JP2008005616A - Backup power-supply unit - Google Patents

Backup power-supply unit Download PDF

Info

Publication number
JP2008005616A
JP2008005616A JP2006172148A JP2006172148A JP2008005616A JP 2008005616 A JP2008005616 A JP 2008005616A JP 2006172148 A JP2006172148 A JP 2006172148A JP 2006172148 A JP2006172148 A JP 2006172148A JP 2008005616 A JP2008005616 A JP 2008005616A
Authority
JP
Japan
Prior art keywords
battery pack
capacity battery
capacity
small
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006172148A
Other languages
Japanese (ja)
Inventor
Riyouji Shigemoto
亮二 重元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006172148A priority Critical patent/JP2008005616A/en
Publication of JP2008005616A publication Critical patent/JP2008005616A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for improving the charging efficiency, especially at high temperatures, in a backup power-supply unit having a large-capacity battery pack using natural energy as a charging power supply. <P>SOLUTION: A small-capacity battery pack is connected in parallel to the large-capacity battery pack; and when battery temperature becomes lower than a predetermined value, the large-capacity battery pack is charged; and when the battery temperature becomes higher than the predetermined value, the small-capacity battery pack is charged, thus improving the charging efficiency of the back-up power-supply unit as a whole. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、バックアップ電源装置に関するものである。   The present invention relates to a backup power supply apparatus.

近年は太陽光や風力といった自然エネルギーを充電電源とした発電システムが提案されている。発電システムからの出力電流は自然エネルギーの出力が大きくない関係で1〜3A程度である。   In recent years, power generation systems using natural energy such as sunlight and wind power as a charging power source have been proposed. The output current from the power generation system is about 1 to 3 A because the natural energy output is not large.

前記発電システムに使用されるバックアップ用電源装置は、自然エネルギーによる充電が天候に左右されることを考慮して1日以上連続で放電できること、また昨今、大容量化が望まれていることから、30Ahを超える大容量のニッケル水素蓄電池などが要望されている。   The backup power supply used in the power generation system can be discharged continuously for more than one day in consideration of the fact that charging by natural energy depends on the weather, and recently, a large capacity is desired. There is a demand for a nickel-metal hydride storage battery having a large capacity exceeding 30 Ah.

ニッケル水素蓄電池の充電は定電流にて行うが、前述のように出力電流が1〜3Aと小さいため、充電電流としては0.1It以下という非常に小さな値になる。ニッケル水素蓄電池の場合、一般的に小さい充電電流では特に50度以上の高温時の充電効率が低下する傾向にあるが、自然エネルギーを用いた発電システムは屋外に設置されることが多いため、特に夏場において充電効率が低下し、必要とする放電容量が確保できなくなることが懸念される。従って、前記発電システムは高温時でも確実に充電されることが望まれる。   The nickel-metal hydride storage battery is charged with a constant current. However, since the output current is as small as 1 to 3 A as described above, the charging current is a very small value of 0.1 It or less. In the case of nickel-metal hydride storage batteries, charging efficiency at high temperatures of 50 degrees or more generally tends to decrease especially at small charging currents. However, since power generation systems using natural energy are often installed outdoors, There is a concern that the charging efficiency is reduced in the summer and the required discharge capacity cannot be secured. Therefore, it is desirable that the power generation system be reliably charged even at high temperatures.

このような前記発電システムに対して従来より提案されている手段としては、直列に接続された組電池内のセルの充電効率差に基づいて充電電流を分流する手段(例えば特許文献1参照)や、小容量の電池を多並列に接続して必要な放電容量を確保しつつ充電電流を0.1It以上にするような構成とする方法などが提案されている。
特開2005−224024号公報
As means conventionally proposed for such a power generation system, means for diverting a charging current based on a charging efficiency difference between cells in an assembled battery connected in series (see, for example, Patent Document 1) A method has been proposed in which a small capacity battery is connected in parallel to ensure a necessary discharge capacity and a charging current of 0.1 It or more.
JP 2005-224024 A

しかしながら、従来の直列に接続された組電池内のセルの充電効率差に基づいて充電電流を分流する方法では、直列に接続する電池容量はほぼ同一でなければならないことから組電池内での充電電流は大きく変わらず、この手段によって充電効率を向上させることは難しい。また、小容量の電池を多並列に接続する方法では、電池の充電及び放電の制御が複雑になることに加えて使用する電池の数が非常に多くなるためにシステムの故障率が高くなってしまうといった懸念事項がある。   However, in the conventional method of diverting the charging current based on the difference in charging efficiency of the cells in the battery pack connected in series, the battery capacities connected in series must be almost the same. The current does not change greatly, and it is difficult to improve the charging efficiency by this means. In addition, in the method of connecting small capacity batteries in parallel, the control of battery charging and discharging becomes complicated, and the number of batteries to be used becomes very large, resulting in a high system failure rate. There are concerns such as

本発明は上記の課題を解決するためのもので、簡易な方法により高温時でも装置全体としての充電効率を維持できるバックアップ電源装置を提供することを目的とするものである。   An object of the present invention is to provide a backup power supply apparatus that can maintain the charging efficiency of the entire apparatus even at high temperatures by a simple method.

