JP2008028274A - Manufacturing method for semiconductor device - Google Patents

Manufacturing method for semiconductor device Download PDF

Info

Publication number
JP2008028274A
JP2008028274A JP2006201413A JP2006201413A JP2008028274A JP 2008028274 A JP2008028274 A JP 2008028274A JP 2006201413 A JP2006201413 A JP 2006201413A JP 2006201413 A JP2006201413 A JP 2006201413A JP 2008028274 A JP2008028274 A JP 2008028274A
Authority
JP
Japan
Prior art keywords
electrode pad
inspection
signal
semiconductor device
signal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006201413A
Other languages
Japanese (ja)
Inventor
Kazuo Sakamoto
和夫 坂本
Kazuo Tanaka
一雄 田中
Naozumi Morino
直純 森野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2006201413A priority Critical patent/JP2008028274A/en
Publication of JP2008028274A publication Critical patent/JP2008028274A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/06179Corner adaptations, i.e. disposition of the bonding areas at the corners of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for easily determining a leak current that is caused by a crack formed on an insulating film underneath electrode pads. <P>SOLUTION: A probe is put simultaneously to a signal electrode pad 2, and an inspection electrode pad 3 which is an isolated pattern formed on a corner of a semiconductor chip, to measure a leak current between the inspection electrode pad 3 and a circle-around power interconnect 7 that runs underneath a plurality of signal electrode pads 2 and the inspection electrode 3 via insulating films 4 and 6. If a leak current larger than a rating current is measured between the inspection electrode pad 3 and the circle-around power interconnect 7, a leak current is measured between the inspection electrode pad 3 and the signal electrode pad 2 (2A) adjacent thereto. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体装置の製造技術に関し、特に、電極パッドの直下の絶縁膜に生じるクラックに起因したリーク不良を検出する方法に適用して有効な技術に関するものである。   The present invention relates to a semiconductor device manufacturing technique, and more particularly to a technique that is effective when applied to a method for detecting a leakage defect caused by a crack generated in an insulating film directly under an electrode pad.

絶縁膜を介して全ての電極パッドの直下を通る配線層を備え、電極パッドの少なくとも1つが配線層と電気的に接続された半導体装置において、配線層に接続された第1の電極パッドと配線層に接続されていない第2の電極パッド間でリーク電流を測定する半導体装置の検査方法が特開2005−251829号公報(特許文献1)に開示されている。   In a semiconductor device including a wiring layer passing directly under all electrode pads through an insulating film, and at least one of the electrode pads is electrically connected to the wiring layer, the first electrode pad and the wiring connected to the wiring layer Japanese Unexamined Patent Application Publication No. 2005-251829 (Patent Document 1) discloses a semiconductor device inspection method for measuring a leakage current between second electrode pads not connected to a layer.

また、1または2以上の被検査用電極パッドと、検査用電極パッドと、全ての被検査用電極パッド直下の配線層領域に設けられた検査用電極パッドと電気的に接続された配線とをスクライブ領域に備え、被検査用電極パッドおよび検査用電極パッドにプローブをコンタクトし、配線を介する被検査用電極パッドと検査用電極パッド間の導通よりコンタクトによる被検査用電極パッドの破壊を検出する方法が特開2006−5180号公報に開示されている。   In addition, one or more electrode pads for inspection, inspection electrode pads, and wirings electrically connected to the inspection electrode pads provided in the wiring layer region immediately below all the electrode pads for inspection In preparation for the scribe region, a probe is brought into contact with the electrode pad for inspection and the electrode pad for inspection, and the destruction of the electrode pad under inspection due to the contact is detected by conduction between the electrode pad for inspection and the electrode pad for inspection through the wiring. A method is disclosed in Japanese Patent Application Laid-Open No. 2006-5180.

また、プローブ針によるプローブ検査時の加圧が許可された第1の領域にプローブ検査及び組立の両方に用いる兼用パッドを有し、プローブ針によるプローブ検査時の加圧が禁止された第2の領域にプローブ検査には用いない組立用パッドを有する半導体装置が特開2005−303279号公報(特許文献3)に開示されている。   In addition, the first region where pressurization during probe inspection with the probe needle is permitted has a dual-purpose pad used for both probe inspection and assembly, and the second region where pressurization during probe inspection with the probe needle is prohibited Japanese Unexamined Patent Application Publication No. 2005-303279 (Patent Document 3) discloses a semiconductor device having an assembly pad that is not used for probe inspection in a region.

また、ボンディングワイヤをパッドに接続した状態において、半導体チップが載置されているヒーターブロックとボンディングワイヤとの電気的な導通状態を検出することにより、半導体チップのパッド下におけるクラックの有無を検出する方法が特開2000−100857号公報(特許文献4)に開示されている。
特開2005−251829号公報(段落[0005]、図1) 特開2006−5180号公報(段落[0026]〜[0027]、図1 特開2005−303279号公報(段落[0024]、図1) 特開2000−100857号公報(段落[0014]、図1)
Further, in the state where the bonding wire is connected to the pad, the presence or absence of a crack under the pad of the semiconductor chip is detected by detecting the electrical conduction state between the heater block on which the semiconductor chip is placed and the bonding wire. A method is disclosed in Japanese Patent Application Laid-Open No. 2000-1000085 (Patent Document 4).
JP 2005-251829 A (paragraph [0005], FIG. 1) JP 2006-5180 (paragraphs [0026] to [0027], FIG. Japanese Patent Laying-Open No. 2005-303279 (paragraph [0024], FIG. 1) Japanese Unexamined Patent Publication No. 2000-1000085 (paragraph [0014], FIG. 1)

近年、多ピン化または半導体チップの面積の縮小の要求に伴い、電極パッドを配線層またはアクティブ素子の上に配置する手法が採用されている。しかしながら、このような電極パッドを配置する手法については、以下に説明する種々の技術的課題が存在する。   In recent years, with the demand for increasing the number of pins or reducing the area of a semiconductor chip, a method of arranging electrode pads on a wiring layer or an active element has been adopted. However, there are various technical problems described below with respect to the method of arranging such electrode pads.

例えばプローブ検査工程において、半導体チップの複数の電極パッドにそれぞれプローブ(探針)を当てる動作を単一の機構で行う場合、全てのプローブについて最低限の針圧を確保するために針圧を高めに設定する必要がある。また、通常、プローブ検査には複数の試験項目(例えばメモリ試験、高温試験、低温試験等)があり、それぞれ測定装置が異なるため、複数回にわたる針圧による応力が電極パッドにかかってしまう。さらに、バンプ電極の形成やワイヤボンディングなどが行われる組立工程においても、電極パッドに応力がかかることがある。   For example, in the probe inspection process, when a single mechanism is used to apply probes (probes) to a plurality of electrode pads on a semiconductor chip, the needle pressure is increased to ensure the minimum needle pressure for all probes. Must be set to In general, there are a plurality of test items (for example, a memory test, a high temperature test, a low temperature test, etc.) in the probe inspection, and the measurement devices are different from each other. Furthermore, stress may be applied to the electrode pad even in an assembly process in which bump electrodes are formed or wire bonding is performed.

