JP2008015968A - Conductive member for non-contact type data carrier and its manufacturing method and device - Google Patents

Conductive member for non-contact type data carrier and its manufacturing method and device Download PDF

Info

Publication number
JP2008015968A
JP2008015968A JP2006189064A JP2006189064A JP2008015968A JP 2008015968 A JP2008015968 A JP 2008015968A JP 2006189064 A JP2006189064 A JP 2006189064A JP 2006189064 A JP2006189064 A JP 2006189064A JP 2008015968 A JP2008015968 A JP 2008015968A
Authority
JP
Japan
Prior art keywords
conductive layer
data carrier
conductive member
conductive
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006189064A
Other languages
Japanese (ja)
Inventor
Hideto Sakata
英人 坂田
Hideo Masubuchi
秀雄 増渕
Kiichi Shimomura
貴一 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2006189064A priority Critical patent/JP2008015968A/en
Publication of JP2008015968A publication Critical patent/JP2008015968A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Credit Cards Or The Like (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To properly make conductive the conductive layers of the both sides of a conductive member for a non-contact type data carrier. <P>SOLUTION: A raw material sheet configured by forming conductive layers 3c and 4a made of metallic foils on the both sides of an insulating base material 2 is placed on a heated base 6, and an ultrasonic vibrator 7 having a pressurizing part 7a shaped like a polygonal pyramid or a polygonal pyramid pedestal in which concave sections are formed in the metallic foil is heated so that the elongation at break of the metallic foil can not be exceeded, and brought into contact with the conductive layer 3c of the raw material sheet from the upper part of the base, and while an ultrasonic wave with transverse vibration is applied to the ultrasonic vibrator, the concave sections 5 are formed on the conductive layer by the pressurizing part, and the concave sections are welded through the insulating base materials to the opposite conductive layer 4a. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ICタグ等の非接触型データキャリア用導電部材とその製造方法及び装置に関する。   The present invention relates to a conductive member for a non-contact type data carrier such as an IC tag and a manufacturing method and apparatus thereof.

非接触型のICタグ、ICカード等は絶縁基材の表裏面にそれぞれ金属箔からなる導電層を備える。たとえば、表側の導電層にはアンテナが形成され、裏側の導電層にはアンテナの端部間を接続するブリッジが形成される。アンテナとブリッジの電気的接合には従来スルーホールが使用されていたが、近年では超音波溶接が利用されるようになった。   Non-contact type IC tags, IC cards, and the like are each provided with a conductive layer made of metal foil on the front and back surfaces of an insulating substrate. For example, an antenna is formed on the front conductive layer, and a bridge connecting the end portions of the antenna is formed on the back conductive layer. Conventionally, through-holes have been used for the electrical connection between the antenna and the bridge, but in recent years, ultrasonic welding has come to be used.

この超音波溶接は、次のような手順で行われる。まず、絶縁基材の表裏面にそれぞれ導電層を形成した素材シートを加熱したベース上に置く。次に、導電層の上から加熱した超音波振動子を接触させ、超音波振動子に超音波を印加する。絶縁基材はベース等からの伝熱により軟化し、超音波振動子に押圧される上側の導電層の部分が凹陥部となって軟化した絶縁基材を下側の導電層へと貫通し、この凹陥部が超音波振動による摩擦熱で下側の導電層に溶接される(例えば、特許文献1参照。)。   This ultrasonic welding is performed by the following procedure. First, a material sheet in which a conductive layer is formed on each of the front and back surfaces of an insulating base is placed on a heated base. Next, an ultrasonic vibrator heated from above the conductive layer is brought into contact, and ultrasonic waves are applied to the ultrasonic vibrator. The insulating base material is softened by heat transfer from the base or the like, and the upper conductive layer pressed by the ultrasonic vibrator penetrates into the lower conductive layer through the softened insulating base material. This recess is welded to the lower conductive layer by frictional heat generated by ultrasonic vibration (see, for example, Patent Document 1).

また、上記ベース及び超音波振動子は共に先端が球面となったヘッドとし、両ヘッド間で素材シートを挟み、表裏の導電層を素材シートの厚さ方向の中央へと凹陥させ、この凹陥部同士を摩擦熱で接合することも試みられている(例えば、特許文献2参照。)。   The base and the ultrasonic transducer are both heads having a spherical tip, the material sheet is sandwiched between both heads, and the conductive layers on the front and back are recessed to the center in the thickness direction of the material sheet. It has also been attempted to join them with frictional heat (see, for example, Patent Document 2).

特開平9−263079号公報JP-A-9-263079 特開2004−134678号公報JP 2004-134678 A

従来の超音波溶接方法は、超音波振動子に形成した球面や尖った端面を導電層に押し付けて溶接するので、溶接が不確実になるおそれがある。また、導電層に破断、亀裂を生じるおそれがある。さらには、深くて急傾斜の凹陥部が絶縁基材の表面に形成されるので、被覆層で表面を覆いその上から所望事項を印刷等により表示しようとしても、凹陥部が表面に現れやすくなり印刷を適正に行うことができない場合がある。   In the conventional ultrasonic welding method, since the spherical surface or the sharp end surface formed on the ultrasonic transducer is pressed against the conductive layer and welded, the welding may be uncertain. In addition, the conductive layer may be broken or cracked. Furthermore, since a deep and steeply recessed portion is formed on the surface of the insulating base material, even if the surface is covered with a coating layer and desired items are displayed by printing, the recessed portion is likely to appear on the surface. Printing may not be performed properly.

従って、本発明は上記課題を解決することができる手段を提供することを目的とする。   Therefore, an object of the present invention is to provide means that can solve the above-described problems.

上記課題を解決するため、本発明は次のような構成を採用する。   In order to solve the above problems, the present invention employs the following configuration.

すなわち、請求項1に係る発明は、絶縁基材(2)の表裏面にそれぞれ金属箔からなる導電層(3,4)が形成され、一方の導電層(3)に形成された凹陥部(5)が上記絶縁基材(2)を貫いて他方の導電層(4)に溶接された非接触型データキャリア用導電部材において、上記金属箔がその破断伸びを超えないような多角錐又は多角錐台に上記凹陥部(5)が形成されていることを特徴とする。   That is, in the invention according to claim 1, the conductive layers (3, 4) each made of a metal foil are formed on the front and back surfaces of the insulating base (2), and the recesses ( 5) is a non-contact type data carrier conductive member welded to the other conductive layer (4) through the insulating base (2), and the polygonal pyramid or the poly The concave portion (5) is formed on the truncated pyramid.

絶縁基材(2)は、合成樹脂シートであり、ポリエチレンテレフタレート、ポリエチレンナフタレート等で形成することができる。金属箔は、アルミニウム、銅、リン青銅、SUS、あるいは合金等で形成される。金属箔は、例えば熱可塑性接着剤層を介して絶縁基材の表面に固着される。導電層(3)に形成する凹陥部(5)は金属箔がその破断伸びを超えないような多角錐又は多角錐台に形成される。多角錐又は多角錐台の傾斜面は絶縁基材(2)の表面に対し好ましくは7度〜45度、より好ましくは15度〜30度で傾斜する。多角錐又は多角錐台は、三角、四角、六角等所望の角錐又は角錐台とすることが可能である。   The insulating substrate (2) is a synthetic resin sheet and can be formed of polyethylene terephthalate, polyethylene naphthalate, or the like. The metal foil is formed of aluminum, copper, phosphor bronze, SUS, or an alloy. The metal foil is fixed to the surface of the insulating substrate through, for example, a thermoplastic adhesive layer. The recessed part (5) formed in the conductive layer (3) is formed in a polygonal pyramid or a polygonal frustum so that the metal foil does not exceed its breaking elongation. The inclined surface of the polygonal pyramid or the polygonal frustum is preferably 7 ° to 45 °, more preferably 15 ° to 30 ° with respect to the surface of the insulating base (2). The polygonal pyramid or the polygonal frustum may be a desired pyramid or a truncated pyramid such as a triangle, a square, or a hexagon.

この非接触型データキャリア用導電部材において、凹陥部(5)は単一であってもかまわないが、複数個隣接して形成するようにしてもよい。複数個隣接して形成することで凹陥部(5)の配置が稠密になり、導電層(3,4)同士をより確実に接合することができる。   In this non-contact type data carrier conductive member, the concave portion (5) may be single, but a plurality of the concave portions (5) may be formed adjacent to each other. By forming a plurality of adjacent portions, the concave portions (5) are arranged densely, and the conductive layers (3, 4) can be more reliably joined.