上記の課題を解決するために、本発明のバックアップ電源装置は、大容量電池パックと、前記大容量電池パックに並列接続された小容量電池パックと、前記大容量電池パックの電池温度を測定する温度センサとを備え、前記温度センサにより検出された電池温度が規定値より低いときは前記大容量電池パックに充電し、電池温度が規定値より高いときは前記小容量電池パックに充電するように構成したものである。   In order to solve the above problems, a backup power supply apparatus according to the present invention measures a battery capacity of a large capacity battery pack, a small capacity battery pack connected in parallel to the large capacity battery pack, and the large capacity battery pack. A temperature sensor, and when the battery temperature detected by the temperature sensor is lower than a specified value, the large capacity battery pack is charged, and when the battery temperature is higher than a specified value, the small capacity battery pack is charged. It is composed.

また、前記バックアップ電源装置は、大容量電池パックと小容量電池パックとへの充電
の切り換えを温度センサの出力によって動作するスイッチング素子で行う構成を取っており、具体的には電池温度が40度以上50度未満の規定値になると切換え動作を行う構成としている。これにより、出力電流が1〜3Aであっても小容量電池パックでは充電電流が高くなるため、高温時でも装置全体として充電効率を維持することができる。
Further, the backup power supply device has a configuration in which switching between charging to a large capacity battery pack and a small capacity battery pack is performed by a switching element that operates according to the output of a temperature sensor. Specifically, the battery temperature is 40 degrees. When the specified value is less than 50 degrees, the switching operation is performed. Thereby, even if the output current is 1 to 3 A, the charging current is high in the small-capacity battery pack, so that the charging efficiency of the entire device can be maintained even at high temperatures.

本発明によると、電池温度が高くなっても小容量電池パックに確実に充電することで、夏場のような高温雰囲気下にあっても充電容量が確保されるため、必要な放電容量が確保され、結果としてシステム全体の信頼性を向上させることに寄与するバックアップ電源装置を得ることができる。   According to the present invention, even when the battery temperature is high, the small capacity battery pack is reliably charged, so that the charge capacity is ensured even in a high temperature atmosphere such as in summer, so the necessary discharge capacity is ensured. As a result, a backup power supply device that contributes to improving the reliability of the entire system can be obtained.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、本発明におけるバックアップ電源装置の構成図である。図1において、大容量電池パック101は例えば30Ah以上のニッケル水素蓄電池群で構成された電池パック、小容量電池パック102は容量が大容量電池パックの1/10程度であるニッケル水素蓄電池群で構成された電池パックであり、両者は温度センサ103が取り付けられた状態で並列に接続されている。制御回路104は温度センサ103により測定した電池温度に基づいて充電の切り換えを指示するためのものであり、スイッチング素子105は制御回路104からの指令を受けて実際に充電の切り換えを行う素子である。充電電源106は太陽光や風力といった自然エネルギーの電力により負荷へ電力供給を行い、またバックアップ電源装置を充電するための装置である。DC/DCコンバータ107は充電装置106からの入力電圧を適切な電圧に変換する機器である。大容量電池パック101及び小容量電池パック102にはダイオード108が接続されており、負荷109に放電する際にそれぞれの電池パックから放電電流が逆流するのを防止する役割を担っている。   FIG. 1 is a configuration diagram of a backup power supply apparatus according to the present invention. In FIG. 1, a large-capacity battery pack 101 is composed of a nickel-metal hydride storage battery group of, for example, 30 Ah or more, and a small-capacity battery pack 102 is composed of a nickel-metal hydride storage battery group whose capacity is about 1/10 of that of a large-capacity battery pack. Both are connected in parallel with the temperature sensor 103 attached. The control circuit 104 is for instructing switching of charging based on the battery temperature measured by the temperature sensor 103, and the switching element 105 is an element that actually switches charging in response to a command from the control circuit 104. . The charging power source 106 is a device for supplying power to a load by using natural energy such as sunlight or wind power and charging a backup power source device. The DC / DC converter 107 is a device that converts the input voltage from the charging device 106 into an appropriate voltage. A diode 108 is connected to the large-capacity battery pack 101 and the small-capacity battery pack 102, and plays a role in preventing discharge current from flowing backward from each battery pack when discharging to the load 109.

