JP2008244653A - Manufacturing method for thin-film bulk wave resonator - Google Patents

Manufacturing method for thin-film bulk wave resonator Download PDF

Info

Publication number
JP2008244653A
JP2008244653A JP2007079963A JP2007079963A JP2008244653A JP 2008244653 A JP2008244653 A JP 2008244653A JP 2007079963 A JP2007079963 A JP 2007079963A JP 2007079963 A JP2007079963 A JP 2007079963A JP 2008244653 A JP2008244653 A JP 2008244653A
Authority
JP
Japan
Prior art keywords
film
resonator
upper electrode
arm resonator
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007079963A
Other languages
Japanese (ja)
Inventor
Jun Hirabayashi
潤 平林
Koji Kuroki
康二 黒木
Kazumi Inubushi
和海 犬伏
Yutaka Matsuo
裕 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2007079963A priority Critical patent/JP2008244653A/en
Publication of JP2008244653A publication Critical patent/JP2008244653A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a thin-film bulk wave resonator suitable to adjust a resonance frequency and an anti-resonant frequency. <P>SOLUTION: A protecting film 60 is formed on an upper electrode 50B of a parallel arm resonator 10B, and a plurality of apertures are formed in a mesh-like fashion on the protecting film 60 by dry etching to expose a part of the upper electrode 50B. By adjusting the aperture ratio of the protecting film 60, the anti-resonant frequency of the parallel arm resonator 10B can be matched with the resonance frequency of a serial resonator 10A. Since the protecting film 60 with the plurality of apertures formed in the mesh-like fashion has a facility for adjusting the resonance frequency and the anti-resonant frequency of the parallel arm resonator 10B by its weight, the protecting film and a frequency regulation film are formed by one manufacturing process. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は薄膜バルク波共振器の製造方法に関する。   The present invention relates to a method for manufacturing a thin film bulk acoustic wave resonator.

無線LANや移動体通信機器のバンドパスフィルタを構成する共振子として、薄膜バルク波共振器(Film Bulk Acoustic Resonator)や表面弾性波(Surface Acoustic Wave)共振器など、圧電材料を用いた数々の共振器が実用化されている。中でも薄膜バルク波共振器は、弾性波が膜厚方向に伝搬する構造上、Q値に優れており、高い周波数選択性が要求されるPCS(Personal Communication Service)システム用RFフィルタなどに製品化されている。薄膜バルク波共振器は、基板と、その基板上に形成される積層共振体とを有している。積層共振体は、圧電体膜と、その圧電体膜を上下から挟む一対の上部電極及び下部電極を有しており、上部電極と下部電極との間に高周波信号が印加されると、積層共振体の膜厚が1/2波長に等しくなる共振周波数にて厚み縦方向に励振する。   Numerous resonances using piezoelectric materials such as thin film bulk acoustic resonators and surface acoustic wave resonators as resonators that make up bandpass filters for wireless LAN and mobile communication devices The vessel has been put into practical use. In particular, thin film bulk acoustic wave resonators are commercialized as RF filters for PCS (Personal Communication Service) systems, which have an excellent Q value due to the structure in which elastic waves propagate in the film thickness direction, and require high frequency selectivity. ing. The thin film bulk acoustic wave resonator has a substrate and a laminated resonator formed on the substrate. The laminated resonator has a piezoelectric film and a pair of upper and lower electrodes sandwiching the piezoelectric film from above and below, and when a high frequency signal is applied between the upper electrode and the lower electrode, the laminated resonance The body is excited in the longitudinal direction at a resonance frequency at which the film thickness is equal to ½ wavelength.

ラダー型フィルタのように、1ポートの共振器を直列及び並列に梯子型に接続したものを基本構成とし、直列腕共振器の共振周波数と並列腕共振器の反共振周波数をほぼ一致させることでバンドパス特性を得るフィルタでは、各共振器の共振周波数又は反共振周波数を目標周波数に一致させる必要がある。このように、共振器の共振周波数又は反共振周波数を目標周波数に一致させるための手法が検討されている。   As a ladder type filter, the basic configuration consists of a one-port resonator connected in series and parallel in a ladder configuration, and the resonance frequency of the series arm resonator and the anti-resonance frequency of the parallel arm resonator are substantially matched. In a filter that obtains bandpass characteristics, the resonance frequency or anti-resonance frequency of each resonator must match the target frequency. Thus, a technique for matching the resonance frequency or anti-resonance frequency of the resonator with the target frequency has been studied.

例えば、非特許文献1には、薄膜バルク波共振器の上部電極をメッシュ状にパターニングし、上部電極の密度を実質的に下げることで、共振周波数を調整する手法が開示されている。特許文献1には、複数の共振器のうち他の共振器に比べて共振周波数を相対的に低く設定する共振器の下部電極の下部又は上部電極の下部に金属又は誘電体から成る付加膜を形成する手法が開示されている。特許文献2には、ピエゾ電気共振器上に配置された犠牲質量負荷層を除去することにより共振周波数を調整する手法が開示されている。
特開2001−326553号公報 特表2001−514456号公報 Proc. Symp. Ultrason. Electron., Vol 27,(2006) pp13-14
For example, Non-Patent Document 1 discloses a method of adjusting the resonance frequency by patterning the upper electrode of a thin film bulk acoustic wave resonator in a mesh shape and substantially reducing the density of the upper electrode. In Patent Document 1, an additional film made of a metal or a dielectric is provided below a lower electrode or an upper electrode of a resonator that sets a resonance frequency relatively lower than other resonators among a plurality of resonators. A method of forming is disclosed. Patent Document 2 discloses a technique for adjusting a resonance frequency by removing a sacrificial mass load layer disposed on a piezoelectric resonator.
JP 2001-326553 A JP-T-2001-514456 Proc. Symp. Ultrason. Electron., Vol 27, (2006) pp13-14

