JP2007535461A - Process for producing carbon fiber reinforced ceramic composites - Google Patents

Process for producing carbon fiber reinforced ceramic composites Download PDF

Info

Publication number
JP2007535461A
JP2007535461A JP2007510630A JP2007510630A JP2007535461A JP 2007535461 A JP2007535461 A JP 2007535461A JP 2007510630 A JP2007510630 A JP 2007510630A JP 2007510630 A JP2007510630 A JP 2007510630A JP 2007535461 A JP2007535461 A JP 2007535461A
Authority
JP
Japan
Prior art keywords
carbon
carbon fiber
fiber reinforced
composite
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007510630A
Other languages
Japanese (ja)
Inventor
ウォン リム、ドン
シク パク、ホン
ヒョン チョ、デ
キュ シン、ヒョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dacc CoLtd
Original Assignee
Dacc CoLtd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dacc CoLtd filed Critical Dacc CoLtd
Publication of JP2007535461A publication Critical patent/JP2007535461A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • C04B38/0032Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors one of the precursor materials being a monolithic element having approximately the same dimensions as the final article, e.g. a paper sheet which after carbonisation will react with silicon to form a porous silicon carbide porous body
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/023Composite materials containing carbon and carbon fibres or fibres made of carbonizable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00362Friction materials, e.g. used as brake linings, anti-skid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/26Corrosion of reinforcement resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0034Materials; Production methods therefor non-metallic
    • F16D2200/0039Ceramics
    • F16D2200/0047Ceramic composite, e.g. C/C composite infiltrated with Si or B, or ceramic matrix infiltrated with metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

本発明は、炭素繊維強化のセラミックの複合体の製造方法に関し、本発明に係る炭素繊維強化のセラミックの複合体の製造方法は、炭素繊維と、炭素含有のポリマーの前驅体を混合した混合物から成形した炭素繊維強化の樹脂の複合体を製造する段階と、前記炭素繊維強化の樹脂の複合体を高温で熱処理して内部から外部に蒸着速度を早くしながら、急速の熱勾配の化学気相の浸透の工程で熱分解の炭素を蒸着して炭素繊維強化の炭素の複合体を製造する段階と、前記炭素繊維強化の炭素の複合体の気孔に液状のケイ素を浸透させる段階からなったことを特徴とする。このような本発明に係る炭素繊維強化のセラミックの複合体の製造方法は、炭素繊維強化のセラミックの複合体の物性を向上させる効果があり、従来の全ての化学気相の浸透の工程に比べ、5 〜10倍以上の蒸着速度で熱分解の炭素層を蒸着できるので、製造工程と、製造時間、そして製造費用の面で非常に向上した効果を発揮する。The present invention relates to a method for producing a carbon fiber reinforced ceramic composite, and the method for producing a carbon fiber reinforced ceramic composite according to the present invention comprises a mixture of carbon fiber and a precursor of a carbon-containing polymer. A step of producing a molded carbon fiber reinforced resin composite and a chemical vapor with a rapid thermal gradient while heat-treating the carbon fiber reinforced resin composite at a high temperature to increase the deposition rate from the inside to the outside. The step of depositing pyrolytic carbon in the step of infiltration of carbon to produce a carbon fiber reinforced carbon composite, and the step of infiltrating liquid silicon into the pores of the carbon fiber reinforced carbon composite It is characterized by. The method for producing a carbon fiber reinforced ceramic composite according to the present invention has the effect of improving the physical properties of the carbon fiber reinforced ceramic composite, compared to all conventional chemical vapor infiltration processes. Since the pyrolytic carbon layer can be deposited at a deposition rate of 5 to 10 times or more, the production process, production time, and production cost are greatly improved.

Description

本発明は、高温で優れた機械的強度を保持し、熱・化学的の浸蝕などのきびしい環境で優れた耐食性、耐熱性、そして摩擦・摩耗の特性を有する炭素繊維強化のセラミックの複合体の製造方法に関する。   The present invention provides a carbon fiber reinforced ceramic composite that retains excellent mechanical strength at high temperatures and has excellent corrosion resistance, heat resistance, and friction / wear characteristics in harsh environments such as thermal and chemical erosion. It relates to a manufacturing method.

繊維強化のセラミックの複合体(ceramic matrix composites)は、軽量であり、高温で優れた機械的・熱的の特性を有している。このような特性で繊維強化のセラミックの複合体は、航空機と陸上用の運送手段のブレーキディスク、及びパッドなどのような摩擦・摩耗の材料、高温で機械的強度、耐食性、そして耐熱性を要するセラミックエンジン、そしてロケットノズルの部分の超高温の耐熱材等に応用されている。繊維強化のセラミックの複合体は、セラミックの材料(Monolithic Ceramics) が有している脆性破壊の短所を克服するために工夫されて、炭素繊維、または炭化ケイ素繊維で製造したプリフォームの気孔を熱分解の炭素、炭化ケイ素、または窒化ホウ素のような耐熱材料で満たして製造する。   Fiber-reinforced ceramic composites are lightweight and have excellent mechanical and thermal properties at high temperatures. These properties of fiber-reinforced ceramic composites require friction and wear materials such as brake disks and pads for aircraft and land vehicles, mechanical strength, corrosion resistance and heat resistance at high temperatures It has been applied to ceramic engines and ultra high temperature heat-resistant materials in rocket nozzles. Fiber reinforced ceramic composites are devised to overcome the brittle fracture shortcomings of Monolithic Ceramics, and heat the pores of preforms made of carbon or silicon carbide fibers. Manufactured by filling with refractory materials such as cracked carbon, silicon carbide, or boron nitride.

現在まで、繊維強化のセラミックの複合体は、多様な製造工程で製造されているが、大部分の場合、製造工程の中、機械的・熱的の衝撃で繊維に損傷を与えるようになる。このような問題点を解決するために、セラミックの複合体は、低密度の多孔性繊維プリフォームの内に気体状の前驅体を投入した後、熱分解させてセラミックの基地相を蒸着させる。このような工程を化学気相浸透法(chemical vapor infiltration) といい、この製造工程は、低い温度と圧力の条件とで基地相を蒸着させることによって、既存のセラミックの複合体の製造から発生する繊維の損傷の問題点を解決した。   To date, fiber reinforced ceramic composites have been manufactured in a variety of manufacturing processes, but in most cases, the fibers are damaged by mechanical and thermal shock during the manufacturing process. In order to solve such problems, a ceramic composite is prepared by introducing a gaseous precursor into a low-density porous fiber preform and then thermally decomposing it to deposit a ceramic matrix phase. Such a process is called chemical vapor infiltration, which occurs from the production of an existing ceramic composite by depositing a matrix phase at low temperature and pressure conditions. The problem of fiber damage was solved.

しかし、このような工程は、高価の原料物質と製造装備を使用し、製造工程が複雑であり、数百時間以上の工程時間を必要とするので、その応用の分野は、宇宙・航空のような先端産業分野で非常に制約的である。   However, such processes use expensive raw materials and manufacturing equipment, and the manufacturing process is complicated and requires a process time of several hundred hours or more. It is very constrained in advanced industrial fields.

気体状態の原料ガスを用いる化学気相の浸透の工程と違い、液状のケイ素を多孔性の炭素プリフォームに含浸して炭素繊維強化のセラミックの複合体を製造する工程が開発された。   Unlike the chemical vapor infiltration process using a gaseous source gas, a process for producing a carbon fiber reinforced ceramic composite by impregnating liquid carbon with a porous carbon preform has been developed.