本発明におけるバックアップ電源装置はDC/DCコンバータ107、制御回路104、スイッチング素子105、大容量電池パック101、小容量電池パック102、温度センサ103、ダイオード108からなる。   The backup power supply apparatus according to the present invention includes a DC / DC converter 107, a control circuit 104, a switching element 105, a large capacity battery pack 101, a small capacity battery pack 102, a temperature sensor 103, and a diode 108.

同図を用いて、本実施の形態におけるバックアップ電源装置の充電動作を詳細に説明する。充電電源106から出力される電力はDC/DCコンバータ107を介して1〜3Aの充電電流で電池パック101,102に供給される。それぞれの電池パックの中央部には温度センサ103が取り付けられており、これらの温度センサは制御回路104に接続されている。この制御回路104は温度センサ103にて測定した電池温度に基づき、電池温度が規定値より低い場合は大容量電池パック101に充電し、電池温度が規定値より高い場合は小容量電池パック102に充電されるようにスイッチング素子105を制御する。これにより電池温度が高くなってもバックアップ電源装置全体としての充電容量が確保されるという特有の効果を有する。なお、充電を切り換える際の電池温度の規定値は40度以上50度未満の範囲、特に45度近辺が好ましい。   The charging operation of the backup power supply device in the present embodiment will be described in detail with reference to FIG. The electric power output from the charging power source 106 is supplied to the battery packs 101 and 102 through the DC / DC converter 107 with a charging current of 1 to 3A. A temperature sensor 103 is attached to the center of each battery pack, and these temperature sensors are connected to the control circuit 104. Based on the battery temperature measured by the temperature sensor 103, the control circuit 104 charges the large-capacity battery pack 101 when the battery temperature is lower than the specified value, and supplies the small-capacity battery pack 102 when the battery temperature is higher than the specified value. The switching element 105 is controlled to be charged. As a result, there is a specific effect that the charging capacity of the entire backup power supply device is ensured even when the battery temperature increases. In addition, the specified value of the battery temperature when switching charging is preferably in the range of 40 degrees to less than 50 degrees, particularly around 45 degrees.

上述の規定値により、充電する電池パックの切り替えを行うが、規定値前後で温度が推移することによるチャタリングを防止するために、ある規定時間規定値を越えたら小容量電池パック102を充電するようにすることが好ましい。この際、システム構成に応じて、規定時間は5秒〜1時間程度で好ましい時間にすれば良い。   The battery pack to be charged is switched according to the above-mentioned specified value, but in order to prevent chattering due to the temperature changing around the specified value, the small-capacity battery pack 102 is charged when the specified value exceeds a specified time. It is preferable to make it. At this time, depending on the system configuration, the specified time may be set to a preferable time of about 5 seconds to 1 hour.

充電を切り換える温度を40度以上50度未満の範囲とした理由は、一般的にニッケル水素蓄電池を例にとると、充電電流が0.1Itの場合、25度と比較して充電効率が低下し始める温度領域が40度から50度の範囲であるためである。以上のことから、電池
温度に応じて充電の切り換え動作を行うことで、電池パック全体としての充電効率を減少させることなく充電動作を行うことができるために、システム全体としての信頼性を向上させることが可能となる。
The reason why the temperature for switching the charge is in the range of 40 degrees or more and less than 50 degrees is that when the nickel hydride storage battery is generally taken as an example, the charging efficiency is lower than 25 degrees when the charging current is 0.1 It. This is because the temperature range to start is in the range of 40 degrees to 50 degrees. From the above, since the charging operation can be performed without reducing the charging efficiency of the entire battery pack by performing the switching operation of charging according to the battery temperature, the reliability of the entire system is improved. It becomes possible.

また、大容量電池パック101及び小容量電池パック102にはそれぞれダイオード106を接続しているため、放電する際に一方の系からもう一方の系に向かって電流が逆流することはなく、負荷107に確実に放電することができる。   Further, since the diode 106 is connected to each of the large-capacity battery pack 101 and the small-capacity battery pack 102, current does not flow backward from one system to the other system when discharging, and the load 107 Can be reliably discharged.

