JP2009045637A - Laser beam machining apparatus - Google Patents

Laser beam machining apparatus Download PDF

Info

Publication number
JP2009045637A
JP2009045637A JP2007212721A JP2007212721A JP2009045637A JP 2009045637 A JP2009045637 A JP 2009045637A JP 2007212721 A JP2007212721 A JP 2007212721A JP 2007212721 A JP2007212721 A JP 2007212721A JP 2009045637 A JP2009045637 A JP 2009045637A
Authority
JP
Japan
Prior art keywords
laser
laser beam
workpiece
processing apparatus
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007212721A
Other languages
Japanese (ja)
Inventor
Masaaki Matsuda
公明 松田
Izumi Iwasa
泉 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2007212721A priority Critical patent/JP2009045637A/en
Publication of JP2009045637A publication Critical patent/JP2009045637A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser beam machining apparatus capable of performing fine machining at high speed. <P>SOLUTION: The laser beam machining apparatus 1 is equipped with: an ultra-short pulse laser beam oscillator 2 for emitting a laser beam 3 of the ultra-short pulse with an energy per pulse of ≤100 nJ at a cyclic frequency of ≥10 MHz; a condensing lens (a condensing element) 7 for receiving the laser beam 3 emitted from the ultra-short pulse laser beam oscillator 2 without via any amplifier or any attenuator and condensing the laser beam to a workpiece 8; a beam isolator (a return laser beam preventive means) 5 for preventing the laser beam 3 returning to the ultra-short pulse laser beam oscillator 2 by the reflection out of the laser beam 3 emitted from the ultra-short pulse laser beam oscillator 2; and a stage driving section (a moving means) 10 for moving the workpiece 8 with respect to the condensing lens 7 in the direction orthogonal to the optical axis of the incident laser beam 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、レーザ加工装置に関する。   The present invention relates to a laser processing apparatus.

近年、実質的に被加工物に熱影響を与えない加工として、超短パルスレーザ加工が注目を集めている。超短パルスレーザ加工は、パルス幅が短い代わりに、1パルス当たりのエネルギーを非常に大きくすることによって、物質を加工するものであり、アブレーション加工と呼ばれている(例えば、特許文献1)。   In recent years, ultra-short pulse laser processing has attracted attention as a process that does not substantially affect the workpiece. Ultra-short pulse laser processing is to process a substance by enlarging energy per pulse instead of having a short pulse width, and is called ablation processing (for example, Patent Document 1).

このアブレーション加工を行う一般的な従来のレーザ加工装置として、フェムト秒レーザ発振器から発振されたレーザ光を増幅器によって1パルス当たりのエネルギーを大きくしたものがある(例えば、特許文献2)。   As a general conventional laser processing apparatus for performing this ablation processing, there is one in which energy per pulse is increased by an amplifier using laser light oscillated from a femtosecond laser oscillator (for example, Patent Document 2).

このレーザ加工装置は、フェムト秒レーザ発振器から出射されたパルス幅が25fs(フェムト秒)、1パルス当りのエネルギーが5nJのレーザ光を、パルス伸長器、増幅器、パルス圧縮器により、パルス幅が40fs、繰返し周波数10Hz、1パルス当りのエネルギーが40mJに高強度化し、さらにフィルター及びレンズに通過させることにより、スポット径及びフルエンス(fluence)が調整されて、スポット径約200μm、フルエンス0.2J/cmのレーザ光が得られ、このレーザ光をステンレス鋼(SUS)等の被加工物に照射して微細加工を行う。
特表2005−533658号公報 特開2003−211400号公報
In this laser processing apparatus, a laser beam having a pulse width of 25 fs (femtosecond) emitted from a femtosecond laser oscillator and an energy per pulse of 5 nJ is applied to a pulse width of 40 fs by a pulse stretcher, an amplifier, and a pulse compressor. The repetition frequency is 10 Hz, the energy per pulse is increased to 40 mJ, and the spot diameter and the fluence are adjusted by passing through a filter and a lens. The spot diameter is about 200 μm, the fluence is 0.2 J / cm. No. 2 laser beam is obtained, and this laser beam is irradiated onto a workpiece such as stainless steel (SUS) for fine processing.
JP 2005-533658 A JP 2003-211400 A

本発明の目的は、微細な加工を高速に行うことができるレーザ加工装置を提供することにある。   An object of the present invention is to provide a laser processing apparatus capable of performing fine processing at high speed.

本発明の一態様は、上記目的を達成するため、以下のレーザ加工装置を提供する。   One embodiment of the present invention provides the following laser processing apparatus to achieve the above object.

[1]1パルス当たりのエネルギーが100nJ以下、繰り返し周波数が10MHz以上の超短パルスのレーザ光を被加工物に照射する照射手段と、前記照射手段から照射される前記レーザ光の光軸に略垂直な方向に前記被加工物を相対的に移動させる移動手段とを備えたレーザ加工装置。 [1] Irradiation means for irradiating a workpiece with ultrashort pulse laser light having an energy per pulse of 100 nJ or less and a repetition frequency of 10 MHz or more; and an optical axis of the laser light emitted from the irradiation means A laser processing apparatus comprising: a moving unit that relatively moves the workpiece in a vertical direction.