しかし、上記の何れの文献に開示されている手法においても、製造工程が複雑になり、或いは共振器の共振特性が低下する等の不具合が指摘されている。例えば、非特許文献1に開示されている手法では、多数の微小な穴を上部電極に開口するので、抵抗成分が増加し、共振特性が低下する虞がある。更に、被加工材料を物理的にエッチングするイオンミリングを用いて上部電極に穴を形成すると、開口部にバリが発生するという不具合が生じる。被加工材料を化学的にエッチングするウェットエッチングを用いて上部電極に穴を形成すると、精密な加工ができないだけでなく、圧電体膜の結晶構造にダメージを与える虞も生じる。被加工材料を物理化学的にエッチングする反応性ドライエッチングを用いて上部電極の穴を形成するには、加工できる電極材質が限定されてしまう。   However, in any of the methods disclosed in any of the above-mentioned documents, problems such as a complicated manufacturing process or a decrease in the resonance characteristics of the resonator have been pointed out. For example, in the method disclosed in Non-Patent Document 1, since a large number of minute holes are opened in the upper electrode, there is a possibility that the resistance component increases and the resonance characteristics deteriorate. Furthermore, when a hole is formed in the upper electrode by using ion milling that physically etches the material to be processed, there is a problem that burrs are generated in the opening. If a hole is formed in the upper electrode using wet etching that chemically etches the material to be processed, not only precise processing cannot be performed, but also the crystal structure of the piezoelectric film may be damaged. In order to form the hole of the upper electrode by using the reactive dry etching for physicochemically etching the material to be processed, the electrode material that can be processed is limited.

特許文献1に開示されている手法では、下部電極の下部又は上部電極の下部に付加膜を別途成膜する必要があるので、製造工程が複雑になる。特許文献2に開示されている手法では、犠牲質量負荷層をピエゾ電気共振器の電極上に形成し、これをイオンスパッタリングなどで物理的に除去するので、製造工程が複雑になる。   In the method disclosed in Patent Document 1, it is necessary to separately form an additional film below the lower electrode or below the upper electrode, which complicates the manufacturing process. In the technique disclosed in Patent Document 2, the sacrificial mass load layer is formed on the electrode of the piezoelectric resonator and physically removed by ion sputtering or the like, so that the manufacturing process becomes complicated.

そこで、本発明はこのような問題を解決し、共振周波数及び反共振周波数の調整に好適な薄膜バルク波共振器の製造方法を提供することを課題とする。   Therefore, an object of the present invention is to solve such problems and to provide a method for manufacturing a thin film bulk wave resonator suitable for adjusting the resonance frequency and the antiresonance frequency.

上記の課題を解決するため、本発明に係わる薄膜バルク波共振器の製造方法は、上部電極上に保護膜を形成し、ドライエッチングにより保護膜に複数の開口部をメッシュ状に形成し、上部電極の一部を露出させる。ここで、薄膜バルク波共振器は、圧電体膜と、圧電体膜の一方の面に形成される下部電極と、圧電体膜の他方の面に形成される上部電極とを備えるものとする。   In order to solve the above problems, a method of manufacturing a thin film bulk acoustic wave resonator according to the present invention includes forming a protective film on the upper electrode, forming a plurality of openings in the protective film in a mesh shape by dry etching, A part of the electrode is exposed. Here, the thin film bulk acoustic wave resonator includes a piezoelectric film, a lower electrode formed on one surface of the piezoelectric film, and an upper electrode formed on the other surface of the piezoelectric film.

複数の開口部がメッシュ状に形成される保護膜は、その重みにより薄膜バルク波共振器の共振周波数及び反共振周波数を調整する機能を有するため、一度の製造工程で保護膜と周波数調整膜とを形成することができる。また、ドライエッチングにより保護膜をパターニングすることにより、高精度なパターニングが可能になり、薄膜バルク波共振器の周波数調整に好適である。   The protective film in which a plurality of openings are formed in a mesh shape has a function of adjusting the resonance frequency and anti-resonance frequency of the thin film bulk acoustic wave resonator by its weight. Can be formed. Further, by patterning the protective film by dry etching, high-precision patterning is possible, which is suitable for adjusting the frequency of the thin film bulk acoustic wave resonator.

ここで、開口部の開口面積、又は開口部の配列ピッチは、薄膜バルク波共振器の共振周波数又は反共振周波数が目標周波数に一致するように設定される。例えば、直列腕共振器と並列腕共振器とが梯子型に接続されて成るバンドパスフィルタを製造するには、直列腕共振器及び並列腕共振器の両方又は並列腕共振器のみに保護膜を形成し、並列腕共振器の反共振周波数が直列共振器の共振周波数に一致するようにドライエッチングにより保護膜をパターニングすればよい。ここで、パターニングには、複数の開口部をメッシュ状に形成することを含むものとする。   Here, the opening area of the openings or the arrangement pitch of the openings is set so that the resonance frequency or antiresonance frequency of the thin film bulk acoustic wave resonator matches the target frequency. For example, in order to manufacture a bandpass filter in which a series arm resonator and a parallel arm resonator are connected in a ladder shape, a protective film is provided on both the series arm resonator and the parallel arm resonator or only on the parallel arm resonator. The protective film may be patterned by dry etching so that the anti-resonance frequency of the parallel arm resonator matches the resonance frequency of the series resonator. Here, the patterning includes forming a plurality of openings in a mesh shape.

保護膜としては、誘電体膜が好適であり、ドライエッチングとしては、反応性イオンエッチングが好適である。これにより、選択性に優れた高精度な異方性エッチングを可能にできる。   A dielectric film is suitable as the protective film, and reactive ion etching is suitable as the dry etching. Thereby, highly accurate anisotropic etching excellent in selectivity can be realized.

本発明によれば、共振周波数及び反共振周波数の調整に好適な薄膜バルク波共振器の製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of a thin film bulk wave resonator suitable for adjustment of a resonance frequency and an antiresonance frequency can be provided.