このように、プローブ検査工程や組立工程などにおいて、電極パッドに応力がかかると、電極パッドの直下の絶縁膜にストレスが加わり、電極パッドおよび絶縁膜にクラックが発生することがある。このクラックが発生した状態で電極パッドと配線層またはアクティブ素子との間に電位差が生じると、両者間にリーク電流がクラックを通して流れるため、半導体装置が正常動作を示さなくなる。しかし、電極パッドの直下の絶縁膜に生じたクラックに起因するリーク電流か否かを判定することは難しく、プローブ検査工程から組立工程において上記リーク電流を検出することのできる新たな手法が望まれている。   As described above, in the probe inspection process, the assembly process, and the like, when stress is applied to the electrode pad, the stress is applied to the insulating film immediately below the electrode pad, and cracks may occur in the electrode pad and the insulating film. If a potential difference is generated between the electrode pad and the wiring layer or the active element in a state where the crack is generated, a leak current flows through the crack, so that the semiconductor device does not exhibit normal operation. However, it is difficult to determine whether or not there is a leakage current due to a crack generated in the insulating film immediately below the electrode pad, and a new method that can detect the leakage current from the probe inspection process to the assembly process is desired. ing.

本発明の目的は、電極パッドの直下の絶縁膜に生じるクラックに起因したリーク電流を容易に判断することのできる技術を提供することにある。   An object of the present invention is to provide a technique that can easily determine a leakage current caused by a crack generated in an insulating film immediately below an electrode pad.

本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。   The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。   Of the inventions disclosed in the present application, the outline of typical ones will be briefly described as follows.

本願発明は、内部回路に電気的に接続された信号用電極パッドの直下の絶縁膜に生じるクラックに起因したリーク不良を検出する検査工程を含む半導体装置の製造方法であって、複数の信号用電極パッドおよび半導体チップのコーナ部に形成された孤立パターンである検査用電極パッドに同時にそれぞれプローブを当てて、検査用電極パッドと、複数の信号用電極パッドおよび検査用電極パッドの直下を絶縁膜を介して通る電源周回配線との間のリーク電流を測定し、検査用電極パッドと電源周回配線との間で規格以上のリーク電流が測定された場合は、検査用電極パッドとこれに隣接する信号用電極パッドとの間のリーク電流を測定するものである。   The present invention is a method of manufacturing a semiconductor device including an inspection process for detecting a leakage failure caused by a crack generated in an insulating film directly under an electrode pad for a signal electrically connected to an internal circuit. A probe is simultaneously applied to the electrode pad and the inspection electrode pad which is an isolated pattern formed in the corner portion of the semiconductor chip, and an insulating film is formed immediately below the inspection electrode pad, the plurality of signal electrode pads and the inspection electrode pad. Measure the leakage current between the power supply circuit wiring and the inspection electrode pad and the power supply circuit wiring. The leakage current between the signal electrode pads is measured.

本願発明は、内部回路に電気的に接続された信号用電極パッドの直下の絶縁膜に生じるクラックに起因したリーク不良を検出する検査工程を含む半導体装置の製造方法であって、個片化された半導体チップを実装基板上に搭載し、半導体チップに形成された複数の信号用電極パッドおよび半導体チップのコーナ部に形成された孤立パターンである検査用電極パッドと、実装基板上に形成された複数の電極とをそれぞれ接続し、半導体チップを樹脂封止してパッケージ品に組み立てた後、検査用電極パッドに接続された実装基板上の第1の電極と、複数の信号用電極パッドおよび検査用電極パッドの直下に絶縁膜を介して通る電源周回配線に接続された実装基板上の第2の電極との間のリーク電流を測定し、第1の電極と第2の電極との間で規格以上のリーク電流が測定された場合は、第1の電極と所定の信号用電極パッドに接続された実装基板上の第3の電極との間のリーク電流を測定するものである。   The present invention is a method of manufacturing a semiconductor device including an inspection process for detecting a leakage defect caused by a crack generated in an insulating film immediately below an electrode pad for a signal electrically connected to an internal circuit. A plurality of signal electrode pads formed on the semiconductor chip, and an inspection electrode pad which is an isolated pattern formed at a corner portion of the semiconductor chip, and formed on the mounting substrate. A plurality of electrodes are connected to each other, a semiconductor chip is sealed with a resin and assembled into a package product, and then the first electrode on the mounting substrate connected to the inspection electrode pad, the plurality of signal electrode pads, and the inspection The leakage current between the first electrode and the second electrode is measured between the second electrode on the mounting substrate connected to the power supply circuit wiring that passes through the insulating film directly under the electrode pad for use. Rule Or if the leakage current is measured in is to measure the leakage current between the first electrode and a predetermined third electrode connected mounted on the substrate signal electrode pads.

本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。   Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.

プローブ検査工程から組立工程において電極パッドの直下の絶縁膜に生じるクラックに起因したリーク電流を容易に検出することができる。   It is possible to easily detect a leakage current caused by a crack generated in an insulating film immediately below the electrode pad from the probe inspection process to the assembly process.

本実施の形態において、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。   In this embodiment, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other. Some or all of the modifications, details, supplementary explanations, and the like are related.

また、本実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。さらに、本実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、本実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。   Further, in this embodiment, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), unless otherwise specified, or in principle limited to a specific number in principle. The number is not limited to the specific number, and may be a specific number or more. Further, in the present embodiment, it is needless to say that the constituent elements (including element steps and the like) are not necessarily indispensable, unless otherwise specified and clearly considered essential in principle. Yes. Similarly, in this embodiment, when referring to the shape, positional relationship, etc. of the component, etc., the shape, etc. substantially, unless otherwise specified, or otherwise considered in principle. It shall include those that are approximate or similar to. The same applies to the above numerical values and ranges.

また、本実施の形態で用いる図面においては、平面図であっても図面を見易くするためにハッチングを付す場合もある。また、本実施の形態において、ウエハと言うときは、Si(Silicon)単結晶ウエハを主とするが、それのみではなく、SOI(Silicon On Insulator)ウエハ、集積回路をその上に形成するための絶縁膜基板等を指すものとする。その形も円形またはほぼ円形のみでなく、正方形、長方形等も含むものとする。   In the drawings used in the present embodiment, hatching may be added even in a plan view for easy understanding of the drawings. In this embodiment, the term “wafer” mainly refers to a Si (Silicon) single crystal wafer, but not only to this, but also to form an SOI (Silicon On Insulator) wafer and an integrated circuit thereon. It refers to an insulating film substrate or the like. The shape includes not only a circle or a substantially circle but also a square, a rectangle and the like.