[2]前記照射手段は、1パルス当たりのエネルギーが100nJ以下、繰り返し周波数が10MHz以上の超短パルスの前記レーザ光を出射するレーザ発振器と、前記レーザ発振器から出射された前記レーザ光を、増幅器及び減衰器を介さずに受光して前記被加工物に所定のフルレンスで照射するように集光する集光素子とを備えた前記[1]に記載のレーザ加工装置。 [2] The irradiation means includes a laser oscillator that emits an ultrashort pulse laser beam having an energy per pulse of 100 nJ or less and a repetition frequency of 10 MHz or more, and an amplifier that emits the laser beam emitted from the laser oscillator. The laser processing apparatus according to [1], further including: a light collecting element that collects light so as to irradiate the workpiece with a predetermined fluence without passing through an attenuator.

[3]さらに、前記レーザ発振器から出射された前記レーザ光のうち反射により前記レーザ発振器に戻るレーザ光を防止する戻りレーザ光防止手段を備えた前記[2]に記載のレーザ加工装置。 [3] The laser processing apparatus according to [2], further comprising return laser beam prevention means for preventing laser light returning to the laser oscillator due to reflection among the laser beams emitted from the laser oscillator.

[4]さらに、液体を収容する容器と、前記被加工物を前記容器内の前記液体中に保持する保持部材とを備え、前記移動手段は、前記容器及び保持部材、又は前記保持部材を前記レーザ光の光軸に対して交差する方向に移動させる前記[1]から[3]のいずれか1つに記載のレーザ加工装置。 [4] The apparatus further includes a container that stores a liquid and a holding member that holds the workpiece in the liquid in the container, and the moving unit includes the container and the holding member, or the holding member. The laser processing apparatus according to any one of [1] to [3], wherein the laser processing apparatus is moved in a direction intersecting an optical axis of the laser light.

[5]前記容器は、前記レーザ光の入射側に前記レーザ光を透過させる透過部を有し、前記透過部は、前記レーザ光の前記レーザ発振器への反射を防止する反射防止膜が形成された前記[4]に記載のレーザ加工装置。 [5] The container has a transmission part that transmits the laser light on the laser light incident side, and the reflection part is formed with an antireflection film that prevents reflection of the laser light to the laser oscillator. The laser processing apparatus according to [4].

請求項1に係るレーザ加工装置によれば、微細な加工を高速に行うことができる。   According to the laser processing apparatus of the first aspect, fine processing can be performed at high speed.

請求項2に係るレーザ加工装置によれば、構成を簡素化することができる。   According to the laser processing apparatus of the second aspect, the configuration can be simplified.

請求項3に係るレーザ加工装置によれば、レーザ光の発振を安定化させることができる。   According to the laser processing apparatus of the third aspect, it is possible to stabilize the oscillation of the laser beam.

請求項4に係るレーザ加工装置によれば、空中で加工した場合と比較して加工で発生した屑等の飛末が被加工物に付着しにくくなる。   According to the laser processing apparatus according to the fourth aspect, compared with the case of processing in the air, the flying powder such as scrap generated by the processing is less likely to adhere to the workpiece.

請求項5に係るレーザ加工装置によれば、反射防止膜を備えていない構成と比較してレーザ入射光の透過効率をより向上(レーザ光の通過損失をより抑制)することができる。   According to the laser processing apparatus of the fifth aspect, the transmission efficiency of the laser incident light can be further improved (the laser beam passage loss is further suppressed) as compared with the configuration not including the antireflection film.

[第1の実施の形態]
図1は、本発明の第1の実施の形態に係るレーザ加工装置の概略の構成を示す図である。なお、同図中、X、Y、Zは、互いに直交するX軸方向、Y軸方向、Z軸方向(光軸方向)を示す。
[First Embodiment]
FIG. 1 is a diagram showing a schematic configuration of a laser processing apparatus according to the first embodiment of the present invention. In the figure, X, Y, and Z indicate an X-axis direction, a Y-axis direction, and a Z-axis direction (optical axis direction) orthogonal to each other.

このレーザ加工装置1は、一般に通信で使用されるような超短パルスのレーザ光3を出射する超短パルスレーザ発振器2を有し、レーザ光3の光路上に、ミラー4、光アイソレータ(戻りレーザ光防止手段)5、シャッタ6、集光レンズ(集光素子)7、および被加工物8が取り付けられる保持部材9を各々配置し、保持部材9を移動させるステージ駆動部(移動手段)10と、シャッタ6及びステージ駆動部10を制御するコントローラ11とを有して構成されている。なお、超短パルスレーザ発振器2、ミラー4、光アイソレータ5、シャッタ6、及び集光レンズ7は、超短パルスのレーザ光3を被加工物8に照射する照射手段を構成する。   This laser processing apparatus 1 has an ultrashort pulse laser oscillator 2 that emits an ultrashort pulse laser beam 3 that is generally used in communication, and a mirror 4 and an optical isolator (return) on the optical path of the laser beam 3. A laser beam preventing means) 5, a shutter 6, a condenser lens (light collecting element) 7, and a holding member 9 to which the workpiece 8 is attached are arranged, and a stage driving unit (moving means) 10 that moves the holding member 9. And a controller 11 that controls the shutter 6 and the stage drive unit 10. The ultrashort pulse laser oscillator 2, the mirror 4, the optical isolator 5, the shutter 6, and the condenser lens 7 constitute an irradiation unit that irradiates the workpiece 8 with the ultrashort pulse laser beam 3.