以下、各図を参照しながら本発明に係わる実施形態について説明する。同一符号のデバイスは、同一のデバイスを示すものとして、重複する説明を省略する。図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率は現実のものとは異なる。また、図面相互間において互いの寸法の関係や比率は異なる部分が含まれている。   Embodiments according to the present invention will be described below with reference to the drawings. Devices with the same reference numerals indicate the same devices, and redundant description is omitted. The drawings are schematic, and the relationship between the thickness and the planar dimensions and the ratio of the thickness of each layer are different from the actual ones. Moreover, the part from which the relationship and ratio of a mutual dimension differ between drawings is contained.

図1は本実施形態に係わるフィルタ10の断面構造を示している。フィルタ10は、基板20上に形成される直列腕共振器10Aと、並列腕共振器10Bとを備える。基板20の材質としては、適度な機械的強度を有し、且つエッチングなどの微細加工に適した材質であれば、特に限定されるものではないが、例えば、シリコン単結晶基板、サファイア単結晶基板、セラミックス基板、石英、ガラス基板などが好適である。   FIG. 1 shows a cross-sectional structure of a filter 10 according to this embodiment. The filter 10 includes a series arm resonator 10 </ b> A and a parallel arm resonator 10 </ b> B formed on the substrate 20. The material of the substrate 20 is not particularly limited as long as it has an appropriate mechanical strength and is suitable for fine processing such as etching. For example, a silicon single crystal substrate or a sapphire single crystal substrate is used. Ceramic substrates, quartz, glass substrates and the like are suitable.

直列腕共振器10Aは、基板表面の絶縁膜21上に形成される下部電極30A、下部電極30A上に形成される圧電体膜40、及び圧電体膜40上に形成される上部電極50Aから成る第一の積層共振体を有し、その下部には、第一の積層共振体が基板20に束縛されることなく厚み方向に自由振動できるように、キャビティ22Aが基板裏面に開口している。   The series arm resonator 10A includes a lower electrode 30A formed on the insulating film 21 on the substrate surface, a piezoelectric film 40 formed on the lower electrode 30A, and an upper electrode 50A formed on the piezoelectric film 40. A cavity 22A is opened on the back surface of the substrate so that the first multilayer resonator can be freely vibrated in the thickness direction without being constrained by the substrate 20.

並列腕共振器10Bは、基板表面の絶縁膜21上に形成される下部電極30B、下部電極30B上に形成される圧電体膜40、圧電体膜40上に形成される上部電極50B、及び上部電極50B上に部分的に形成される保護膜60から成る第二の積層共振体を有し、その下部には、第二の積層共振体が基板20に束縛されることなく厚み方向に自由振動できるように、キャビティ22Bが基板裏面に開口している。   The parallel arm resonator 10B includes a lower electrode 30B formed on the insulating film 21 on the substrate surface, a piezoelectric film 40 formed on the lower electrode 30B, an upper electrode 50B formed on the piezoelectric film 40, and an upper part. The second laminated resonator including the protective film 60 partially formed on the electrode 50B is provided, and the second laminated resonator is free to vibrate in the thickness direction without being constrained by the substrate 20 below the electrode 50B. A cavity 22B is opened on the back surface of the substrate so that it can be formed.

圧電体膜40の材質としては、電気機械結合係数が大きく、伝搬損失及びパワーフロー角が小さく、遅延時間温度係数が小さく、かつ伝搬速度の周波数分散性が少ない圧電材料が望ましく、例えば、酸化亜鉛(ZnO),窒化アルミニウム(AlN),ニオブ酸カリウム(KNbO3),ニオブ酸リチウム(LiNbO3),タンタル酸リチウム(LiTaO3),チタン酸ジルコン酸鉛(PZT),チタン酸バリウム(BaTiO3)などが好適である。下部電極30A,30B及び上部電極50A,50Bの材質としては、圧電体膜40が適度な配向性を形成し得る導電性材質であることが好ましく、例えば、ルテニウム(Ru),アルミニウム(Al),モリブデン(Mo),チタン(Ti),白金(Pt),金(Au),タングステン(W),タンタル(Ta),又はこれら何れか2種以上を含む合金などが好適である。特に、上部電極50A,50Bについては、保護膜60を反応性イオンエッチングなどでドライエッチングする際に、エッチングガスに対する選択性の低い電導材質であることが好ましい。 The material of the piezoelectric film 40 is preferably a piezoelectric material having a large electromechanical coupling coefficient, a small propagation loss and a power flow angle, a small delay time temperature coefficient, and a small frequency dispersion of propagation speed. (ZnO), aluminum nitride (AlN), potassium niobate (KNbO 3 ), lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), lead zirconate titanate (PZT), barium titanate (BaTiO 3 ) Etc. are suitable. As a material of the lower electrodes 30A and 30B and the upper electrodes 50A and 50B, the piezoelectric film 40 is preferably a conductive material capable of forming an appropriate orientation, for example, ruthenium (Ru), aluminum (Al), Molybdenum (Mo), titanium (Ti), platinum (Pt), gold (Au), tungsten (W), tantalum (Ta), or an alloy containing any two or more thereof is suitable. In particular, the upper electrodes 50A and 50B are preferably made of a conductive material having low selectivity to the etching gas when the protective film 60 is dry-etched by reactive ion etching or the like.

保護膜60は、フィルタ10を外気から保護するための膜であり、基板20上に形成されている素子全面をほぼ被覆するように形成されている。但し、保護膜60は、直列腕共振器10Aの上部電極50Aの全面が露出するとともに、並列腕共振器10Bの上部電極50Bの一部がメッシュ状に露出するように、パターニングされている。上部電極50B上に部分的に形成されている保護膜60は、並列腕共振器10Bの共振周波数及び反共振周波数を調整する機能を有するため、周波数調整膜として機能する。   The protective film 60 is a film for protecting the filter 10 from the outside air, and is formed so as to substantially cover the entire surface of the element formed on the substrate 20. However, the protective film 60 is patterned so that the entire surface of the upper electrode 50A of the series arm resonator 10A is exposed and a part of the upper electrode 50B of the parallel arm resonator 10B is exposed in a mesh shape. Since the protective film 60 partially formed on the upper electrode 50B has a function of adjusting the resonance frequency and antiresonance frequency of the parallel arm resonator 10B, it functions as a frequency adjustment film.