Walter Krenkel などは、特許文献1、特許文献2、そして特許文献3で、切断した炭素繊維、液状フェノール、そして炭素の粉末の混合体を高温・高圧の条件で成形した後、高温熱処理の工程で炭素繊維強化の炭素の複合体を製造した。このように製造した炭素繊維強化の炭素の複合体に液状のケイ素を浸透させ、炭素繊維強化のセラミックの複合体を陸上用の車両のブレーキディスク、及び宇宙・航空の分野の耐熱の材料に応用した。   Walter Krenkel et al., In Patent Document 1, Patent Document 2, and Patent Document 3, formed a mixture of cut carbon fiber, liquid phenol, and carbon powder under high-temperature and high-pressure conditions, followed by a high-temperature heat treatment process. Carbon fiber reinforced carbon composites were produced. Liquid silicon is infiltrated into the carbon fiber reinforced carbon composite manufactured in this way, and the carbon fiber reinforced ceramic composite is applied to brake disks for land vehicles and heat resistant materials in the field of space and aviation. did.

しかし、上記のように液状炭素の前驅体を混合し製造した炭素繊維強化の樹脂の複合体は、製造費用の面では既存の化学気相の浸透の工程に比べて効率的であるが、均一な炭素繊維保護層の形成が難しくて、液状のケイ素の含浸の工程の過程で液状のケイ素と炭素繊維の反応を防ぐのが難しく、これは炭素繊維強化のセラミックの複合体の機械的の物性を急激に減少させた。このような問題点を解決するために、特許文献4と、特許文献5、特許文献6、そして特許文献7では、液状有機バインダーを反復的に含浸させたり、混合体の組成を変化させ炭素繊維強化のセラミックの複合体を製造したが、炭素繊維の浸蝕による機械的の物性の低下の防止、及び高温摩擦・摩耗の特性の向上が得れなかった。   However, the carbon fiber reinforced resin composite produced by mixing the liquid carbon precursor as described above is more efficient than the existing chemical vapor infiltration process in terms of production cost. It is difficult to form a protective layer for carbon fiber and it is difficult to prevent the reaction between liquid silicon and carbon fiber during the process of impregnation with liquid silicon, which is the mechanical property of carbon fiber reinforced ceramic composites. Was drastically reduced. In order to solve such problems, Patent Document 4, Patent Document 5, Patent Document 6, and Patent Document 7 repeatedly impregnate a liquid organic binder or change the composition of the mixture to change the carbon fiber. Although a reinforced ceramic composite was produced, it was not possible to prevent deterioration of mechanical properties due to carbon fiber erosion and to improve high-temperature friction / wear characteristics.

前記と他の工程で、特許文献8と、特許文献9では、炭素繊維を織造して作ったプリフォームを等温/ 等圧の化学気相の浸透Isothermal/Isobaric chemical vapor infiltration、ICVI) の工程で熱分解の炭素を蒸着した後、再度炭素の前驅体を液状の含浸方法で密度化の工程を進行して炭素繊維強化のセラミックの複合体を製造した。このような工程は、繊維保護の側面では優れた性能の向上をなしたが、互に異なる炭素繊維強化のセラミックの複合体を一つの構造物に結合しにくく、複雑な形状の炭素繊維強化のセラミックの複合体の製造が容易でない。特に、その製造工程が複雑であり、数百時間以上の製造時間が要するので製造費用の増加を招いた。   In the above and other processes, in Patent Document 8 and Patent Document 9, a preform made by weaving carbon fiber is subjected to isothermal / isobaric chemical vapor infiltration (ICVI) process. After vapor deposition of pyrolytic carbon, a carbon fiber reinforced ceramic composite was manufactured by proceeding a densification process of the carbon precursor again by a liquid impregnation method. Although such a process has improved the performance in terms of fiber protection, it is difficult to combine different carbon fiber reinforced ceramic composites into one structure, and it is difficult to bond carbon fiber reinforced complex shapes. The manufacture of ceramic composites is not easy. In particular, the manufacturing process is complicated, and manufacturing time of several hundred hours or more is required, resulting in an increase in manufacturing cost.

現在までの炭素繊維強化のセラミックの複合体の製造技術に関する問題点を総合的に検討してみれば、大部分の場合、炭素繊維強化のセラミックの複合体の製造のために使われる炭素繊維強化の炭素の複合体の製造工程に多くの製造費用の投入と、技術的の問題点を抱いていることが分かる。例えば、既存の化学気相の浸透の工程の場合、繊維保護層として優れた特性を有しているが、高価の原料物質と製造工程の難しさで、炭素繊維強化の炭素の複合体の製造に適合していない。そして、炭素成分が含まれた有機バインダーの含浸の工程を利用して炭素繊維強化の樹脂の複合体を製造する場合、反復的な含浸の工程を必要とし、繊維保護の側面でその効能が減少するのが分かる。
米国特許第6308808号明細書 米国特許第6358565号明細書 米国特許第5942064号明細書 韓国特許出願番号第1999−7008146号明細書 米国特許第6079525号明細書 米国特許第6030913号明細書 米国特許第6231791号明細書 米国特許第6221475号明細書 韓国特許出願番号第1999−7003211号明細書
A comprehensive review of the issues related to the production of carbon fiber reinforced ceramic composites to date shows that in most cases the carbon fiber reinforced used for the production of carbon fiber reinforced ceramic composites. It can be seen that the production process of the carbon composite has a lot of production costs and has technical problems. For example, in the case of an existing chemical vapor infiltration process, it has excellent properties as a fiber protective layer, but due to the difficulty of expensive raw materials and manufacturing processes, the production of carbon fiber reinforced carbon composites Does not fit. When a carbon fiber reinforced resin composite is manufactured using an impregnation process of an organic binder containing a carbon component, a repetitive impregnation process is required, and its effectiveness is reduced in terms of fiber protection. I know you do.
US Pat. No. 6,308,808 US Pat. No. 6,358,565 US Pat. No. 5,942,064 Korean Patent Application No. 1999-7008146 Specification US Pat. No. 6,079,525 US Pat. No. 6,030,913 US Pat. No. 6,231,791 US Pat. No. 6,212,475 Korean Patent Application No. 1999-7003211 Specification

本発明は、前述した問題点を解決するためのことであって、本発明の目的は、炭素繊維強化のセラミックの複合体の製造に必要な出発物質、及び炭素繊維強化の炭素の複合体の製造方法を改善して炭素繊維強化のセラミックの複合体の熱・機械的の物性を向上させ、高価の製造費用、及び工程による前記の問題点を解決した炭素繊維強化のセラミックの複合体の製造方法を提供するためである。   The present invention is to solve the above-mentioned problems, and the object of the present invention is to provide a starting material necessary for producing a carbon fiber reinforced ceramic composite, and a carbon fiber reinforced carbon composite. Production of carbon fiber reinforced ceramic composites by improving the manufacturing method to improve the thermal and mechanical properties of carbon fiber reinforced ceramic composites and solving the above-mentioned problems due to expensive manufacturing costs and processes This is to provide a method.

本発明者らは、前記の問題点を解決するために、炭素のフェルトプリフォーム、サンドウィッチ構造、または炭素繊維の混合物を出発物質として、製造工程を単純化し、早くて低価の工程で均一な繊維保護層を有する炭素繊維強化の炭素の複合体を製造するために、急速の熱勾配の化学気相の浸透の工程を適用し、これと共に液状のケイ素の浸透の工程を利用して炭素繊維強化のセラミックの複合体を製造する方法を提供するためである。   In order to solve the above-mentioned problems, the inventors have simplified the manufacturing process by using a carbon felt preform, a sandwich structure, or a mixture of carbon fibers as a starting material, and are uniform in a fast and inexpensive process. Applying a rapid thermal gradient chemical vapor infiltration process to produce a carbon fiber reinforced carbon composite with a fiber protective layer and using the liquid silicon infiltration process together with the carbon fiber This is to provide a method for producing a reinforced ceramic composite.

