JP2008172948A - Controller for brushless motors - Google Patents

Controller for brushless motors Download PDF

Info

Publication number
JP2008172948A
JP2008172948A JP2007004657A JP2007004657A JP2008172948A JP 2008172948 A JP2008172948 A JP 2008172948A JP 2007004657 A JP2007004657 A JP 2007004657A JP 2007004657 A JP2007004657 A JP 2007004657A JP 2008172948 A JP2008172948 A JP 2008172948A
Authority
JP
Japan
Prior art keywords
energization
voltage
switching
drive
brushless motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007004657A
Other languages
Japanese (ja)
Inventor
Motoshi Matsushita
元士 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007004657A priority Critical patent/JP2008172948A/en
Publication of JP2008172948A publication Critical patent/JP2008172948A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor controller wherein at the time of switching between intermittent energization driving and 180-degree energization driving, it is possible to stabilize the number of motor revolutions and enhance the reliability of driving scheme switching. <P>SOLUTION: The controller includes: a power supply 1 for supplying power to a brushless motor 6; a 180-degree energization drive unit 9 that controls power supply so that the brushless motor is driven by a 180-degree energization driving scheme with no energization pause period provided; an intermittent energization drive unit 8 that controls power supply so that the brushless motor 6 is driven by an intermittent energization driving scheme with an energization pause period provided; and a driving scheme selection unit 10 for selecting either of these schemes. When one driving scheme is switched to another, a number-of-revolutions control PWM duty/modulation factor computation unit 12 and an energization switching control voltage/current phase difference computation and voltage phase computation unit 15 carry out control so that the current phase corresponding to the rotor position of the brushless motor 6 in one driving scheme immediately before switching is equal to the current phase immediately after switching. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、永久磁石が装着されたロータにより構成されているブラシレスモータを位置センサレスで制御・駆動するモータ制御装置に関し、特に駆動方式を切り換えて使用するブラシレスモータの制御装置に関する。   The present invention relates to a motor control device that controls and drives a brushless motor constituted by a rotor with a permanent magnet mounted without a position sensor, and more particularly to a control device for a brushless motor that is used by switching a driving method.

従来、モータロータの位置を検出するロータ位置センサを用いずにモータを制御・駆動するモータのセンサレス駆動方式においては、モータコイルへの通電を行う際に、一定期間の通電休止期間を設け、その間にモータの回転によってモータコイルに発生する誘起電圧をモータコイル端子から検出し、この誘起電圧からモータへの通電タイミングを決定する、間欠通電駆動が一般的に行われている。そうした間欠通電駆動制御の中でも、通電角を120度とした、いわゆる120度通電駆動が一般的に行われている。   Conventionally, in a sensorless drive system of a motor that controls and drives a motor without using a rotor position sensor that detects the position of the motor rotor, when energizing the motor coil, an energization suspension period of a certain period is provided, An intermittent energization drive is generally performed in which an induced voltage generated in a motor coil due to the rotation of the motor is detected from a motor coil terminal and the energization timing to the motor is determined from the induced voltage. Among such intermittent energization drive controls, so-called 120-degree energization drive with an energization angle of 120 degrees is generally performed.

また、もう一方の駆動方式として、ブラシレスモータを通電休止期間を設けずに駆動する、正弦波通電をはじめとするいわゆる180度通電駆動がある。180度通電駆動は、例えば、三相のモータコイル中性点と前記三相コイルと並列に抵抗を接続し、この中性点と抵抗中性点との電圧を比較することでモータ誘起電圧を検出して、これからモータへの通電タイミングを決定して駆動する、あるいはモータ電流を高速演算することでモータ位置を検出して通電タイミングを決定して駆動する、またあるいはモータ駆動電圧とモータ電流との位相差に基づいて通電タイミングを決定して駆動する、などの方法がある。   As another drive method, there is a so-called 180-degree energization drive including sine wave energization that drives a brushless motor without providing an energization pause period. The 180-degree energization drive, for example, connects a resistance in parallel with the three-phase motor coil neutral point and the three-phase coil, and compares the voltage between the neutral point and the resistance neutral point to determine the motor induced voltage. Detect and drive the motor by determining the energization timing from now on, or drive the motor position by detecting the motor position by calculating the motor current at high speed, or drive the motor drive voltage and motor current There is a method of driving by determining energization timing based on the phase difference between the two.

一般的に、120度通電駆動に比べて、180度通電駆動の方が、駆動波形の滑らかさからトルク変動、回転変動は少ない駆動方式であると言われている。   In general, it is said that the 180-degree energization drive is a drive system with less torque fluctuation and rotation fluctuation due to the smoothness of the drive waveform than the 120-degree energization drive.

また、これら両駆動方式を切り換える構成の従来例としては、特許文献1に開示されているものがある。これは、180度通電駆動をエンコーダなどの回転パルス発生手段の出力に基づいて行い、この回転パルス発生手段からの出力パルスが検出できない時には120度通電駆動に切り換えるものである。また、特許文献2に開示されているものは、駆動方式切替時にモータの回転数の変動を抑えるため、一方の駆動方式における切替時の駆動信号を補正して、他方の駆動方式における駆動信号とすることを特徴としている。   Further, as a conventional example of a configuration for switching between these two driving methods, there is one disclosed in Patent Document 1. In this case, the 180 ° energization drive is performed based on the output of the rotation pulse generating means such as an encoder, and when the output pulse from the rotation pulse generating means cannot be detected, the drive is switched to the 120 ° energization drive. In addition, what is disclosed in Patent Document 2 corrects the drive signal at the time of switching in one drive system and suppresses the drive signal in the other drive system in order to suppress fluctuations in the rotational speed of the motor at the time of switching the drive system. It is characterized by doing.

更に、同期モータの駆動において正弦波180°通電によるモータ制御装置において、モータ電圧を基準とする2個所の位相期間におけるモータ電流の面積をモータ電流検出アンプでそれぞれ検出し、2個所のモータ電流面積の比を制御マイコンで計算してこれを位相差情報とし、この位相差情報でモータ駆動電圧を制御し、所定周期の正弦波をモータコイルに印加することで、低騒音,低振動,高効率,省電力化を図った正弦波通電をはじめとする180°駆動を可能とするものが提案されている(特許文献3参照)。   Further, in the motor control device using sine wave 180 ° energization in the driving of the synchronous motor, the motor current areas in the two phase periods based on the motor voltage are respectively detected by the motor current detection amplifier, and the two motor current areas are detected. The control microcomputer calculates the ratio of this as phase difference information, controls the motor drive voltage with this phase difference information, and applies a sine wave of a predetermined period to the motor coil, resulting in low noise, low vibration, and high efficiency A device capable of 180 ° driving including sine wave energization for power saving has been proposed (see Patent Document 3).