また、レーザ加工装置1の光学系では、超短パルスレーザ発振器2から出射されたレーザ光3は、レーザ光3の強度を高める増幅器やレーザ光3の強度を減ずる減衰器を介さずに集光レンズ7に到達する。   In the optical system of the laser processing apparatus 1, the laser light 3 emitted from the ultrashort pulse laser oscillator 2 is condensed without using an amplifier that increases the intensity of the laser light 3 or an attenuator that reduces the intensity of the laser light 3. The lens 7 is reached.

超短パルスレーザ発振器2は、1パルス当たりのエネルギーが100nJ以下の低エネルギーの超短パルスのレーザ光3を繰り返し周波数10MHz以上の高繰り返し周波数で発振するものである。なお、本発明の趣旨を逸脱しない範囲内で、1パルス当たりのエネルギーとして、50nJ以下、20nJ以下等の他の値、繰り返し周波数として、20MHz以上、50MHz以上等の他の値を採用し得る。ここで、「超短パルス」とは、パルス幅が10ps以下のパルスをいう。このような超短パルスを出射する超短パルスレーザ発振器2として、本実施の形態では、パルス幅がフェムト秒オーダの直線偏光(例えばs偏光)のレーザ光3を出射するフェムト秒レーザ発振器を用いる。   The ultrashort pulse laser oscillator 2 oscillates a low energy ultrashort pulse laser beam 3 having an energy per pulse of 100 nJ or less at a high repetition frequency of 10 MHz or more. It should be noted that other values such as 50 nJ or less and 20 nJ or less can be adopted as energy per pulse and other values such as 20 MHz or more and 50 MHz or more can be used as the repetition frequency without departing from the spirit of the present invention. Here, “ultra-short pulse” refers to a pulse having a pulse width of 10 ps or less. As the ultrashort pulse laser oscillator 2 that emits such an ultrashort pulse, in this embodiment, a femtosecond laser oscillator that emits linearly polarized laser light 3 (for example, s-polarized light) having a pulse width on the order of femtoseconds is used. .

集光レンズ7は、レーザ光3が被加工物8の表面8a又はその近傍に集光するように、光軸方向(Z軸方向)の位置が図示しない移動機構によって調整される。また、集光レンズ7は、フルエンス(fluence)が最適な値となるように、倍率、焦点距離が選択され、これによりスポット径が例えば1〜10μm程度となる。フルエンスとは、レーザ光の1パルス当りのエネルギーを照射面積で割って求めたエネルギー密度(J/cm)をいう。被加工物8を加工可能な最小エネルギー密度(加工閾値)及び熱影響がほとんど生じない最大エネルギー密度は、被加工物8の材質によって異なる。なお、集光素子として、集光レンズ7の他に、被加工物8の向きを変更することで凹面鏡等を用いてもよい。 The position of the condensing lens 7 in the optical axis direction (Z-axis direction) is adjusted by a moving mechanism (not shown) so that the laser light 3 is condensed on the surface 8a of the workpiece 8 or in the vicinity thereof. In addition, the condenser lens 7 has a magnification and a focal length that are selected so that the fluence has an optimum value, and the spot diameter becomes, for example, about 1 to 10 μm. The fluence is an energy density (J / cm 2 ) obtained by dividing the energy per pulse of the laser light by the irradiation area. The minimum energy density (processing threshold value) at which the workpiece 8 can be processed and the maximum energy density at which there is almost no thermal effect vary depending on the material of the workpiece 8. In addition to the condensing lens 7, a concave mirror or the like may be used as the condensing element by changing the direction of the workpiece 8.

被加工物8は、シリコン、GaAs等からなる半導体基板や、ステンレス鋼(SUS)等の金属等を対象とすることができる。   The workpiece 8 can be a semiconductor substrate made of silicon, GaAs, or the like, or a metal such as stainless steel (SUS).

保持部材9は、レーザ光3が通過するのに十分な大きさの開口9aを有し、ポリメチルメタクリレート(PMMA)等の樹脂、アルミニウム、SUS等の金属から形成され、ステージ駆動部10によってX軸方向、Y軸方向およびZ軸方向に移動可能となっている。なお、レーザ光3によって被加工物8に貫通穴を形成しない場合は、開口9aを設けなくてもよい。   The holding member 9 has an opening 9a large enough for the laser beam 3 to pass through, and is formed of a resin such as polymethyl methacrylate (PMMA), a metal such as aluminum, SUS, and the like by the stage driving unit 10. It can move in the axial direction, the Y-axis direction, and the Z-axis direction. In addition, when the through hole is not formed in the workpiece 8 by the laser beam 3, the opening 9a may not be provided.