保護膜60の材質としては、適度な耐久性、耐熱性、耐水性を有し、かつ反応性イオンエッチング(RIE)などの反応性ドライエッチングによりエッチング加工可能な材質が好ましく、例えば、二酸化珪素膜(SiO2),酸化アルミニウム膜(Al23),窒化珪素膜(Si34),酸化タンタル膜(Ta25)などの誘電体膜が好適である。 The material of the protective film 60 is preferably a material that has appropriate durability, heat resistance, and water resistance and that can be etched by reactive dry etching such as reactive ion etching (RIE). For example, a silicon dioxide film Dielectric films such as (SiO 2 ), aluminum oxide film (Al 2 O 3 ), silicon nitride film (Si 3 N 4 ), and tantalum oxide film (Ta 2 O 5 ) are suitable.

上記のデバイス構成において、直列腕共振器10Aの上部電極50Aと下部電極30Aとの間に高周波信号を印加すると、圧電体膜40の逆圧電効果により圧電体膜40はその厚み方向に振動し、電気的共振特性を示す。更に、圧電体膜40に生じる弾性波又は振動は、圧電体膜40の圧電効果により電気信号に変換される。この弾性波は、圧電体膜40の厚み方向に主変位を有する厚み縦振動波であり、第一の積層共振体の膜厚が1/2波長に等しくなる共振周波数にて励振する。並列腕共振器10Bの上部電極50Bと下部電極30Bとの間に高周波信号を印加する場合にも、上記の原理と同様の原理で第二の積層共振体は厚み縦振動をするが、上部電極50B上には、保護膜60がメッシュ状に形成されているため、その保護膜60の重みにより、並列腕共振器10Bの共振周波数及び反共振周波数は、低めの周波数にシフトする。   In the above device configuration, when a high frequency signal is applied between the upper electrode 50A and the lower electrode 30A of the series arm resonator 10A, the piezoelectric film 40 vibrates in the thickness direction due to the reverse piezoelectric effect of the piezoelectric film 40, Electrical resonance characteristics are shown. Further, the elastic wave or vibration generated in the piezoelectric film 40 is converted into an electric signal by the piezoelectric effect of the piezoelectric film 40. This elastic wave is a thickness longitudinal vibration wave having a main displacement in the thickness direction of the piezoelectric film 40, and is excited at a resonance frequency at which the film thickness of the first laminated resonator becomes equal to ½ wavelength. Even when a high-frequency signal is applied between the upper electrode 50B and the lower electrode 30B of the parallel arm resonator 10B, the second stacked resonator vibrates in the thickness direction according to the same principle as described above. Since the protective film 60 is formed in a mesh shape on 50B, the resonance frequency and anti-resonance frequency of the parallel arm resonator 10B are shifted to lower frequencies due to the weight of the protective film 60.

図2はフィルタ10の等価回路を示し、図3(A)は直列腕共振器10A及び並列腕共振器10Bのリアクタンス特性を示し、図3(B)はフィルタ10の帯域通過特性を示している。
図2に示すように、フィルタ10は、直列腕共振器10A及び並列腕共振器10Bが梯子型に接続されて成るラダー型フィルタである。このようなラダー型フィルタでは、図3(A)に示すように、並列腕共振器10Bの反共振周波数fa1を直列共振器10Aの共振周波数fr2に一致させると、図3(B)に示すように、並列腕共振器10Bの共振周波数fr1と、直列腕共振器10Aの反共振周波数fa2とをそれぞれ減衰極とし、その間の周波数帯域を通過帯域とするバンドパス特性が得られる。ここで、図3(A)の実線は並列腕共振器10Bのリアクタンス特性を示し、破線は直列腕共振器10Aのリアクタンス特性を示している。
2 shows an equivalent circuit of the filter 10, FIG. 3A shows the reactance characteristics of the series arm resonator 10A and the parallel arm resonator 10B, and FIG. 3B shows the band pass characteristics of the filter 10. FIG. .
As shown in FIG. 2, the filter 10 is a ladder type filter in which a series arm resonator 10A and a parallel arm resonator 10B are connected in a ladder shape. In such a ladder-type filter, as shown in FIG. 3A, when the antiresonance frequency fa1 of the parallel arm resonator 10B matches the resonance frequency fr2 of the series resonator 10A, as shown in FIG. In addition, a bandpass characteristic is obtained in which the resonance frequency fr1 of the parallel arm resonator 10B and the antiresonance frequency fa2 of the series arm resonator 10A are attenuation poles, and the frequency band therebetween is the passband. Here, the solid line in FIG. 3A shows the reactance characteristic of the parallel arm resonator 10B, and the broken line shows the reactance characteristic of the series arm resonator 10A.

図4は並列腕共振器10Bの上部電極50B上に部分的に形成される保護膜60の平面パターンを示している。保護膜60は、上部電極50Bの一部が露出するようにメッシュ状に開口される複数の開口部61を有している。開口部61の一辺の長さは、共振時の弾性波の波長より十分短くし、更に開口部61の配列ピッチ(隣り合う開口部61の中心間距離)を共振時の弾性波の波長より十分短く設定することが好ましい。これにより、弾性波は開口部61を一つ一つ分離して認識することができず、保護膜60の密度が実質的に低下したのと等価な弾性特性変化が生じる。   FIG. 4 shows a planar pattern of the protective film 60 partially formed on the upper electrode 50B of the parallel arm resonator 10B. The protective film 60 has a plurality of openings 61 that are opened in a mesh shape so that a part of the upper electrode 50B is exposed. The length of one side of the opening 61 is sufficiently shorter than the wavelength of the elastic wave at the time of resonance, and the arrangement pitch of the openings 61 (the distance between the centers of the adjacent openings 61) is sufficiently larger than the wavelength of the elastic wave at the time of resonance. It is preferable to set it short. As a result, the elastic wave cannot be recognized by separating the openings 61 one by one, and an elastic characteristic change equivalent to the fact that the density of the protective film 60 is substantially reduced occurs.