また、本実施の形態を説明するための全図において、同一機能を有するものは原則として同一の符号を付し、その繰り返しの説明は省略する。以下、本発明の実施の形態を図面に基づいて詳細に説明する。   In all the drawings for explaining the embodiments, components having the same function are denoted by the same reference numerals in principle, and repeated description thereof is omitted. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の一実施の形態による検査用電極パッドを配置した半導体装置を図1から図5を用いて説明する。図1、図2および図3はそれぞれ複数の信号用電極パッドおよび検査用電極パッドの配置の第1例、第2例および第3例を示す半導体装置の上面図、図4は図1のA領域を拡大した半導体装置の上面図、図5は図4のB−B′線における要部断面の模式図である。   A semiconductor device having an inspection electrode pad according to an embodiment of the present invention will be described with reference to FIGS. 1, FIG. 2, and FIG. 3 are top views of a semiconductor device showing a first example, a second example, and a third example of the arrangement of a plurality of signal electrode pads and test electrode pads, respectively. FIG. FIG. 5 is a schematic cross-sectional view of the main part taken along the line BB ′ of FIG. 4.

図1に示すように、半導体装置1の上面には、例えばその外周に沿って、複数の信号用電極パッド(白抜きの四角形)2が所定の間隔を開けて配列されている。信号用電極パッド2は、半導体装置1の内部回路に配線層を介して電気的に接続されており、半導体装置1の外部から半導体装置1の内部回路へ電力または信号を供給する、あるいは半導体装置1の内部回路の電気信号を半導体装置1の外部へ取り出すために設けられた外部接続用電極である。   As shown in FIG. 1, on the upper surface of the semiconductor device 1, for example, a plurality of signal electrode pads (open squares) 2 are arranged at predetermined intervals along the outer periphery thereof. The signal electrode pad 2 is electrically connected to the internal circuit of the semiconductor device 1 via a wiring layer, and supplies power or a signal from the outside of the semiconductor device 1 to the internal circuit of the semiconductor device 1 or the semiconductor device. 1 is an external connection electrode provided for taking out an electrical signal of one internal circuit to the outside of the semiconductor device 1.

さらに半導体装置1のコーナ部には複数の検査用電極パッド(黒く塗りつぶした四角形)3が配置されている。検査用電極パッド3は、半導体装置1の内部回路および信号用電極パッド2とは接続されない孤立パターンである。本実施の形態では、一列に配列された複数(例えば図1では、縦一列の数は15、横一列の数は14)の信号用電極パッド2の両端にそれぞれ検査用電極パッド3を配置しており、4つのコーナ部にそれぞれ2つの検査用電極パッド3を有している。信号用電極パッド2および検査用電極パッド3は、例えばアルミニウムなどの金属材料からなり、その寸法は、例えば55μm×70μmである。また、信号用電極パッド2および検査用電極パッド3の直下には、後に説明するリング状の電源周回配線7が絶縁膜を介して形成されている。   Further, a plurality of inspection electrode pads (black-filled squares) 3 are arranged at the corner portion of the semiconductor device 1. The inspection electrode pad 3 is an isolated pattern that is not connected to the internal circuit of the semiconductor device 1 and the signal electrode pad 2. In this embodiment, the inspection electrode pads 3 are arranged at both ends of a plurality of signal electrode pads 2 arranged in a row (for example, in FIG. 1, the number of vertical rows is 15 and the number of horizontal rows is 14). Each of the four corners has two inspection electrode pads 3. The signal electrode pad 2 and the inspection electrode pad 3 are made of, for example, a metal material such as aluminum, and the dimensions thereof are, for example, 55 μm × 70 μm. Further, a ring-shaped power circuit wiring 7 described later is formed directly below the signal electrode pad 2 and the inspection electrode pad 3 via an insulating film.

なお、検査用電極パッド3の数および配置はこれに限定されるものではなく、例えば図2に示すように、4つのコーナ部にそれぞれ1つの検査用電極パッド3を設けてもよく、あるいは図3に示すように、2つのコーナ部のみにそれぞれ1つの検査用電極パッド3を設けてもよい。   Note that the number and arrangement of the inspection electrode pads 3 are not limited to this. For example, as shown in FIG. 2, one inspection electrode pad 3 may be provided in each of four corner portions. As shown in FIG. 3, one inspection electrode pad 3 may be provided only in two corner portions.

図4および図5に示すように、信号用電極パッド2および検査用電極パッド3の直下には、それぞれ絶縁膜4を介して緩衝層5が設けられている。この緩衝層5は、信号用電極パッド2にプローブを当てた際に生じる応力を分散させて、その直下の絶縁膜6や内部回路の配線層にクラックが発生するのを防ぐ機能を有している。緩衝層5は、例えば銅またはアルミニウムなどの金属材料からなる。緩衝層5の寸法は、特に限定されるものではないが、信号用電極パッド2の寸法と同じ、または信号用電極パッド2の寸法よりも小さく設定されている。緩衝層5は半導体装置1の内部回路、信号用電極パッド2または検査用電極パッド3等とは接続されない孤立パターンである。   As shown in FIGS. 4 and 5, a buffer layer 5 is provided directly below the signal electrode pad 2 and the inspection electrode pad 3 via an insulating film 4. The buffer layer 5 has a function to disperse the stress generated when the probe is applied to the signal electrode pad 2 and prevent the insulating film 6 and the wiring layer of the internal circuit from being cracked. Yes. The buffer layer 5 is made of a metal material such as copper or aluminum. The size of the buffer layer 5 is not particularly limited, but is set to be the same as the size of the signal electrode pad 2 or smaller than the size of the signal electrode pad 2. The buffer layer 5 is an isolated pattern that is not connected to the internal circuit of the semiconductor device 1, the signal electrode pad 2, the inspection electrode pad 3, or the like.

さらに、緩衝層5の直下には、絶縁膜6を介して平面形状がリング状の電源周回配線7が設けられている。電源周回配線7は、例えば絶縁膜4,6に形成されたプラグを通じて信号用電極パッド2の少なくとも1つと電気的に接続されている。電源周回配線7は、例えば銅またはアルミニウムなどの金属材料からなる。図5中、符号8aおよび8bは、それぞれ内部回路を構成する配線層および半導体素子を示す。   Further, immediately below the buffer layer 5, a power supply wiring 7 having a ring shape in plan view is provided via an insulating film 6. The power circuit wiring 7 is electrically connected to at least one of the signal electrode pads 2 through, for example, a plug formed in the insulating films 4 and 6. The power circuit wiring 7 is made of a metal material such as copper or aluminum. In FIG. 5, reference numerals 8a and 8b denote a wiring layer and a semiconductor element constituting the internal circuit, respectively.