ステージ駆動部10は、保持部材9を互いに直交するX軸方向、Y軸方向、Z軸方向に移動させる機構を備えるものであり、X軸方向、Y軸方向がZ軸方向よりも高速(例えば、600mm/s)に移動可能なものを用いることができる。なお、ステージ駆動部10は、光軸に垂直なX軸方向及びY軸方向に限らず、光軸に略垂直な方向(例えば、光軸に対して80°〜100°の方向)に保持部材9を移動させてもよい。また、ステージ駆動部10は、保持部材9をZ軸から偏心した軸周りに回転させる機構や、保持部材9をZ軸方向に対して傾斜させる機構を備えていてもよい。   The stage driving unit 10 includes a mechanism for moving the holding member 9 in the X-axis direction, the Y-axis direction, and the Z-axis direction orthogonal to each other, and the X-axis direction and the Y-axis direction are faster than the Z-axis direction (for example, , 600 mm / s) can be used. The stage driving unit 10 is not limited to the X-axis direction and the Y-axis direction perpendicular to the optical axis, but is a holding member in a direction substantially perpendicular to the optical axis (for example, a direction of 80 ° to 100 ° with respect to the optical axis). 9 may be moved. Further, the stage drive unit 10 may include a mechanism that rotates the holding member 9 around an axis that is eccentric from the Z axis, and a mechanism that tilts the holding member 9 with respect to the Z axis direction.

図2Aは、光アイソレータの構成例を示す図である。この光アイソレータ5は、偏光面50aが垂直方向のポラライズビームスプリッタ(以下「PBS」という。)による第1の偏光子50と、フェラデー回転子51と、λ/2板52と、偏光面53aが水平方向の第2の偏光子53とを備える。超短パルスレーザ発振器2から出射されたs偏光によるレーザ光3は、第1の偏光子50をs偏光のまま通過し、ファラデー回転子51により45°偏光され、λ/2板52により更に45°偏光されてp偏光となり、第2の偏光子53をp偏光のまま通過し、被加工物8側に向かう。被加工物8側からの戻り光は、p偏光の戻り光のみが第2の偏光子53を通過し、λ/2板52により45°偏光され、ファラデー回転子51により−45°偏光されてp偏光となるため、第1の偏光子50を通過せずに別の方向に反射され、理論上超短パルスレーザ発振器2に戻らない。   FIG. 2A is a diagram illustrating a configuration example of an optical isolator. This optical isolator 5 includes a first polarizer 50 formed by a polarized beam splitter (hereinafter referred to as “PBS”) having a polarization plane 50a in a vertical direction, a Ferroday rotator 51, a λ / 2 plate 52, and a polarization plane 53a. Includes a second polarizer 53 in the horizontal direction. The s-polarized laser light 3 emitted from the ultrashort pulse laser oscillator 2 passes through the first polarizer 50 as s-polarized light, is polarized by 45 ° by the Faraday rotator 51, and further 45 by the λ / 2 plate 52. The light is polarized to become p-polarized light, passes through the second polarizer 53 as p-polarized light, and travels toward the workpiece 8 side. In the return light from the workpiece 8 side, only the p-polarized return light passes through the second polarizer 53, is polarized by 45 ° by the λ / 2 plate 52, and is polarized by −45 ° by the Faraday rotator 51. Since it becomes p-polarized light, it does not pass through the first polarizer 50 but is reflected in another direction and theoretically does not return to the ultrashort pulse laser oscillator 2.

図2Bは、光アイソレータの他の構成例を示す図である。この光アイソレータ5は、偏光面54aが垂直方向のPBSによる第1の偏光子54と、フェラデー回転子55と、偏光面56aが45°傾いた第2の偏光子56とを備える。超短パルスレーザ発振器2から出射されたs偏光によるレーザ光3は、第1の偏光子54をs偏光のまま通過し、ファラデー回転子55により45°偏光され、第2の偏光子56を偏光面が45°傾いたまま通過し、被加工物8側に向かう。被加工物8側からの戻り光は、偏光面が45°傾いた戻り光のみが第2の偏光子56を通過し、ファラデー回転子55により−45°偏光されてp偏光となるため、第1の偏光子54を通過せずに別の方向に反射され、超短パルスレーザ発振器2に戻らない。なお、戻りレーザ光防止手段として、図2A、図2Bのものに限定されない。   FIG. 2B is a diagram illustrating another configuration example of the optical isolator. The optical isolator 5 includes a first polarizer 54 made of PBS whose polarization plane 54a is vertical, a Ferroday rotator 55, and a second polarizer 56 whose polarization plane 56a is inclined by 45 °. The s-polarized laser beam 3 emitted from the ultrashort pulse laser oscillator 2 passes through the first polarizer 54 as s-polarized light, is polarized by 45 ° by the Faraday rotator 55, and is polarized by the second polarizer 56. The surface passes while being inclined by 45 ° and heads toward the workpiece 8 side. As for the return light from the workpiece 8 side, only the return light whose polarization plane is inclined by 45 ° passes through the second polarizer 56 and is −45 ° polarized by the Faraday rotator 55 to become p-polarized light. It does not pass through one polarizer 54 but is reflected in another direction and does not return to the ultrashort pulse laser oscillator 2. The return laser beam preventing means is not limited to that shown in FIGS. 2A and 2B.

(レーザ加工装置の動作)
次に、レーザ加工装置1の動作を説明する。
(Operation of laser processing equipment)
Next, the operation of the laser processing apparatus 1 will be described.