本発明において、大容量電池パックとは30Ah以上の容量の電池パックを指し、小容量電池パックとは、30Ah未満かつ大容量電池パックの1/3以下の容量の電池パックを指す。大容量電池パックと小容量電池パックとの容量差は3:1〜20:1の範囲で充電効率維持の効果が得られるが、10:1程度が最も充電効率の面で好ましい。   In the present invention, a large-capacity battery pack refers to a battery pack having a capacity of 30 Ah or more, and a small-capacity battery pack refers to a battery pack having a capacity of less than 30 Ah and 1/3 or less of the large-capacity battery pack. The difference in capacity between the large capacity battery pack and the small capacity battery pack is in the range of 3: 1 to 20: 1. The effect of maintaining the charging efficiency is obtained, but about 10: 1 is most preferable in terms of charging efficiency.

本発明において、温度センサ103は大容量電池パック101、小容量電池パック102双方の電池温度を測定しているが、本発明の実施には大容量電池パック101の電池温度測定のみが必須である。ただし、双方の温度測定をすることにより、異常検出や故障診断等に役立つことは言うまでもない。   In the present invention, the temperature sensor 103 measures the battery temperature of both the large-capacity battery pack 101 and the small-capacity battery pack 102, but only the battery temperature measurement of the large-capacity battery pack 101 is essential for the implementation of the present invention. . However, it goes without saying that measuring both temperatures is useful for detecting abnormalities and diagnosing faults.

また、本発明は特に充電電流が低い場合に効果が大きく、大容量電池パック101への充電電流が0.3It以下となるような場合にその効果は顕著である。鉛蓄電池であれば、0.25It以下、ニッケル水素蓄電池であれば、0.1It以下の場合に特に顕著となる。   The present invention is particularly effective when the charging current is low, and the effect is remarkable when the charging current to the large-capacity battery pack 101 is 0.3 It or less. In the case of a lead storage battery, it becomes particularly significant in the case of 0.25 It or less, and in the case of a nickel metal hydride storage battery, it is 0.1 It or less.

また、小容量電池パックの充電を行い満充電となった際には、充電効率が落ちても大容量電池パックの充電を行うようにしても良い。その場合、自然放電等により小容量電池パックが規定値(例:90%)以下まで容量減少した場合、再度小容量電池パックを充電するようにすれば良い。その際、制御回路104がこの充電制御機能を併せ持つこともできる。   Further, when the small capacity battery pack is charged and becomes fully charged, the large capacity battery pack may be charged even if the charging efficiency is lowered. In that case, when the capacity of the small-capacity battery pack decreases to a specified value (eg, 90%) or less due to natural discharge or the like, the small-capacity battery pack may be charged again. At that time, the control circuit 104 can also have this charge control function.

また、本実施の形態においては、小容量電池パックを1つだけ備える構成としたが、小容量電池パックを複数備え、1つ目の小容量電池パックが満充電となっても電池温度が規定値以上の際には2つ目の小容量電池パックを充電する構成としても良い。   In the present embodiment, only one small-capacity battery pack is provided. However, a plurality of small-capacity battery packs are provided, and the battery temperature is regulated even when the first small-capacity battery pack is fully charged. When the value is greater than or equal to the value, the second small capacity battery pack may be charged.

本発明のバックアップ電源装置は、自然エネルギーを充電電源とし、1日以上の長時間に渡ってバックアップが必要な機器に対して有用である。   The backup power supply device of the present invention is useful for a device that uses natural energy as a charging power supply and needs to be backed up for a long time of one day or longer.

本発明のバックアップ電源装置を用いた発電システムのブロック図Block diagram of power generation system using backup power supply device of the present invention

符号の説明Explanation of symbols

101 大容量電池パック
102 小容量電池パック
103 温度センサ
104 制御回路
105 スイッチング素子
106 充電電源
107 DC/DCコンバータ
108 ダイオード
109 負荷
DESCRIPTION OF SYMBOLS 101 Large capacity battery pack 102 Small capacity battery pack 103 Temperature sensor 104 Control circuit 105 Switching element 106 Charging power supply 107 DC / DC converter 108 Diode 109 Load

Claims (4)