この非接触型データキャリア用導電部材は、絶縁基材(2)の表裏面の導電層(3,4)のうち一方がアンテナを含み、他方がブリッジを含み、アンテナの両端部とブリッジの両端部との間に上記凹陥部(5)が形成されたものとすることができる。   In this non-contact type data carrier conductive member, one of the conductive layers (3, 4) on the front and back surfaces of the insulating base (2) includes an antenna, the other includes a bridge, both ends of the antenna and both ends of the bridge The recessed part (5) may be formed between the two parts.

また、この非接触型データキャリア用導電部材は、アンテナにICチップ(10)が実装されたものとすることができるし、絶縁基材(2)の表裏面が導電層(3,4)の上から被覆層(11,12,14,15)で覆われているものとすることもできる。   Further, the conductive member for non-contact type data carrier can be an antenna in which an IC chip (10) is mounted, and the front and back surfaces of the insulating base (2) are conductive layers (3, 4). It can also be covered with a coating layer (11, 12, 14, 15) from above.

本発明に係る非接触型データキャリア用導電部材は、絶縁基材(2)の表裏面にそれぞれ金属箔からなる導電層(3,4)が形成された素材シート(1a)を加熱したベース(6)上に載置し、上記金属箔の破断伸びを超えないように上記金属箔に凹陥部(5)を形成する多角錐又は多角錐台の押圧部(7a)を有した超音波振動子(7)を加熱してベース(6)上方から素材シート(1a)の導電層(3)に接触させ、超音波振動子(7)に横振動の超音波を印加しつつ、上記押圧部(7a)で導電層(3)に上記凹陥部(5)を形成するとともに、この凹陥部(5)を上記絶縁基材(2)に通して反対側の導電層(4)に溶接することにより製造することができる。   The conductive member for a non-contact type data carrier according to the present invention is a base (1a) obtained by heating a material sheet (1a) in which conductive layers (3, 4) each made of a metal foil are formed on the front and back surfaces of an insulating substrate (2) ( 6) An ultrasonic transducer having a polygonal pyramid or a polygonal frustum pressing portion (7a) which is placed on and forms a recess (5) in the metal foil so as not to exceed the breaking elongation of the metal foil. (7) is heated and brought into contact with the conductive layer (3) of the material sheet (1a) from above the base (6), while applying ultrasonic waves of lateral vibration to the ultrasonic vibrator (7), 7a) by forming the recess (5) in the conductive layer (3) and welding the recess (5) to the opposite conductive layer (4) through the insulating base (2). Can be manufactured.

超音波振動子(7)に印加する横振動の振動方向は、図6に例示されるA方向、B方向のほかいずれでもよいが、後述するように複数個の超音波振動子(7)を一体化したもので複数箇所を同時に溶接する場合は、超音波振動子(7)同士を結ぶ線に直交する方向に横振動を印加するのが望ましい。   The vibration direction of the lateral vibration applied to the ultrasonic transducer (7) may be any of the A direction and the B direction illustrated in FIG. 6, but a plurality of ultrasonic transducers (7) are arranged as described later. When a plurality of locations are welded at the same time, it is desirable to apply lateral vibration in a direction perpendicular to a line connecting the ultrasonic transducers (7).

また、本発明に係る非接触型データキャリア用導電部材は、絶縁基材(2)の表裏面にそれぞれ金属箔からなる導電層(3,4)が形成された素材シート(1a)をベース(6)上に載置し、上記金属箔の破断伸びを超えないように上記金属箔に凹陥部(5)を形成する超音波振動子(7)をベース(6)上方から素材シート(1a)の導電層(3)に接触させ、超音波振動子(7)に横振動の超音波を印加しつつ、上記導電層(3)に上記凹陥部(5)を形成するとともに、この凹陥部(5)を上記絶縁基材(2)に通して反対側の導電層(4)に溶接することによっても製造可能である。   Further, the non-contact data carrier conductive member according to the present invention is based on a material sheet (1a) in which conductive layers (3, 4) made of metal foil are formed on the front and back surfaces of the insulating base (2) ( 6) An ultrasonic transducer (7) that is placed on top and forms a recess (5) in the metal foil so as not to exceed the breaking elongation of the metal foil. The material sheet (1a) from above the base (6) The concave portion (5) is formed in the conductive layer (3) while applying ultrasonic waves of lateral vibration to the ultrasonic transducer (7) and contacting the conductive layer (3). It can also be produced by passing 5) through the insulating substrate (2) and welding to the opposite conductive layer (4).

上記非接触型データキャリア用導電部材の製造方法において、ベース(6)と超音波振動子(7)の一方又は双方を加熱しておくことも可能である。この加熱により素材シート(1a)の絶縁基材(2)や導電層を(3,4)絶縁基材(2)に接着するための熱可塑性接着剤を軟化させ、凹陥部(5)の成形時に絶縁基材(2)等を金属箔が貫通しやすくすることができる。   In the method for manufacturing the non-contact type data carrier conductive member, one or both of the base (6) and the ultrasonic transducer (7) can be heated. This heating softens the thermoplastic adhesive for bonding the insulating base material (2) and the conductive layer of the material sheet (1a) to the (3,4) insulating base material (2), and forms the recess (5). Sometimes the metal foil can easily penetrate the insulating substrate (2) and the like.

ベース(6)及び超音波振動子(7)の加熱温度は絶縁基材(2)を構成する樹脂のガラス転移点であるのが望ましく、例えば樹脂がポリエチレンテレフタレートである場合は80℃〜120℃である。導電層(3,4)は例えば熱可塑性接着剤層を介して絶縁基材(2)に取り付けられるが、この熱可塑性接着剤層は上記ガラス転移点の温度で容易に溶ける。   The heating temperature of the base (6) and the ultrasonic vibrator (7) is preferably the glass transition point of the resin constituting the insulating base (2). For example, when the resin is polyethylene terephthalate, the heating temperature is 80 ° C to 120 ° C. It is. The conductive layers (3, 4) are attached to the insulating substrate (2) through, for example, a thermoplastic adhesive layer, and the thermoplastic adhesive layer is easily melted at the glass transition temperature.

超音波振動子(7)で導電層(3)を押圧する力は、望ましくは100N〜400Nである。超音波振動子(7)に加える横振動は、振動方向が絶縁基材(2)の平面の延び方向であり、望ましくは周波数が約40kHz、振幅が約19μm、印加時間は0.1秒〜0.3秒である。   The force for pressing the conductive layer (3) with the ultrasonic transducer (7) is desirably 100N to 400N. The transverse vibration applied to the ultrasonic transducer (7) is the direction in which the plane of the insulating substrate (2) extends, and preferably the frequency is about 40 kHz, the amplitude is about 19 μm, and the application time is 0.1 second to 0.3 seconds.

この非接触型データキャリア用導電部材の製造方法において、超音波振動子(7)に複数個の押圧部(7a)を隣接して設けることにより、複数個の凹陥部(5)を隣接して形成するようにしてもよい。   In this method of manufacturing a non-contact type data carrier conductive member, a plurality of depressions (5) are provided adjacent to each other by providing a plurality of pressing portions (7a) adjacent to the ultrasonic transducer (7). You may make it form.

また、上記非接触型データキャリア用導電部材の製造方法において、素材シート(1a)を絶縁基材(2)の表裏面の導電層(3,4)のうち一方がアンテナを含み、他方がブリッジを含んだものとし、アンテナの両端部又はブリッジの両端部に、一体化された二つの超音波振動子(7b,7c)を各々同時に当て、この二つの超音波振動子(7b,7c)に対し上記両端部同士を結ぶ線に直交する方向(A)に振動する横振動の超音波を印加しつつ、一方の導電層(3)を上記絶縁基材(2)に通して反対側の導電層(4)に溶接するようにしてもよい。   In the method for manufacturing a conductive member for a non-contact data carrier, the material sheet (1a) includes one of the conductive layers (3, 4) on the front and back surfaces of the insulating base (2), and the other is a bridge. The two integrated ultrasonic transducers (7b, 7c) are simultaneously applied to both ends of the antenna or both ends of the bridge, respectively, and the two ultrasonic transducers (7b, 7c) are applied simultaneously. On the other hand, while applying ultrasonic waves of transverse vibration that oscillates in the direction (A) perpendicular to the line connecting the two end portions, one conductive layer (3) is passed through the insulating base material (2) to conduct on the opposite side. You may make it weld to a layer (4).