前述した目的を達成するための本発明に係る炭素繊維強化のセラミックの複合体(Cf/C-SiC)の製造方法は、炭素繊維と炭素含有のポリマーの前驅体を混合した混合物から成形した炭素繊維強化の樹脂の複合体を製造する段階と、前記炭素繊維強化の樹脂の複合体を高温で熱処理して内部から外部に蒸着速度を早くしながら急速の熱勾配の化学気相の浸透の工程で熱分解の炭素を蒸着して炭素繊維強化の炭素の複合体を製造する段階と、前記炭素繊維強化の炭素の複合体の気孔に液状のケイ素を浸透させる段階からなったことを特徴とする。 Method for producing a ceramic composite of carbon fiber reinforced according to the present invention for achieving the above object (C f / C-SiC) was formed from a mixture obtained by mixing the pre驅体carbon fibers and carbon-containing polymer A step of producing a carbon fiber reinforced resin composite and a rapid thermal gradient chemical vapor infiltration while heat-treating the carbon fiber reinforced resin composite at a high temperature to increase the deposition rate from the inside to the outside. The method comprises the steps of: depositing pyrolytic carbon in a process to produce a carbon fiber reinforced carbon composite; and impregnating liquid silicon into pores of the carbon fiber reinforced carbon composite. To do.

そして、望ましくは、前記混合物には、前記炭素繊維が10〜60wt% 、前記炭素含有のポリマーの前驅体が30〜60wt% に含まれたことを特徴とする。
また、望ましくは、前記混合物には、炭化ケイ素の粉末が30wt% 以下、炭素の粉末が30wt% 以下が含まれたことを特徴とする。
Preferably, the mixture contains 10 to 60 wt% of the carbon fiber and 30 to 60 wt% of a precursor of the carbon-containing polymer.
Preferably, the mixture contains silicon carbide powder of 30 wt% or less and carbon powder of 30 wt% or less.

また、望ましくは、前記炭素繊維強化の樹脂の複合体は、前記混合物と炭素織物が交代に積層したことを特徴とする。
また、望ましくは、前記成形体には、混合の過程で混合した前記混合物によって炭素繊維とケイ素の反応を防ぐ1 次の表面層が形成され、前記1 次の表面層は、前記液状のケイ素を浸透させる段階で前記液状のケイ素と化学反応して炭化ケイ素とケイ素からなったセラミックの基地層に形成されるのを特徴とする。
Preferably, the carbon fiber reinforced resin composite is characterized in that the mixture and carbon fabric are alternately laminated.
Preferably, the molded body is formed with a primary surface layer that prevents a reaction between carbon fibers and silicon by the mixture that is mixed in the mixing process, and the primary surface layer includes the liquid silicon. A ceramic base layer made of silicon carbide and silicon is formed by chemical reaction with the liquid silicon in the infiltration step.

また、望ましくは、前記成形体は、不活性ガスの雰囲気の下で900 〜2200℃の温度で熱処理した後、前記急速の熱勾配の化学気相の浸透の工程で蒸着する段階で、1 次の表面層の上に2次の表面層である熱分解の炭素の基地層が蒸着するのを特徴とする。   Preferably, the molded body is heat-treated at a temperature of 900 to 2200 ° C. in an inert gas atmosphere, and then deposited in the rapid thermal gradient chemical vapor infiltration process. A base layer of pyrolytic carbon, which is a secondary surface layer, is deposited on the surface layer.

また、望ましくは、前記急速の熱勾配の化学気相の浸透の工程で蒸着する段階で、炭化水素ガスを用いて熱分解の反応の温度が700 〜1200℃、反応の圧力が188 〜1130torrの範囲でなるのを特徴とする。   Preferably, in the step of vapor deposition in the rapid thermal gradient chemical vapor infiltration step, the temperature of the pyrolysis reaction using a hydrocarbon gas is 700 to 1200 ° C., and the reaction pressure is 188 to 1130 torr. It is characterized by a range.

また、望ましくは、前記急速の熱勾配の化学気相の浸透の工程で蒸着する段階で、蒸着の領域を内部から外部に少なくとも複数個に分けて、それぞれの領域で互に異なる速度で蒸着するのを特徴とする。   Preferably, in the step of vapor deposition in the rapid thermal gradient chemical vapor infiltration step, the vapor deposition region is divided into at least a plurality of regions from the inside to the outside, and vapor deposition is performed at different rates in each region. It is characterized by.

また、望ましくは、前記蒸着の領域は、0.5 〜3.0mm/hrの蒸着速度の範囲で内部
から外部に蒸着するのを特徴とする。
また、望ましくは、前記炭素繊維強化の炭素の複合体は、見かけ密度が1.0 〜1.7g/cm、前記液状のケイ素の浸透の経路に利用される開いた気孔を5 〜30% 有することを特徴とする。
Preferably, the vapor deposition region is vapor-deposited from the inside to the outside within a vapor deposition rate range of 0.5 to 3.0 mm / hr.
Preferably, the carbon fiber reinforced carbon composite has an apparent density of 1.0 to 1.7 g / cm 3 and 5 to 30% of open pores used for the liquid silicon penetration path. Features.

また、望ましくは、前記液状のケイ素を浸透させる段階は、前記炭素繊維強化の炭素の複合体をケイ素の粉末の上に積層させて、反応器の内部を100torr 以下に保持した後、ケイ素の融解点である1410℃以上の温度で加熱して、液状のケイ素をプリフォームの内部に浸透させると同時に、複数個の炭素層と化学反応を誘導するのを特徴とする。   Preferably, the step of impregnating the liquid silicon includes laminating the carbon fiber reinforced carbon composite on the silicon powder and maintaining the interior of the reactor at 100 torr or less, and then melting the silicon. It is characterized by heating at a temperature of 1410 ° C. or higher, which is the point, to infiltrate liquid silicon into the interior of the preform, and at the same time induce chemical reactions with a plurality of carbon layers.

前述した目的を達成するための本発明に係る炭素繊維強化のセラミックの複合体の製造方法は、炭素のフェルトプリフォームを製造する段階と、前記炭素のフェルトプリフォームを内部から外部に蒸着速度を早くしながら、急速の熱勾配の化学気相の浸透の工程で蒸着して炭素繊維強化の炭素の複合体を製造する段階と、前記炭素繊維強化の炭素の複合体の気孔に液状のケイ素を浸透させる段階からなったことを特徴とする。   In order to achieve the above-mentioned object, a method of manufacturing a carbon fiber reinforced ceramic composite according to the present invention includes a step of manufacturing a carbon felt preform, and a deposition rate of the carbon felt preform from the inside to the outside. A stage of rapid chemical vapor chemical vapor infiltration with a rapid thermal gradient to produce a carbon fiber reinforced carbon composite, and liquid silicon in the pores of the carbon fiber reinforced carbon composite. It is characterized by comprising the step of infiltration.

また、望ましくは、前記炭素のフェルトプリフォームは、オキシペン、ペン、レーヨン、ピッチ系などの炭素系の繊維のいずれかからなることを特徴とする。
また、望ましくは、前記炭素のフェルトプリフォームは、マットの積層を0 ゜/+60゜/-60゜のような準等方性として、Z 軸に10mm以下の炭素繊維が補強されたことを特徴とする。
Preferably, the carbon felt preform is made of any one of carbon fibers such as oxypen, pen, rayon, and pitch.
Desirably, the carbon felt preform is reinforced with carbon fibers of 10 mm or less on the Z-axis, with the mat laminated being quasi-isotropic such as 0 ° / + 60 ° / -60 °. Features.