大容量電池パックと、前記大容量電池パックに並列接続された小容量電池パックと、前記大容量電池パックの電池温度を測定する温度センサとを備え、
前記温度センサにより検出された電池温度が規定値より低いときは前記大容量電池パックに充電し、電池温度が規定値より高いときは前記小容量電池パックに充電するように構成したことを特徴とするバックアップ電源装置。
A large-capacity battery pack, a small-capacity battery pack connected in parallel to the large-capacity battery pack, and a temperature sensor for measuring a battery temperature of the large-capacity battery pack,
The large-capacity battery pack is charged when the battery temperature detected by the temperature sensor is lower than a specified value, and the small-capacity battery pack is charged when the battery temperature is higher than a specified value. Backup power supply.
大容量電池パックと小容量電池パックとへの充電の切り換えは、電池温度を検出する温度センサの出力によって動作するスイッチング素子で行うようにした請求項1記載のバックアップ電源装置。   2. The backup power supply apparatus according to claim 1, wherein the switching of charging to the large-capacity battery pack and the small-capacity battery pack is performed by a switching element that operates according to an output of a temperature sensor that detects the battery temperature. 大容量電池パックと小容量電池パックとへの充電の切り換えを行う規定値は40度以上50度未満の範囲で定めた請求項1記載のバックアップ電源装置。   2. The backup power supply device according to claim 1, wherein the specified value for switching charging to the large-capacity battery pack and the small-capacity battery pack is set in a range of 40 degrees to less than 50 degrees. 大容量電池パックおよび小容量電池パックのそれぞれに放電時の逆流を防止するダイオードを接続した請求項1記載のバックアップ電源装置。   2. The backup power supply device according to claim 1, wherein a diode for preventing a reverse flow during discharging is connected to each of the large capacity battery pack and the small capacity battery pack.
JP2006172148A 2006-06-22 2006-06-22 Backup power-supply unit Pending JP2008005616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006172148A JP2008005616A (en) 2006-06-22 2006-06-22 Backup power-supply unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006172148A JP2008005616A (en) 2006-06-22 2006-06-22 Backup power-supply unit

Publications (1)

Publication Number Publication Date
JP2008005616A true JP2008005616A (en) 2008-01-10

Family

ID=39009525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006172148A Pending JP2008005616A (en) 2006-06-22 2006-06-22 Backup power-supply unit

Country Status (1)

Country Link
JP (1) JP2008005616A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080549A (en) * 2008-09-24 2010-04-08 Sekisui Chem Co Ltd Solar photovoltaic power generation module
CN109617173A (en) * 2018-12-26 2019-04-12 国电南瑞科技股份有限公司 A kind of high/low temperature rechargeable battery charging circuit applied to fault diagnosis terminal
CN110034595A (en) * 2019-04-08 2019-07-19 深圳市锐明技术股份有限公司 A kind of backup battery managing device and mobile unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080549A (en) * 2008-09-24 2010-04-08 Sekisui Chem Co Ltd Solar photovoltaic power generation module
CN109617173A (en) * 2018-12-26 2019-04-12 国电南瑞科技股份有限公司 A kind of high/low temperature rechargeable battery charging circuit applied to fault diagnosis terminal
CN110034595A (en) * 2019-04-08 2019-07-19 深圳市锐明技术股份有限公司 A kind of backup battery managing device and mobile unit
CN110034595B (en) * 2019-04-08 2024-03-08 深圳市锐明技术股份有限公司 Backup power supply management device and vehicle-mounted equipment

Similar Documents

Publication Publication Date Title
US11616375B2 (en) Rechargeable battery systems and rechargeable battery system operational methods
JP5583781B2 (en) Power management system
JP3469228B2 (en) Power storage device charge / discharge control device, charge / discharge control method, and power storage system
JP4967162B2 (en) Secondary battery pack
EP2629387A1 (en) Power management system
KR20110097379A (en) Energy storage system and controlling method of the same
JPWO2012050014A1 (en) Power management system
WO2016067603A1 (en) Power supply device, power supply system, and method for controlling power supply device
JP2008099527A (en) Storage battery system in non-utility generation equipment connected to electric power system and driving method therefor
JP2010097760A (en) Electric energy storage system
US20150162768A1 (en) Control method and control apparatus using the same
TW201832442A (en) Conversion circuit device for uninterruptible power supply (ups) systems
JP2006311676A (en) Power supply system
WO2012049955A1 (en) Power management system
JP2012088086A (en) Power management system
JP2008005616A (en) Backup power-supply unit
JP2007288932A (en) Charge control device of photovoltaic power generation facility
JP2009044923A (en) Power supply system
JP5489779B2 (en) Lithium-ion battery charging system and charging method
WO2019163008A1 (en) Dc feeding system
JP2010063359A (en) Power supply system
WO2012049973A1 (en) Power management system
JP3530519B2 (en) Voltage equalizing device for power storage device and power storage system provided with the device
JP6385207B2 (en) Battery system
JP6265010B2 (en) Power storage system