本発明に係る非接触型データキャリア用導電部材の製造装置は、絶縁基材(2)の表裏面にそれぞれ金属箔からなる導電層(3,4)が形成された素材シート(1a)を載置するベース(6)と、上記金属箔の破断伸びを超えないように上記金属箔に凹陥部(5)を形成する多角錐又は多角錐台の押圧部(7a)を有した超音波振動子(7)とを具備し、超音波振動子(7)をベース(6)上方から素材シート(1a)の導電層に接触させ、超音波振動子(7)に横振動の超音波を印加しつつ、上記押圧部(7a)で導電層(3)に上記凹陥部(5)を形成するとともに、この凹陥部(5)を上記絶縁基材(2)に通して反対側の導電層(4)に溶接するようにした構成とすることができる。   The non-contact data carrier conductive member manufacturing apparatus according to the present invention mounts a material sheet (1a) in which conductive layers (3, 4) each made of a metal foil are formed on the front and back surfaces of an insulating substrate (2). Ultrasonic transducer having a base (6) to be placed and a polygonal pyramid or polygonal frustum pressing portion (7a) for forming a recess (5) in the metal foil so as not to exceed the breaking elongation of the metal foil (7), the ultrasonic vibrator (7) is brought into contact with the conductive layer of the material sheet (1a) from above the base (6), and ultrasonic waves of lateral vibration are applied to the ultrasonic vibrator (7). Meanwhile, the depressed portion (5) is formed in the conductive layer (3) by the pressing portion (7a), and the depressed portion (5) is passed through the insulating base material (2) to form the opposite conductive layer (4 ) To be welded.

この製造装置において、多角錐又は多角錐台の押圧部(7a)は超音波振動子に一個のみ設けてもよいが、複数個の押圧部(7a)を隣接して設けることもできる。   In this manufacturing apparatus, only one pressing portion (7a) of a polygonal pyramid or a polygonal frustum may be provided on the ultrasonic transducer, but a plurality of pressing portions (7a) may be provided adjacent to each other.

また、製造装置としては、絶縁基材(2)の表裏面にそれぞれ金属箔からなる導電層(3,4)が形成された素材シート(1a)を載置するベース(6)と、上記金属箔の破断伸びを超えないように上記金属箔に凹陥部(5)を形成する超音波振動子(7)とを具備し、超音波振動子(7)をベース(6)上方から素材シート(1a)の導電層(3)に接触させ、超音波振動子(7)に横振動の超音波を印加しつつ、上記導電層(3)に上記凹陥部(5)を形成するとともに、この凹陥部(5)を上記絶縁基材(2)に通して反対側の導電層(4)に溶接するようにした構成とすることも可能である。   Moreover, as a manufacturing apparatus, the base (6) which mounts the raw material sheet | seat (1a) in which the electrically conductive layer (3, 4) which each consists of metal foil was formed in the front and back of the insulating base material (2), and said metal An ultrasonic vibrator (7) for forming a recess (5) in the metal foil so as not to exceed the breaking elongation of the foil, and the ultrasonic vibrator (7) is formed from above the base (6) with a material sheet ( The concave portion (5) is formed in the conductive layer (3) while contacting the conductive layer (3) of 1a) and applying ultrasonic waves of transverse vibration to the ultrasonic transducer (7). It is also possible to adopt a configuration in which the part (5) is welded to the opposite conductive layer (4) through the insulating base (2).

さらに、製造装置としては、絶縁基材(2)の表裏面の導電層(3,4)のうち一方がアンテナを含み、他方がブリッジを含んだ素材シート(1a)におけるアンテナの両端部又はブリッジの両端部に各々当てる一体化された二つの超音波振動子(7b,7c)を有し、各超音波振動子(7b,7c)を上記両端部に各々同時に当て、この二つの超音波振動子(7b,7c)に対し上記両端部同士を結ぶ線に直交する方向(A)に振動する横振動の超音波を印加しつつ、一方の導電層(3)を上記絶縁基材(2)に通して反対側の導電層(4)に溶接するようにしたものとすることも可能である。   Further, as a manufacturing apparatus, one of the conductive layers (3, 4) on the front and back surfaces of the insulating base (2) includes an antenna, and the other includes both ends of the antenna or a bridge in the material sheet (1a) including a bridge. Two ultrasonic transducers (7b, 7c) that are respectively applied to both ends of each of the two ultrasonic transducers (7b, 7c). While applying ultrasonic waves of transverse vibration oscillating in a direction (A) perpendicular to the line connecting the two ends to the child (7b, 7c), one conductive layer (3) is attached to the insulating base material (2). It is also possible to weld to the opposite conductive layer (4).

本発明に係る非接触型データキャリア用導電部材によれば、導電層(3)の表面に導電層(3)の金属箔がその破断伸びを超えないような多角錐又は多角錐台の浅い凹陥部(5)が形成されるので、導電層(3)に破断、亀裂を生じることなく表裏の導電層(3,4)同士の溶接をより確実に行うことができ、非接触型データキャリア用導電部材のICタグ等としての信頼性を高めることができる。また、被覆層(11,14)で表面を覆った場合表面に凹凸が生じ難く、被覆層(11,14)の上から所望事項を印刷等により適正に表示することができる。   According to the conductive member for a non-contact type data carrier according to the present invention, a shallow concavity of a polygonal pyramid or a polygonal frustum in which the metal foil of the conductive layer (3) does not exceed its breaking elongation on the surface of the conductive layer (3). Since the part (5) is formed, the conductive layers (3, 4) on the front and back sides can be more reliably welded without causing breakage or cracks in the conductive layer (3). For non-contact data carriers The reliability of the conductive member as an IC tag or the like can be improved. Further, when the surface is covered with the coating layers (11, 14), the surface is hardly uneven, and desired items can be appropriately displayed from above the coating layers (11, 14) by printing or the like.

以下、図面を参照して本発明を実施するための最良の形態について説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

<実施の形態1>
図1乃至図4に示すように、非接触型データキャリア用導電部材1又はその素材シート1aにおける絶縁基材2の表裏面には、それぞれ図示しない熱可塑性接着剤層が所定のパターンに形成され、この熱可塑性接着剤層の上から同様なパターンの導電層3,4が積層され固着される。
<Embodiment 1>
As shown in FIGS. 1 to 4, a thermoplastic adhesive layer (not shown) is formed in a predetermined pattern on the front and back surfaces of the insulating member 2 in the non-contact data carrier conductive member 1 or the material sheet 1a thereof. The conductive layers 3 and 4 having the same pattern are laminated and fixed on the thermoplastic adhesive layer.

絶縁基材2は、合成樹脂製シートあるいはそれらを積層したシートにより形成される。絶縁基材2の厚さは、大体30μm〜70μmである。絶縁基材2は、図示例では長方形に形成されるが、その他の所望の形状とすることができる。合成樹脂としては例えばポリエチレンテレフタレート(PET)を用いることができる。   The insulating base material 2 is formed of a synthetic resin sheet or a sheet obtained by laminating them. The thickness of the insulating substrate 2 is approximately 30 μm to 70 μm. The insulating substrate 2 is formed in a rectangular shape in the illustrated example, but may have other desired shapes. For example, polyethylene terephthalate (PET) can be used as the synthetic resin.

導電層3,4は、例えばアルミニウム箔により形成される。アルミニウム箔の厚さは3μm〜15μm程度である。   The conductive layers 3 and 4 are made of, for example, aluminum foil. The thickness of the aluminum foil is about 3 μm to 15 μm.

導電層3,4のうち絶縁基材2の表面の導電層3は、アンテナのパターン及びコンデンサの一方の電極のパターンにそれぞれ形成される。また、導電層3,4のうち絶縁基材2の裏面の導電層4は、ブリッジのパターン及びコンデンサの他方の電極のパターンにそれぞれ形成される。図1〜図4(A)(B)において、符号3aはアンテナのパターンに対応した導電層、符号3bはコンデンサの一方の電極のパターンに対応した導電層、符号4aはブリッジのパターンに対応した導電層、符号4bはコンデンサの他方の電極のパターンに対応した導電層をそれぞれ示す。   Of the conductive layers 3 and 4, the conductive layer 3 on the surface of the insulating base 2 is formed in an antenna pattern and a capacitor electrode pattern, respectively. In addition, the conductive layer 4 on the back surface of the insulating base material 2 among the conductive layers 3 and 4 is formed in a bridge pattern and a pattern of the other electrode of the capacitor, respectively. 1 to 4A and 4B, reference numeral 3a denotes a conductive layer corresponding to the antenna pattern, reference numeral 3b denotes a conductive layer corresponding to one electrode pattern of the capacitor, and reference numeral 4a corresponds to a bridge pattern. A conductive layer, 4b, indicates a conductive layer corresponding to the pattern of the other electrode of the capacitor.

アンテナのパターンは、図示例では渦巻状パターンとされるが、それ以外にも通信周波数帯によってバー形状パターン、パット形状パターン、クロス形状パターンなど様々のパターンとすることができる。   The antenna pattern is a spiral pattern in the illustrated example, but other patterns such as a bar-shaped pattern, a pad-shaped pattern, and a cross-shaped pattern can be used depending on the communication frequency band.