特開平10−341594号公報Japanese Patent Laid-Open No. 10-341594 特開2003−111469号公報JP 2003-111469 A 特開2001−112287号公報JP 2001-112287 A

しかしながら、前記モータの制御においては、駆動方式切換時における回転数の変動や通電方式切換の信頼性が考慮されていない。駆動方式切換によりブラシレスモータの出力が変化し、ひいては回転数変動が発生する。また、位置センサレス駆動において、駆動切換の際の過渡状態では位置検出精度が悪化し、最悪の場合脱調に至る可能性がある。また、駆動方式切替時に駆動信号を補正することにより、回転数変動を抑えることは可能ではあるが、電流位相を考慮していないため、切替前後の運転状況、例えば負荷状況、電圧によっては、切替前後でトルク変動が発生し、その結果、回転数変動が発生する。   However, in the control of the motor, fluctuations in the number of revolutions at the time of switching the driving method and reliability of switching the energizing method are not taken into consideration. The output of the brushless motor changes due to the switching of the driving method, and as a result, the rotational speed fluctuates. In the position sensorless drive, the position detection accuracy is deteriorated in a transient state at the time of drive switching, and in the worst case, there is a possibility of stepping out. In addition, it is possible to suppress the rotational speed fluctuation by correcting the drive signal at the time of switching the drive system, but since the current phase is not taken into account, depending on the driving situation before and after the switching, for example, the load situation and the voltage, the switching is possible. Torque fluctuations occur before and after, resulting in rotational speed fluctuations.

この発明は、上記課題を認識してなされたものであり、その目的はモータの回転数の安定化と駆動方式切換の信頼性を向上させることができるブラシレスモータ制御装置を提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a brushless motor control device capable of stabilizing the rotational speed of the motor and improving the reliability of switching the driving method.

この発明によるブラシレスモータ制御装置は、ブラシレスモータに電力を供給する電力供給手段と、通電休止期間を設けていない180度通電駆動方式で前記ブラシレスモータが駆動するように前記電力供給手段を制御する180度通電駆動手段と、通電休止期間を設けている間欠通電駆動方式で前記ブラシレスモータが駆動するように前記電力供給手段を制御する間欠通電駆動手段と、前記180度通電駆動方式及び前記間欠通電駆動方式のいずれかを選択する選択手段と、前記180度通電駆動方式及び前記間欠通電駆動方式の一方の駆動方式から他方の駆動方式への切換えの際に、前記一方の駆動方式における切換え直前の前記ブラシレスモータのロータ位置に対する電流位相と切換直後の電流位相が等しくなるように制御することを特徴とするものである。   The brushless motor control apparatus according to the present invention controls the power supply means so that the brushless motor is driven by a power supply means for supplying power to the brushless motor, and a 180-degree energization drive system without an energization pause period. Energization drive means, intermittent energization drive means for controlling the power supply means so that the brushless motor is driven by an intermittent energization drive system having an energization suspension period, the 180-degree energization drive system, and the intermittent energization drive A selection means for selecting one of the methods, and when switching from one drive method of the 180-degree energization drive method and the intermittent energization drive method to the other drive method, the just before the switch in the one drive method Control that the current phase with respect to the rotor position of the brushless motor is equal to the current phase immediately after switching. It is an butterfly.

本発明によると、間欠通電駆動方式と180度通電駆動方式を安定して切換えることができるモータ制御装置を実現することができる。   According to the present invention, it is possible to realize a motor control device that can stably switch between the intermittent energization driving method and the 180-degree energization driving method.

180度通電駆動から間欠通電駆動への切換の際には、切換前の負荷トルクと電圧/電流位相差とからロータ位置に対する電流位相、電圧位相をそれぞれ推定し、推定した電流位相、電圧位相を用いて切換後の間欠通電駆動の電圧位相を決定する。   When switching from 180-degree energization drive to intermittent energization drive, the current phase and voltage phase with respect to the rotor position are estimated from the load torque and voltage / current phase difference before switching, respectively, and the estimated current phase and voltage phase are calculated. Used to determine the voltage phase of intermittent energization drive after switching.

間欠通電駆動から180度通電駆動への切換の際には、切換前の負荷トルクと電圧位相とからロータ位置に対する電流位相、電圧/電流位相差を推定し、推定した電流位相、電圧/電流位相差を用いて180度通電駆動での電圧/電流位相差を決定する。   When switching from intermittent energization drive to 180-degree energization drive, the current phase and voltage / current phase difference with respect to the rotor position are estimated from the load torque and voltage phase before switching, and the estimated current phase, voltage / current level are estimated. Using the phase difference, the voltage / current phase difference in the 180-degree energization drive is determined.

また、前記ブラシレスモータの巻線に流れるDC電流を検出するDC電流検出手段を設け、前記ブラシレスモータの負荷状態を前記DC電流に基づき推定する。   Further, a DC current detecting means for detecting a DC current flowing in the winding of the brushless motor is provided, and a load state of the brushless motor is estimated based on the DC current.

請求項1、2に記載の発明によれば、間欠通電駆動から180度通電駆動への切換時の、ブラシレスモータ出力の変動が小さくなり、回転数の安定化と駆動方式切換の信頼性向上を図ることができる。   According to the first and second aspects of the present invention, the fluctuation of the brushless motor output is reduced when switching from the intermittent energization drive to the 180-degree energization drive, and the rotational speed is stabilized and the drive system switching is improved. Can be planned.

また、請求項1,3に記載の発明によれば、180度通電駆動から間欠通電駆動への切換時の、ブラシレスモータ出力の変動が小さくなり、回転数の安定化と駆動方式切換の信頼性向上を図ることができる。   Further, according to the first and third aspects of the invention, the fluctuation of the brushless motor output is reduced when switching from the 180-degree energization drive to the intermittent energization drive, and the rotation speed is stabilized and the drive system switching reliability is improved. Improvements can be made.

更に、請求項4に記載の発明によれば、特別な負荷トルク検出器などは不要にでき、低コスト化を図ることができる。   Furthermore, according to the invention described in claim 4, a special load torque detector or the like can be dispensed with, and the cost can be reduced.

以下、図面を参照して、この発明によるモータ制御装置の実施例について説明をする。   Embodiments of a motor control apparatus according to the present invention will be described below with reference to the drawings.

