned facing, a rated current will be sent through the primary coil L1, and the normal electric power feeding to the non-contact power receiving part 20 will be started.

高周波電力発生回路11は、通常給電中に給電要求信号が受信されなくなれば、非接触受電部20が取り外されたと判断して、一次コイルL1に流す電流を待機電流に切り換える。   If the power supply request signal is not received during normal power supply, the high-frequency power generation circuit 11 determines that the non-contact power reception unit 20 has been removed, and switches the current flowing through the primary coil L1 to the standby current.

すなわち、高周波電力発生回路11と無線受信部13と無線送信部23とで、非接触給電部10a〜10dに非接触受電部20が対向して配置されたか否かを検出する駆動対象検出手段を形成し、高周波電力発生回路11で、非接触受電部20が対向して配置された非接触給電部10の一次コイルL1に定格電流を供給して高周波磁界を発生させる駆動手段を形成している。   That is, the driving target detection means for detecting whether or not the non-contact power receiving unit 20 is disposed opposite to the non-contact power feeding units 10a to 10d by the high-frequency power generation circuit 11, the radio reception unit 13, and the radio transmission unit 23. The driving means for generating a high frequency magnetic field by supplying a rated current to the primary coil L1 of the non-contact power feeding unit 10 disposed so as to face the non-contact power receiving unit 20 is formed in the high-frequency power generation circuit 11. .

この検出方法では、他の非接触給電部10が非接触受電部20への給電を継続した状態で、非接触受電部20の設置状態を検出することができるので、実施形態1のように、非接触受電部20の平滑コンデンサCaの容量を大きくする必要がない。さらに、コントローラ40を設ける必要がなくなる。   In this detection method, since the other non-contact power supply unit 10 can detect the installation state of the non-contact power reception unit 20 in a state where power supply to the non-contact power reception unit 20 is continued, as in the first embodiment, There is no need to increase the capacity of the smoothing capacitor Ca of the non-contact power receiving unit 20. Furthermore, it is not necessary to provide the controller 40.

また、全ての非接触給電部10が定格電流を一次コイルL1に常時流すのではなく、非接触受電部20が対向して配置されている非接触給電部10のみが定格電流を一次コイルL1に流し、他の非接触受電部は定格電流より小さい待機電流を一次コイルL1に流すので、不要な電力消費を抑制でき、省エネルギー化を図ることができる。   Moreover, not all the non-contact electric power feeding parts 10 always flow a rated current to the primary coil L1, but only the non-contact electric power feeding part 10 with which the non-contact electric power receiving part 20 is arrange | positioned facing is applied to a primary coil L1. Since the other non-contact power receiving unit flows a standby current smaller than the rated current to the primary coil L1, unnecessary power consumption can be suppressed and energy saving can be achieved.

また、非接触受電部20から非接触給電部10への給電要求信号の授受は有線を介して行われてもよい。   Moreover, transmission / reception of the power supply request signal from the non-contact power reception unit 20 to the non-contact power supply unit 10 may be performed via a wire.

なお、上記実施形態1〜3では、図9に示す配電システムにおいて直流配電系統に非接触給電システムを適用しているが、図示しない交流配電系統に各実施形態と同様の非接触給電用パネルを用いた非接触給電システムを適用してもよい。この場合、非接触給電部10の入力段に商用電源を整流する整流手段を設け、非接触受電部20の出力段にインバータ装置等のDC/AC変換装置を設ける。   In the first to third embodiments, the non-contact power feeding system is applied to the DC power distribution system in the power distribution system shown in FIG. 9, but the same non-contact power feeding panel as that of each embodiment is applied to the AC power distribution system (not shown). The used non-contact power feeding system may be applied. In this case, a rectifying means for rectifying the commercial power supply is provided at the input stage of the non-contact power supply unit 10, and a DC / AC conversion device such as an inverter device is provided at the output stage of the non-contact power reception unit 20.