ブリッジのパターンは、図示例では細長い長方形であるが、それ以外の形状に適宜変更可能である。   The bridge pattern is an elongated rectangle in the illustrated example, but can be appropriately changed to other shapes.

コンデンサのパターンは、一方の電極について細長い長方形に形成されるが、他方の電極については多数個の互いに電気的に接続された細片に形成される。非接触型データキャリア用導電部材1が完成した後、細片間のつなぎ部の導電層4cを切断することにより、静電容量を調節し、非接触型データキャリア用導電部材1としての共振周波数を最適値に補正することができる。   The capacitor pattern is formed in a long and narrow rectangle for one electrode, while the other electrode is formed in a number of electrically connected strips. After the non-contact type data carrier conductive member 1 is completed, the capacitance is adjusted by cutting the conductive layer 4c between the strips, and the resonance frequency as the non-contact type data carrier conductive member 1 is adjusted. Can be corrected to an optimum value.

図4(A)に示す積層シートは非接触型データキャリア用導電部材1の素材シート1aであり、図4(B)及び図5に示すようにアンテナの両端部のパターンに対応した導電層3cとブリッジのパターンに対応した導電層4aとを接合することにより両導電層3,4間の電気的導通が確保される。   The laminated sheet shown in FIG. 4 (A) is a material sheet 1a of the non-contact type data carrier conductive member 1, and as shown in FIGS. 4 (B) and 5, a conductive layer 3c corresponding to the pattern at both ends of the antenna. And the conductive layer 4a corresponding to the bridge pattern are joined to ensure electrical continuity between the conductive layers 3 and 4.

この電気的導通は、アンテナの両端部のパターンに対応した導電層3cとブリッジのパターンに対応した導電層4aとを絶縁基材2の厚さ方向で超音波溶接することによって行われる。これにより、一方の導電層3に形成された凹陥部5が絶縁基材2を貫いて他方の導電層4に接合される。図中符号5aは接合部を示す。   This electrical continuity is performed by ultrasonically welding the conductive layer 3c corresponding to the pattern at both ends of the antenna and the conductive layer 4a corresponding to the bridge pattern in the thickness direction of the insulating base 2. As a result, the recessed portion 5 formed in one conductive layer 3 penetrates the insulating substrate 2 and is joined to the other conductive layer 4. Reference numeral 5a in the figure denotes a joint.

図5及び図6に示すように、この凹陥部5は導電層3の金属箔がその破断伸びを超えないような四角錐となるように形成される。図8に示すように、四角錐において金属箔が最も長く延びる箇所の元の長さをH、延びた後の長さをhとすると、その歪みεはε=100×(h−H)/H(%)となる。金属箔の破断伸びをδとすると、凹陥部5はε<δとなるように形成される。例えば、35μmの電解銅箔の破断伸びは約5%、35μmの圧延銅箔の破断伸びは約21%、結晶粒径5〜10μmのアルミニウム合金箔の破断伸びは約14%、結晶粒径30〜100μmのアルミニウム合金箔の破断伸びは約7%である。このような破断伸びを超えないように成形された凹陥部5における四角錐の斜面は緩やかな傾斜面となる。   As shown in FIGS. 5 and 6, the recessed portion 5 is formed to be a quadrangular pyramid so that the metal foil of the conductive layer 3 does not exceed its breaking elongation. As shown in FIG. 8, when the original length of the longest extending portion of the metal foil in the square pyramid is H and the length after the extension is h, the strain ε is ε = 100 × (h−H) / H (%). When the breaking elongation of the metal foil is δ, the recessed portion 5 is formed so that ε <δ. For example, the breaking elongation of a 35 μm electrolytic copper foil is about 5%, the breaking elongation of a rolled copper foil of 35 μm is about 21%, the breaking elongation of an aluminum alloy foil having a crystal grain size of 5 to 10 μm is about 14%, and the crystal grain size is 30. The breaking elongation of the aluminum alloy foil of ˜100 μm is about 7%. The slope of the quadrangular pyramid in the recessed portion 5 formed so as not to exceed such elongation at break becomes a gentle slope.

凹陥部5は、アンテナ及びブリッジの両端部の導電層3c,4aについて各々一個のみ形成することも可能であるが、望ましくは図示例のごとく各々複数個の凹陥部5が相隣接するよう稠密に形成される。複数個設けることにより電気的導通の信頼性が高められる。図示例では凹陥部5が九個設けられているが、二個〜八個又は十個以上であってもよい。また、図示例では凹陥部5が隙間なく稠密状に設けられているが、多少隙間を空けてもよい。   It is possible to form only one concave portion 5 for each of the conductive layers 3c and 4a at both ends of the antenna and the bridge, but it is desirable that the plurality of concave portions 5 be adjacent to each other as shown in the drawing. It is formed. The reliability of electrical continuity is enhanced by providing a plurality. In the illustrated example, nine concave portions 5 are provided, but may be two to eight or ten or more. In the illustrated example, the recessed portions 5 are provided densely without a gap, but a slight gap may be provided.

凹陥部5は、図示例では四角錐であるが、四角錐に代え四角錐台とすることも可能である。また、図9(A)に示すような六角錐、同図(B)に示すような三角錐等各種の多角錐とすることができる。図9(A)(B)において砂目を付した部分がそれぞれ一つの凹陥部5を表す。これらの多角錐はもちろん多角錐台に変更することが可能である。   The recessed portion 5 is a quadrangular pyramid in the illustrated example, but may be a quadrangular pyramid instead of the quadrangular pyramid. Moreover, it can be set as various polygonal pyramids, such as a hexagonal pyramid as shown to FIG. 9 (A) and a triangular pyramid as shown to the same figure (B). 9 (A) and 9 (B), each portion with a grain represents one recessed portion 5. Of course, these polygonal pyramids can be changed to a polygonal frustum.

上記電気的導通を得るための超音波溶接は次のように行われる。   Ultrasonic welding for obtaining the electrical continuity is performed as follows.

図5に示すように、加熱したベース6上に上記素材シート1aを載置し、側面が緩傾斜である四角錐の押圧部7aを有した超音波振動子7を加熱してベース6上方から素材シート1aの導電層3aに接触させ、超音波振動子7に横振動の超音波を印加しつつ、押圧部7aで導電層3aに緩傾斜の側面を有した四角錐又は四角錐台の凹陥部5を形成するとともに、この凹陥部5を絶縁基材2に通して反対側の導電層4aに溶接する。この溶接をアンテナの両端部に対して順に又は同時に行う。   As shown in FIG. 5, the raw material sheet 1 a is placed on the heated base 6, and the ultrasonic transducer 7 having the pressing portion 7 a having a quadrangular pyramid whose side surface is gently inclined is heated to start from above the base 6. A concave pyramid or a quadrangular pyramid having a gently inclined side surface on the conductive layer 3a at the pressing portion 7a while applying a lateral vibration ultrasonic wave to the ultrasonic vibrator 7 while being in contact with the conductive layer 3a of the material sheet 1a. The portion 5 is formed, and the recessed portion 5 is passed through the insulating substrate 2 and welded to the opposite conductive layer 4a. This welding is performed sequentially or simultaneously on both ends of the antenna.

ベース6は、図5に示すように、素材シート1aを載せる平坦面を有する。この平坦面に素材シート1aの一方の導電層4aが接触する。超音波振動子7は、図5及び図7に示すように、ベース6に対向する面に複数個の押圧部7aを有する。押圧部7aは上述した凹陥部5の形状及び大きさに略合致した四角錐の突起として形成される。四角錐における緩傾斜の側面の傾斜角度θは絶縁基材2の表面に対し約30度とされる。   As shown in FIG. 5, the base 6 has a flat surface on which the material sheet 1a is placed. One conductive layer 4a of the material sheet 1a contacts this flat surface. As shown in FIGS. 5 and 7, the ultrasonic transducer 7 has a plurality of pressing portions 7 a on the surface facing the base 6. The pressing portion 7a is formed as a quadrangular pyramid protrusion that substantially matches the shape and size of the concave portion 5 described above. The inclination angle θ of the gently inclined side surface of the quadrangular pyramid is about 30 degrees with respect to the surface of the insulating base 2.

ベース6及び超音波振動子7は内蔵式の電気ヒータ、バーナー等により加熱される。図5中、符号17,18はそれぞれベース6、超音波振動子7に埋設された電気ヒータの電熱線を示す。この電熱線等の加熱手段は、超音波振動子7のみに設けてもよいし、ベース6のみに設けてもよい。加熱温度は絶縁基材2を構成する樹脂のガラス転移点であり、樹脂がポリエチレンテレフタレートである場合は80℃〜120℃である。   The base 6 and the ultrasonic vibrator 7 are heated by a built-in electric heater, burner or the like. In FIG. 5, reference numerals 17 and 18 denote heating wires of an electric heater embedded in the base 6 and the ultrasonic vibrator 7, respectively. The heating means such as the heating wire may be provided only in the ultrasonic vibrator 7 or may be provided only in the base 6. The heating temperature is the glass transition point of the resin constituting the insulating base material 2, and is 80 ° C to 120 ° C when the resin is polyethylene terephthalate.