尚、開口部61の形状は、特に限定されるものではなく、図4に示す円形の他に、例えば図5に示す正方形でもよく、或いは任意の平面パターン(楕円形、多角形、三角形など)でもよい。また、図4乃至図5において、ハッチングを付した部分を保護膜60から除去し、円形又は正方形などの平面パターンを保護膜60として上部電極50B上に残してもよい。   The shape of the opening 61 is not particularly limited, and may be, for example, a square shown in FIG. 5 in addition to the circle shown in FIG. 4, or an arbitrary plane pattern (eg, an ellipse, a polygon, a triangle). But you can. 4 to 5, the hatched portion may be removed from the protective film 60, and a planar pattern such as a circle or a square may be left as the protective film 60 on the upper electrode 50B.

図6は並列腕共振器10Bの上部電極50B上に部分的に形成される保護膜60の開口率と並列腕共振器10Bの共振周波数fr及び反共振周波数faとの対応関係を示すグラフである。保護膜60の開口率を上げる程、上部電極50B上に形成される保護膜60の質量が低下するので、共振周波数fr及び反共振周波数faは共に上昇していくことが示されている。ここで、開口率とは、上部電極50Bの面積に対する全ての開口部61の面積の合計値の割合を示す。保護膜60の開口率を調整することにより、並列腕共振器10Bの反共振周波数fa1を直列共振器10Aの共振周波数fr2に一致させることができる。開口率は、並列腕共振器10Bの反共振周波数fa1と直列共振器10Aの共振周波数fr2との周波数差、保護膜60の膜厚、保護膜60の密度などに応じて適宜調整される。開口率の範囲としては例えば、20%〜80%程度の範囲が好適である。開口率は、開口部61の開口面積、又は開口部61の配列ピッチを増減することにより、調整可能である。   FIG. 6 is a graph showing the correspondence between the aperture ratio of the protective film 60 partially formed on the upper electrode 50B of the parallel arm resonator 10B and the resonance frequency fr and antiresonance frequency fa of the parallel arm resonator 10B. . It is shown that as the aperture ratio of the protective film 60 is increased, the mass of the protective film 60 formed on the upper electrode 50B is decreased, so that both the resonance frequency fr and the anti-resonance frequency fa are increased. Here, the aperture ratio indicates the ratio of the total value of the areas of all the openings 61 to the area of the upper electrode 50B. By adjusting the aperture ratio of the protective film 60, the anti-resonance frequency fa1 of the parallel arm resonator 10B can be matched with the resonance frequency fr2 of the series resonator 10A. The aperture ratio is appropriately adjusted according to the frequency difference between the anti-resonance frequency fa1 of the parallel arm resonator 10B and the resonance frequency fr2 of the series resonator 10A, the film thickness of the protective film 60, the density of the protective film 60, and the like. As a range of the aperture ratio, for example, a range of about 20% to 80% is preferable. The aperture ratio can be adjusted by increasing or decreasing the opening area of the openings 61 or the arrangement pitch of the openings 61.

次に、図7を参照しながらフィルタ10の製造工程について説明する。
まず、図7(A)に示すように、基板20として、例えば、(100)シリコン基板などを用意し、基板20の表面に絶縁膜21を形成する。絶縁膜21として、例えばシリコン酸化膜を形成するには、熱酸化法などを適用すればよい。更に絶縁膜21の上にRFマグネトロンスパッタ法などを用いて150〜600nm程度の金属膜を堆積し、フォトリソグラフィによってエッチングマスクを形成した後、反応性イオンエッチングによって金属膜をパターニングし、島状に分離された下部電極30A,30Bを形成する。下部電極30A,30Bの材質としては、反応性イオンエッチングなどのドライエッチングに対する選択性の低い電導材質であることが好ましく、例えば、白金(Pt)、ルテニウム(Ru)などが好適である。
Next, the manufacturing process of the filter 10 will be described with reference to FIG.
First, as illustrated in FIG. 7A, for example, a (100) silicon substrate is prepared as the substrate 20, and the insulating film 21 is formed on the surface of the substrate 20. For example, in order to form a silicon oxide film as the insulating film 21, a thermal oxidation method or the like may be applied. Further, a metal film having a thickness of about 150 to 600 nm is deposited on the insulating film 21 using an RF magnetron sputtering method, an etching mask is formed by photolithography, and then the metal film is patterned by reactive ion etching to form an island shape. Separated lower electrodes 30A and 30B are formed. The material of the lower electrodes 30A and 30B is preferably a conductive material with low selectivity to dry etching such as reactive ion etching, and for example, platinum (Pt), ruthenium (Ru), and the like are suitable.

そして、RFマグネトロンスパッタ法により圧電材料を下部電極20A,20B上に堆積する。圧電材料の膜厚は、共振周波数に応じて調整すればよく、例えばAlNを用いて共振周波数2.0GHz程度に設定するのであれば、用いる電極材料にもよるが、1.2μm〜2μm程度の膜厚に設定すればよい。続いて、圧電体膜40全面を被覆するようにRFマグネトロンスパッタ法により150〜600nm程度の金属膜を堆積し、フォトリソグラフィによってエッチングマスクを形成した後、ウェットエッチングによって金属膜を選択エッチングし、上部電極50A,50Bを形成する。   Then, a piezoelectric material is deposited on the lower electrodes 20A and 20B by RF magnetron sputtering. The film thickness of the piezoelectric material may be adjusted according to the resonance frequency. For example, if the resonance frequency is set to about 2.0 GHz using AlN, the film thickness is about 1.2 μm to 2 μm, depending on the electrode material used. What is necessary is just to set to a film thickness. Subsequently, a metal film having a thickness of about 150 to 600 nm is deposited by RF magnetron sputtering so as to cover the entire surface of the piezoelectric film 40, an etching mask is formed by photolithography, and then the metal film is selectively etched by wet etching. Electrodes 50A and 50B are formed.