図1は、本発明によるモータ制御装置の一実施形態の構成を示す図である。モータ制御装置のハードな電気系統の部分は簡略な回路図として、またその制御を司るソフトの部分はブロック図として示されている。図1において、交流電源1から商用電源の交流電圧がリアクタ2を介して整流回路3に与えられる。リアクタ2は平滑回路部での力率低下を改善するための力率改善回路として挿入されている。整流回路3は交流電圧を直流電圧に整流し、平滑回路4によって直流電圧のリップル分が平滑化される。図1では、全波整流回路になっているが、倍電圧整流回路であってもよい。また、近年行なわれている可変電源供給方法である、いわゆるPAM方式としてもよい。   FIG. 1 is a diagram showing a configuration of an embodiment of a motor control device according to the present invention. The hardware electric system portion of the motor control device is shown as a simple circuit diagram, and the software portion that controls the motor control device is shown as a block diagram. In FIG. 1, an AC voltage from a commercial power source is supplied from an AC power source 1 to a rectifier circuit 3 via a reactor 2. The reactor 2 is inserted as a power factor correction circuit for improving the power factor reduction in the smoothing circuit unit. The rectifier circuit 3 rectifies the AC voltage into a DC voltage, and the smoothing circuit 4 smoothes the ripple of the DC voltage. Although a full-wave rectifier circuit is shown in FIG. 1, it may be a voltage doubler rectifier circuit. Further, a so-called PAM method, which is a variable power supply method performed in recent years, may be used.

整流された直流電圧はインバータ回路5に与えられる。インバータ回路5は、6個の半導体スイッチング素子が3相ブリッジ状に結線されており、インバータ回路5の出力電圧は3相ブラシレスモータ6に接続されている。   The rectified DC voltage is supplied to the inverter circuit 5. In the inverter circuit 5, six semiconductor switching elements are connected in a three-phase bridge shape, and the output voltage of the inverter circuit 5 is connected to the three-phase brushless motor 6.

ブラシレスモータ6を駆動・制御する制御回路7は、一般に、マイクロコンピュータやDSP(Digital Signal Processor)が用いられている。ブラシレスモータ6を通電角180度未満の通電休止期間を設けた間欠通電駆動とするため、通電タイミングの設定、駆動電圧(PWMデューティ)基準値の設定などの制御を行なう間欠通電駆動部8が設けられている。また、ブラシレスモータ6を180度通電駆動するため、通電タイミングの設定、駆動電圧(PWMデューティ)基準値の設定等の制御を行なう180度通電駆動部9が設けられている。更に、駆動方式を決定する駆動方式選択部10が設けられている。PWM作成/各相分配部11は、インバータ回路5の各モータ駆動素子を駆動するためのPWM信号を駆動素子毎に作成し出力する。駆動方式切換時のために、回転数制御PWMデューティ/変調率演算部12が設けられている。なお、ロータ位置検出回路13がデジタル方式のロータ位置検出回路である場合は、ロータ位置検出回路13を制御回路7に内蔵する態様にしてもよい。通電切換制御・電圧/電流位相差算出・電位位相差算出部(以下「切換制御・算出部」と略す)15は駆動方式切換時の電流位相推定し、電圧/電流位相差又は電圧位相の設定、更に回転数制御PWMデューティの補正係数の設定を行う。また、DC電流検出手段14及びシャント抵抗16により、DC電流を測定しDC電流を検出し、負荷トルクを推定する。   As the control circuit 7 for driving and controlling the brushless motor 6, a microcomputer or a DSP (Digital Signal Processor) is generally used. In order to set the brushless motor 6 to intermittent energization drive with an energization stop period of less than 180 degrees, an intermittent energization drive unit 8 is provided for performing control such as energization timing setting and drive voltage (PWM duty) reference value setting. It has been. Further, in order to drive the brushless motor 6 180 degrees energized, a 180 degree energization drive unit 9 is provided for performing control such as setting of energization timing and setting of a drive voltage (PWM duty) reference value. Further, a driving method selection unit 10 that determines a driving method is provided. The PWM creation / each phase distribution unit 11 creates and outputs a PWM signal for driving each motor drive element of the inverter circuit 5 for each drive element. A rotation speed control PWM duty / modulation rate calculator 12 is provided for switching the drive system. If the rotor position detection circuit 13 is a digital rotor position detection circuit, the rotor position detection circuit 13 may be built in the control circuit 7. Energization switching control / Voltage / current phase difference calculation / potential phase difference calculation unit (hereinafter abbreviated as “switching control / calculation unit”) 15 estimates the current phase at the time of switching the driving method and sets the voltage / current phase difference or voltage phase. Further, a correction coefficient for the rotational speed control PWM duty is set. Further, the DC current is measured by the DC current detecting means 14 and the shunt resistor 16, the DC current is detected, and the load torque is estimated.

ブラシレスモータ6を間欠通電駆動するか、180度通電駆動するかを、ブラシレスモータの状態或いは外部指示によって駆動方式選択部10で選択し駆動する。   Whether the brushless motor 6 is driven intermittently or driven 180 degrees is selected and driven by the drive system selection unit 10 according to the state of the brushless motor or an external instruction.

ブラシレスモータの運転状態とは、回転数、効率、負荷状態、外乱状態などであり、低速では間欠通電駆動、高速では180度通電駆動としても良いし、あるいは、軽負荷では間欠通電駆動、高負荷では180度通電駆動としても良い。また、180度通電駆動の継続が困難となるような外乱入力時は、間欠通電駆動に切換えるなどの方法もある。更に、操作者が、外部スイッチにより駆動方式を切換える場合も考えられる。   The operating state of the brushless motor is the rotational speed, efficiency, load state, disturbance state, etc., and may be intermittent energization drive at low speed, 180 degree energization drive at high speed, or intermittent energization drive at high load, high load Then, 180-degree energization drive may be used. In addition, there is a method of switching to intermittent energization drive at the time of disturbance input that makes it difficult to continue the 180-degree energization drive. Furthermore, it is conceivable that the operator switches the driving method using an external switch.

なお、効率の向上、トルク変動、振動、騒音の抑制のためには、180度通電駆動としては、駆動波形の滑らかな変化が実現できる正弦波状にすることが望ましい。   In order to improve efficiency, suppress torque fluctuation, vibration, and noise, it is desirable that the 180-degree energization drive has a sine wave shape that can realize a smooth change in the drive waveform.

また、間欠通電駆動の駆動波形としては、通電角を180度未満として駆動波形中に通電休止期間を設けて、その間に発生する誘起電圧を検出できれば、いかなる駆動波形でも構わないが、例えば120度通電駆動は、完全2相通電であり、矩形波通電が可能であるので、各相に供給する駆動波形が作成しやすいという利点がある。   The drive waveform for intermittent energization drive may be any drive waveform as long as the energization stop period is provided in the drive waveform with an energization angle of less than 180 degrees and an induced voltage generated during that period can be detected. The energization drive is complete two-phase energization, and rectangular wave energization is possible. Therefore, there is an advantage that a drive waveform supplied to each phase can be easily created.

各通電波形として各相の駆動波形を図に示す。図2は間欠通電駆動の一例である矩形波120度通電の駆動波形、図3は180度通電駆動の一例である正弦波通電の駆動波形である。   The drive waveforms of each phase are shown in the figure as each energization waveform. FIG. 2 shows a drive waveform of 120-degree rectangular energization as an example of intermittent energization drive, and FIG. 3 shows a drive waveform of sine-wave energization as an example of 180-degree energization drive.