導電層3,4が熱可塑性接着剤層を介して絶縁基材2に取り付けられる場合は、同様な温度で溶けるような熱可塑性接着剤が使用される。   When the conductive layers 3 and 4 are attached to the insulating base material 2 via the thermoplastic adhesive layer, a thermoplastic adhesive that melts at the same temperature is used.

超音波振動子7は導電層3cを押圧するが、その押圧力は100N〜400Nとされる。また、超音波振動子7には横振動が加えられる。横振動の振動方向は絶縁基材2の平面の延び方向である。横振動は、例えば周波数が約40kHz、振幅が約19μmである。横振動の印加時間は0.1秒〜0.3秒である。ベース6等からの伝熱で絶縁基材2が軟化し、押圧片7aの押圧により導電層3cの凹陥部5が絶縁基材2を反対側の導電層4aへと貫通し、超音波振動の印加による摩擦熱で上側の導電層3cの凹陥部5が下側の導電層4aに溶着する。これにより、アンテナやブリッジの導電層3に破断、亀裂を生じることなく表裏の導電層3,4同士の溶接が適正に行われる。   The ultrasonic vibrator 7 presses the conductive layer 3c, and the pressing force is 100N to 400N. Further, lateral vibration is applied to the ultrasonic transducer 7. The vibration direction of the lateral vibration is the extending direction of the plane of the insulating base material 2. For example, the transverse vibration has a frequency of about 40 kHz and an amplitude of about 19 μm. The application time of the transverse vibration is 0.1 second to 0.3 second. The insulating base material 2 is softened by heat transfer from the base 6 and the like, and the concave portion 5 of the conductive layer 3c penetrates the insulating base material 2 to the conductive layer 4a on the opposite side by the pressing of the pressing piece 7a, and the ultrasonic vibration is generated. The concave portion 5 of the upper conductive layer 3c is welded to the lower conductive layer 4a by the frictional heat generated by the application. Thereby, welding of the conductive layers 3 and 4 of the front and back is performed appropriately, without producing the fracture | rupture and a crack in the conductive layer 3 of an antenna or a bridge.

この実施の形態1では、図7に示す超音波振動子7が二個用意され、各超音波振動子7に水晶振動素子等の振動素子(図示せず)が接続され、二つの超音波振動子7が上記アンテナの両端部の導電層3cにそれぞれ同時に又は順次当てられる。この場合、超音波振動子7の横振動の方向は図6中、A方向、B方向のいずれでもよく、あるいはそれら以外の方向であってもよい。また、図示例では超音波振動子7をアンテナ側から当てているが、アンテナ側をベース6に当ててブリッジ側から超音波振動子7を当てるようにしてもよい。   In the first embodiment, two ultrasonic vibrators 7 shown in FIG. 7 are prepared, and a vibration element (not shown) such as a crystal vibration element is connected to each ultrasonic vibrator 7, so that two ultrasonic vibrations are provided. The children 7 are applied simultaneously or sequentially to the conductive layers 3c at both ends of the antenna. In this case, the direction of the transverse vibration of the ultrasonic transducer 7 may be either the A direction or the B direction in FIG. 6, or may be other directions. Further, in the illustrated example, the ultrasonic transducer 7 is applied from the antenna side, but the ultrasonic transducer 7 may be applied from the bridge side by applying the antenna side to the base 6.

なお、図示例では、超音波振動子に九個の押圧部7aを隣接して設けているが、その個数は適宜増減可能であり、また、少しばかり隙間が空くように設けてもよい。また、押圧片7aは四角錐の凸部として形成しているが、上述した凹陥部5の各種形態に対応した形状に形成される。   In the illustrated example, nine pressing portions 7a are provided adjacent to the ultrasonic transducer. However, the number of the pressing portions 7a can be increased or decreased as appropriate, and may be provided so as to leave a small gap. Moreover, although the press piece 7a is formed as a convex part of a quadrangular pyramid, it is formed in the shape corresponding to the various forms of the recessed part 5 mentioned above.

図1に示すように、非接触型データキャリア用導電部材1の素材シート1aにおけるアンテナのパターンの導電層3aは、ICチップ接続電極に対応する導電層3dを含んでいる。図3に示すように、このICチップ接続電極の導電層3dにICチップ10が乗せられ、電気的に接続される。   As shown in FIG. 1, the conductive layer 3a of the antenna pattern in the material sheet 1a of the non-contact data carrier conductive member 1 includes a conductive layer 3d corresponding to the IC chip connection electrode. As shown in FIG. 3, the IC chip 10 is placed on the conductive layer 3d of the IC chip connection electrode and electrically connected.

この絶縁基材2上にICチップ10が実装された非接触型データキャリア用導電部材1は、図11に示すように、絶縁基材2の表裏面がラベル用被覆層11,12で覆われることによりラベル状のICタグ13とされる。   In the non-contact type data carrier conductive member 1 in which the IC chip 10 is mounted on the insulating base 2, the front and back surfaces of the insulating base 2 are covered with the label covering layers 11 and 12 as shown in FIG. 11. Thus, the label-like IC tag 13 is obtained.

図11において、符号11aは紙、樹脂フィルム等からなる保護層、符号11bは保護層11aを絶縁基材2の表面に導電層3の上から接着するための接着剤層をそれぞれ示す。保護層11aはアンテナのパターン等を形成する導電層3を保護するためのもので、その表面には所望の内容が印刷等により表示される。   In FIG. 11, reference numeral 11 a indicates a protective layer made of paper, a resin film, and the like, and reference numeral 11 b indicates an adhesive layer for bonding the protective layer 11 a to the surface of the insulating substrate 2 from above the conductive layer 3. The protective layer 11a is for protecting the conductive layer 3 forming the antenna pattern and the like, and desired contents are displayed on the surface thereof by printing or the like.

上述したように、導電層3の表面には浅くて緩傾斜の側面を有する凹陥部5が形成されるので、被覆層11で表面を覆った場合表面に凹凸が生じ難い。このため、上記保護層11aに表示すべき内容を適正に印刷することができる。   As described above, since the concave portion 5 having a shallow and gently inclined side surface is formed on the surface of the conductive layer 3, when the surface is covered with the coating layer 11, the surface is unlikely to be uneven. For this reason, the content which should be displayed on the said protective layer 11a can be printed appropriately.

また、図11において、符号12aは絶縁基材2の裏面にブリッジのパターン等を形成する導電層4の上から塗布された粘着剤層、符号12bは粘着剤層12aの上に被覆された離型紙等からなる剥離層をそれぞれ示す。剥離層12bを剥がしたうえで、粘着剤層12aを商品等に押し付けることにより、このICタグ13を商品等に貼着することができる。もちろん、粘着剤層12a及び剥離層12bに代え、絶縁基材2の表側と同様に保護層11a及び接着剤層11bで絶縁基材2の裏面を覆うようにしてもよい。   In FIG. 11, reference numeral 12a denotes an adhesive layer applied from above the conductive layer 4 that forms a bridge pattern or the like on the back surface of the insulating substrate 2, and reference numeral 12b denotes a release layer coated on the adhesive layer 12a. Each of the release layers made of pattern paper or the like is shown. After peeling off the release layer 12b, the IC tag 13 can be attached to the product or the like by pressing the pressure-sensitive adhesive layer 12a against the product or the like. Of course, instead of the pressure-sensitive adhesive layer 12a and the release layer 12b, the back surface of the insulating base material 2 may be covered with the protective layer 11a and the adhesive layer 11b in the same manner as the front side of the insulating base material 2.

また、図3の非接触型データキャリア用導電部材1は、図12に示すように、絶縁基材2の表裏面がカード用被覆層14,15で覆われることによりICカード16とされる。   Further, as shown in FIG. 12, the non-contact data carrier conductive member 1 of FIG. 3 is formed into an IC card 16 by covering the front and back surfaces of the insulating base 2 with card covering layers 14 and 15.