また、望ましくは、前記炭素のフェルトプリフォームには、前記急速の熱勾配の化学気相の浸透の工程で蒸着する段階によって、5 〜100μmの厚さの熱分解の炭素層が蒸着す
ることを特徴とする。
Preferably, the carbon felt preform is deposited with a pyrolytic carbon layer having a thickness of 5 to 100 μm according to the step of vapor deposition in the rapid thermal gradient chemical vapor infiltration process. Features.

また、望ましくは、前記液状のケイ素を浸透させる段階で、前記炭素繊維強化の炭素の複合体に液状のケイ素を含浸して、X 、Y 、Z の3 軸に炭素繊維が補強されたことを特徴とする。   Preferably, in the step of infiltrating the liquid silicon, the carbon fiber reinforced carbon composite is impregnated with liquid silicon, and the carbon fibers are reinforced in the three axes X, Y, and Z. Features.

また、望ましくは、前記急速の熱勾配の化学気相の浸透の工程で蒸着する段階で、炭化水素ガスを用いて熱分解の反応の温度が700 〜1200℃、反応の圧力が188 〜1130torrの範囲でなることを特徴とする。   Preferably, in the step of vapor deposition in the rapid thermal gradient chemical vapor infiltration step, the temperature of the pyrolysis reaction using a hydrocarbon gas is 700 to 1200 ° C., and the reaction pressure is 188 to 1130 torr. It is characterized by a range.

また、望ましくは、前記急速の熱勾配の化学気相の浸透の工程で蒸着する段階で、蒸着の領域を内部から外部に少なくとも複数個に分けて、それぞれの領域で互に異なる速度で蒸着するのを特徴とする。   Preferably, in the step of vapor deposition in the rapid thermal gradient chemical vapor infiltration step, the vapor deposition region is divided into at least a plurality of regions from the inside to the outside, and vapor deposition is performed at different rates in each region. It is characterized by.

また、望ましくは、前記蒸着の領域は、0.5 〜3.0mm/hrの蒸着速度の範囲で内部
から外部に蒸着するのを特徴とする。
また、望ましくは、前記炭素繊維強化の炭素の複合体は、見かけ密度が1.0 〜1.7g/c
、前記液状のケイ素の浸透の経路に利用される開いた気孔を5 〜30% 有することを特徴とする。
Preferably, the vapor deposition region is vapor-deposited from the inside to the outside within a vapor deposition rate range of 0.5 to 3.0 mm / hr.
Preferably, the carbon fiber reinforced carbon composite has an apparent density of 1.0 to 1.7 g / c.
m 3 , characterized in that it has 5 to 30% of open pores used in the liquid silicon permeation pathway.

また、望ましくは、前記液状のケイ素を浸透させる段階は、前記炭素繊維強化の炭素の複合体をケイ素の粉末の上に積層させて、反応器の内部を100torr 以下に保持した後、ケイ素の融解点である1410℃以上の温度で加熱して液状のケイ素を前記炭素のフェルトプリフォームの内部に浸透させると共に、複数個の炭素層と化学反応を誘導するのを特徴とする。   Preferably, the step of impregnating the liquid silicon includes laminating the carbon fiber reinforced carbon composite on the silicon powder and maintaining the interior of the reactor at 100 torr or less, and then melting the silicon. It is characterized in that it is heated at a temperature of 1410 ° C. or higher, which is a point, so that liquid silicon penetrates the inside of the carbon felt preform and induces a chemical reaction with a plurality of carbon layers.

以下では、本発明に係る炭素繊維強化のセラミックの複合体の製造方法について説明する。以下の実施の形態において、各混合物の組成、及び製造方法は、その構成の一部を変形してより多様に変形実施できるのである。しかし、変形した実施の形態らが基本的に本発明が請求している技術的の構成要素を含むとすれば、すべて本発明の技術的の範畴に含まれるとみなければならない。   Below, the manufacturing method of the composite of the carbon fiber reinforced ceramic which concerns on this invention is demonstrated. In the following embodiments, the composition of each mixture and the production method can be modified in various ways by modifying a part of the structure. However, if the modified embodiments basically include the technical components claimed by the present invention, all of them should be considered to be included in the technical scope of the present invention.

まず、出発物質の側面において、炭素繊維をX 、Y 、Z の3 軸の方向に補強した炭素のフェルトプリフォームを利用したり、または、0.3 〜150 mmの長さを有する炭素繊維(carbon fibers) 、炭素含有のポリマーの前驅体、炭化ケイ素の粉末、そして黒鉛の粉末からなった混合物と炭素織物(carbon fabrics )を交代に積層させ製造したサンドウィッチ構造を適用したり、または、上記の混合物だけからなった炭素繊維強化の樹脂の複合体(CFRP)が使用できる。   First, on the side of the starting material, a carbon felt preform in which carbon fibers are reinforced in the directions of three axes of X, Y and Z is used, or carbon fibers having a length of 0.3 to 150 mm (carbon fibers). ) Applying a sandwich structure made by alternately laminating a mixture of carbon-containing polymer precursor, silicon carbide powder and graphite powder and carbon fabrics, or just the above mixture Carbon fiber reinforced resin composites (CFRP) can be used.

そして、製造した出発物質は、以下で説明する急速の熱勾配の化学気相の浸透の工程で熱分解の炭素層を蒸着して多孔性の炭素繊維強化の炭素の複合体を製造して、液状のケイ素を炭素繊維強化の炭素の複合体内の開いた気孔に浸透させて炭素繊維強化のセラミックの複合体を製造する。上記の炭素繊維強化のセラミックの複合体は、見かけ密度が2.2g/
cm以上、見かけ気孔率が1%以下、曲げ強度が100MPa以上、熱伝導度が35W/mk以上
の物性値を有する。
The produced starting material is a porous carbon fiber reinforced carbon composite by depositing a pyrolytic carbon layer in a rapid thermal gradient chemical vapor infiltration process described below. Liquid silicon is infiltrated into the open pores in the carbon fiber reinforced carbon composite to produce a carbon fiber reinforced ceramic composite. The above carbon fiber reinforced ceramic composite has an apparent density of 2.2 g /
It has physical properties of cm 3 or more, apparent porosity of 1% or less, bending strength of 100 MPa or more, and thermal conductivity of 35 W / mk or more.

本発明に係る炭素繊維強化のセラミックの複合体の製造方法は、図1 と、図2 に示したように出発物質に応じて2つの工程に分けられる。
まず、図1 に図示した工程は、0.3 〜150 mmの大きさに切断した炭素繊維、炭素含有のポリマーの前驅体、炭化ケイ素の粉末、そして黒鉛の粉末の混合物と炭素織物を利用して、炭素繊維強化の樹脂の複合体を製造する工程である。
The method for producing a carbon fiber reinforced ceramic composite according to the present invention can be divided into two steps depending on the starting material as shown in FIG. 1 and FIG.
First, the process illustrated in FIG. 1 uses a carbon fiber cut into a size of 0.3 to 150 mm, a precursor of a carbon-containing polymer, a powder of silicon carbide, and a powder of graphite and a carbon fabric, This is a process for producing a composite of carbon fiber reinforced resin.