図2、図3は、インバータ回路2の駆動素子を駆動する信号(PWM作成/各相分配部11の出力)をコイル端子毎に通電の様子をアナログ値として示した波形図であり、実際の通電期間中の駆動波形は数〜数十kHzでPWMチョッピングされ、目標回転数になるようにPWM駆動信号のデューティを変更する。デューティが変更されることでブラシレスモータ6に印加される電圧又は電流が変更され、回転数及びトルクを制御できる。   FIG. 2 and FIG. 3 are waveform diagrams showing the state of energization of the signal (PWM creation / output of each phase distribution unit 11) for driving the drive element of the inverter circuit 2 as an analog value for each coil terminal. The drive waveform during the energization period is PWM chopped at several to several tens of kHz, and the duty of the PWM drive signal is changed so as to reach the target rotational speed. By changing the duty, the voltage or current applied to the brushless motor 6 is changed, and the rotation speed and torque can be controlled.

図4は図1に示した制御回路において、間欠通電駆動の一例である120度通電駆動を選択した場合のブラシレスモータ6の回転数制御を示すフローチャートである。   FIG. 4 is a flowchart showing the rotational speed control of the brushless motor 6 when the 120-degree energization drive which is an example of the intermittent energization drive is selected in the control circuit shown in FIG.

制御回路7はステップ(図示及び以下の説明ではSと略称する)S1において、目標回転数N1で回転させるための指令信号が与えられると、S2において、回転数制御PWMデューティが設定される。制御回路7は回転数制御PWMデューティでインバータを駆動し、そのときのブラシレスモータ6の実働回転数NがS3で検出される。S4で実働回転数Nが目標回転数N1と一致しているか否かが判別され、一致していなければ、S5で現在の実働回転数Nが目標回転数N1よりも少ないかあるいは多いかが比較される。実働回転数Nが目標回転数N1よりも多ければ、S6で回転数制御PWMデューティが減少され、逆に実働回転数Nが目標回転数N1よりも少なければS7で回転数制御PWMデューティが増大される。この動作を繰り返すことによって、回転数制御PWMデューティが調整され、ブラシレスモータ6の実働回転数Nを目標回転数N1に一致させる制御を行う回転数制御が行なわれる。   When the control circuit 7 is given a command signal for rotation at the target rotation speed N1 in step (abbreviated as S in the figure and the following description) S1, a rotation speed control PWM duty is set in S2. The control circuit 7 drives the inverter with the rotational speed control PWM duty, and the actual rotational speed N of the brushless motor 6 at that time is detected in S3. In S4, it is determined whether or not the actual rotational speed N matches the target rotational speed N1, and if not, it is compared in S5 whether the current actual rotational speed N is smaller or larger than the target rotational speed N1. The If the actual rotational speed N is larger than the target rotational speed N1, the rotational speed control PWM duty is decreased in S6. Conversely, if the actual rotational speed N is smaller than the target rotational speed N1, the rotational speed control PWM duty is increased in S7. The By repeating this operation, the rotational speed control PWM duty is adjusted, and rotational speed control is performed to control the actual rotational speed N of the brushless motor 6 to be equal to the target rotational speed N1.

図5は、図1に示した制御回路において、120通電駆動を選択した場合のU相上アームのインバータ駆動信号である。120度通電駆動では、通電区間全域にわたって回転数制御PWMデューティと等しいPWMデューティが出力される。   FIG. 5 is an inverter drive signal for the U-phase upper arm when 120 energization drive is selected in the control circuit shown in FIG. In the 120-degree energization drive, a PWM duty equal to the rotation speed control PWM duty is output over the entire energization section.

図6は図1に示した制御回路において、180度通電駆動を選択した場合のブラシレスモータ6の回転数制御を示すフローチャートである。   FIG. 6 is a flowchart showing the rotational speed control of the brushless motor 6 when the 180 ° energization drive is selected in the control circuit shown in FIG.

制御回路7はS8において、目標回転数N1で回転させるための指令信号が与えられると、S9において、回転数制御変調率が設定される。制御回路7は回転数制御変調率でインバータを駆動し、そのときのブラシレスモータ6の実働回転数NがS10で検出される。S11で実働回転数Nが目標回転数N1と一致しているか否かが判別され、一致していなければ、S12で現在の実働回転数Nが目標回転数N1よりも少ないかあるいは多いかが比較される。実働回転数Nが目標回転数N1よりも多ければ、S13で回転数制御変調率が減少され、逆に実働回転数Nが目標回転数N1よりも少なければS14で回転数制御変調率が増大される。この動作を繰り返すことによって、回転数制御変調率が調整され、ブラシレスモータ6の実働回転数Nを目標回転数N1に一致させる制御を行う回転数制御が行なわれる。   When a command signal for rotating the control circuit 7 at the target rotational speed N1 is given in S8, the rotational speed control modulation rate is set in S9. The control circuit 7 drives the inverter with the rotational speed control modulation rate, and the actual rotational speed N of the brushless motor 6 at that time is detected in S10. In S11, it is determined whether or not the actual rotational speed N matches the target rotational speed N1, and if not, it is compared in S12 whether the current actual rotational speed N is less than or greater than the target rotational speed N1. The If the actual rotational speed N is greater than the target rotational speed N1, the rotational speed control modulation factor is decreased in S13. Conversely, if the actual rotational speed N is smaller than the target rotational speed N1, the rotational speed control modulation factor is increased in S14. The By repeating this operation, the rotational speed control modulation rate is adjusted, and rotational speed control is performed to control the actual rotational speed N of the brushless motor 6 to coincide with the target rotational speed N1.

図7は、図1に示した制御回路において180度通電駆動を選択した場合のU相上アームのインバータ駆動信号である。180度通電駆動では、疎密を均すとすれば通電位相に応じてモータ電流波形が正弦波状となるように、回転数制御変調率を用いて演算されたPWMデューティが出力される。   FIG. 7 shows an inverter drive signal for the U-phase upper arm when 180-degree energization drive is selected in the control circuit shown in FIG. In 180-degree energization driving, PWM duty calculated using the rotation speed control modulation factor is output so that the motor current waveform becomes a sine wave shape according to the energization phase if the density is equalized.

図8は、間欠通電駆動から180度通電駆動への切換時の回転数変動の様子を示した図である。間欠通電駆動から180度通電駆動への切換時には、間欠通電駆動の回転数制御PWMデューティをそのまま180度通電駆動の回転数制御変調率とする方法が考えられるが、この方法では、回転数やモータトルク等の現在のモータの運転状態とインバータ出力との間にアンバランスが起こり、回転数変動が発生し、実働回転数と目標回転数が一致するまでに時間がかかる場合がある。また、回転数変動が大きいと位置検出精度が悪化し、最悪の場合脱調に至る可能性がある。   FIG. 8 is a diagram showing how the rotational speed fluctuates when switching from intermittent energization drive to 180-degree energization drive. At the time of switching from intermittent energization drive to 180-degree energization drive, there can be considered a method in which the rotation speed control PWM duty of intermittent energization drive is used as it is as the rotation speed control modulation rate of 180-degree energization drive. There may be an imbalance between the current motor operating state such as torque and the inverter output, a rotational speed fluctuation occurs, and it may take time for the actual rotational speed and the target rotational speed to coincide. In addition, if the rotational speed fluctuation is large, the position detection accuracy is deteriorated, and in the worst case, there is a possibility of stepping out.