図12において、符号14a,15aは絶縁基材2の表面と裏面にそれぞれ導電層3,4の上から被せられる芯材層を示し、符号14b,15bは芯材層14a,15aの表面をそれぞれ覆う表面層を示す。芯材層14a,15aはカードとしての強度を与える樹脂シート等を含んでおり、表面層14b,15bは所望の内容を表示する印刷インキ等を含んでいる。   In FIG. 12, reference numerals 14a and 15a denote core material layers that are placed on the front and back surfaces of the insulating base material 2 from above the conductive layers 3 and 4, respectively, and reference numerals 14b and 15b denote the surfaces of the core material layers 14a and 15a, respectively. The covering surface layer is shown. The core material layers 14a and 15a include a resin sheet or the like that gives strength as a card, and the surface layers 14b and 15b include printing ink or the like for displaying desired contents.

このICカード16の場合も、上述したごとく導電層3の表面に浅くて緩傾斜の側面を有する凹陥部5が形成されるので、被覆層14で表面を覆った場合に表面に凹凸が生じ難い。このため、上記表面層14bに表示すべき内容を適正に印刷することができる。   Also in the case of this IC card 16, since the concave portion 5 having a shallow and gently inclined side surface is formed on the surface of the conductive layer 3 as described above, it is difficult for the surface to be uneven when the surface is covered with the coating layer 14. . For this reason, the contents to be displayed on the surface layer 14b can be printed appropriately.

上記構成を有するICタグ13、ICカード16の使用に際しては、ICチップ10に対して図示しない読取書込器により電磁界内において種々の情報の読み取り又は書き込みが行われる。   When the IC tag 13 and the IC card 16 having the above configuration are used, various kinds of information are read or written in the electromagnetic field by the reader / writer (not shown) with respect to the IC chip 10.

<実施の形態2>
この実施の形態2では、上記アンテナ及びブリッジの両端部における導電層3c,4aの超音波溶接に、図7に示す超音波振動子7に代えて図10(A)(B)に示すような二つの超音波振動子7b,7cが用いられる。
<Embodiment 2>
In the second embodiment, ultrasonic welding of the conductive layers 3c and 4a at both ends of the antenna and the bridge is performed as shown in FIGS. 10A and 10B instead of the ultrasonic vibrator 7 shown in FIG. Two ultrasonic transducers 7b and 7c are used.

図10(A)(B)に示すように、二つの超音波振動子7b,7cは、一体化され共通の一つの振動素子(図示せず)により同時に同方向に振動するようになっている。   As shown in FIGS. 10A and 10B, the two ultrasonic transducers 7b and 7c are integrated and vibrated simultaneously in the same direction by a common vibrating element (not shown). .

超音波溶接に際し、上記素材シート1aが図5に示したベースを更に大面積にしたベース上に載置され、上記二つの超音波振動子7b,7cが上記アンテナの両端部における導電層3cにそれぞれ同時に当てられる。この場合、超音波振動子7の横振動の方向は図6中、A方向に設定される。これにより、アンテナ及びブリッジの両端部における導電層3c,4a同士が適正に溶接される。   In ultrasonic welding, the material sheet 1a is placed on a base having a larger area than the base shown in FIG. 5, and the two ultrasonic vibrators 7b and 7c are formed on the conductive layers 3c at both ends of the antenna. Each is applied at the same time. In this case, the direction of transverse vibration of the ultrasonic transducer 7 is set to the A direction in FIG. Thereby, the conductive layers 3c and 4a in the both ends of an antenna and a bridge are welded appropriately.

なお、図示例では超音波振動子7b,7cをアンテナ側から当てているが、アンテナ側をベース6に当てブリッジ側から超音波振動子7b,7cを当てるようにしてもよい。   In the illustrated example, the ultrasonic transducers 7b and 7c are applied from the antenna side. However, the ultrasonic transducers 7b and 7c may be applied from the bridge side by applying the antenna side to the base 6.

本発明に係る非接触型データキャリア用導電部材の素材シートの表面図である。It is a surface view of the raw material sheet of the conductive member for non-contact type data carriers concerning the present invention. 図1に示す素材シートの裏面図である。It is a reverse view of the raw material sheet shown in FIG. ICチップを実装した非接触型データキャリア用導電部材の表面図である。It is a surface view of the electroconductive member for non-contact type data carriers which mounted IC chip. (A)は図1中IVA−IVA線矢視断面図、(B)は図3中IVB−IVB線矢視断面図である。1A is a cross-sectional view taken along line IVA-IVA in FIG. 1, and FIG. 4B is a cross-sectional view taken along line IVB-IVB in FIG. 表裏の導電層同士を溶接する超音波溶接装置の概念図である。It is a conceptual diagram of the ultrasonic welding apparatus which welds the conductive layers of the front and back. 図3中要部の拡大図である。It is an enlarged view of the principal part in FIG. 図5に示す超音波溶接装置における超音波振動子の拡大斜視図である。It is an expansion perspective view of the ultrasonic transducer | vibrator in the ultrasonic welding apparatus shown in FIG. 一つの凹陥部の模式図であり、(A)は平面図、(B)は図(A)中B−B線矢視図である。It is a schematic diagram of one recessed part, (A) is a top view, (B) is a BB line arrow directional view in figure (A). (A)(B)は他のそれぞれ異なる形状の凹陥部を示す平面図である。(A) (B) is a top view which shows the recessed part of another different shape. 他の超音波振動子を示し、(A)はその正面図、(B)は底面図である。The other ultrasonic transducer | vibrator is shown, (A) is the front view, (B) is a bottom view. 図3に示す非接触型データキャリア用導電部材を含んだラベル状のICタグの部分断面図である。FIG. 4 is a partial cross-sectional view of a label-like IC tag including the non-contact data carrier conductive member shown in FIG. 3. 図3に示す非接触型データキャリア用導電部材を含んだICカードの部分断面図である。FIG. 4 is a partial cross-sectional view of an IC card including the non-contact data carrier conductive member shown in FIG. 3.

符号の説明Explanation of symbols

1…非接触型データキャリア用導電部材
1a…素材シート
2…絶縁基材
3,4…導電層
5…凹陥部
6…ベース
7…超音波振動子
7a…押圧部
10…ICチップ
11,12,14,15…被覆層
DESCRIPTION OF SYMBOLS 1 ... Conductive member for non-contact-type data carriers 1a ... Material sheet 2 ... Insulating base material 3, 4 ... Conductive layer 5 ... Recessed part 6 ... Base 7 ... Ultrasonic vibrator 7a ... Pressing part 10 ... IC chip 11,12, 14, 15 ... coating layer

Claims (16)