炭素繊維強化の樹脂の複合体の製造の段階は、0.3 〜150 mmの大きさに切断した炭素繊維を炭素含有のポリマーの前驅体、炭化ケイ素の粉末、そして黒鉛の粉末と共に蒸溜水に入れて、分散と混合の過程を介して均一な混合物を製造する。   The carbon fiber reinforced resin composite is manufactured by placing carbon fibers cut to a size of 0.3 to 150 mm in distilled water together with a carbon-containing polymer precursor, silicon carbide powder, and graphite powder. To produce a uniform mixture through the process of dispersion and mixing.

そして、この混合物は、炭素繊維の表面に炭素含有のポリマーの前驅体、炭化ケイ素の粉末、そして黒鉛の粉末が1 次の表面層を形成し、混合の組成は、炭素繊維が10〜60wt% 、炭素含有の液状の前驅体が30〜60wt% である。そして、炭化ケイ素の粉末と炭素の粉末は、選択的に含まれる。すなわち、炭化ケイ素の粉末が0 〜30wt% 、そして炭素の粉末が0 〜30wt% から組成できる。(S101)(S102)
このように製造した混合物を炭素織物と共に交代に積層して、サンドウィッチ構造の成形体(green body) を作る(S110)。炭素織物は、平織、繻子織、綾織の形態が可能である。ここで、成形体の製造のさらに他の方法には、炭素織物を交代に積層せず、混合物だけを積層して製造できる。
In this mixture, a carbon-containing polymer precursor, silicon carbide powder, and graphite powder form a primary surface layer on the surface of the carbon fiber, and the composition of the mixture is 10 to 60 wt% of the carbon fiber. The carbon-containing liquid precursor is 30 to 60 wt%. A silicon carbide powder and a carbon powder are selectively included. That is, it can be composed of 0-30 wt% silicon carbide powder and 0-30 wt% carbon powder. (S101) (S102)
The mixture thus prepared is alternately laminated with a carbon fabric to form a green body having a sandwich structure (S110). The carbon fabric can be in the form of plain weave, satin weave or twill weave. Here, in still another method of manufacturing the molded body, the carbon woven fabric is not alternately stacked, and only the mixture can be stacked and manufactured.

以后、製造した成形体を成形モールドに裝入した後、80〜250 ℃の熱と、1 〜20 MP
aの圧力とを同時に加え、炭素繊維強化の樹脂の複合体を製造する。この際、製造した炭素繊維強化の樹脂の複合体は、見かけ密度が1.2 〜1.6g/cm、そして見かけ気孔率が1
〜20% の値を有する。(S110)(S120)(S130)
以上の炭素繊維強化の樹脂の複合体の製造方法は、本出願人が出願した韓国特許出願番号1995-0069130と、韓国特許出願番号1997-0023344に記載した技術的の内容を他の実施の形態に応用して適用できる。
After that, after the produced molded body was inserted into a molding mold, heat of 80 to 250 ° C. and 1 to 20 MP
The pressure of a is simultaneously applied to produce a carbon fiber reinforced resin composite. At this time, the produced carbon fiber reinforced resin composite had an apparent density of 1.2 to 1.6 g / cm 3 and an apparent porosity of 1
It has a value of ~ 20%. (S110) (S120) (S130)
The above-described method for producing a composite of carbon fiber reinforced resin is based on the technical contents described in Korean Patent Application No. 1995-0069130 and Korean Patent Application No. 1997-0023344 filed by the present applicant. Applicable to.

次に、急速の熱勾配の化学気相の浸透の工程で蒸着する段階(S140)は、製造した炭素繊維強化の樹脂の複合体を不活性ガスの雰囲気の下で700 〜2200℃の温度で熱処理した後、急速の熱勾配の化学気相の浸透の工程を進行して、炭素繊維強化の炭素の複合体を製造する段階である。   Next, the vapor deposition step (S140) in the rapid thermal gradient chemical vapor infiltration process is performed in which the produced carbon fiber reinforced resin composite is heated to 700-2200 ° C under an inert gas atmosphere. After the heat treatment, a rapid thermal gradient chemical vapor infiltration process is performed to produce a carbon fiber reinforced carbon composite.

具体的に説明すると、本発明の急速の熱勾配の化学気相の浸透の工程は、密度が1.3g/
cm以上の緻密な炭素繊維強化の炭素の複合体の製造のためのことで、この急速の熱勾配の化学気相の浸透の工程は、蒸着させるべき領域を少なくとも3 ケ所以上に分けて、各区間で蒸着速度を制御してより急速に蒸着がなされるようにすることである。この際、蒸着速度の制御は、化学気相蒸着装置の内部に設置された熱電対を成形体の内部から外部に順次速い速度で移動させて蒸着を遂行する。
Specifically, the rapid thermal gradient chemical vapor infiltration process of the present invention has a density of 1.3 g /
For the production of dense carbon fiber reinforced carbon composites of cm 3 or more, this rapid thermal gradient chemical vapor infiltration process divides the area to be deposited into at least three locations, It is to control the deposition rate in each section so that the deposition is performed more rapidly. At this time, the vapor deposition rate is controlled by moving a thermocouple installed in the chemical vapor deposition apparatus from the inside of the molded body to the outside at a high speed in order.

すなわち、図4 に示したように、反応器(300) の内部に炭素繊維強化の樹脂の複合体(500) を設置して、中央部に発熱体(400) を設置する。そして、工程のガスには炭化水素ガスを供給しながら実施する。そして、蒸着速度の制御は、前述したように、熱電対( 図示せず) を使用して実施し、蒸着は内部から外部に成される。   That is, as shown in FIG. 4, a carbon fiber reinforced resin composite (500) is installed in the reactor (300), and a heating element (400) is installed in the center. And it implements, supplying hydrocarbon gas to process gas. The vapor deposition rate is controlled using a thermocouple (not shown) as described above, and vapor deposition is performed from the inside to the outside.

そして、図面に図示した蒸着速度の矢印は、短いのが蒸着速度が遅いということを表し、長いのが蒸着速度が速いということを表する。そして、T1の部分が高温であり、T2の部分が低温を表し、これは熱勾配が誘導されるのを表す。   And the arrow of the deposition rate illustrated in the drawing indicates that the deposition rate is slow, and that the arrow indicates that the deposition rate is fast. And the part of T1 is high temperature, the part of T2 represents low temperature, and this represents that a thermal gradient is induced | guided | derived.

この際の蒸着速度は、0.5 〜3.0mm/hrの範囲で内部から外部に蒸着する。一例と
して、領域を内部、中間部、そして外部に分けた後、内部を1.0mm/hrに蒸着し、中
間部を1.5mm/hrに蒸着し、外部を2.0mm/hrに蒸着して、より速かに蒸着が成されるようにする。この際、内部で蒸着速度を遅くしたことで、成形体の内部で蒸着が外部より相対的に遅くなるためである。
In this case, the deposition rate is 0.5 to 3.0 mm / hr, and the deposition is performed from the inside to the outside. As an example, after dividing the region into the inside, the middle part, and the outside, the inside is vapor-deposited at 1.0 mm / hr, the middle part is vapor-deposited at 1.5 mm / hr, and the outside is vapor-deposited at 2.0 mm / hr. Vapor deposition should be done quickly. At this time, it is because the vapor deposition rate is relatively slower than the outside inside the molded body because the vapor deposition rate is slowed inside.

このように、蒸着速度を制御すると、複雑な工程と、長い製造時間のために、多い製造費用を要求する等温/ 等圧気相の浸透法、圧力勾配の化学気相の浸透法、そして既存の等速熱勾配の化学気相の浸透法等、既存の全ての化学気相の浸透の工程に比べて、製造工程と製造費用を革新的に改善できる。   Thus, by controlling the deposition rate, the isothermal / isobaric gas phase infiltration method, which requires high manufacturing cost due to the complicated process and long production time, pressure gradient chemical gas phase infiltration method, and existing Compared to all existing chemical vapor infiltration processes, such as chemical vapor infiltration with a constant thermal gradient, the manufacturing process and manufacturing costs can be innovatively improved.