実施形態1の非接触給電用パネルの構成を示す図である。3 is a diagram illustrating a configuration of a non-contact power supply panel according to Embodiment 1. FIG. 同上の設置状態を示す図である。It is a figure which shows the installation state same as the above. 同上の非接触給電用パネルの回路構成の概略を示す図である。It is a figure which shows the outline of the circuit structure of the panel for non-contact electric power feeding same as the above. (a)は同上の非接触給電部が具備する磁石の配置、(b)は非接触受電部が具備する磁石の配置を各々示す図である。(A) is the figure which shows arrangement | positioning of the magnet which the non-contact electric power feeding part same as the above comprises, (b) is a figure which respectively shows arrangement | positioning of the magnet which the non-contact electric power receiving part comprises. 同上の非接触給電部の駆動制御部の構成を示す図である。It is a figure which shows the structure of the drive control part of a non-contact electric power feeding part same as the above. 同上の駆動制御部の動作フローチャートを示す図である。It is a figure which shows the operation | movement flowchart of a drive control part same as the above. 実施形態2の非接触給電用パネルの回路構成の概略を示す図である。It is a figure which shows the outline of the circuit structure of the panel for non-contact electric power feeding of Embodiment 2. FIG. 実施形態3の非接触給電用パネルの回路構成の概略を示す図である。It is a figure which shows the outline of the circuit structure of the panel for non-contact electric power feeding of Embodiment 3. FIG. 配電システムの全体構成を示す図である。It is a figure which shows the whole structure of a power distribution system.

符号の説明Explanation of symbols

P 非接触給電用パネル
1 筐体
1a ベースプレート
1b 化粧カバー
10 非接触給電部
20 非接触受電部
M1a,M1b 磁石
M2a,M2b 磁石
U 直流機器
P Non-contact power supply panel 1 Housing 1a Base plate 1b Cosmetic cover 10 Non-contact power supply unit 20 Non-contact power reception unit M1a, M1b Magnet M2a, M2b Magnet U DC device

Claims (7)