絶縁基材の表裏面にそれぞれ金属箔からなる導電層が形成され、一方の導電層に形成された凹陥部が上記絶縁基材を貫いて他方の導電層に溶接された非接触型データキャリア用導電部材において、上記金属箔がその破断伸びを超えないような多角錐又は多角錐台に上記凹陥部が形成されていることを特徴とする非接触型データキャリア用導電部材。   For non-contact type data carriers in which conductive layers made of metal foil are formed on the front and back surfaces of the insulating base material, and the recesses formed in one conductive layer penetrate the insulating base material and are welded to the other conductive layer The conductive member for a non-contact type data carrier, wherein the concave portion is formed in a polygonal pyramid or a polygonal frustum so that the metal foil does not exceed its breaking elongation. 請求項1に記載の非接触型データキャリア用導電部材において、複数個の凹陥部が隣接して形成されたことを特徴とする非接触型データキャリア用導電部材。   2. The non-contact type data carrier conductive member according to claim 1, wherein a plurality of recesses are formed adjacent to each other. 請求項1又は請求項2に記載の非接触型データキャリア用導電部材において、絶縁基材の表裏面の導電層のうち一方がアンテナを含み、他方がブリッジを含み、アンテナの両端部とブリッジの両端部との間に上記凹陥部が形成されたことを特徴とする非接触型データキャリア用導電部材。   The conductive member for a non-contact type data carrier according to claim 1 or 2, wherein one of the conductive layers on the front and back surfaces of the insulating substrate includes an antenna, the other includes a bridge, both ends of the antenna and the bridge A conductive member for a non-contact type data carrier, wherein the concave portion is formed between both end portions. 請求項3に記載の非接触型データキャリア用導電部材において、アンテナにICチップが実装されていることを特徴とする非接触型データキャリア用導電部材。   4. The non-contact type data carrier conductive member according to claim 3, wherein an IC chip is mounted on the antenna. 請求項1乃至請求項4のいずれかに記載の非接触型データキャリア用導電部材において、絶縁基材の表裏面が導電層の上から被覆層で覆われていることを特徴とする非接触型データキャリア用導電部材。   5. The non-contact type data carrier conductive member according to claim 1, wherein the front and back surfaces of the insulating base material are covered with a coating layer from above the conductive layer. Conductive member for data carrier. 請求項1乃至請求項5のいずれかに記載の非接触型データキャリア用導電部材において、導電層が銅箔又は銅合金箔で形成されていることを特徴とする非接触型データキャリア用導電部材。   6. The non-contact type data carrier conductive member according to claim 1, wherein the conductive layer is formed of a copper foil or a copper alloy foil. . 請求項1乃至請求項5のいずれかに記載の非接触型データキャリア用導電部材において、導電層がアルミニウム箔又はアルミニウム合金箔で形成されていることを特徴とする非接触型データキャリア用導電部材。   6. The conductive member for a non-contact type data carrier according to claim 1, wherein the conductive layer is formed of an aluminum foil or an aluminum alloy foil. . 絶縁基材の表裏面にそれぞれ金属箔からなる導電層が形成された素材シートをベース上に載置し、上記金属箔の破断伸びを超えないように上記金属箔に凹陥部を形成する多角錐又は多角錐台の押圧部を有した超音波振動子をベース上方から素材シートの導電層に接触させ、超音波振動子に横振動の超音波を印加しつつ、上記押圧部で導電層に上記凹陥部を形成するとともに、この凹陥部を上記絶縁基材に通して反対側の導電層に溶接することを特徴とする非接触型データキャリア用導電部材の製造方法。   Polygonal pyramids that place a sheet of material on which conductive layers made of metal foil are formed on the front and back surfaces of an insulating base material on a base, and that form recesses in the metal foil so as not to exceed the breaking elongation of the metal foil. Alternatively, an ultrasonic vibrator having a pressing portion of a polygonal frustum is brought into contact with the conductive layer of the material sheet from above the base, and the ultrasonic wave of the lateral vibration is applied to the ultrasonic vibrator, and the conductive layer is applied to the conductive layer by the pressing portion. A method of manufacturing a conductive member for a non-contact type data carrier, wherein a concave portion is formed, and the concave portion is passed through the insulating base material and welded to the opposite conductive layer. 絶縁基材の表裏面にそれぞれ金属箔からなる導電層が形成された素材シートをベース上に載置し、上記金属箔の破断伸びを超えないように上記金属箔に凹陥部を形成する超音波振動子をベース上方から素材シートの導電層に接触させ、超音波振動子に横振動の超音波を印加しつつ、上記導電層に上記凹陥部を形成するとともに、この凹陥部を上記絶縁基材に通して反対側の導電層に溶接することを特徴とする非接触型データキャリア用導電部材の製造方法。   An ultrasonic wave in which a material sheet having a conductive layer made of a metal foil formed on the front and back surfaces of an insulating base material is placed on a base, and a recess is formed in the metal foil so as not to exceed the breaking elongation of the metal foil. The vibrator is brought into contact with the conductive layer of the material sheet from above the base, and while applying the ultrasonic vibration of the transverse vibration to the ultrasonic vibrator, the concave portion is formed in the conductive layer, and the concave portion is formed on the insulating base material. And manufacturing the conductive member for a non-contact type data carrier, wherein the conductive member is welded to the opposite conductive layer. 請求項8又は請求項9に記載の非接触型データキャリア用導電部材の製造方法において、ベースと超音波振動子の一方又は双方を加熱しておくことを特徴とする非接触型データキャリア用導電部材の製造方法。   10. The method for manufacturing a non-contact data carrier conductive member according to claim 8 or 9, wherein one or both of the base and the ultrasonic transducer are heated. Manufacturing method of member. 請求項8に記載の非接触型データキャリア用導電部材の製造方法において、超音波振動子に複数個の押圧部を隣接して設けることにより、複数個の凹陥部を隣接して形成するようにしたことを特徴とする非接触型データキャリア用導電部材の製造方法。   9. The method of manufacturing a non-contact data carrier conductive member according to claim 8, wherein a plurality of depressions are formed adjacent to each other by providing a plurality of pressing portions adjacent to the ultrasonic transducer. A method of manufacturing a conductive member for a non-contact type data carrier. 請求項8乃至請求項11のいずれかに記載の非接触型データキャリア用導電部材の製造方法において、絶縁基材の表裏面の導電層のうち一方がアンテナを含み、他方がブリッジを含み、アンテナの両端部又はブリッジの両端部に、一体化された二つの超音波振動子を各々同時に当て、この二つの超音波振動子に対し上記両端部同士を結ぶ線に直交する方向に振動する横振動の超音波を印加しつつ、一方の導電層を上記絶縁基材に通して反対側の導電層に溶接することを特徴とする非接触型データキャリア用導電部材の製造方法。   12. The method of manufacturing a conductive member for a non-contact type data carrier according to claim 8, wherein one of the conductive layers on the front and back surfaces of the insulating base includes an antenna, and the other includes a bridge. The two ultrasonic transducers that are integrated with each other at both ends or the both ends of the bridge at the same time, and transverse vibration that vibrates in the direction perpendicular to the line connecting the two end portions to the two ultrasonic transducers. A method for producing a conductive member for a non-contact data carrier, wherein one conductive layer is passed through the insulating substrate and welded to the opposite conductive layer while applying the ultrasonic wave. 絶縁基材の表裏面にそれぞれ金属箔からなる導電層が形成された素材シートを載置するベースと、上記金属箔の破断伸びを超えないように上記金属箔に凹陥部を形成する多角錐又は多角錐台の押圧部を有した超音波振動子とを具備し、超音波振動子をベース上方から素材シートの導電層に接触させ、超音波振動子に横振動の超音波を印加しつつ、上記押圧部で導電層に上記凹陥部を形成するとともに、この凹陥部を上記絶縁基材に通して反対側の導電層に溶接することを特徴とする非接触型データキャリア用導電部材の製造装置。   A base for placing a material sheet on which conductive layers made of metal foil are formed on the front and back surfaces of the insulating base, and a polygonal pyramid that forms a recess in the metal foil so as not to exceed the elongation at break An ultrasonic vibrator having a pressing portion of a polygonal frustum, bringing the ultrasonic vibrator into contact with the conductive layer of the material sheet from above the base, and applying ultrasonic waves of lateral vibration to the ultrasonic vibrator, An apparatus for producing a conductive member for a non-contact type data carrier, wherein the pressing portion forms the concave portion in the conductive layer, and the concave portion is welded to the opposite conductive layer through the insulating base material. . 請求項13に記載の非接触型データキャリア用導電部材の製造装置において、超音波振動子に複数個の多角錐又は多角錐台の押圧部が隣接して形成されたことを特徴とする非接触型データキャリア用導電部材の製造装置。   14. The non-contact data carrier conductive member manufacturing apparatus according to claim 13, wherein a plurality of polygonal pyramids or polygonal frustum pressing portions are formed adjacent to the ultrasonic transducer. Manufacturing device for conductive member for type data carrier. 絶縁基材の表裏面にそれぞれ金属箔からなる導電層が形成された素材シートを載置するベースと、上記金属箔の破断伸びを超えないように上記金属箔に凹陥部を形成する超音波振動子とを具備し、超音波振動子をベース上方から素材シートの導電層に接触させ、超音波振動子に横振動の超音波を印加しつつ、上記導電層に上記凹陥部を形成するとともに、この凹陥部を上記絶縁基材に通して反対側の導電層に溶接するようにしたことを特徴とする非接触型データキャリア用導電部材の製造装置。   A base on which material sheets each having a conductive layer made of metal foil are formed on the front and back surfaces of an insulating substrate, and ultrasonic vibration that forms a recess in the metal foil so as not to exceed the breaking elongation of the metal foil. The ultrasonic vibrator is brought into contact with the conductive layer of the material sheet from above the base, and the concave portion is formed in the conductive layer while applying the ultrasonic vibration of the transverse vibration to the ultrasonic vibrator, An apparatus for manufacturing a conductive member for a non-contact type data carrier, wherein the concave portion is passed through the insulating base material and welded to the opposite conductive layer. 請求項13乃至請求項15のいずれかに記載の非接触型データキャリア用導電部材の製造装置において、絶縁基材の表裏面の導電層のうち一方がアンテナを含み、他方がブリッジを含んだ素材シートにおけるアンテナの両端部又はブリッジの両端部に各々当てる一体化された二つの超音波振動子を有し、各超音波振動子を上記両端部に各々同時に当て、この二つの超音波振動子に対し上記両端部同士を結ぶ線に直交する方向に振動する横振動の超音波を印加しつつ、一方の導電層を上記絶縁基材に通して反対側の導電層に溶接するようにしたことを特徴とする非接触型データキャリア用導電部材の製造装置。   16. The apparatus for manufacturing a non-contact data carrier conductive member according to claim 13, wherein one of the conductive layers on the front and back surfaces of the insulating base includes an antenna and the other includes a bridge. It has two integrated ultrasonic transducers that are respectively applied to both ends of the antenna or the bridge in the sheet, and each ultrasonic transducer is applied to each of the both ends at the same time. On the other hand, while applying ultrasonic waves of transverse vibration that vibrates in a direction perpendicular to the line connecting the two end portions, one conductive layer was passed through the insulating base material and welded to the opposite conductive layer. An apparatus for manufacturing a conductive member for a non-contact type data carrier.
JP2006189064A 2006-07-10 2006-07-10 Conductive member for non-contact type data carrier and its manufacturing method and device Pending JP2008015968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006189064A JP2008015968A (en) 2006-07-10 2006-07-10 Conductive member for non-contact type data carrier and its manufacturing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006189064A JP2008015968A (en) 2006-07-10 2006-07-10 Conductive member for non-contact type data carrier and its manufacturing method and device