間欠通電駆動では通電休止区間に誘起電圧を検出してロータの位置検出を行っており、ロータ位置に対して電圧位相を制御している。例えば間欠通電駆動の一例である120度通電では、無通電区間は電気角60度あり、その間に誘起電圧の検出を行う。誘起電圧が検出されてから検出された相に電気角120度分通電を開始する。このとき例えば誘起電圧が検出されたと同時に通電を開始した場合、電圧位相は誘起電圧位相に対して30度進めていることになる。したがって間欠通電駆動では誘起電圧位相(ロータ位置)に対して電圧位相を制御しており、電流位相は制御していない。一方、シミュレーションによりモータの巻き線抵抗、鎖交磁束等のモータパラメータから負荷トルクとロータ位置に対する電圧位相から電流位相を推定することは可能である。   In intermittent energization driving, the rotor position is detected by detecting the induced voltage during the energization stop period, and the voltage phase is controlled with respect to the rotor position. For example, in 120-degree energization as an example of intermittent energization drive, the non-energized section has an electrical angle of 60 degrees, and the induced voltage is detected during that period. After the induction voltage is detected, energization is started for the detected phase by an electrical angle of 120 degrees. At this time, for example, when energization is started at the same time as the induced voltage is detected, the voltage phase is advanced by 30 degrees with respect to the induced voltage phase. Therefore, in intermittent energization driving, the voltage phase is controlled with respect to the induced voltage phase (rotor position), and the current phase is not controlled. On the other hand, it is possible to estimate the current phase from the load torque and the voltage phase with respect to the rotor position from the motor parameters such as the winding resistance of the motor and the linkage flux by simulation.

また、センサレス180度通電駆動では通電休止区間は無いので、ロータの位置検出は直接行うことができない。特許文献1では、2ヶ所の交流電圧の位相期間毎に各交流電流検出値を積算して交流電流信号面積とし、両交流電流信号面積の面積比を交流電圧/電流位相差情報として検出する。   Further, in the sensorless 180-degree energization drive, since there is no energization stop period, the position detection of the rotor cannot be performed directly. In Patent Literature 1, the AC current detection values are integrated for each phase period of two AC voltages to obtain an AC current signal area, and the area ratio of both AC current signal areas is detected as AC voltage / current phase difference information.

例えば、図10に示すように、特許文献1による方法により電圧位相と電流位相の位相差を検出し、ある目標値に制御している。したがって、電圧/電流位相差制御による180度通電駆動ではロータ位置に対して直接電流位相を制御していない。一方、シミュレーションによりモータの巻き線抵抗、鎖交磁束等のモータパラメータから負荷トルクと電圧電流位相差から電流位相を推定することは可能である。   For example, as shown in FIG. 10, the phase difference between the voltage phase and the current phase is detected by the method according to Patent Document 1 and controlled to a certain target value. Therefore, the current phase is not directly controlled with respect to the rotor position in the 180 ° energization drive by the voltage / current phase difference control. On the other hand, it is possible to estimate the current phase from the load torque and the voltage-current phase difference from the motor parameters such as the winding resistance of the motor and the linkage flux by simulation.

本発明では電圧/電流位相差180度通電駆動時の電流位相と間欠通電駆動時の電流位相とが切換前後で同一となるように制御することで、切換前後のトルク変動を最小化し、ロータの回転数変動及びロータ振動を最小化することに特徴がある。   In the present invention, by controlling so that the current phase during the 180-degree energization drive with the voltage / current phase difference and the current phase during the intermittent energization drive are the same before and after switching, torque fluctuation before and after switching is minimized, It is characterized by minimizing rotational speed fluctuations and rotor vibration.

また、前記ブラシレスモータを駆動するインバータ部に流れるDC電流を検出するDC電流検出手段を設け、前記ブラシレスモータの負荷状態を前記DC電流に基づいて推定することができる。   Further, DC current detection means for detecting a DC current flowing in the inverter unit that drives the brushless motor is provided, and a load state of the brushless motor can be estimated based on the DC current.

図11は、間欠通電駆動から180度通電駆動への切換時における通電制御フローチャートである。間欠通電駆動時のロータ位置に対する電流位相を、インバータ部に流れるDC電流から推定される負荷トルクとロータ位置に対する電圧位相とから予めシミュレーションにより推定し、更に、この推定された電流位相から電圧/電流位相差180度通電駆動での電圧/電流位相差を算出する。即ち、間欠通電駆動時の負荷トルクと電圧位相と電圧/電流位相差の関係を示す図13に示すようなマップを予め用意する。制御回路7では駆動方式選択部10から間欠通電駆動から電圧/電流位相差180度通電駆動への切換指令が設定されると、通電切換制御部15においてS11で負荷トルクと電圧位相とから前記マップにより電圧/電流位相差を算出する。S12では前記電圧/電流位相差を切換後の電圧/電流位相差180度通電駆動での電圧/電流位相差の目標値に設定する。したがって、通電切換前後の電流位相の変動は小さくなるため、トルク変動が小さくなり、回転数変動、電流振幅変動も小さくなり、駆動方式の切換を安定して行うことが可能となる。また、電圧/電流位相差180度通電駆動と間欠通電駆動の電圧印加量は同一PWMデューティでは異なるので、通電切換に伴う電圧印加量を補正するため、図1に示す駆動方式切換時の回転数制御PWMデューティ/変調率演算部12において、S13で間欠通電駆動のPWMデューティに所定値αを乗算した値を電圧/電流位相差180度通電駆動の変調率とした後、S14で間欠通電駆動から電圧/電流位相差180度通電駆動へ切換えると、図8で「所定値αの乗算有」の場合に示すように回転数変動が小さくなり、更に安定な駆動方式の切換えが可能となる。
また、所定値αは、駆動方式切換時の回転数変動が小さくなるように、実験やシミュレーションにより予め調整を行なっておく。
FIG. 11 is an energization control flowchart when switching from intermittent energization drive to 180-degree energization drive. The current phase with respect to the rotor position at the time of intermittent energization driving is estimated in advance by simulation from the load torque estimated from the DC current flowing through the inverter unit and the voltage phase with respect to the rotor position, and further the voltage / current is calculated from the estimated current phase. The voltage / current phase difference in the 180 ° energization driving with the phase difference is calculated. That is, a map as shown in FIG. 13 showing the relationship among load torque, voltage phase, and voltage / current phase difference during intermittent energization drive is prepared in advance. In the control circuit 7, when a switching command from the intermittent energization drive to the voltage / current phase difference 180 degree energization drive is set from the drive method selection unit 10, the map is obtained from the load torque and voltage phase in S11 in the energization switching control unit 15. To calculate the voltage / current phase difference. In S12, the voltage / current phase difference is set to a target value of the voltage / current phase difference in the energized driving of the switched voltage / current phase difference of 180 degrees. Therefore, since the fluctuation of the current phase before and after the energization switching becomes small, the torque fluctuation becomes small, the rotation speed fluctuation and the current amplitude fluctuation also become small, and it becomes possible to switch the driving method stably. Further, since the voltage application amount of the 180 / energized voltage / current phase difference and the intermittent energization drive are different at the same PWM duty, in order to correct the voltage application amount accompanying the energization switching, the rotation speed at the time of switching the driving method shown in FIG. In the control PWM duty / modulation rate calculation unit 12, the value obtained by multiplying the PWM duty of the intermittent energization drive by a predetermined value α in S13 is used as the modulation rate of the voltage / current phase difference of 180 ° energization drive, and then the intermittent energization drive is started in S14. When switching to 180 / energization driving of voltage / current phase difference, as shown in the case of “with multiplication of predetermined value α” in FIG. 8, the rotational speed fluctuation becomes small, and a more stable driving system can be switched.
Further, the predetermined value α is adjusted in advance through experiments and simulations so that the rotational speed fluctuation at the time of switching the driving method becomes small.