次に、図7(B)に示すように、表面に露出している上部電極50A,50B及び圧電体膜40を被覆するように保護膜60を1000Å〜3000Å程度形成し、フォトリソグラフィによって保護膜60上にエッチングマスク70を形成する。エッチングマスク70は、直列腕共振器10Aの上部電極50A全面が露出するとともに並列腕共振器10Bの上部電極50Bの一部がメッシュ状に露出し、更にその他の部分が保護膜60によって被覆されるようにパターニングされる。保護膜60の材質としては、イオン照射による被加工材料のスパッタエッチングとラジカルによる揮発性物質生成とによって被加工材料を物理化学的にエッチングする反応性ドライエッチングに対する選択性が上部電極50A,50Bよりも極めて高く、かつ保護膜として機能し得る耐久性、耐熱性、及び耐水性を有する膜であることが好ましく、例えば、誘電体膜が好ましい。誘電体膜の中でも、特に、二酸化珪素膜(SiO2),酸化アルミニウム膜(Al23),窒化珪素膜(Si34),酸化タンタル膜(Ta25)が好ましい。 Next, as shown in FIG. 7B, a protective film 60 is formed to a thickness of about 1000 to 3000 so as to cover the upper electrodes 50A and 50B and the piezoelectric film 40 exposed on the surface, and the protective film is formed by photolithography. An etching mask 70 is formed on 60. In the etching mask 70, the entire surface of the upper electrode 50A of the series arm resonator 10A is exposed, a part of the upper electrode 50B of the parallel arm resonator 10B is exposed in a mesh shape, and the other part is covered with the protective film 60. Patterning. As the material of the protective film 60, the selectivity to the reactive dry etching in which the material to be processed is physicochemically etched by the sputter etching of the material to be processed by ion irradiation and the generation of the volatile substance by radicals is higher than the upper electrodes 50A and 50B. The film is preferably a film having durability, heat resistance, and water resistance that is extremely high and can function as a protective film. For example, a dielectric film is preferable. Among the dielectric films, a silicon dioxide film (SiO 2 ), an aluminum oxide film (Al 2 O 3 ), a silicon nitride film (Si 3 N 4 ), and a tantalum oxide film (Ta 2 O 5 ) are particularly preferable.

そして、図7(C)に示すように、所定のエッチング条件(基板温度、圧力、エッチングガス流量、高周波出力など)の下で、反応性イオンエッチングなどのドライエッチングを用いて、上部電極50A,50Bが露出するまで保護膜60をパターニングする。反応性イオンエッチングによれば、アンダーカットの少ない異方性エッチングを実現できるので、エッチングマスク70のマスクパターンを忠実に保護膜60に転写できるとともに、被加工材料に対する選択性が高いので、上部電極50A,50Bがエッチングストッパとして機能する。   Then, as shown in FIG. 7C, under the predetermined etching conditions (substrate temperature, pressure, etching gas flow rate, high frequency output, etc.), the upper electrode 50A, The protective film 60 is patterned until 50B is exposed. According to reactive ion etching, anisotropic etching with less undercut can be realized, so that the mask pattern of the etching mask 70 can be faithfully transferred to the protective film 60 and the selectivity to the material to be processed is high. 50A and 50B function as etching stoppers.

最後に、図7(D)に示すように、基板20の裏面にフォトリソグラフィによってエッチングマスクを形成した後、フッ化物系ガスを用いた反応性イオンエッチングによって基板裏面を開口し、キャビティ22A,22Bを形成する。以上の工程を経て、直列腕共振器10A及び並列腕共振器10Bが形成される。   Finally, as shown in FIG. 7D, after an etching mask is formed on the back surface of the substrate 20 by photolithography, the back surface of the substrate is opened by reactive ion etching using a fluoride-based gas, and the cavities 22A, 22B. Form. Through the above steps, the series arm resonator 10A and the parallel arm resonator 10B are formed.

尚、並列腕共振器10Bの上部電極50B上に形成される保護膜60をメッシュ状にパターニングし、その開口率を調整することにより、並列腕共振器10Bの反共振周波数fa1を直列共振器10Aの共振周波数fr2に一致させる構成について言及したが、並列腕共振器10Bの上部電極50Bと直列腕共振器10Aの上部電極50Aのそれぞれに保護膜60をメッシュ状に形成し、それらの開口率を調整することにより、並列腕共振器10Bの反共振周波数fa1を直列共振器10Aの共振周波数fr2に一致させる構成を適用してもよい。   The protective film 60 formed on the upper electrode 50B of the parallel arm resonator 10B is patterned in a mesh shape, and the aperture ratio is adjusted to thereby set the antiresonance frequency fa1 of the parallel arm resonator 10B to the series resonator 10A. However, the protective film 60 is formed in a mesh shape on each of the upper electrode 50B of the parallel arm resonator 10B and the upper electrode 50A of the series arm resonator 10A. A configuration in which the anti-resonance frequency fa1 of the parallel arm resonator 10B is matched with the resonance frequency fr2 of the series resonator 10A by adjusting may be applied.

以上の説明においては、本発明をFBAR型の圧電共振器に適用した場合について説明したが、基板の表面に凹みを形成したAirGap型の圧電共振器や音響反射膜を用いたSMR型の圧電共振器など、圧電体膜を用いた積層型の圧電共振器全般に本発明を適用することができる。   In the above description, the case where the present invention is applied to an FBAR type piezoelectric resonator has been described. However, an SIR type piezoelectric resonance using an AirGap type piezoelectric resonator or an acoustic reflection film in which a recess is formed on the surface of a substrate. The present invention can be applied to all laminated piezoelectric resonators using piezoelectric films, such as ceramics.