この急速の熱勾配の化学気相の浸透の工程は、本出願人の特許権である韓国登録特許第0198154 号である熱勾配の化学気相の浸透の工程に比べて蒸着速度を5 〜10倍以上に早くて緻密に進行することによって、炭素繊維の表面に5 〜100μm程度の熱分解の炭素層を
形成できる。
This rapid thermal gradient chemical vapor infiltration process has a deposition rate of 5-10 compared to the thermal gradient chemical vapor infiltration process of Korean Patent No. 0198154, which is a patent right of the present applicant. By proceeding densely more than twice as fast, a pyrolytic carbon layer of about 5 to 100 μm can be formed on the surface of the carbon fiber.

そして、この際、形成された熱分解の炭素層は、液状のケイ素の含浸の工程の時に、液状のケイ素と反応して炭化ケイ素の基地相を形成する反応層に作用する。
このような本発明の急速の熱勾配の化学気相の浸透の工程で製造した炭素繊維強化の樹脂の複合体は、1.0 〜1.7g/cmの見かけ密度と、5 〜30% の見かけ気孔率値を有する
At this time, the pyrolytic carbon layer thus formed acts on the reaction layer that reacts with the liquid silicon to form a silicon carbide matrix phase during the liquid silicon impregnation step.
The carbon fiber reinforced resin composite produced by the rapid thermal gradient chemical vapor infiltration process of the present invention has an apparent density of 1.0 to 1.7 g / cm 3 and an apparent porosity of 5 to 30%. Has a rate value.

次に、液状のケイ素の浸透の工程は、急速の熱勾配の化学気相の浸透の工程で製造した炭素繊維強化の炭素の複合体を1μm〜10mmの粒子の大きさの範囲のケイ素の粉末の上
に位置させる。
Next, the liquid silicon infiltration process is a carbon fiber reinforced carbon composite produced in the rapid thermal gradient chemical vapor infiltration process, with silicon powder in the particle size range of 1 μm to 10 mm Position on top of.

この際の工程の条件は、真空の雰囲気の下でケイ素の融解点である1410℃以上の温度で加熱する。1410℃以上の高温で鎔融したケイ素は、炭素繊維強化の炭素の複合体内に存在する気孔の毛細管力により僅か数分の内に大部分の気孔を満たし、これと同時に炭素繊維の上の炭素の反応層と反応して炭化ケイ素に合成する。このように、最終製造した炭素繊維強化のセラミックの複合体は、30〜60wt% の炭素、35〜60wt% の炭化ケイ素、そして5wt%以下の未反応のケイ素からなる。   The process conditions at this time are heating at a temperature of 1410 ° C. or higher, which is the melting point of silicon, under a vacuum atmosphere. Silicon melted at a high temperature of 1410 ° C or higher fills most of the pores within a few minutes due to the capillary force of the pores existing in the carbon fiber reinforced carbon composite, and at the same time, the carbon above the carbon fiber. It reacts with the reaction layer and synthesizes into silicon carbide. Thus, the final manufactured carbon fiber reinforced ceramic composite consists of 30-60 wt% carbon, 35-60 wt% silicon carbide, and up to 5 wt% unreacted silicon.

次に、図2 に示したように、出発物質として炭素のフェルトプリフォームからなった成形体を利用して炭素繊維強化のセラミックの複合体を製造できる。
まず、X 、Y 、Z の3 軸の方向に補強した炭素のフェルトプリフォームを製造(S200)するのに、具体的に説明すれば、オキシペン、ペン、レーヨン、ピッチ系などの炭素系の繊維をメンドレルに巻いて、一方向の炭素マットを製作して、この方法で製作された炭素マットを積層する。積層の方法は、0 ゜/+60゜/-60゜のような準等方性に交代積層する。
Next, as shown in FIG. 2, a carbon fiber reinforced ceramic composite can be manufactured using a molded body made of a carbon felt preform as a starting material.
First, to manufacture a carbon felt preform reinforced in the three axis directions of X, Y, and Z (S200), specifically, carbon fibers such as oxypen, pen, rayon, pitch, etc. Is wound around a mandrel to produce a unidirectional carbon mat, and the carbon mats produced in this way are laminated. The lamination method is alternate lamination in a semi-isotropic manner such as 0 ° / + 60 ° / -60 °.

そして、積層を最小二つの層とした後、ニードルを利用してパンチングして各層らをZ 軸の方向に補強して前記工程を繰り返えして、厚さの30mm以上のフェルトプリフォームを製作する。   Then, after the lamination is made into a minimum of two layers, punching is performed using a needle to reinforce each layer in the direction of the Z axis and the above process is repeated to form a felt preform having a thickness of 30 mm or more. To manufacture.

このフェルトプリフォームの繊維の体積比は、約10〜55%に製作し、一つの層の厚さは、約0.1 mm以下、Z 軸の繊維の長さは、10mm以下であり、繊維比は、約10%に製作する。また、Z 軸は、15penetration/cm の密度のニードルを使用できる。 The felt preform has a fiber volume ratio of about 10 to 55%, the thickness of one layer is about 0.1 mm or less, the length of the Z-axis fiber is 10 mm or less, and the fiber ratio is , To produce about 10%. In addition, a needle having a density of 15 penetration / cm 3 can be used for the Z axis.

以後、炭素のフェルトプリフォームの不純物を除去するために、1700℃以上、真空の雰囲気の下で熱処理を遂行する。このような炭素のフェルトプリフォームの製造方法に関する内容は、本出願人が出願した米国特許出願US10-180778 と、韓国登録特許第27788号の実施の形態を参考の技術とする。   Thereafter, in order to remove impurities from the carbon felt preform, heat treatment is performed in a vacuum atmosphere at 1700 ° C. or higher. The contents relating to the method for producing such a carbon felt preform are based on the embodiments of US patent application US10-180778 filed by the present applicant and Korean Patent No. 27788.

次に、急速の熱勾配の化学気相の浸透の工程を利用して炭素繊維強化の炭素の複合体を製造(S210)するのに、この際の工程は、前述した最初の工程で言及した急速の熱勾配の化学気相の浸透の工程を利用して炭素繊維強化の炭素の複合体を製造(S220)する。   Next, a carbon fiber reinforced carbon composite is manufactured using a rapid thermal gradient chemical vapor infiltration process (S210), which was mentioned in the first step described above. A carbon fiber reinforced carbon composite is manufactured using a rapid thermal gradient chemical vapor infiltration process (S220).

そして、液状のケイ素の浸透の工程を利用して炭素繊維強化のセラミックの複合体を製造する。この液状のケイ素の含浸の工程は、前述した最初の工程の実施の形態と同様に適用する。   Then, a carbon fiber reinforced ceramic composite is manufactured using a liquid silicon infiltration process. This liquid silicon impregnation step is applied in the same manner as in the first embodiment described above.

以下、以上のような方法について、望ましい実施の形態を説明する。
< 実施例1>
30mmの大きさに切断した炭素繊維が30wt% 、フェノールの樹脂が40wt% 、炭素の粉末が5wt%、そして炭化ケイ素の粉末が5wt%の混合物を作って、20wt% の繻子織の形態の炭素織物と交代積層して成形体を製造した。製造した成形体を成形モールドに入れて2MPa
の圧力で10分間加圧と同時に硬化させ、炭素繊維強化の樹脂の複合体を製造した。
Hereinafter, preferred embodiments of the above method will be described.
<Example 1>
30 wt% carbon fiber cut to 30 mm, phenolic resin 40 wt%, carbon powder 5 wt%, and silicon carbide powder 5 wt% mixture to form a 20 wt% satin weave carbon A molded body was produced by alternating lamination with a woven fabric. Put the manufactured molded body into a molding mold and set 2MPa
A carbon fiber reinforced resin composite was produced by curing simultaneously with pressurization at a pressure of 10 minutes.