超短パルスレーザ発振器2から出射されたs偏光のレーザ光3は、ミラー4で反射した後、光アイソレータ5を通過し、コントローラ11によって開に制御されたシャッター6を通過し、集光レンズ7によって被加工物8の表面8aに集光し、被加工物8にレーザ光3が照射される。一方、コントローラ11によりステージ駆動部10を制御して被加工物8を、例えば、X軸方向に10mm/sで移動させる。これにより被加工物8上に、例えば、幅2〜6μm、深さ1〜6μmの溝がX軸方向に沿って形成される。   The s-polarized laser light 3 emitted from the ultrashort pulse laser oscillator 2 is reflected by the mirror 4, passes through the optical isolator 5, passes through the shutter 6 controlled to be opened by the controller 11, and then enters the condenser lens 7. Thus, the light is condensed on the surface 8a of the workpiece 8, and the workpiece 8 is irradiated with the laser beam 3. On the other hand, the stage drive unit 10 is controlled by the controller 11 to move the workpiece 8 at, for example, 10 mm / s in the X-axis direction. Thereby, for example, a groove having a width of 2 to 6 μm and a depth of 1 to 6 μm is formed on the workpiece 8 along the X-axis direction.

レーザ光3を被加工物8に照射した際、レーザ光3が被加工物8や集光レンズ7等で反射した戻りレーザ光が超短パルスレーザ発振器2に向かうが、その戻りレーザ光が光アイソレータ5によって光路外へ反射されるため、戻りレーザ光が超短パルスレーザ発振器2に戻って超短パルスレーザ発振器2の発振モードが狂うということが無くなる。   When the workpiece 8 is irradiated with the laser beam 3, the return laser beam reflected by the workpiece 8, the condenser lens 7, and the like is directed to the ultrashort pulse laser oscillator 2. Since the light is reflected off the optical path by the isolator 5, the return laser light does not return to the ultrashort pulse laser oscillator 2 and the oscillation mode of the ultrashort pulse laser oscillator 2 is not changed.

[第2の実施の形態]
図3(a)は、本発明の第2の実施の形態に係るレーザ加工装置の概略の構成を示す図、図3(b)は、容器の部分断面図である。なお、図3(a)中、X、Y、Zは、互いに直交するX軸方向、Y軸方向、Z軸方向(光軸方向)を示す。
[Second Embodiment]
FIG. 3A is a diagram showing a schematic configuration of a laser processing apparatus according to the second embodiment of the present invention, and FIG. 3B is a partial sectional view of the container. In FIG. 3A, X, Y, and Z indicate an X-axis direction, a Y-axis direction, and a Z-axis direction (optical axis direction) that are orthogonal to each other.

本実施の形態は、被加工物8を水中でレーザ加工するようにしたものである。すなわち、本実施の形態のレーザ加工装置1は、図3(a)に示すように、第1の実施の形態と同様に、超短パルスレーザ発振器2、ミラー4、光アイソレータ(戻りレーザ光防止手段)5、シャッタ6、集光レンズ(集光素子)7、ステージ駆動部(移動手段)10、及びコントローラ11を有し、ステージ駆動部10上に配置され、蒸留水等の水(流体)12が収容される容器13と、容器13内の水12中に被加工物8を保持する保持部材19とを備える。また、この光学系では、第1の実施の形態と同様に、超短パルスレーザ発振器2から出射されたレーザ光3は、レーザ光3の強度を高める増幅器やレーザ光3の強度を減ずる減衰器を介さずに集光レンズ7に到達する。   In the present embodiment, the workpiece 8 is laser processed in water. That is, as shown in FIG. 3A, the laser processing apparatus 1 of the present embodiment has an ultrashort pulse laser oscillator 2, a mirror 4, an optical isolator (preventing return laser light) as in the first embodiment. Means) 5, shutter 6, condensing lens (condensing element) 7, stage driving unit (moving unit) 10, and controller 11, and disposed on stage driving unit 10 and water (fluid) such as distilled water. 12 is provided with a container 13 in which 12 is accommodated, and a holding member 19 that holds the workpiece 8 in the water 12 in the container 13. In this optical system, as in the first embodiment, the laser beam 3 emitted from the ultrashort pulse laser oscillator 2 is an amplifier that increases the intensity of the laser beam 3 or an attenuator that reduces the intensity of the laser beam 3. The condenser lens 7 is reached without going through.

保持部材19は、レーザ光3が通過するのに十分な大きさの開口19aを有し、PMMA等の樹脂、アルミニウム、SUS等の金属から形成され、容器13に固定されている。なお、レーザ光3によって被加工物8に貫通穴を形成しない場合は、開口19aを設けなくてもよい。   The holding member 19 has an opening 19 a that is large enough for the laser beam 3 to pass through. The holding member 19 is formed of a resin such as PMMA, a metal such as aluminum or SUS, and is fixed to the container 13. Note that when the through hole is not formed in the workpiece 8 by the laser beam 3, the opening 19a may not be provided.