次に、180度通電駆動から間欠通電駆動への切換について示す。図9は、180度通電駆動から間欠通電駆動120度通電への切換時の回転数変動の様子を示した図である。180度通電駆動から間欠通電駆動への切換時には、180度通電の回転数制御変調率をそのまま間欠通電駆動の回転数制御PWMデューティとする方法が考えられるが、この方法では、回転数やモータトルク等の現在のモータの運転状態とインバータ出力との間にアンバランスが起こり、回転数変動が発生し、実働回転数と目標回転数が一致するまでに時間がかかる場合がある。また、回転数変動が大きいと位置検出精度が悪化し、最悪の場合脱調に至る可能性がある。電圧/電流位相差180度通電では、回転数制御PWMデューティ/変調率により電圧/電流位相差は制御される。   Next, switching from 180 degree energization driving to intermittent energization driving will be described. FIG. 9 is a diagram showing how the rotational speed fluctuates when switching from the 180-degree energization drive to the intermittent energization drive 120-degree energization. At the time of switching from 180 degree energization drive to intermittent energization drive, there can be considered a method in which the rotation speed control modulation rate of 180 degree energization is directly used as the rotation speed control PWM duty of intermittent energization drive. Thus, an imbalance may occur between the current motor operating state and the inverter output, and a rotational speed fluctuation may occur, and it may take time until the actual rotational speed and the target rotational speed match. In addition, if the rotational speed fluctuation is large, the position detection accuracy is deteriorated, and in the worst case, there is a possibility of stepping out. In the 180 degree voltage / current phase difference energization, the voltage / current phase difference is controlled by the rotational speed control PWM duty / modulation rate.

図12は、電圧/電流位相差180度通電駆動から間欠通電駆動への切換時の制御フローチャートである。電圧/電流位相差180度通電駆動時の電流位相を電圧/電流位相差とインバータ部に流れるDC電流から推定される負荷トルクとから予め推定し、更に推定された電流位相から間欠通電駆動時での電圧位相を算出する。即ち、図14に示すように、電圧/電流位相差180度通電駆動時の負荷トルクと電圧/電流位相差と電圧位相の関係をマップとして予め用意する。制御回路7では駆動方式選択部10から電圧/電流位相差180度通電駆動から間欠通電駆動への切換指令が設定されると、通電切換制御部15においてS21で負荷トルクと電圧/電流位相差とから前記マップにより電圧位相を算出する。S22では前記電圧位相を切換後の間欠通電駆動での電圧位相の目標値に設定する。間欠通電駆動では無通電区間の相の誘起電圧位相をロータ位置検出回路13により検出することにより、検出値を目標値に一致させるように、ロータ位置に対して電圧位相を制御することが可能である。   FIG. 12 is a control flowchart at the time of switching from voltage / current phase difference 180-degree energization drive to intermittent energization drive. Voltage / current phase difference is estimated in advance from the voltage / current phase difference and the load torque estimated from the DC current flowing through the inverter unit during the 180-degree energization drive, and further from the estimated current phase during the intermittent energization drive. Is calculated. That is, as shown in FIG. 14, the relationship between the load torque, the voltage / current phase difference, and the voltage phase at the time of 180 / energization driving of the voltage / current phase is prepared in advance as a map. In the control circuit 7, when a switching command from the voltage / current phase difference 180 degree energization drive to the intermittent energization drive is set from the drive method selection unit 10, the energization switching control unit 15 determines the load torque, the voltage / current phase difference in S21. From the map, the voltage phase is calculated. In S22, the voltage phase is set to the target value of the voltage phase in the intermittent energization drive after switching. In intermittent energization drive, by detecting the induced voltage phase of the non-energized phase by the rotor position detection circuit 13, it is possible to control the voltage phase with respect to the rotor position so that the detected value matches the target value. is there.

したがって、前記電圧位相を切換後の間欠通電駆動での電圧位相として制御することにより通電切換前後の電流位相の変動は小さくなるため、トルク変動が小さくなり、回転数変動、電流振幅変動も小さくなり駆動方式の切換を安定して行うことが可能となる。また、間欠通電駆動と電圧/電流位相差180度通電駆動の電圧印加量は同一PWMデューティでは異なるので、通電切換に伴う電圧印加量を補正するため、図1に示す駆動方式切換時の回転数制御PWMデューティ/変調率演算部12において、間欠通電駆動のPWMデューティに所定値βを乗算した値を電圧/電流位相差180度通電駆動の変調率とした後、S24で電圧/電流位相差180度通電駆動から間欠通電駆動へ切換えると、図9において「所定値βの乗算有」の場合に示すように回転数変動が小さくなり、駆動方式の切換を更に安定して行うことが可能となる。   Therefore, by controlling the voltage phase as the voltage phase in the intermittent energization drive after switching, the variation in the current phase before and after the energization switching is reduced, so that the torque variation is reduced, and the rotation speed variation and current amplitude variation are also reduced. It is possible to switch the driving method stably. Further, since the voltage application amount of the intermittent energization driving and the voltage / current phase difference 180 degree energization driving is different at the same PWM duty, the number of rotations at the time of switching the driving method shown in FIG. In the control PWM duty / modulation rate calculation unit 12, a value obtained by multiplying the PWM duty of intermittent energization driving by a predetermined value β is set as a modulation rate of voltage / current phase difference 180 degrees energization drive, and then the voltage / current phase difference 180 is determined in S24. When switching from the normal energization drive to the intermittent energization drive, as shown in the case of “with multiplication of the predetermined value β” in FIG. 9, the rotational speed fluctuation becomes small, and the drive system can be switched more stably. .