次に、本発明の一実施の形態による電極パッドの直下の絶縁膜に生じるクラックに起因したリーク不良を検出する方法を前記図4および図5、ならびに図6および図7を用いて説明する。図6は電極パッドの直下の絶縁膜に生じたクラックに起因するリーク不良の検出手順の工程図、図7は表面実装型パッケージ(BGA(Ball Grid Array))の裏面に設けられたピンの配置の一例を示す平面図である。   Next, a method for detecting a leakage failure caused by a crack generated in an insulating film immediately below an electrode pad according to an embodiment of the present invention will be described with reference to FIGS. 4 and 5, and FIGS. 6 and 7. FIG. 6 is a process diagram of a procedure for detecting a leakage failure caused by a crack generated in an insulating film immediately below the electrode pad, and FIG. 7 is an arrangement of pins provided on the back surface of a surface mount package (BGA (Ball Grid Array)). It is a top view which shows an example.

まず、半導体ウエハの主面上に集積回路を形成する。集積回路は前工程または拡散工程と呼ばれる製造工程において半導体チップ単位で形成される。   First, an integrated circuit is formed on the main surface of a semiconductor wafer. An integrated circuit is formed in units of semiconductor chips in a manufacturing process called a preprocess or a diffusion process.

次に、半導体チップ毎に集積回路の特性試験を行い、各半導体チップの良・不良の判定を行う。集積回路の特性試験は、例えばメモリ試験、高温試験または低温試験等であり、複数の試験項目に対して行われる。本実施の形態では、図6に示すように、第1のプローブテスト(工程S1)、第2のプローブテスト(工程S2)および第3のプローブテスト(工程S3)の3回の特性試験を行う場合を例示している。また、それぞれの特性試験では互いに異なる測定装置が用いられるが、全電極パッドに合わせてプローブを配置したプローブカードが用いられる。プローブの先端の寸法は、例えば8μm×8μmである。   Next, a characteristic test of the integrated circuit is performed for each semiconductor chip to determine whether each semiconductor chip is good or defective. The integrated circuit characteristic test is, for example, a memory test, a high temperature test, a low temperature test, or the like, and is performed on a plurality of test items. In the present embodiment, as shown in FIG. 6, three characteristic tests are performed: a first probe test (step S1), a second probe test (step S2), and a third probe test (step S3). The case is illustrated. Further, different measurement devices are used in each characteristic test, but a probe card in which probes are arranged in accordance with all electrode pads is used. The dimension of the tip of the probe is, for example, 8 μm × 8 μm.

第1のプローブテスト(工程S1)では、測定に使用される信号用電極パッド2および半導体チップのコーナ部に配置された検査用電極パッド3にそれぞれプローブを接触させる。そして、プローブの圧力を測定時の圧力まで徐々に加えていく。   In the first probe test (step S1), the probe is brought into contact with the signal electrode pad 2 used for measurement and the inspection electrode pad 3 disposed at the corner of the semiconductor chip. Then, the probe pressure is gradually applied up to the pressure at the time of measurement.

プローブの圧力のばらつき、プローブカードの圧力のばらつき、プローブの圧力の誤設定などの要因によりプローブの応力が信号用電極パッド2に過度にかかる場合がある。プローブから信号用電極パッド2に半導体チップの深さ方向へ過度の応力がかかると、信号用電極パッド2を通じて信号用電極パッド2の直下の絶縁膜4にストレスが加わり、信号用電極パッド2とその信号用電極パッド2の直下の絶縁膜4、さらにはストレスを分散させるために配置した緩衝層5とその緩衝層5の直下の絶縁膜6にまでクラックが発生することがある。このクラックが発生した状態で信号用電極パッド2と集積回路を構成する配線層または半導体素子との間に電位差が生じると、両者間にリーク電流がクラックを通して流れるため、半導体装置が正常動作を示さなくなる。プローブカードの種類によっては、このような過度のプローブの応力は半導体チップのコーナ部で強くなる傾向があり、信号用電極パッド2の直下にクラックが発生する前に半導体チップのコーナ部に配置された検査用電極パッド3の直下にクラックが発生しやすい。チップのコーナ部で応力が強くなる場合、この検査用電極パッド3は孤立パターンのため、クラックが入っても問題なく良品として扱えるため、不良率低減の効果がある。   Probe stress may be excessively applied to the signal electrode pad 2 due to factors such as probe pressure variation, probe card pressure variation, and probe pressure misconfiguration. When an excessive stress is applied from the probe to the signal electrode pad 2 in the depth direction of the semiconductor chip, the stress is applied to the insulating film 4 immediately below the signal electrode pad 2 through the signal electrode pad 2. Cracks may occur in the insulating film 4 immediately below the signal electrode pad 2, the buffer layer 5 disposed to disperse the stress, and the insulating film 6 immediately below the buffer layer 5. If a potential difference occurs between the signal electrode pad 2 and the wiring layer or semiconductor element constituting the integrated circuit in a state where the crack is generated, a leakage current flows between the two through the crack, so that the semiconductor device operates normally. Disappear. Depending on the type of probe card, such excessive probe stress tends to increase at the corner of the semiconductor chip, and is placed at the corner of the semiconductor chip before cracking occurs directly under the signal electrode pad 2. Cracks are likely to occur immediately below the inspection electrode pad 3. When the stress becomes strong at the corner of the chip, the inspection electrode pad 3 is an isolated pattern and can be treated as a good product without any problem even if cracks occur, and thus has an effect of reducing the defect rate.

そこで、半導体チップのコーナ部に配置された検査用電極パッド3と電源周回配線7との間のリーク電流を測定することによってプローブの不具合を検出する(第1のリーク電流測定)。検査用電極パッド3と電源周回配線7との間に規格以上のリーク電流が測定されない場合(OK表示)は、検査用電極パッド3と電源周回配線7との間に導通が認められないとして、第1の特性試験が実施される。   Therefore, the probe failure is detected by measuring the leakage current between the inspection electrode pad 3 arranged at the corner portion of the semiconductor chip and the power supply wiring 7 (first leakage current measurement). In the case where a leak current exceeding the standard is not measured between the inspection electrode pad 3 and the power supply circuit wiring 7 (OK display), it is assumed that conduction is not recognized between the test electrode pad 3 and the power supply circuit wiring 7. A first characteristic test is performed.