容器13は、図3(b)に示すように、レーザ光3が入射する側に開口13aを有するPMMA等の樹脂、アルミニウム、SUS等の金属から形成され、開口13aに透光性を有するガラス、樹脂等からなる透光性窓(透過部)14が設けられている。透光性窓14のレーザ光3が入射する側には、レーザ光3の反射を抑制する反射防止膜としてのAR(Anti Reflection)コート14aが形成されている。なお、開口13a及び透光性窓14を設けずに、容器13全体が透光性を有するガラス、樹脂等から形成されていてもよい。   As shown in FIG. 3B, the container 13 is formed of a resin such as PMMA having an opening 13a on the side on which the laser beam 3 is incident, a metal such as aluminum, SUS, or the like, and glass having translucency in the opening 13a. A translucent window (transmission portion) 14 made of resin or the like is provided. An AR (Anti Reflection) coat 14 a as an antireflection film that suppresses reflection of the laser light 3 is formed on the side of the translucent window 14 on which the laser light 3 is incident. In addition, without providing the opening 13a and the translucent window 14, the entire container 13 may be formed of translucent glass, resin, or the like.

ARコート14aは、光の干渉によって反射を抑制するものであり、例えば、屈折率の異なる薄膜(例えば、TiO、SiO)を交互に積層することにより形成される。また、ARコート14aは、レーザ光3の波長域(波長800nm)における反射率が、例えば、0.2%以下と小さいものが好ましい。 The AR coat 14a suppresses reflection by light interference and is formed, for example, by alternately stacking thin films (for example, TiO 2 and SiO 2 ) having different refractive indexes. Further, it is preferable that the AR coat 14a has a small reflectance of, for example, 0.2% or less in the wavelength region (wavelength 800 nm) of the laser light 3.

なお、上記実施の形態では、ステージ駆動部10は、容器13を移動させたが、容器に対して保持部材を移動させてもよい。   In the above-described embodiment, the stage driving unit 10 moves the container 13, but the holding member may be moved with respect to the container.

次に、本発明の実施例1について説明する。実施例1は、第2の実施の形態に対応するものである。   Next, Example 1 of the present invention will be described. Example 1 corresponds to the second embodiment.

超短パルスレーザ発振器2として、パルス幅100fs(フェムト秒)、出力パワー1.3W、繰り返し周波数80MHz、波長800nm、16nJ/パルスのレーザ光3を発振するスペクトラ・フィジックス社製のチタンサファイヤーレーザ発振器を用いた。   As an ultrashort pulse laser oscillator 2, a titanium sapphire laser oscillator manufactured by Spectra Physics Co., Ltd. that oscillates a laser beam 3 having a pulse width of 100 fs (femtosecond), an output power of 1.3 W, a repetition frequency of 80 MHz, a wavelength of 800 nm, and 16 nJ / pulse. Was used.

図4は、被加工物8がシリコン(Si)基板のときのフルエンスとビーム径との関係を示す図である。被加工物8の材質がSiのときの加工閾値は、図4に示すように、0.34J/cmであり、そのときのビーム径は、2μmであるから、2μm以下となるように集光レンズ7の焦点距離、倍率を選択し、Z軸方向の位置を定める。本実施例1では、焦点距離f=10、倍率20倍のものを用い、被加工物8をX方向に10mm/sで移動させながら溝加工を行った。 FIG. 4 is a diagram showing the relationship between the fluence and the beam diameter when the workpiece 8 is a silicon (Si) substrate. The processing threshold when the material of the workpiece 8 is Si is 0.34 J / cm 2 as shown in FIG. 4, and the beam diameter at that time is 2 μm. The focal length and magnification of the optical lens 7 are selected, and the position in the Z-axis direction is determined. In Example 1, a focal length f = 10 and a magnification of 20 times were used, and grooving was performed while moving the workpiece 8 in the X direction at 10 mm / s.

(比較例1)
比較例1は、光源として、超短パルスレーザ発振器と再生増幅器とを用い、パルス幅100fs、出力パワー0.8W、繰り返し周波数1kHz、波長800nmのレーザ光をパワー減衰器によりマスク径1mm通過で0.1mWに調整させ、0.1μJ/パルスのレーザ光を出射させ、被加工物を10μm/sで移動させた。
(Comparative Example 1)
In Comparative Example 1, an ultrashort pulse laser oscillator and a regenerative amplifier are used as a light source, and a laser beam having a pulse width of 100 fs, an output power of 0.8 W, a repetition frequency of 1 kHz, and a wavelength of 800 nm is passed through a mask attenuator with a mask diameter of 1 mm. The laser beam was adjusted to 1 mW, 0.1 μJ / pulse laser light was emitted, and the workpiece was moved at 10 μm / s.

(比較例2)
比較例2は、光源として、実施例1と同じフェムト秒レーザ発振器を用い、集光レンズを用いずに被加工物にレーザ光を照射したが、フルエンスが加工閾値よりも小さいため、被加工物に溝を加工することはできなかった。
(Comparative Example 2)
In Comparative Example 2, the same femtosecond laser oscillator as that of Example 1 was used as a light source, and the workpiece was irradiated with laser light without using a condenser lens. However, since the fluence was smaller than the machining threshold, the workpiece was processed. The grooves could not be machined.