図8は本実施形態に係わるデュプレクサ80の回路構成を示している。
デュプレクサ80は、アンテナ(図示せず)に接続されるアンテナ端子ANT1と、アンテナに送信信号を出力する送信回路(図示せず)に接続される送信信号端子SX1と、アンテナを介して受信した受信信号を入力する受信回路(図示せず)に接続される受信信号端子RX1と、送信信号を通過させるとともに受信信号を遮断する送信用フィルタ81と、受信信号を通過させるとともに送信信号を遮断する受信用フィルタ82とを備える。送信用フィルタ81と受信用フィルタ82の何れか一方又は両者は、本実施形態に係わるフィルタ10を複数段カスケード接続した回路構成を有している。
FIG. 8 shows a circuit configuration of the duplexer 80 according to the present embodiment.
The duplexer 80 includes an antenna terminal ANT1 connected to an antenna (not shown), a transmission signal terminal SX1 connected to a transmission circuit (not shown) that outputs a transmission signal to the antenna, and reception received via the antenna. A reception signal terminal RX1 connected to a reception circuit (not shown) for inputting a signal, a transmission filter 81 that transmits a transmission signal and blocks the reception signal, and reception that transmits a reception signal and blocks the transmission signal Filter 82. Either one or both of the transmission filter 81 and the reception filter 82 has a circuit configuration in which the filters 10 according to this embodiment are cascade-connected in a plurality of stages.

本実施形態によれば、複数の開口部61がメッシュ状に形成される保護膜60は、その重みにより並列腕共振器10Bの共振周波数fr1及び反共振周波数fa1を調整する機能を有するため、一度の製造工程で保護膜と周波数調整膜とを形成することができる。また、ドライエッチングにより保護膜60をパターニングすることにより、高精度なパターニングが可能になり、薄膜バルク波共振器の周波数調整に好適である。   According to the present embodiment, the protective film 60 in which the plurality of openings 61 are formed in a mesh shape has a function of adjusting the resonance frequency fr1 and the anti-resonance frequency fa1 of the parallel arm resonator 10B by the weight, and therefore once The protective film and the frequency adjusting film can be formed by the manufacturing process. Further, by patterning the protective film 60 by dry etching, high-precision patterning becomes possible, which is suitable for frequency adjustment of the thin film bulk acoustic wave resonator.

本実施形態に係わるフィルタの断面構造図である。It is a sectional structure figure of a filter concerning this embodiment. 本実施形態に係わるフィルタの等価回路図である。It is an equivalent circuit diagram of the filter concerning this embodiment. 図3(A)は直列腕共振器及び並列腕共振器のリアクタンス特性を示すグラフであり、図3(B)はフィルタの帯域通過特性を示すグラフである。FIG. 3A is a graph showing the reactance characteristics of the series arm resonator and the parallel arm resonator, and FIG. 3B is a graph showing the bandpass characteristics of the filter. 保護膜の平面パターンを示す模式図である。It is a schematic diagram which shows the plane pattern of a protective film. 保護膜の他の平面パターンを示す模式図である。It is a schematic diagram which shows the other plane pattern of a protective film. 保護膜の開口率と並列腕共振器の共振周波数及び反共振周波数との対応関係を示すグラフである。It is a graph which shows the correspondence of the aperture ratio of a protective film, and the resonant frequency and antiresonance frequency of a parallel arm resonator. 本実施形態に係わるフィルタの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the filter concerning this embodiment. 本実施形態に係わるデュプレクサの回路構成図である。It is a circuit block diagram of the duplexer concerning this embodiment.

符号の説明Explanation of symbols

10…フィルタ 10A…直列腕共振器 10B…並列腕共振器 20…基板 22A,22B…キャビティ 21…絶縁膜 30A,30B…下部電極 40…圧電体膜 50A,50B…上部電極 60…保護膜 70…エッチングマスク DESCRIPTION OF SYMBOLS 10 ... Filter 10A ... Series arm resonator 10B ... Parallel arm resonator 20 ... Substrate 22A, 22B ... Cavity 21 ... Insulating film 30A, 30B ... Lower electrode 40 ... Piezoelectric film 50A, 50B ... Upper electrode 60 ... Protective film 70 ... Etching mask

Claims (3)

圧電体膜と、前記圧電体膜の一方の面に形成される下部電極と、前記圧電体膜の他方の面に形成される上部電極とを備える薄膜バルク波共振器を製造するための方法であって、
前記上部電極上に保護膜を形成する工程と、
ドライエッチングにより前記保護膜に複数の開口部をメッシュ状に形成し、前記上部電極の一部を露出させる工程と、
を備える薄膜バルク波共振器の製造方法。
A method for manufacturing a thin film bulk acoustic wave resonator comprising: a piezoelectric film; a lower electrode formed on one surface of the piezoelectric film; and an upper electrode formed on the other surface of the piezoelectric film. There,
Forming a protective film on the upper electrode;
Forming a plurality of openings in the protective film in a mesh shape by dry etching, exposing a part of the upper electrode;
A method of manufacturing a thin film bulk acoustic wave resonator.
請求項1に記載の薄膜バルク波共振器の製造方法であって、
前記開口部の開口面積、又は前記開口部の配列ピッチは、前記薄膜バルク波共振器の共振周波数又は反共振周波数が目標周波数に一致するように設定される、薄膜バルク波共振器の製造方法。
A method of manufacturing a thin film bulk acoustic wave resonator according to claim 1,
The method of manufacturing a thin film bulk acoustic wave resonator, wherein the aperture area of the aperture or the arrangement pitch of the apertures is set so that the resonance frequency or antiresonance frequency of the thin film bulk acoustic wave resonator matches a target frequency.
請求項1又は請求項2に記載の薄膜バルク波共振器の製造方法であって、
前記保護膜は誘電体膜であり、且つ前記ドライエッチングは反応性イオンエッチングである、薄膜バルク波共振器の製造方法。
A method of manufacturing a thin film bulk acoustic wave resonator according to claim 1 or 2,
The method for manufacturing a thin film bulk acoustic wave resonator, wherein the protective film is a dielectric film, and the dry etching is reactive ion etching.
JP2007079963A 2007-03-26 2007-03-26 Manufacturing method for thin-film bulk wave resonator Withdrawn JP2008244653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007079963A JP2008244653A (en) 2007-03-26 2007-03-26 Manufacturing method for thin-film bulk wave resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007079963A JP2008244653A (en) 2007-03-26 2007-03-26 Manufacturing method for thin-film bulk wave resonator