しかし、検査用電極パッド3と電源周回配線7との間に規格以上のリーク電流が測定された場合(NG表示)は、検査用電極パッド3と電源周回配線7との間に導通が認められたとして、次に検査用電極パッド3とこれに隣接する信号用電極パッド2(2A)との間のリーク電流を測定する(第2のリーク電流測定)。   However, when a leak current exceeding the standard is measured between the inspection electrode pad 3 and the power supply circuit wiring 7 (NG display), conduction is recognized between the test electrode pad 3 and the power supply circuit wiring 7. Next, the leakage current between the inspection electrode pad 3 and the signal electrode pad 2 (2A) adjacent thereto is measured (second leakage current measurement).

検査用電極パッド3と信号用電極パッド2(2A)との間に規格以上のリーク電流が測定されない場合は、プローブの不具合はあるが、信号用電極パッド2(2A)の直下にはクラックが発生していないと推定されて、半導体チップは良と判断される。場合によっては、さらに検査用電極パッド3と信号用電極パッド2(2A)の隣の信号用電極パッド2(2B)との間のリーク電流、検査用電極パッド3と信号用電極パッド2(2B)の隣の信号用電極パッド2(2C)との間のリーク電流というように、次々に検査用電極パッド3と複数の信号用電極パッド2との間のリーク電流を測定する。検査用電極パッド3と全ての信号用電極パッド2との間に規格以上のリーク電流が測定されない場合は、プローブの不具合はあるが、信号用電極パッド2の直下にはクラックが発生していないと推定されて、半導体チップは良と判定される。なお、必ずしも検査用電極パッド3と全ての信号用電極パッド2との間のリーク電流を測定しなくてもよく、検査用電極パッド3と予め決めていた所定の信号用電極パッド2との間のリーク電流を測定してもよい。その後、第1のプローブテスト(工程S1)の条件が見直され、プローブの不具合が修正される。   If a leak current exceeding the standard is not measured between the inspection electrode pad 3 and the signal electrode pad 2 (2A), there is a problem with the probe, but there is a crack directly under the signal electrode pad 2 (2A). It is estimated that the semiconductor chip is not generated, and the semiconductor chip is determined to be good. In some cases, leakage current between the test electrode pad 3 and the signal electrode pad 2 (2B) adjacent to the signal electrode pad 2 (2A), the test electrode pad 3 and the signal electrode pad 2 (2B) The leakage current between the inspection electrode pad 3 and the plurality of signal electrode pads 2 is measured one after another, such as the leakage current between the signal electrode pad 2 (2C) adjacent to (2). When a leak current exceeding the standard is not measured between the inspection electrode pad 3 and all the signal electrode pads 2, there is a problem with the probe, but no crack is generated immediately below the signal electrode pad 2. It is estimated that the semiconductor chip is good. Note that it is not always necessary to measure the leakage current between the test electrode pad 3 and all the signal electrode pads 2, and between the test electrode pad 3 and a predetermined signal electrode pad 2 determined in advance. The leakage current may be measured. Thereafter, the conditions of the first probe test (step S1) are reviewed, and the defect of the probe is corrected.

検査用電極パッド3と信号用電極パッド2(2A)との間に規格以上のリーク電流が測定された場合は、プローブの不具合または前工程の製造方法の不具合により、信号用電極パッド2(2A)の直下にはクラックが発生していると推定されて、半導体チップは不良と判断される。場合によっては、さらに検査用電極パッド3と信号用電極パッド2(2A)の隣の信号用電極パッド2(2B)との間のリーク電流、検査用電極パッド3と信号用電極パッド2(2B)の隣の信号用電極パッド2(2C)との間のリーク電流というように、次々に検査用電極パッド3と複数の信号用電極パッド2との間のリーク電流を測定する。検査用電極パッド3と幾つかまたは全ての信号用電極パッド2との間に規格以上のリーク電流が測定された場合は、プローブの不具合または前工程の製造方法の不具合により信号用電極パッド2の直下にクラックが発生していると推定されて、半導体チップは不良と判定される。その後、第1のプローブテスト(工程S1)の条件または前工程の製造プロセス等が見直される。   When a leak current exceeding the standard is measured between the inspection electrode pad 3 and the signal electrode pad 2 (2A), the signal electrode pad 2 (2A) may be caused by a defect in the probe or a manufacturing method in the previous process. ) Is estimated to have cracks, and the semiconductor chip is determined to be defective. In some cases, leakage current between the test electrode pad 3 and the signal electrode pad 2 (2B) adjacent to the signal electrode pad 2 (2A), the test electrode pad 3 and the signal electrode pad 2 (2B) The leakage current between the inspection electrode pad 3 and the plurality of signal electrode pads 2 is measured one after another, such as the leakage current between the signal electrode pad 2 (2C) adjacent to (2). If a leakage current exceeding the standard is measured between the inspection electrode pad 3 and some or all of the signal electrode pads 2, the signal electrode pad 2 may be damaged due to a defect in the probe or a manufacturing method in the previous process. It is estimated that a crack has occurred directly below, and the semiconductor chip is determined to be defective. Thereafter, the conditions of the first probe test (step S1) or the manufacturing process of the previous step are reviewed.

次に、第1のプローブテスト(工程S1)において良と判定された判断された半導体チップに対して、第1のプローブテスト(工程S1)と同様に、第2のプローブテスト(工程S2)および第3のプローブテスト(工程S3)を行う。第1、第2および第3のプローブテストのプローブ検査(工程S1、S2およびS3)において所定の歩留まりが得られた半導体ウエハは、後工程と呼ばれる製造工程へ送られる。   Next, in the same manner as the first probe test (step S1), the second probe test (step S2) and the semiconductor chip determined to be good in the first probe test (step S1) A third probe test (step S3) is performed. The semiconductor wafer that has obtained a predetermined yield in the probe inspection (steps S1, S2, and S3) of the first, second, and third probe tests is sent to a manufacturing process called a post-process.

ここでは、まず、半導体ウエハの裏面を研削して、半導体ウエハを所定の厚さとした後、半導体ウエハをダイシングして、半導体ウエハを半導体チップに個片化する。続いて第1、第2および第3のプローブテスト(工程S1、S2およびS3)によって最終的に良と判断された半導体チップをピックアップして、半導体チップを実装基板上に搭載する。   Here, first, the back surface of the semiconductor wafer is ground so that the semiconductor wafer has a predetermined thickness, and then the semiconductor wafer is diced to separate the semiconductor wafer into semiconductor chips. Subsequently, the semiconductor chip finally determined to be good by the first, second and third probe tests (steps S1, S2 and S3) is picked up, and the semiconductor chip is mounted on the mounting substrate.