表1は、実施例1、比較例1、比較例2の比較結果を示す。

Figure 2009045637
Table 1 shows the comparison results of Example 1, Comparative Example 1, and Comparative Example 2.
Figure 2009045637

表1から、実施例1の上記構成により、比較例1と比較して微細な溝を速い加工速度で加工することができた。   From Table 1, by the said structure of Example 1, compared with the comparative example 1, the fine groove | channel was able to be processed at a quick processing speed.

[他の実施の形態]
なお、本発明は、上記各実施の形態に限定されず、本発明の趣旨を逸脱しない範囲内で種々に変形実施が可能である。
[Other embodiments]
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

例えば、上記各実施の形態では、溝を加工する場合について説明したが、基板を貫通するスリットや穴を加工する場合、面取りのような加工にも適用することができる。穴を加工する場合は、被加工物を光軸方向に移動させればよい。面取りのような加工をする場合は、被加工物を光軸に対して傾け、X軸方向又はY軸方向へ移動させればよい。   For example, in each of the above embodiments, the case of processing the groove has been described. However, when a slit or a hole penetrating the substrate is processed, it can be applied to processing such as chamfering. When machining the hole, the workpiece may be moved in the optical axis direction. When machining such as chamfering, the workpiece may be tilted with respect to the optical axis and moved in the X-axis direction or the Y-axis direction.

また、上記各実施の形態では、超短パルスレーザ発振器2から出射されたレーザ光3が増幅器や減衰器を介さずに集光レンズ7に到達する光学系を採用したが、最終的に所望のエネルギーの超短パルスを所望の繰り返し周波数で被加工物8に照射できるのなら、増幅器や減衰器を設けてもよい。例えば、ミラー4、集光レンズ7、又は透光性窓14がレーザ光の強度を減ずる機能を有していてもよい。   In each of the above embodiments, an optical system in which the laser beam 3 emitted from the ultrashort pulse laser oscillator 2 reaches the condenser lens 7 without passing through an amplifier or an attenuator is used. If the workpiece 8 can be irradiated with an ultrashort pulse of energy at a desired repetition frequency, an amplifier or an attenuator may be provided. For example, the mirror 4, the condensing lens 7, or the translucent window 14 may have a function of reducing the intensity of the laser light.

図1は、本発明の第1の実施の形態に係るレーザ加工装置の概略の構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a laser processing apparatus according to the first embodiment of the present invention. 図2Aは、光アイソレータの構成例を示す図である。FIG. 2A is a diagram illustrating a configuration example of an optical isolator. 図2Bは、光アイソレータの他の構成例を示す図である。FIG. 2B is a diagram illustrating another configuration example of the optical isolator. 図3(a)は、本発明の第2の実施の形態に係るレーザ加工装置の概略の構成を示す図、図3(b)は、容器の部分断面図である。FIG. 3A is a diagram showing a schematic configuration of a laser processing apparatus according to the second embodiment of the present invention, and FIG. 3B is a partial sectional view of the container. 図4は、被加工物がシリコン(Si)基板のときのフルエンスとビーム径との関係を示す図である。FIG. 4 is a diagram showing the relationship between the fluence and the beam diameter when the workpiece is a silicon (Si) substrate.

符号の説明Explanation of symbols

1 レーザ加工装置
3 レーザ光
2 超短パルスレーザ発振器
4 ミラー
5 光アイソレータ
6 シャッタ
7 集光レンズ
8 被加工物
8a 表面
9 保持部材
9a 開口
10 ステージ駆動部
11 コントローラ
12 水
13 容器
13a 開口
14 透光性窓
14a ARコート
19 保持部材
19a 開口
50 第1の偏光子
50a 偏光面
51 フェラデー回転子
52 λ/2板
53 第2の偏光子
53a 偏光面
54 第1の偏光子
54a 偏光面
55 フェラデー回転子
56 第2の偏光子
56a 偏光面
DESCRIPTION OF SYMBOLS 1 Laser processing apparatus 3 Laser beam 2 Ultrashort pulse laser oscillator 4 Mirror 5 Optical isolator 6 Shutter 7 Condensing lens 8 Work piece 8a Surface 9 Holding member 9a Opening 10 Stage drive part 11 Controller 12 Water 13 Container 13a Opening 14 Light transmission Window 14a AR coat 19 holding member 19a opening 50 first polarizer 50a polarizing surface 51 Feraday rotator 52 λ / 2 plate 53 second polarizer 53a polarizing surface 54 first polarizer 54a polarizing surface 55 Feraday rotator 56 Second polarizer 56a Polarization plane

Claims (5)