また、所定値βは、駆動方式切換時の回転数変動が小さくなるように、実験やシミュレーションにより予め調整を行なっておく。   Further, the predetermined value β is adjusted in advance by experiments and simulations so that the fluctuation in the rotational speed at the time of switching the driving method becomes small.

更に、位置センサレスの間欠通電駆動で無通電区間の相の誘起電圧を検出することによる手法では、ロータ位置に対する電圧位相の進め角に制限がある。例えば、センサレス120度通電では電圧位相の進め角は誘起電圧位相に対して30度までとなる。   Further, in the method based on detecting the induced voltage of the phase in the non-energized section by the position sensorless intermittent energization drive, the advance angle of the voltage phase with respect to the rotor position is limited. For example, in sensorless 120-degree energization, the advance angle of the voltage phase is up to 30 degrees with respect to the induced voltage phase.

本発明の実施の形態を示す構成図Configuration diagram showing an embodiment of the present invention 間欠通電駆動の一例である矩形波120度通電の駆動波形Drive waveform of rectangular wave 120 degree energization as an example of intermittent energization drive 180度通電駆動の一例である正弦波通電の駆動波形Driving waveform of sinusoidal energization as an example of 180 degree energization driving 120度通電駆動の回転数制御を示すフローチャートFlow chart showing rotation speed control of 120-degree energization drive 120度通電駆動のU相上アームのインバータ駆動信号Inverter drive signal for U-phase upper arm with 120-degree conduction drive 180度通電駆動の回転数制御を示すフローチャートFlow chart showing rotation speed control of 180-degree energization drive 180度通電駆動のU相上アームのインバータ駆動信号Inverter drive signal for U-phase upper arm with 180 degree drive 180度通電駆動から間欠通電駆動への切換の際の回転数変動の様子を示した図。The figure which showed the mode of the rotation speed fluctuation | variation at the time of switching from a 180 degree | times energization drive to an intermittent energization drive. 間欠通電駆動から180度通電駆動への切換の際の回転数変動の様子を示した図。The figure which showed the mode of the rotation speed fluctuation | variation at the time of switching from intermittent energization drive to 180 degree energization drive. 電圧/電流位相差180度通電駆動における電圧・電流位相差Voltage / current phase difference Voltage / current phase difference in 180 degree conduction drive 間欠通電駆動から180度通電駆動への切換の際の制御フローチャートControl flowchart for switching from intermittent energization drive to 180 degree energization drive 180度通電駆動から間欠通電駆動への切換の際の制御フローチャートControl flowchart for switching from 180-degree energization drive to intermittent energization drive 電圧位相と負荷トルクと電圧/電流位相差のマップデータMap data of voltage phase, load torque and voltage / current phase difference 電圧/電流位相差と負荷トルクと電圧位相のマップデータMap data of voltage / current phase difference, load torque and voltage phase

符号の説明Explanation of symbols

1 商用電源からの交流電源
2 力率改善回路
3 交流を直流に変換する整流回路
4 直流電圧のリプルを平滑する平滑回路
5 インバータ回路
6 3相ブラシレスモータ
7 制御回路
8 間欠通電駆動部
9 180度通電駆動部
10 駆動方式選択部
11 PWM作成部/各相分配部
12 回転数制御PWMデューティ/変調率演算部
13 ロータ位置検出回路
14 DC電流検出手段
15 通電切換制御・電圧/電流位相差算出・電圧位相算出部
16 シャント抵抗
DESCRIPTION OF SYMBOLS 1 AC power source from commercial power supply 2 Power factor improvement circuit 3 Rectifier circuit that converts AC to DC 4 Smoothing circuit that smoothes DC voltage ripple 5 Inverter circuit 6 Three-phase brushless motor 7 Control circuit 8 Intermittent drive unit 9 180 degrees Energization drive unit 10 Drive system selection unit 11 PWM creation unit / each phase distribution unit 12 Rotational speed control PWM duty / modulation rate calculation unit 13 Rotor position detection circuit 14 DC current detection means 15 Energization switching control / voltage / current phase difference calculation / Voltage phase calculator 16 Shunt resistance

Claims (4)

ブラシレスモータに電力を供給する電力供給手段と、通電休止期間を設けていない180度通電駆動方式で前記ブラシレスモータが駆動するように前記電力供給手段を制御する180度通電駆動手段と、通電休止期間を設けている間欠通電駆動方式で前記ブラシレスモータが駆動するように前記電力供給手段を制御する間欠通電駆動手段と、前記180度通電駆動方式及び前記間欠通電駆動方式のいずれかを選択する選択手段と、前記180度通電駆動方式及び前記間欠通電駆動方式の一方の駆動方式から他方の駆動方式への切換えの際に、前記一方の駆動方式における切換え直前の前記ブラシレスモータのロータ位置に対する電流位相と切換直後の電流位相が等しくなるように制御することを特徴とするブラシレスモータ制御装置。   A power supply means for supplying power to the brushless motor, a 180-degree energization drive means for controlling the power supply means so that the brushless motor is driven in a 180-degree energization drive system without providing an energization pause period, and an energization pause period An intermittent energization drive means for controlling the power supply means so that the brushless motor is driven by an intermittent energization drive system, and a selection means for selecting one of the 180-degree energization drive system and the intermittent energization drive system And the current phase with respect to the rotor position of the brushless motor immediately before switching in the one driving method when switching from one driving method to the other driving method of the 180-degree energizing driving method and the intermittent energizing driving method. A brushless motor control device, wherein the current phase immediately after switching is controlled to be equal. 前記モータ制御装置において、前記180度通電駆動から前記間欠通電駆動への切換の際には、切換前の負荷トルクと電圧/電流位相差とからロータ位置に対する電流位相、電圧位相をそれぞれ推定し、推定した電流位相、電圧位相を用いて切換後の前記間欠通電駆動の電圧位相を決定することを特徴とする請求項1記載のブラシレスモータの制御装置。   In the motor control device, when switching from the 180-degree energization drive to the intermittent energization drive, the current phase and the voltage phase with respect to the rotor position are respectively estimated from the load torque and the voltage / current phase difference before the switching, 2. The brushless motor control device according to claim 1, wherein the voltage phase of the intermittent energization drive after switching is determined using the estimated current phase and voltage phase. 前記モータ制御装置において、前記間欠通電駆動から前記180度通電駆動への切換の際には、切換前の負荷トルクと電圧位相からロータ位置に対する電流位相、電圧/電流位相差を推定し、推定した電流位相、電圧/電流位相差を用いて前記180度通電駆動での電圧/電流位相差を決定することを特徴とする請求項1記載のブラシレスモータの制御装置。   In the motor control device, when switching from the intermittent energization drive to the 180-degree energization drive, the current phase and the voltage / current phase difference with respect to the rotor position are estimated and estimated from the load torque and voltage phase before switching. 2. The brushless motor control device according to claim 1, wherein the voltage / current phase difference in the 180-degree conduction drive is determined using a current phase and a voltage / current phase difference. 前記ブラシレスモータの巻線に流れるDC電流を検出するDC電流検出手段を設け、前記ブラシレスモータの負荷状態を前記DC電流に基づいて推定することを特徴とする請求項2又は3に記載のブラシレスモータの制御装置。   4. The brushless motor according to claim 2, further comprising: a DC current detection unit configured to detect a DC current flowing through the winding of the brushless motor, and estimating a load state of the brushless motor based on the DC current. Control device.
JP2007004657A 2007-01-12 2007-01-12 Controller for brushless motors Pending JP2008172948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007004657A JP2008172948A (en) 2007-01-12 2007-01-12 Controller for brushless motors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007004657A JP2008172948A (en) 2007-01-12 2007-01-12 Controller for brushless motors