構造物の施工面に設置された長尺状の筐体と、筐体内の長手方向に沿った複数の位置に設置されて高周波磁界を各々発生する複数の非接触給電部と、各非接触給電部が発生する高周波磁界による電磁誘導を利用して非接触給電部から非接触で受電した電力を負荷へ供給する非接触受電部を各非接触給電部に対向する筐体外面に取り付ける取付手段とを備えたことを特徴とする非接触給電用パネル。   A long case installed on the construction surface of the structure, a plurality of non-contact power supply units that generate high-frequency magnetic fields installed at a plurality of positions along the longitudinal direction in the case, and each non-contact power supply Mounting means for attaching a non-contact power receiving unit that supplies non-contact power received from the non-contact power feeding unit to a load using electromagnetic induction by a high-frequency magnetic field generated by the unit on an outer surface of the housing facing each non-contact power feeding unit; A non-contact power supply panel characterized by comprising: 前記取付手段は、前記非接触給電部と非接触受電部との間に前記筐体を介した吸引力を発生させ、当該吸引力によって、筐体外面において非接触給電部に対向する位置に非接触受電部を着脱自在に取り付けることを特徴とする請求項1記載の非接触給電用パネル。   The attachment means generates a suction force via the housing between the non-contact power feeding unit and the non-contact power receiving unit, and the suction force causes a non-contact at a position facing the non-contact power feeding unit on the outer surface of the housing. The contactless power supply panel according to claim 1, wherein the contact power receiving unit is detachably attached. 前記取付手段は、前記非接触給電部と非接触受電部とに各々設けられた磁石間に発生する吸引力によって、筐体外面において非接触給電部に対向する位置に非接触受電部を着脱自在に取り付けることを特徴とする請求項2記載の非接触給電用パネル。   The attachment means can attach and detach the non-contact power receiving portion at a position facing the non-contact power feeding portion on the outer surface of the housing by an attractive force generated between magnets provided in the non-contact power feeding portion and the non-contact power receiving portion, respectively. The non-contact power supply panel according to claim 2, wherein the non-contact power supply panel is attached to the panel. 前記非接触給電部は、高周波電流を供給されることで高周波磁界を発生するコイルを具備し、
前記各非接触給電部に非接触受電部が対向して配置されたか否かを検出する駆動対象検出手段と、非接触受電部が対向して配置された非接触給電部のコイルに所定の高周波電流を供給して高周波磁界を発生させる駆動手段とを備えることを特徴とする請求項1乃至3いずれか記載の非接触給電用パネル。
The non-contact power supply unit includes a coil that generates a high-frequency magnetic field by being supplied with a high-frequency current,
A drive target detection unit that detects whether or not a non-contact power receiving unit is disposed opposite to each non-contact power feeding unit, and a predetermined high frequency to a coil of the non-contact power feeding unit that is disposed so as to face the non-contact power receiving unit. 4. The non-contact power supply panel according to claim 1, further comprising a driving unit that supplies a current to generate a high-frequency magnetic field.
前記駆動対象検出手段は、前記複数の非接触給電部のうち1つのみを駆動する検出可能期間を、駆動する非接触給電部を順次切り換えて一定時間毎に発生させ、検出可能期間において駆動中の非接触給電部から受電側をみたインピーダンスを測定し、当該測定したインピーダンスに基づいて当該非接触給電部に非接触受電部が対向して配置されているか否かを判断することを特徴とする請求項4記載の非接触給電用パネル。   The drive target detecting means generates a detectable period for driving only one of the plurality of non-contact power supply units at a predetermined time by sequentially switching the non-contact power supply unit to be driven, and is being driven during the detectable period Measuring the impedance of the non-contact power feeding unit viewed from the power receiving side, and determining whether or not the non-contact power receiving unit is disposed opposite to the non-contact power feeding unit based on the measured impedance The panel for non-contact electric power feeding according to claim 4. 前記筐体は、筐体内の長手方向に沿った複数の位置に前記非接触給電部の設置位置を予め設定しており、筐体の外面は各設置位置に対応する箇所にLED素子を設け、各LED素子に対応する設置位置に非接触給電部が設置された場合にLED素子を点灯させる点灯手段を備えることを特徴とする請求項1乃至5いずれか記載の非接触給電用パネル。   The housing has preset the installation positions of the non-contact power feeding unit at a plurality of positions along the longitudinal direction in the housing, the outer surface of the housing is provided with LED elements at locations corresponding to the respective installation positions, 6. The non-contact power feeding panel according to claim 1, further comprising a lighting unit that turns on the LED element when the non-contact power feeding unit is installed at an installation position corresponding to each LED element. 前記筐体は、筐体内の長手方向に沿った複数の位置に前記非接触給電部の設置位置を予め設定しており、筐体の外面は各設置位置に対応する箇所にLED素子を設け、各LED素子は、当該LED素子に対応する設置位置の非接触給電部の給電状態を表示することを特徴とする請求項1乃至5いずれか記載の非接触給電用パネル。   The housing has preset the installation positions of the non-contact power feeding unit at a plurality of positions along the longitudinal direction in the housing, the outer surface of the housing is provided with LED elements at locations corresponding to the respective installation positions, 6. The non-contact power supply panel according to claim 1, wherein each LED element displays a power supply state of a non-contact power supply unit at an installation position corresponding to the LED element.
JP2007332826A 2007-12-25 2007-12-25 Noncontact power feed panel Pending JP2009159675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007332826A JP2009159675A (en) 2007-12-25 2007-12-25 Noncontact power feed panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007332826A JP2009159675A (en) 2007-12-25 2007-12-25 Noncontact power feed panel

Publications (1)

Publication Number Publication Date
JP2009159675A true JP2009159675A (en) 2009-07-16

Family

ID=40963078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007332826A Pending JP2009159675A (en) 2007-12-25 2007-12-25 Noncontact power feed panel

Country Status (1)