次に、半導体チップに形成された複数の信号用電極パッド2および検査用電極パッド3と、実装基板に形成された複数の電極とをワイヤまたはバンプ電極を用いてそれぞれ接続する。この際、検査用電極パッド3を、実装基板のインデックスピン、コーナピンまたはノンコネクトピンなどの通常使われないピンに繋がる実装基板上の電極に接続する。例えば図7に示す表面実装型パッケージ9では、ノンコネクトピン10に接続することができる。信号用電極パッド2は、ピン11に繋がる実装基板上の電極に接続する。   Next, the plurality of signal electrode pads 2 and the inspection electrode pad 3 formed on the semiconductor chip are connected to the plurality of electrodes formed on the mounting substrate using wires or bump electrodes, respectively. At this time, the inspection electrode pad 3 is connected to an electrode on the mounting board connected to a pin not normally used such as an index pin, a corner pin, or a non-connecting pin of the mounting board. For example, the surface mount package 9 shown in FIG. 7 can be connected to the non-connect pin 10. The signal electrode pad 2 is connected to an electrode on the mounting substrate connected to the pin 11.

次に、半導体チップをモールド樹脂で封入することにより、半導体チップをパッケージ品に組み立てた後、モールド樹脂上に品名などを捺印し、実装基板から1個1個の半導体製品を切り分ける。その後、仕上がった半導体製品を製品規格に沿って選別し、検査工程を経て半導体製品が完成する。   Next, by encapsulating the semiconductor chip with a mold resin, the semiconductor chip is assembled into a package product, and then a product name or the like is imprinted on the mold resin, so that each semiconductor product is separated from the mounting substrate. After that, the finished semiconductor product is selected according to the product standard, and the semiconductor product is completed through an inspection process.

この検査工程においても、前述した第1のプローブテスト(工程S1)と同様にして、第4のプローブテスト(工程S4)を行うことにより、組み立て時に信号用電極パッド2の直下に生じるクラックを検出することができる。すなわち、検査用電極パッド3に接続された実装基板上の第1の電極と電源周回配線7に接続された実装基板上の第2の電極との間のリーク電流を測定することによって、組み立て時の不具合を検出する(第1のリーク電流測定)。第1の電極と第2の電極との間に規格以上のリーク電流が測定されない場合(OK表示)は、そのまま最終特性試験が実施される。しかし、第1の電極と第2の電極との間に規格以上のリーク電流が測定された場合(NG表示)は、第1の電極と所定の信号用電極パッド3に接続された第3の電極との間でのリーク電流を測定する(第2のリーク電流測定)。第1の電極と第3の電極との間で規格以上のリーク電流が測定されない場合は、半導体製品は良と判定されて最終特性試験を実施するが、規格以上のリーク電流が測定された場合は、半導体製品は不良と判定されて、組立工程の製造プロセス等が見直される。   Also in this inspection process, the fourth probe test (step S4) is performed in the same manner as the first probe test (step S1) described above, thereby detecting cracks that occur immediately below the signal electrode pad 2 during assembly. can do. In other words, by measuring the leakage current between the first electrode on the mounting substrate connected to the inspection electrode pad 3 and the second electrode on the mounting substrate connected to the power circuit wiring 7, Is detected (first leakage current measurement). When a leak current exceeding the standard is not measured between the first electrode and the second electrode (OK display), the final characteristic test is performed as it is. However, when a leak current exceeding the standard is measured between the first electrode and the second electrode (NG display), the third electrode connected to the first electrode and the predetermined signal electrode pad 3 is used. The leakage current between the electrodes is measured (second leakage current measurement). When the leak current exceeding the standard is not measured between the first electrode and the third electrode, the semiconductor product is determined to be good and the final characteristic test is performed, but the leak current exceeding the standard is measured. The semiconductor product is determined to be defective, and the manufacturing process of the assembly process is reviewed.

なお、本実施の形態では、信号用電極パッド2および検査用電極パッド3の直下に絶縁膜4を介して緩衝層5を設けたが、緩衝層5を設けずに、信号用電極パッド2および検査用電極パッド3の直下に絶縁膜4のみを介して電源周回配線7を設けてもよい。   In this embodiment, the buffer layer 5 is provided directly below the signal electrode pad 2 and the inspection electrode pad 3 via the insulating film 4. However, without providing the buffer layer 5, the signal electrode pad 2 and A power supply surrounding wiring 7 may be provided directly below the inspection electrode pad 3 through only the insulating film 4.

また、本実施の形態では、電源周回配線7の平面形状をリング状としたが、リーク電流の測定が必要とされる複数の信号用電極パッド2の直下と、これら複数の信号用電極パッド2の端部の半導体チップのコーナ部に配置された検査用電極パッド3の直下に電源周回配線7を設ければよく、例えば一部が切れたリング状、半導体チップの一辺に沿った直線等であってもよい。   In the present embodiment, the planar shape of the power circuit wiring 7 is a ring shape. However, the plurality of signal electrode pads 2 and the signal electrode pads 2 directly below the plurality of signal electrode pads 2 that require measurement of leakage current are used. The power supply wiring 7 may be provided immediately below the inspection electrode pad 3 arranged at the corner of the semiconductor chip at the end of the semiconductor chip. For example, a ring shape with a part cut off, a straight line along one side of the semiconductor chip, etc. There may be.

このように、本実施の形態によれば、プローブ検査工程から組立工程において信号用電極パッド2の直下の絶縁膜4,6に生じたクラックに起因するリーク電流を容易に検出することができる。   As described above, according to the present embodiment, it is possible to easily detect a leakage current caused by a crack generated in the insulating films 4 and 6 immediately below the signal electrode pad 2 from the probe inspection process to the assembly process.

以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。   As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.

本発明は、配線層または半導体素子の上方に電極パッドを配置する半導体装置の製造方法に適用することができる。   The present invention can be applied to a method for manufacturing a semiconductor device in which an electrode pad is disposed above a wiring layer or a semiconductor element.

本発明の一実施の形態による信号用電極パッドおよび検査用電源パッドの配置の第1例を示す半導体装置の上面図である。1 is a top view of a semiconductor device showing a first example of an arrangement of signal electrode pads and inspection power supply pads according to an embodiment of the present invention; 本発明の一実施の形態による信号用電極パッドおよび検査用電源パッドの配置の第2例を示す半導体装置の上面図である。It is a top view of the semiconductor device which shows the 2nd example of arrangement | positioning of the signal electrode pad and test | inspection power supply pad by one embodiment of this invention. 本発明の一実施の形態による信号用電極パッドおよび検査用電源パッドの配置の第3例を示す半導体装置の上面図である。It is a top view of the semiconductor device which shows the 3rd example of arrangement | positioning of the electrode pad for signals and the power pad for a test | inspection by one embodiment of this invention. 図1のA領域を拡大した半導体装置の上面図である。FIG. 2 is a top view of a semiconductor device in which an area A in FIG. 1 is enlarged. 図4のB−B′線における要部断面の模式図である。It is a schematic diagram of the principal part cross section in the BB 'line | wire of FIG. 本発明の一実施の形態による電極パッドの直下の絶縁膜に生じたクラックに起因するリーク電流の検出手順を示す工程図である。It is process drawing which shows the detection procedure of the leakage current resulting from the crack which arose in the insulating film directly under the electrode pad by one embodiment of this invention. 本発明の一実施の形態による表面実装型パッケージの裏面に設けられたピン配置を示す平面図である。It is a top view which shows the pin arrangement | positioning provided in the back surface of the surface mount type package by one embodiment of this invention.