Publications (1)

Publication Number Publication Date
JP2008172948A true JP2008172948A (en) 2008-07-24

Family

ID=39700491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007004657A Pending JP2008172948A (en) 2007-01-12 2007-01-12 Controller for brushless motors

Country Status (1)

Country Link
JP (1) JP2008172948A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506689A (en) * 2008-10-23 2012-03-15 ツェントラム ミクロエレクトロニック ドレスデン アーゲー How to drive an electric motor
WO2013035382A1 (en) * 2011-09-08 2013-03-14 株式会社日立産機システム Control system for synchronous motor
JP2013074761A (en) * 2011-09-29 2013-04-22 Hitachi Appliances Inc Motor drive control apparatus and air conditioner
JP2013225979A (en) * 2012-04-20 2013-10-31 Hitachi Appliances Inc Motor driving device, compressor driving device employing the same, and heat exchanger equipped with the same
JP2014079041A (en) * 2012-10-09 2014-05-01 Hitachi Appliances Inc Motor controller, and refrigerator and electrical machine using the same
CN105048891A (en) * 2014-04-16 2015-11-11 日立空调·家用电器株式会社 Motor control device
JP7319146B2 (en) 2019-09-02 2023-08-01 ローム株式会社 Motor driver device and semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001078495A (en) * 1999-07-08 2001-03-23 Toyota Motor Corp Drive controller for ac motor
JP2001112287A (en) * 1999-08-05 2001-04-20 Sharp Corp Motor controller
JP2002051596A (en) * 2000-08-01 2002-02-15 Nissan Motor Co Ltd Drive controller for ac motor
JP2002233183A (en) * 2001-01-31 2002-08-16 Matsushita Electric Ind Co Ltd Driving apparatus and method for brushless motor
JP2003111469A (en) * 2001-09-28 2003-04-11 Sharp Corp Control method and controller of motor
JP2004064860A (en) * 2002-07-26 2004-02-26 Denso Corp Motor controlling equipment
JP2005027395A (en) * 2003-06-30 2005-01-27 Fujitsu General Ltd Controller of permanent magnetic motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001078495A (en) * 1999-07-08 2001-03-23 Toyota Motor Corp Drive controller for ac motor
JP2001112287A (en) * 1999-08-05 2001-04-20 Sharp Corp Motor controller
JP2002051596A (en) * 2000-08-01 2002-02-15 Nissan Motor Co Ltd Drive controller for ac motor
JP2002233183A (en) * 2001-01-31 2002-08-16 Matsushita Electric Ind Co Ltd Driving apparatus and method for brushless motor
JP2003111469A (en) * 2001-09-28 2003-04-11 Sharp Corp Control method and controller of motor
JP2004064860A (en) * 2002-07-26 2004-02-26 Denso Corp Motor controlling equipment
JP2005027395A (en) * 2003-06-30 2005-01-27 Fujitsu General Ltd Controller of permanent magnetic motor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506689A (en) * 2008-10-23 2012-03-15 ツェントラム ミクロエレクトロニック ドレスデン アーゲー How to drive an electric motor
WO2013035382A1 (en) * 2011-09-08 2013-03-14 株式会社日立産機システム Control system for synchronous motor
JP2013059197A (en) * 2011-09-08 2013-03-28 Hitachi Industrial Equipment Systems Co Ltd Control system of synchronous motor
CN103918173A (en) * 2011-09-08 2014-07-09 株式会社日立产机系统 Control system for synchronous motor
JP2013074761A (en) * 2011-09-29 2013-04-22 Hitachi Appliances Inc Motor drive control apparatus and air conditioner
JP2013225979A (en) * 2012-04-20 2013-10-31 Hitachi Appliances Inc Motor driving device, compressor driving device employing the same, and heat exchanger equipped with the same
JP2014079041A (en) * 2012-10-09 2014-05-01 Hitachi Appliances Inc Motor controller, and refrigerator and electrical machine using the same
CN105048891A (en) * 2014-04-16 2015-11-11 日立空调·家用电器株式会社 Motor control device
CN105048891B (en) * 2014-04-16 2019-04-19 日立空调·家用电器株式会社 Control device of electric motor
JP7319146B2 (en) 2019-09-02 2023-08-01 ローム株式会社 Motor driver device and semiconductor device

Similar Documents

Publication Publication Date Title
JP3972124B2 (en) Synchronous motor speed control device
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
JP4575547B2 (en) Motor control device
JP2008172948A (en) Controller for brushless motors
JP2009278788A (en) Motor drive control apparatus
JP2009077503A (en) Motor controller and controller for air conditioner
JP4050489B2 (en) Motor control method
JP2006204054A (en) Motor control unit and motor drive system having the same
JP4352860B2 (en) Electric motor control device
JP2010068581A (en) Electric motor drive unit
JP4791319B2 (en) Inverter device, compressor drive device and refrigeration / air-conditioning device
JP2012090460A (en) Motor controller
JP2007282367A (en) Motor driving controller
JP2007116769A (en) Motor controller/driver for turbocharger with motor
JP2005237172A (en) Control device for synchronous machine
JP2004104978A (en) Controller for motor
JP4422967B2 (en) Electric motor operation control device
JP2008193774A (en) Device and method for estimating temperature of rotor of motor
JP2001028892A (en) Torque detector and driving controller for ac motor
JP3544338B2 (en) Control device for compressor motor
JP2007228788A (en) Inverter device
CN115398794A (en) Motor control device, motor system, and motor control method
JP4279654B2 (en) Inverter device, compressor drive device and refrigeration / air-conditioning device
JP2002084777A (en) Brushless motor control method and apparatus thereof
JP4256796B2 (en) Inverter device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111129