1パルス当たりのエネルギーが100nJ以下、繰り返し周波数が10MHz以上の超短パルスのレーザ光を被加工物に照射する照射手段と、
前記照射手段から照射される前記レーザ光の光軸に略垂直な方向に前記被加工物を相対的に移動させる移動手段とを備えたレーザ加工装置。
An irradiation means for irradiating the workpiece with an ultrashort pulse laser beam having an energy per pulse of 100 nJ or less and a repetition frequency of 10 MHz or more;
A laser processing apparatus comprising: a moving unit that relatively moves the workpiece in a direction substantially perpendicular to an optical axis of the laser beam irradiated from the irradiation unit.
前記照射手段は、1パルス当たりのエネルギーが100nJ以下、繰り返し周波数が10MHz以上の超短パルスの前記レーザ光を出射するレーザ発振器と、
前記レーザ発振器から出射された前記レーザ光を、増幅器及び減衰器を介さずに受光して前記被加工物に所定のフルエンスで照射するように集光する集光素子とを備えた請求項1に記載のレーザ加工装置。
The irradiation means includes a laser oscillator that emits the laser light of an ultrashort pulse having an energy per pulse of 100 nJ or less and a repetition frequency of 10 MHz or more;
2. A condensing element that receives the laser light emitted from the laser oscillator without passing through an amplifier and an attenuator and condenses the light so as to irradiate the workpiece with a predetermined fluence. The laser processing apparatus as described.
さらに、前記レーザ発振器から出射された前記レーザ光のうち反射により前記レーザ発振器に戻るレーザ光を防止する戻りレーザ光防止手段を備えた請求項2に記載のレーザ加工装置。   The laser processing apparatus according to claim 2, further comprising return laser light preventing means for preventing laser light returning to the laser oscillator by reflection out of the laser light emitted from the laser oscillator. さらに、液体を収容する容器と、
前記被加工物を前記容器内の前記液体中に保持する保持部材とを備え、
前記移動手段は、前記容器及び保持部材、又は前記保持部材を前記レーザ光の光軸に対して交差する方向に移動させる請求項1から3のいずれか1項に記載のレーザ加工装置。
And a container that contains the liquid;
A holding member for holding the workpiece in the liquid in the container,
4. The laser processing apparatus according to claim 1, wherein the moving unit moves the container and the holding member, or the holding member in a direction intersecting an optical axis of the laser beam.
前記容器は、前記レーザ光の入射側に前記レーザ光を透過させる透過部を有し、
前記透過部は、前記レーザ光の前記レーザ発振器への反射を防止する反射防止膜が形成された請求項4に記載のレーザ加工装置。
The container has a transmission part that transmits the laser light on the incident side of the laser light,
The laser processing apparatus according to claim 4, wherein the transmissive portion is formed with an antireflection film that prevents the laser light from being reflected to the laser oscillator.
JP2007212721A 2007-08-17 2007-08-17 Laser beam machining apparatus Pending JP2009045637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007212721A JP2009045637A (en) 2007-08-17 2007-08-17 Laser beam machining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007212721A JP2009045637A (en) 2007-08-17 2007-08-17 Laser beam machining apparatus

Publications (1)

Publication Number Publication Date
JP2009045637A true JP2009045637A (en) 2009-03-05

Family

ID=40498354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007212721A Pending JP2009045637A (en) 2007-08-17 2007-08-17 Laser beam machining apparatus

Country Status (1)

Country Link
JP (1) JP2009045637A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214428A (en) * 2009-03-17 2010-09-30 Disco Abrasive Syst Ltd Optical system and laser beam machining apparatus
CN102248302A (en) * 2011-01-13 2011-11-23 苏州德龙激光有限公司 Device and method for abnormally cutting toughened glass by ultra-short pulse laser
JP2013043193A (en) * 2011-08-23 2013-03-04 Furukawa Electric Co Ltd:The Method for processing ceramic substrate by laser beam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214428A (en) * 2009-03-17 2010-09-30 Disco Abrasive Syst Ltd Optical system and laser beam machining apparatus
CN102248302A (en) * 2011-01-13 2011-11-23 苏州德龙激光有限公司 Device and method for abnormally cutting toughened glass by ultra-short pulse laser
JP2013043193A (en) * 2011-08-23 2013-03-04 Furukawa Electric Co Ltd:The Method for processing ceramic substrate by laser beam

Similar Documents

Publication Publication Date Title
KR101798172B1 (en) Laser beam working machine
JP4835927B2 (en) Method of splitting hard and brittle plate
JP4833773B2 (en) Micro drilling method
JPH11347758A (en) Super precision machining device
JP7174352B2 (en) Optical processing device, optical processing method, and optical processing product production method
JP2002154846A (en) Method for processing glass substrate
JP2007144517A (en) Method for cutting stainless steel with fiber laser
JP5241527B2 (en) Laser processing equipment
WO2015008482A1 (en) Laser processing device, laser processing method, and laser oscillation device
JP2005294325A (en) Method and apparatus for manufacturing substrate
JP2008036641A (en) Laser beam machining apparatus and method
JP4354376B2 (en) Laser processing equipment
Mishchik et al. Dash line glass-and sapphire-cutting with high power USP laser
JP2009045637A (en) Laser beam machining apparatus
JP2005095936A (en) Apparatus and method for laser machining
JP2009023194A (en) Substrate partition method and laser irradiation apparatus
JP3401425B2 (en) Laser processing method and laser processing apparatus
JP2005021964A (en) Laser beam ablation processing method and device therefor
JP2002273592A (en) Method and apparatus for laser beam machining
JP5300543B2 (en) Optical system and laser processing apparatus
JP2005142303A (en) Method of dividing silicon wafer, and apparatus thereof
JP2005088023A (en) Machining method for transparent body
JP2005288501A (en) Laser beam machining method and apparatus
JP5302788B2 (en) Laser processing equipment
JP2006082232A (en) Laser processing method