符号の説明Explanation of symbols

1 半導体装置
2,2A,2B,2C 信号用電極パッド
3 検査用電極パッド
4 絶縁膜
5 緩衝層
6 絶縁膜
7 電源周回配線
8a 配線層
8b 半導体素子
9 表面実装型パッケージ
10 ノンコネクトピン
11 ピン
DESCRIPTION OF SYMBOLS 1 Semiconductor device 2,2A, 2B, 2C Signal electrode pad 3 Inspection electrode pad 4 Insulating film 5 Buffer layer 6 Insulating film 7 Power supply surrounding wiring 8a Wiring layer 8b Semiconductor element 9 Surface mount package 10 Non-connect pin 11 Pin

Claims (6)

内部回路に電気的に接続された信号用電極パッドの直下の絶縁膜に生じるクラックに起因したリーク不良を検出する検査工程を含む半導体装置の製造方法であって、
(a)複数の信号用電極パッドおよび半導体チップのコーナ部に形成された検査用電極パッドに同時にそれぞれプローブを当てる工程と、
(b)前記検査用電極パッドと、前記複数の信号用電極パッドおよび前記検査用電極パッドの直下を前記絶縁膜を介して通る電源周回配線との間のリーク電流を測定する工程とを有し、
前記検査用電極パッドは、前記内部回路、前記複数の信号用電極パッドおよび前記電源周回配線と電気的に接続されない孤立パターンであることを特徴とする半導体装置の製造方法。
A manufacturing method of a semiconductor device including an inspection process for detecting a leakage defect caused by a crack generated in an insulating film immediately below an electrode pad for a signal electrically connected to an internal circuit,
(A) a step of simultaneously applying a probe to each of a plurality of signal electrode pads and an inspection electrode pad formed in a corner portion of a semiconductor chip;
(B) measuring a leakage current between the inspection electrode pad and a plurality of signal electrode pads and a power supply wiring that passes directly under the inspection electrode pad through the insulating film; ,
The method of manufacturing a semiconductor device, wherein the inspection electrode pad is an isolated pattern that is not electrically connected to the internal circuit, the plurality of signal electrode pads, and the power circuit wiring.
内部回路に電気的に接続された信号用電極パッドの直下の絶縁膜に生じるクラックに起因したリーク不良を検出する検査工程を含む半導体装置の製造方法であって、
(a)複数の信号用電極パッドおよび半導体チップのコーナ部に形成された検査用電極パッドに同時にそれぞれプローブを当てる工程と、
(b)前記検査用電極パッドと、前記複数の信号用電極パッドおよび前記検査用電極パッドの直下を前記絶縁膜を介して通る電源周回配線との間のリーク電流を測定する工程と、
(c)前記(b)工程において、前記検査用電極パッドと前記電源周回配線との間で規格以上のリーク電流が測定された場合は、前記検査用電極パッドと前記検査用電極パッドに隣接する信号用電極パッドとの間のリーク電流を測定する工程とを有し、
前記検査用電極パッドは、前記内部回路、前記複数の信号用電極パッドおよび前記電源周回配線と電気的に接続されない孤立パターンであることを特徴とする半導体装置の製造方法。
A manufacturing method of a semiconductor device including an inspection process for detecting a leakage defect caused by a crack generated in an insulating film immediately below an electrode pad for a signal electrically connected to an internal circuit,
(A) a step of simultaneously applying a probe to each of a plurality of signal electrode pads and an inspection electrode pad formed in a corner portion of a semiconductor chip;
(B) a step of measuring a leakage current between the inspection electrode pad and a plurality of signal electrode pads and a power supply wiring that passes directly under the inspection electrode pad through the insulating film;
(C) In the step (b), when a leak current exceeding a standard is measured between the inspection electrode pad and the power supply circuit wiring, the inspection electrode pad and the inspection electrode pad are adjacent to each other. Measuring a leakage current between the signal electrode pads,
The method of manufacturing a semiconductor device, wherein the inspection electrode pad is an isolated pattern that is not electrically connected to the internal circuit, the plurality of signal electrode pads, and the power circuit wiring.
内部回路に電気的に接続された信号用電極パッドの直下の絶縁膜に生じるクラックに起因したリーク不良を検出する検査工程を含む半導体装置の製造方法であって、
(a)個片化された半導体チップを実装基板上に搭載し、前記半導体チップに形成された複数の信号用電極パッドおよび前記半導体チップのコーナ部に形成された検査用電極パッドと、前記実装基板上に形成された複数の電極とをそれぞれ接続する工程と、
(b)前記半導体チップを樹脂封止してパッケージ品に組み立てる工程と、
(c)前記検査用電極パッドに接続された前記実装基板上の第1の電極と、前記複数の信号用電極パッドおよび前記検査用電極パッドの直下を前記絶縁膜を介して通る電源周回配線に接続された前記実装基板上の第2の電極との間のリーク電流を測定する工程とを有し、
前記検査用電極パッドは、前記内部回路、前記複数の信号用電極パッドおよび前記電源周回配線と電気的に接続されない孤立パターンであることを特徴とする半導体装置の製造方法。
A manufacturing method of a semiconductor device including an inspection process for detecting a leakage defect caused by a crack generated in an insulating film immediately below an electrode pad for a signal electrically connected to an internal circuit,
(A) A semiconductor chip separated is mounted on a mounting substrate, a plurality of signal electrode pads formed on the semiconductor chip, an inspection electrode pad formed on a corner portion of the semiconductor chip, and the mounting Connecting each of a plurality of electrodes formed on the substrate;
(B) a step of resin-sealing the semiconductor chip and assembling it into a package product;
(C) a first electrode on the mounting substrate connected to the inspection electrode pad, and a power supply wiring that passes directly below the plurality of signal electrode pads and the inspection electrode pad via the insulating film Measuring a leakage current between the connected second electrodes on the mounting substrate,
The method of manufacturing a semiconductor device, wherein the inspection electrode pad is an isolated pattern that is not electrically connected to the internal circuit, the plurality of signal electrode pads, and the power circuit wiring.
内部回路に電気的に接続された信号用電極パッドの直下の絶縁膜に生じるクラックに起因したリーク不良を検出する検査工程を含む半導体装置の製造方法であって、
(a)個片化された半導体チップを実装基板上に搭載し、前記半導体チップに形成された複数の信号用電極パッドおよび前記半導体チップのコーナ部に形成された検査用電極パッドと、前記実装基板上に形成された複数の電極とをそれぞれ接続する工程と、
(b)前記半導体チップを樹脂封止してパッケージ品に組み立てる工程と、
(c)前記検査用電極パッドに接続された前記実装基板上の第1の電極と、前記複数の信号用電極パッドおよび前記検査用電極パッドの直下を前記絶縁膜を介して通る電源周回配線に接続された前記実装基板上の第2の電極との間のリーク電流を測定する工程と、
(d)前記(c)工程において、前記第1の電極と前記第2の電極との間で規格以上のリーク電流が測定された場合は、前記第1の電極と所定の信号用電極パッドに接続された前記実装基板上の第3の電極との間のリーク電流を測定する工程とを有し、
前記検査用電極パッドは、前記内部回路、前記複数の信号用電極パッドおよび前記電源周回配線と電気的に接続されない孤立パターンであることを特徴とする半導体装置の製造方法。
A manufacturing method of a semiconductor device including an inspection process for detecting a leakage defect caused by a crack generated in an insulating film immediately below an electrode pad for a signal electrically connected to an internal circuit,
(A) A semiconductor chip separated is mounted on a mounting substrate, a plurality of signal electrode pads formed on the semiconductor chip, an inspection electrode pad formed on a corner portion of the semiconductor chip, and the mounting Connecting each of a plurality of electrodes formed on the substrate;
(B) a step of resin-sealing the semiconductor chip and assembling it into a package product;
(C) a first electrode on the mounting substrate connected to the inspection electrode pad, and a power supply wiring that passes directly below the plurality of signal electrode pads and the inspection electrode pad via the insulating film Measuring a leakage current between the connected second electrodes on the mounting substrate;
(D) In the step (c), when a leak current exceeding the standard is measured between the first electrode and the second electrode, the first electrode and a predetermined signal electrode pad Measuring a leakage current between the connected third electrodes on the mounting substrate,
The method of manufacturing a semiconductor device, wherein the inspection electrode pad is an isolated pattern that is not electrically connected to the internal circuit, the plurality of signal electrode pads, and the power circuit wiring.
請求項1〜4のいずれか1項に記載の半導体装置の製造方法において、前記複数の信号用電極パッドおよび前記検査用電極パッドと前記電源周回配線との間には、孤立した緩衝層が形成されていることを特徴とする半導体装置の製造方法。   5. The semiconductor device manufacturing method according to claim 1, wherein an isolated buffer layer is formed between the plurality of signal electrode pads, the inspection electrode pad, and the power supply wiring. A method for manufacturing a semiconductor device, wherein: 請求項1〜4のいずれか1項に記載の半導体装置の製造方法において、前記電源周回配線の平面形状はリング状であることを特徴とする半導体装置の製造方法。   5. The method of manufacturing a semiconductor device according to claim 1, wherein a planar shape of the power supply circuit wiring is a ring shape. 6.
JP2006201413A 2006-07-25 2006-07-25 Manufacturing method for semiconductor device Pending JP2008028274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006201413A JP2008028274A (en) 2006-07-25 2006-07-25 Manufacturing method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006201413A JP2008028274A (en) 2006-07-25 2006-07-25 Manufacturing method for semiconductor device