Publications (1)

Publication Number Publication Date
JP2008015968A true JP2008015968A (en) 2008-01-24

Family

ID=39072886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006189064A Pending JP2008015968A (en) 2006-07-10 2006-07-10 Conductive member for non-contact type data carrier and its manufacturing method and device

Country Status (1)

Country Link
JP (1) JP2008015968A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239266A (en) * 2008-03-03 2009-10-15 Showa Denko Packaging Co Ltd Both-sides conduction method for wiring board
WO2010125818A1 (en) * 2009-04-28 2010-11-04 凸版印刷株式会社 Antenna sheet, data carrier with non-contact ic, and method for producing antenna sheet
CN107658117A (en) * 2017-09-30 2018-02-02 麦格磁电科技(珠海)有限公司 A kind of Wireless charging coil and preparation method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250192A (en) * 1987-04-07 1988-10-18 日東電工株式会社 Method of providing continuity of conductor in double-sided printed circuit
JPH02106092A (en) * 1988-10-14 1990-04-18 Canon Electron Inc Method of joining conductor
JPH09214133A (en) * 1996-01-31 1997-08-15 Sumitomo Electric Ind Ltd Connecting method for double-sided circuits
JPH09263079A (en) * 1996-03-27 1997-10-07 Toyo Alum Kk Electric part element and its printing
JP2000252376A (en) * 1999-02-25 2000-09-14 Mitsui High Tec Inc Substrate unit frame for mounting ic chip
JP2002544676A (en) * 1999-05-10 2002-12-24 ジェムプリュス Method for achieving contact between two conductive layers separated by an insulating layer
JP2003154467A (en) * 2001-11-19 2003-05-27 Sony Corp Electric connection device, electric connection method, and battery
JP2004063376A (en) * 2002-07-31 2004-02-26 Sumitomo Wiring Syst Ltd Connecting method of flexible flat cable and horn structure of ultrasonic welding machine
JP2004095627A (en) * 2002-08-29 2004-03-25 Matsushita Electric Ind Co Ltd Flexible circuit board, and method and device for connecting conductor pattern therein
JP2004114136A (en) * 2002-09-27 2004-04-15 Sony Corp Ultrasonic welding equipment
JP2004134678A (en) * 2002-10-11 2004-04-30 Sony Corp Wiring board, manufacturing method thereof and non-contact ic card
JP2005088067A (en) * 2003-09-19 2005-04-07 Mitsubishi Electric Corp Horn, ultrasonic joining device including horn, and ultrasonic joining method
WO2006059732A1 (en) * 2004-12-03 2006-06-08 Hallys Corporation Interposer bonding device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250192A (en) * 1987-04-07 1988-10-18 日東電工株式会社 Method of providing continuity of conductor in double-sided printed circuit
JPH02106092A (en) * 1988-10-14 1990-04-18 Canon Electron Inc Method of joining conductor
JPH09214133A (en) * 1996-01-31 1997-08-15 Sumitomo Electric Ind Ltd Connecting method for double-sided circuits
JPH09263079A (en) * 1996-03-27 1997-10-07 Toyo Alum Kk Electric part element and its printing
JP2000252376A (en) * 1999-02-25 2000-09-14 Mitsui High Tec Inc Substrate unit frame for mounting ic chip
JP2002544676A (en) * 1999-05-10 2002-12-24 ジェムプリュス Method for achieving contact between two conductive layers separated by an insulating layer
JP2003154467A (en) * 2001-11-19 2003-05-27 Sony Corp Electric connection device, electric connection method, and battery
JP2004063376A (en) * 2002-07-31 2004-02-26 Sumitomo Wiring Syst Ltd Connecting method of flexible flat cable and horn structure of ultrasonic welding machine
JP2004095627A (en) * 2002-08-29 2004-03-25 Matsushita Electric Ind Co Ltd Flexible circuit board, and method and device for connecting conductor pattern therein
JP2004114136A (en) * 2002-09-27 2004-04-15 Sony Corp Ultrasonic welding equipment
JP2004134678A (en) * 2002-10-11 2004-04-30 Sony Corp Wiring board, manufacturing method thereof and non-contact ic card
JP2005088067A (en) * 2003-09-19 2005-04-07 Mitsubishi Electric Corp Horn, ultrasonic joining device including horn, and ultrasonic joining method
WO2006059732A1 (en) * 2004-12-03 2006-06-08 Hallys Corporation Interposer bonding device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239266A (en) * 2008-03-03 2009-10-15 Showa Denko Packaging Co Ltd Both-sides conduction method for wiring board
JP2009239267A (en) * 2008-03-03 2009-10-15 Showa Denko Packaging Co Ltd Both-sides conduction method for wiring board
WO2010125818A1 (en) * 2009-04-28 2010-11-04 凸版印刷株式会社 Antenna sheet, data carrier with non-contact ic, and method for producing antenna sheet
KR101283727B1 (en) * 2009-04-28 2013-07-08 도판 인사츠 가부시키가이샤 Antenna sheet, data carrier with non-contact ic, and method for producing antenna sheet
KR101320145B1 (en) * 2009-04-28 2013-10-23 도판 인사츠 가부시키가이샤 Method for producing antenna sheet
AU2010243050B2 (en) * 2009-04-28 2014-09-11 Toppan Printing Co., Ltd. Antenna sheet, data carrier with non-contact IC, and method for manufacturing antenna sheet
JP5605358B2 (en) * 2009-04-28 2014-10-15 凸版印刷株式会社 Antenna sheet, data carrier with non-contact IC
US9183488B2 (en) 2009-04-28 2015-11-10 Toppan Printing Co., Ltd. Antenna sheet, data carrier with non-contact IC, and method for manufacturing antenna sheet
US9436905B2 (en) 2009-04-28 2016-09-06 Toppan Printing Co., Ltd. Method for manufacturing antenna sheet
CN107658117A (en) * 2017-09-30 2018-02-02 麦格磁电科技(珠海)有限公司 A kind of Wireless charging coil and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5370154B2 (en) Antenna sheet, transponder and booklet
KR20030076274A (en) Non-contact id card and the method for producing thereof
JP2004521429A (en) Contactless smart card having antenna support and chip support made of fibrous material
US7190072B2 (en) RFID-chip having RFID-tag or magnifying electrode
US20080073800A1 (en) Methods of connecting an antenna to a transponder chip
JP2006031336A (en) Method for manufacturing rfid tag
KR20050045911A (en) A method for manufacturing rfid tag
TW201319951A (en) Hybrid contact-contactless smart card with reinforced electronic module
JP2008015968A (en) Conductive member for non-contact type data carrier and its manufacturing method and device
JP4091096B2 (en) Interposer joining device
JP4853760B2 (en) IC card, IC card manufacturing method, and IC card manufacturing apparatus
JP3517374B2 (en) Method for manufacturing non-contact type IC card
JP2007121815A (en) Seal tag inlet
JP2006196526A (en) Packaging method of semiconductor chip, structure of wiring circuit board, and process for producing wiring circuit board
JP2007115090A (en) Noncontact ic inlet, information storage medium with noncontact ic provided therewith, and method for manufacturing noncontact ic inlet
CA2528797A1 (en) Rfid transponder structure optimized for in-line label construction
JP4054226B2 (en) Non-contact ID cards and manufacturing method thereof
JP4973039B2 (en) Non-contact data carrier conductive member manufacturing apparatus
JP2007310472A (en) Base material for non-contact ic card, non-contact ic card and method for manufacturing base material for non-contact ic card
JP2010257416A (en) Information recording medium, data carrier with non-contact type ic, and method of manufacturing the information recording medium
JP2000311229A (en) Ic card and its production
KR20070055606A (en) Method for micropackaging of electrical or electromechanical devices and micropackage
JP4220252B2 (en) Product with product subparts connected to each other by crimp connection
JP2008515178A (en) Method for assembling an electronic component on a preferably soft support and an electronic article such as a passport thus obtained
JP2010117833A (en) Inlay, production method thereof, and non-contact type information medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120321