上記の炭素繊維強化の樹脂の複合体を不活性ガスの雰囲気の下で高温熱処理をした。そして、急速の熱勾配の化学気相の浸透の工程の条件で熱分解の炭素を蒸着させ、炭素繊維強化の炭素の複合体を製造した。   The carbon fiber reinforced resin composite was subjected to high temperature heat treatment in an inert gas atmosphere. Then, pyrolytic carbon was vapor-deposited under the conditions of chemical vapor infiltration with a rapid thermal gradient to produce a carbon fiber reinforced carbon composite.

上記のように製造した炭素繊維強化の炭素の複合体をケイ素の粉末の上に積層して、真空の雰囲気の下で1550℃の温度で加熱して液状のケイ素を含浸させて炭素繊維強化の炭素セラミックの複合体を製造した。この際、製造した炭素繊維強化のセラミックの複合体の物性は、表1 のようである。   A carbon fiber reinforced carbon composite produced as described above is laminated on a silicon powder and heated at a temperature of 1550 ° C. in a vacuum atmosphere to impregnate liquid silicon to form a carbon fiber reinforced carbon composite. A carbon ceramic composite was produced. At this time, the physical properties of the produced carbon fiber reinforced ceramic composite are as shown in Table 1.

< 実施例2>
30mmの大きさに切断した炭素繊維が55wt% 、フェノールの樹脂が35wt% 、炭素の粉末が5wt%、そして炭化ケイ素の粉末が5wt%の混合物を作って成形体を製造した。 実施例2 においては、炭素織物を利用した交代積層はしなかった。製造した成形体を成形モールドに入れ、2MPaの圧力で10分間加圧と同時に硬化させ、炭素繊維強化の樹脂の複合体を
製造した。
<Example 2>
A molded body was manufactured by making a mixture of 55 wt% of carbon fibers cut to a size of 30 mm, 35 wt% of phenol resin, 5 wt% of carbon powder, and 5 wt% of silicon carbide powder. In Example 2, alternating lamination using carbon fabric was not performed. The produced molded body was put in a molding mold and cured simultaneously with pressurization at a pressure of 2 MPa for 10 minutes to produce a carbon fiber reinforced resin composite.

上記の炭素繊維強化の樹脂の複合体を不活性ガスの雰囲気の下で高温熱処理をした。そして、急速の熱勾配の化学気相の浸透の工程の条件で熱分解の炭素を蒸着させ、炭素繊維強化の炭素の複合体を製造した。   The carbon fiber reinforced resin composite was subjected to high temperature heat treatment in an inert gas atmosphere. Then, pyrolytic carbon was vapor-deposited under the conditions of chemical vapor infiltration with a rapid thermal gradient to produce a carbon fiber reinforced carbon composite.

上記のように製造した炭素繊維強化の炭素の複合体をケイ素の粉末の上に積層して、真空の雰囲気の下で1550℃の温度で加熱して液状のケイ素を含浸させ、炭素繊維強化の炭素セラミックの複合体を製造した。製造した炭素繊維強化のセラミックの複合体の物性は、表1 のようである。   A carbon fiber reinforced carbon composite produced as described above is laminated on a silicon powder and heated at a temperature of 1550 ° C. in a vacuum atmosphere to impregnate liquid silicon. A carbon ceramic composite was produced. Table 1 shows the physical properties of the carbon fiber reinforced ceramic composites produced.

< 実施例3>
320Kのオキシペンの繊維をメンドレルに巻いて、一方向の炭素マットを製作して、前記方法によって製作された炭素マットを積層した。積層の方法は、0 ゜/+60゜/-60゜の方法によって交代積層した。
<Example 3>
A unidirectional carbon mat was manufactured by winding 320K oxypen fiber around a mendrel, and the carbon mat manufactured by the above method was laminated. The lamination was carried out alternately by the 0 ° / + 60 ° / -60 ° method.

積層を最小二つの層とした後、ニードルを利用してパンチングして各層らをZ 軸の方向に補強をしながら、前記工程を繰り返して厚さ30mmのプリフォームを製作した。プリフォームのオキシペン繊維の体積比は、約45%に製作し、一つの層の厚さは、約0.9 mm、z 軸の繊維比は、約10%に製作した。   After the lamination was made into a minimum of two layers, punching was performed using a needle to reinforce each layer in the direction of the Z axis, and the above process was repeated to produce a preform having a thickness of 30 mm. The volume ratio of the preformed oxypen fibers was made to about 45%, the thickness of one layer was made to about 0.9 mm, and the fiber ratio of the z axis was made to about 10%.

上記のように製作したプリフォームを1700℃、真空の雰囲気の下で熱処理して不純物を除去した。
製造した炭素のフェルトプリフォームを急速の熱勾配の化学気相の浸透の工程の条件で熱分解の炭素を蒸着させ、炭素繊維強化の炭素の複合体を製造した。
The preform manufactured as described above was heat-treated at 1700 ° C. in a vacuum atmosphere to remove impurities.
The produced carbon felt preform was vapor deposited with pyrolytic carbon under the conditions of rapid thermal gradient chemical vapor infiltration to produce a carbon fiber reinforced carbon composite.

上記のように製造した炭素繊維強化の炭素の複合体をケイ素の粉末の上に積層して、真空の雰囲気の下で1550℃の温度で加熱して液状のケイ素を含浸させ、炭素繊維強化の炭素セラミックの複合体を製造した。製造した炭素繊維強化のセラミックの複合体の物性は、表1 のようである。   A carbon fiber reinforced carbon composite produced as described above is laminated on a silicon powder and heated at a temperature of 1550 ° C. in a vacuum atmosphere to impregnate liquid silicon. A carbon ceramic composite was produced. Table 1 shows the physical properties of the carbon fiber reinforced ceramic composites produced.

< 比較例1>
130 mmの大きさに切断した炭素繊維の54wt% をフェノールの樹脂の36wt% 、炭素の粉末の10wt% と混合して混合物を作って、成形モールドに入れて3MPaの圧力で加圧と同
時に硬化させ、炭素繊維強化の樹脂の複合体を製造した。
<Comparative Example 1>
Mix 54 wt% of carbon fiber cut to 130 mm size with 36 wt% of phenolic resin and 10 wt% of carbon powder to make a mixture, put in a molding mold and cure at the same time with pressure of 3 MPa A carbon fiber reinforced resin composite was produced.

上記の炭素繊維強化の樹脂の複合体を不活性ガスの雰囲気の下で、900 ℃で熱処理して炭素繊維強化の炭素の複合体を製造した。このように、製造した炭素繊維強化の炭素の複合体をケイ素の粉末の上に積層して、真空の雰囲気の下で1600℃の温度で加熱して液状のケイ素を含浸させ、炭素繊維強化の炭素セラミックの複合体を製造した。製造した炭素繊維強化のセラミックの複合体の物性は、表1 のようである。   The carbon fiber reinforced resin composite was heat-treated at 900 ° C. in an inert gas atmosphere to produce a carbon fiber reinforced carbon composite. In this way, the produced carbon fiber reinforced carbon composite is laminated on the silicon powder and heated at a temperature of 1600 ° C. in a vacuum atmosphere to impregnate the liquid silicon. A carbon ceramic composite was produced. Table 1 shows the physical properties of the carbon fiber reinforced ceramic composites produced.