Publications (1)

Publication Number Publication Date
JP2008028274A true JP2008028274A (en) 2008-02-07

Family

ID=39118578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006201413A Pending JP2008028274A (en) 2006-07-25 2006-07-25 Manufacturing method for semiconductor device

Country Status (1)

Country Link
JP (1) JP2008028274A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049269A (en) * 2007-08-22 2009-03-05 Seiko Epson Corp Semiconductor device
JP2010056427A (en) * 2008-08-29 2010-03-11 Fukuoka Pref Gov Sangyo Kagaku Gijutsu Shinko Zaidan Resistance evaluation wafer and resistance evaluation method
KR20160097436A (en) * 2015-02-06 2016-08-18 삼성전자주식회사 Semiconductor device
JP2017157719A (en) * 2016-03-02 2017-09-07 東芝メモリ株式会社 Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049269A (en) * 2007-08-22 2009-03-05 Seiko Epson Corp Semiconductor device
JP2010056427A (en) * 2008-08-29 2010-03-11 Fukuoka Pref Gov Sangyo Kagaku Gijutsu Shinko Zaidan Resistance evaluation wafer and resistance evaluation method
KR20160097436A (en) * 2015-02-06 2016-08-18 삼성전자주식회사 Semiconductor device
KR102341726B1 (en) 2015-02-06 2021-12-23 삼성전자주식회사 Semiconductor device
JP2017157719A (en) * 2016-03-02 2017-09-07 東芝メモリ株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
US7939936B2 (en) Semiconductor package having semiconductor device featuring externally-accessible endless ring-shaped resistance circuit
JP4717523B2 (en) Semiconductor device and manufacturing method thereof
US8994397B2 (en) Thermal pad shorts test for wire bonded strip testing
TWI694567B (en) Printed circuit boards and testing method thereof, and method of manufacturing semiconductor packages
US11557558B2 (en) Structure of semiconductor device and method for bonding two substrates
JP2012156238A (en) Semiconductor device
KR20140081291A (en) Pre space transformer and space transformer manufactured by the pre space transformer, and apparatus for inspecting semiconductor device with the space transformer
JP2008028274A (en) Manufacturing method for semiconductor device
JP2018166171A (en) Method of manufacturing semiconductor device, semiconductor device and inspection equipment for semiconductor device
JP6231279B2 (en) Semiconductor device
US8717059B2 (en) Die having wire bond alignment sensing structures
US6548881B1 (en) Method and apparatus to achieve bond pad crater sensing and stepping identification in integrated circuit products
JP2010098046A (en) Probe card and method for manufacturing semiconductor device
JP4728628B2 (en) Semiconductor device
JP4877465B2 (en) Semiconductor device, semiconductor device inspection method, semiconductor wafer
KR20130016765A (en) Electric connecting apparatus for testing electric characteristic of a semiconductor device having thin film resistor and manufacturing method thereof
TWI841243B (en) Test element group
JP5160295B2 (en) Semiconductor device and inspection method
JP5658623B2 (en) Semiconductor chip, manufacturing method thereof, and semiconductor package
KR100774623B1 (en) Test pattern of process change monitor for metal line continuity
TWI670797B (en) Method and structure for process limiting yield testing
JP2008135623A (en) Wiring board, and its manufacturing method
JP2007035772A (en) Inspection method of semiconductor wafer and manufacturing method of semiconductor chip
JP5252027B2 (en) Manufacturing method of semiconductor device
JPH07111282A (en) Semiconductor chip and integrated circuit device using said semiconductor chip