Country Link
JP (1) JP2009159675A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279198A (en) * 2009-05-29 2010-12-09 Panasonic Electric Works Co Ltd Power feed device
KR20120052291A (en) * 2009-07-13 2012-05-23 코닌클리케 필립스 일렉트로닉스 엔.브이. Inductive power transfer
JP2012518380A (en) * 2009-02-13 2012-08-09 クアルコム,インコーポレイテッド Wireless power from renewable energy
KR101210436B1 (en) * 2010-07-26 2012-12-10 현대로템 주식회사 Contactless power supply apparatus
KR20130028011A (en) * 2011-09-08 2013-03-18 삼성전자주식회사 Wireless power receiver and method for controlling thereof
JP2013513350A (en) * 2009-12-04 2013-04-18 パワーマッド テクノロジーズ リミテッド System and method for controlling connection from a power source to an inductive power outlet
JP2013143890A (en) * 2012-01-12 2013-07-22 Panasonic Corp Non-contact power transmission device
JP2013143889A (en) * 2012-01-12 2013-07-22 Panasonic Corp Non-contact power transmission device
JP2014090631A (en) * 2012-10-31 2014-05-15 Panasonic Corp Noncontact power supply system, movable device and control method of power supply device of noncontact power supply system
WO2016181657A1 (en) * 2015-05-13 2016-11-17 セイコーエプソン株式会社 Control apparatus, electronic device, and contactless power transmission system
US10176920B2 (en) 2011-03-31 2019-01-08 Sekisui Chemical Co., Ltd. Building and construction method for the same
IT201800007975A1 (en) * 2018-08-08 2020-02-08 Lym Srl CLADDING PANEL AND FIXING SYSTEM INCLUDING THIS PANEL, FIXING PROCEDURE AND ELECTRONIC DEVICE.

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107620A (en) * 1985-11-01 1987-05-19 松下電工株式会社 Floor plug socket
JPH0451505A (en) * 1990-06-19 1992-02-20 Ko Nanbu Connector
JPH04361507A (en) * 1991-05-31 1992-12-15 Talent Lab Inc Concealment type power supply-information receptacle
JP2001093324A (en) * 1999-09-21 2001-04-06 Toshiba Lighting & Technology Corp Medical lighting device
JP2001309579A (en) * 2000-04-25 2001-11-02 Matsushita Electric Works Ltd Non-contact power feeding apparatus
JP2003224937A (en) * 2002-01-25 2003-08-08 Sony Corp Method and apparatus for power supply, method and apparatus for receiving power supply, power supply system, recording medium, and program
JP2006136045A (en) * 2004-11-02 2006-05-25 Sharp Corp Power supply system and power supply service using the same
JP2006230129A (en) * 2005-02-18 2006-08-31 Nanao Corp Noncontact power supply
JP2011501633A (en) * 2007-10-09 2011-01-06 パワーマット リミテッド Inductive power supply system in the interface

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107620A (en) * 1985-11-01 1987-05-19 松下電工株式会社 Floor plug socket
JPH0451505A (en) * 1990-06-19 1992-02-20 Ko Nanbu Connector
JPH04361507A (en) * 1991-05-31 1992-12-15 Talent Lab Inc Concealment type power supply-information receptacle
JP2001093324A (en) * 1999-09-21 2001-04-06 Toshiba Lighting & Technology Corp Medical lighting device
JP2001309579A (en) * 2000-04-25 2001-11-02 Matsushita Electric Works Ltd Non-contact power feeding apparatus
JP2003224937A (en) * 2002-01-25 2003-08-08 Sony Corp Method and apparatus for power supply, method and apparatus for receiving power supply, power supply system, recording medium, and program
JP2006136045A (en) * 2004-11-02 2006-05-25 Sharp Corp Power supply system and power supply service using the same
JP2006230129A (en) * 2005-02-18 2006-08-31 Nanao Corp Noncontact power supply
JP2011501633A (en) * 2007-10-09 2011-01-06 パワーマット リミテッド Inductive power supply system in the interface