Publications (1)

Publication Number Publication Date
JP2008244653A true JP2008244653A (en) 2008-10-09

Family

ID=39915478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007079963A Withdrawn JP2008244653A (en) 2007-03-26 2007-03-26 Manufacturing method for thin-film bulk wave resonator

Country Status (1)

Country Link
JP (1) JP2008244653A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124583A (en) * 2007-11-16 2009-06-04 Murata Mfg Co Ltd Piezoelectric vibration apparatus
WO2010061479A1 (en) * 2008-11-28 2010-06-03 富士通株式会社 Elastic wave device and method for manufacturing the same
JP2011041136A (en) * 2009-08-17 2011-02-24 Taiyo Yuden Co Ltd Elastic wave device and method for manufacturing the same
WO2011036995A1 (en) * 2009-09-28 2011-03-31 太陽誘電株式会社 Acoustic wave device
JP2011071913A (en) * 2009-09-28 2011-04-07 Taiyo Yuden Co Ltd Acoustic wave device
JP2011082817A (en) * 2009-10-07 2011-04-21 Taiyo Yuden Co Ltd Surface acoustic wave device, filter, communication module and communication device
JP2012165288A (en) * 2011-02-08 2012-08-30 Taiyo Yuden Co Ltd Acoustic wave device and filter
WO2013022168A1 (en) * 2011-08-05 2013-02-14 Samsung Electronics Co., Ltd. Bulk acoustic wave resonator

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124583A (en) * 2007-11-16 2009-06-04 Murata Mfg Co Ltd Piezoelectric vibration apparatus
JP5100849B2 (en) * 2008-11-28 2012-12-19 太陽誘電株式会社 Elastic wave device and manufacturing method thereof
WO2010061479A1 (en) * 2008-11-28 2010-06-03 富士通株式会社 Elastic wave device and method for manufacturing the same
US8854158B2 (en) 2008-11-28 2014-10-07 Taiyo Yuden Co., Ltd. Elastic wave device and method for manufacturing the same
JPWO2010061479A1 (en) * 2008-11-28 2012-04-19 太陽誘電株式会社 Elastic wave device and manufacturing method thereof
JP2011041136A (en) * 2009-08-17 2011-02-24 Taiyo Yuden Co Ltd Elastic wave device and method for manufacturing the same
US8749320B2 (en) 2009-08-17 2014-06-10 Taiyo Yuden Co., Ltd. Acoustic wave device and method for manufacturing the same
WO2011036995A1 (en) * 2009-09-28 2011-03-31 太陽誘電株式会社 Acoustic wave device
JP2011071913A (en) * 2009-09-28 2011-04-07 Taiyo Yuden Co Ltd Acoustic wave device
US8941450B2 (en) 2009-09-28 2015-01-27 Taiyo Yuden Co., Ltd. Acoustic wave device having a frequency control film
JP2011082817A (en) * 2009-10-07 2011-04-21 Taiyo Yuden Co Ltd Surface acoustic wave device, filter, communication module and communication device
JP2012165288A (en) * 2011-02-08 2012-08-30 Taiyo Yuden Co Ltd Acoustic wave device and filter
US9013250B2 (en) 2011-02-08 2015-04-21 Taiyo Yuden Co., Ltd. Acoustic wave device and filter
WO2013022168A1 (en) * 2011-08-05 2013-02-14 Samsung Electronics Co., Ltd. Bulk acoustic wave resonator
US9219465B2 (en) 2011-08-05 2015-12-22 Samsung Electronics Co., Ltd. Bulk acoustic wave resonator

Similar Documents

Publication Publication Date Title
TWI805867B (en) Solidly-mounted transversely-excited film bulk acoustic resonator
US11677375B2 (en) Transversely excited film bulk acoustic resonator with recessed interdigital transducer fingers
JP7447811B2 (en) Laterally excited film bulk acoustic resonator
US10601392B2 (en) Solidly-mounted transversely-excited film bulk acoustic resonator
JP3940932B2 (en) Thin film piezoelectric resonator, thin film piezoelectric device and manufacturing method thereof
KR102176280B1 (en) Acoustic resonator and method for manufacturing same
US7791432B2 (en) Contour-mode piezoelectric micromechanical resonators
JP4535067B2 (en) Boundary wave device manufacturing method and boundary acoustic wave device
JP3867231B2 (en) Thin film resonator and manufacturing method thereof
KR101945723B1 (en) Film bulk acoustic resonator and fabrication method thereof
JP4688070B2 (en) Piezoelectric thin film resonator, piezoelectric thin film device, and manufacturing method thereof
JP2008244653A (en) Manufacturing method for thin-film bulk wave resonator
US11736086B2 (en) Filter using transversely-excited film bulk acoustic resonators with divided frequency-setting dielectric layers
JP2006319479A (en) Piezoelectric thin-film resonator and filter
JP2007129776A (en) Thin film piezoelectric oscillator, thin film piezoelectric device, and manufacturing method thereof
US7639103B2 (en) Piezoelectric filter, antenna duplexer, and communications apparatus employing piezoelectric resonator
JP2009207075A (en) Method of manufacturing resonator filter
JP2008244943A (en) Film bulk acoustic resonator and its manufacturing method
JP2005236338A (en) Piezoelectric thin-film resonator
JP2009188939A (en) Thin film bulk wave acoustic resonator
JP5204258B2 (en) Method for manufacturing piezoelectric thin film resonator
US20230327644A1 (en) Ladder filter with transversely-excited film bulk acoustic resonators having different pitches
US20230261632A1 (en) Solidly-mounted transversely-excited film bulk acoustic resonator with recessed interdigital transducer fingers
JP2022123876A (en) Transversely excited film bulk acoustic resonators with narrow gaps between busbars and ends of interdigital transducer fingers
JP5340876B2 (en) Elastic wave device, filter, communication module, communication device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601