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8963486B2 (en) 2009-02-13 2015-02-24 Qualcomm Incorporated Wireless power from renewable energy
JP2012518380A (en) * 2009-02-13 2012-08-09 クアルコム,インコーポレイテッド Wireless power from renewable energy
JP2010279198A (en) * 2009-05-29 2010-12-09 Panasonic Electric Works Co Ltd Power feed device
KR20120052291A (en) * 2009-07-13 2012-05-23 코닌클리케 필립스 일렉트로닉스 엔.브이. Inductive power transfer
JP2013527735A (en) * 2009-07-13 2013-06-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Inductive power transmission
US10439436B2 (en) 2009-07-13 2019-10-08 Koninklijke Philips N.V. Inductive power transfer
KR102033306B1 (en) 2009-07-13 2019-10-17 코닌클리케 필립스 엔.브이. Inductive power transfer
JP2013513350A (en) * 2009-12-04 2013-04-18 パワーマッド テクノロジーズ リミテッド System and method for controlling connection from a power source to an inductive power outlet
KR101210436B1 (en) * 2010-07-26 2012-12-10 현대로템 주식회사 Contactless power supply apparatus
US10176920B2 (en) 2011-03-31 2019-01-08 Sekisui Chemical Co., Ltd. Building and construction method for the same
KR20130028011A (en) * 2011-09-08 2013-03-18 삼성전자주식회사 Wireless power receiver and method for controlling thereof
JP2014526870A (en) * 2011-09-08 2014-10-06 サムスン エレクトロニクス カンパニー リミテッド Wireless power receiver and control method thereof
KR101897543B1 (en) 2011-09-08 2018-09-12 삼성전자주식회사 Wireless power receiver and method for controlling thereof
JP2013143889A (en) * 2012-01-12 2013-07-22 Panasonic Corp Non-contact power transmission device
JP2013143890A (en) * 2012-01-12 2013-07-22 Panasonic Corp Non-contact power transmission device
JP2014090631A (en) * 2012-10-31 2014-05-15 Panasonic Corp Noncontact power supply system, movable device and control method of power supply device of noncontact power supply system
US10177599B2 (en) 2012-10-31 2019-01-08 Panasonic Intellectual Property Management Co., Ltd. Contactless power feeding system, movable device and method for controlling power feeding of contactless power feeding system
WO2016181657A1 (en) * 2015-05-13 2016-11-17 セイコーエプソン株式会社 Control apparatus, electronic device, and contactless power transmission system
US10291082B2 (en) 2015-05-13 2019-05-14 Seiko Epson Corporation Control device, electronic apparatus, and contactless power transmission system
CN107534317A (en) * 2015-05-13 2018-01-02 精工爱普生株式会社 Control device, electronic equipment and non-contact power transmitting system
JP2016214028A (en) * 2015-05-13 2016-12-15 セイコーエプソン株式会社 Control device, electronic apparatus, and contactless power transmission system
CN107534317B (en) * 2015-05-13 2020-08-21 精工爱普生株式会社 Control device, electronic apparatus, and contactless power transmission system
IT201800007975A1 (en) * 2018-08-08 2020-02-08 Lym Srl CLADDING PANEL AND FIXING SYSTEM INCLUDING THIS PANEL, FIXING PROCEDURE AND ELECTRONIC DEVICE.
WO2020031124A1 (en) * 2018-08-08 2020-02-13 Lym S.R.L. Covering panel and fastening system comprising said panel, process for fastening and electronic device

Similar Documents

Publication Publication Date Title
JP2009159675A (en) Noncontact power feed panel
JP5314278B2 (en) Contactless power supply system
JP4858429B2 (en) Wash basin
JP2009159683A (en) Building with noncontact power feed function, and noncontact power feed outlet
JP5314277B2 (en) Bathtub with non-contact power supply function
EP2186180B1 (en) Intelligent device and power source interaction
JP5096563B2 (en) Power supply
JP2009159686A (en) Noncontact power feed adaptor
US20150214752A1 (en) Wireless power outlet
US20130119777A1 (en) Wireless energy transfer systems
US9642222B2 (en) Light bulb adapter
US20130015714A1 (en) Smart Power Portal
JP2014003877A (en) Power supply device, adaptor, power receiving device and power supply method
JP2010040389A (en) Wiring device, and feeding system using wiring device
JP5555918B2 (en) Plug receptacle
JPWO2011089776A1 (en) Non-contact power feeding device
TW201225575A (en) An apparatus and method for controlling power
WO2011027627A1 (en) Extension cord for contactless electricity-supplying device
JP5255268B2 (en) Contactless power supply adapter
JP5032969B2 (en) DC outlet
JP2011078267A (en) Dc power supply system
KR20110038761A (en) Rf and touch type lamp switch device
JP4956409B2 (en) LED lighting fixtures
JP2009165250A (en) Dc power distribution system
JP2009153338A (en) Dc power distribution system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604