Figure 2007535461
Figure 2007535461

前述したような本発明に係る炭素繊維強化のセラミックの複合体の製造方法は、急速の熱勾配の化学気相の浸透の工程で製造した炭素繊維強化の炭素の複合体の炭素繊維は、均一に蒸着した熱分解の炭素層を有していて、このような熱分解の炭素層は、液状のケイ素の含浸の工程の時、ケイ素と反応して炭化ケイ素に合成するが、熱分解の炭素層は、液状のケイ素の含浸の工程で最も問題点である炭素繊維の浸蝕を防ぐ繊維の保護層としての役割だけでなく、炭化ケイ素を合成する反応層として優れた特性を有し、また炭素繊維と炭化ケイ素の基地相の間に新しい界面を形成して炭素繊維強化のセラミックの複合体の機械的の物性を向上させる。   The method of manufacturing a carbon fiber reinforced ceramic composite according to the present invention as described above, the carbon fiber of the carbon fiber reinforced carbon composite manufactured in a rapid thermal gradient chemical vapor infiltration process is uniform. In the process of impregnation with liquid silicon, such a pyrolytic carbon layer is synthesized into silicon carbide by reacting with silicon during the liquid silicon impregnation process. The layer has not only a role as a fiber protective layer that prevents carbon fiber erosion, which is the most problematic in the liquid silicon impregnation process, but also has excellent properties as a reaction layer for synthesizing silicon carbide. A new interface is formed between the fiber and the silicon carbide matrix phase to improve the mechanical properties of the carbon fiber reinforced ceramic composite.

このような本発明の製造方法によって製造した炭素繊維強化のセラミックの複合体の微細構造は、図3 に示したように、炭素繊維の周囲の暗い灰色の部分は熱分解の炭素層(102) 、明るい灰色の部分は炭化ケイ素層(103) 、そして最も明るい部分が残留ケイ素層(104) である。炭素繊維の周囲の熱分解の炭素層によって炭素繊維の浸蝕はほとんどなく、熱分解の炭素層の周辺に炭化ケイ素が合成したことが分かる。   The microstructure of the carbon fiber reinforced ceramic composite produced by the production method of the present invention is as shown in FIG. 3, in which the dark gray area around the carbon fiber is a pyrolytic carbon layer (102). The light gray part is the silicon carbide layer (103) and the brightest part is the residual silicon layer (104). It can be seen that there was almost no erosion of the carbon fiber by the pyrolytic carbon layer around the carbon fiber, and that silicon carbide was synthesized around the pyrolytic carbon layer.

そして、本発明で急速の熱勾配の化学気相の浸透の工程は、炭素繊維強化の炭素の複合体の製造時間を考慮する際、既存の化学気相の浸透の工程に比べ、10倍以上、従来の熱勾配化学浸透の工程に比べ、5 倍以上の蒸着速度で熱分解の炭素層を蒸着できるので、炭素繊維強化の炭素の複合体の製造費用を顕著に減らすことができる。   And, in the present invention, the rapid thermal gradient chemical vapor infiltration process is more than 10 times compared with the existing chemical vapor infiltration process when considering the production time of the carbon fiber reinforced carbon composite Compared to the conventional thermal gradient chemical infiltration process, the pyrolysis carbon layer can be deposited at a deposition rate of 5 times or more, so that the production cost of carbon fiber reinforced carbon composite can be significantly reduced.

また、炭素含有の液状の前驅体を利用した炭素繊維強化の樹脂の複合体の製造工程のような反復的な密度化の工程なしに、ただ一回の工程で炭素繊維強化の樹脂の複合体を製造でき、急速の熱勾配の化学気相の浸透の工程と液状のケイ素の含浸の工程の組合で炭素繊維強化のセラミックの複合体の製造工程を単純化して、製造費用を顕著に減らすことができるので、多様な分野で炭素繊維強化のセラミックの複合体の応用が可能である。   In addition, a carbon fiber reinforced resin composite can be obtained in a single step without the need for repeated densification steps such as the manufacturing process of a carbon fiber reinforced resin composite using a liquid precursor containing carbon. Simplify the manufacturing process of carbon fiber reinforced ceramic composites by combining the rapid thermal gradient chemical vapor infiltration process and liquid silicon impregnation process, significantly reducing manufacturing costs Therefore, it is possible to apply carbon fiber reinforced ceramic composites in various fields.

そして、0.3 〜150 mmの大きさの炭素繊維を炭素含有のポリマーの前驅体、炭化ケイ素の粉末、そして炭素の粉末と混合した後、炭素織物と交代積層したり、混合物だけで製造した成形体は、分散と混合が均質であるし、炭素繊維、及び炭素織物の1 次の表面層を形成するのに優れた特性を有する。また、1000℃以上の高温熱処理の時、収縮がほとんど起こらないので、寸法の変化がなく、寸法、及び形状の加工に必要な費用を大幅節減できる。   Then, a carbon fiber having a size of 0.3 to 150 mm is mixed with a carbon-containing polymer precursor, silicon carbide powder, and carbon powder, and then alternately laminated with a carbon woven fabric, or a molded body produced only by the mixture. Is homogeneous in dispersion and mixing and has excellent properties for forming the primary surface layer of carbon fibers and carbon fabrics. In addition, since shrinkage hardly occurs during high-temperature heat treatment at 1000 ° C. or higher, there is no change in dimensions, and the cost required for processing of dimensions and shapes can be greatly reduced.

以上のように、本発明に係る炭素繊維強化のセラミックの複合体の製造方法は、炭素繊維強化のセラミックの複合体の物性を向上させる効果があり、従来の全ての化学気相の浸透の工程に比べ、5 〜10倍以上の蒸着速度で熱分解の炭素層を蒸着できるので、製造工程と、製造時間、そして製造費用の面で非常に向上した効果を発揮する。   As described above, the method for producing a carbon fiber reinforced ceramic composite according to the present invention has the effect of improving the physical properties of the carbon fiber reinforced ceramic composite, and all conventional chemical vapor infiltration processes. Compared with, it is possible to deposit a pyrolytic carbon layer at a deposition rate of 5 to 10 times or more, so that the manufacturing process, manufacturing time, and manufacturing cost are greatly improved.

図1 は、本発明に係る炭素織物と、炭素繊維の混合物を利用した炭素繊維強化のセラミックの複合体の製造方法を示したブロック図である。FIG. 1 is a block diagram showing a method for producing a composite of a carbon fabric and a carbon fiber reinforced ceramic using a mixture of carbon fibers according to the present invention. 図2 は、本発明に係る炭素のフェルトプリフォームを利用した炭素繊維強化のセラミックの複合体の製造方法を示したブロック図である。FIG. 2 is a block diagram showing a method for producing a carbon fiber reinforced ceramic composite using a carbon felt preform according to the present invention. 図3 は、本発明に係る炭素繊維強化のセラミックの複合体の微細構造の写真である。FIG. 3 is a photograph of the microstructure of a carbon fiber reinforced ceramic composite according to the present invention. 図4 は、本発明に係る急速の熱勾配の化学気相の浸透法を示した概念図である。FIG. 4 is a conceptual diagram showing a rapid thermal gradient chemical vapor infiltration method according to the present invention.

符号の説明Explanation of symbols

101 :炭素繊維、102 :熱分解の炭素、103 :炭化ケイ素、104 :残留ケイ素 101: carbon fiber, 102: carbon of pyrolysis, 103: silicon carbide, 104: residual silicon

Claims (21)

炭素繊維と、炭素含有のポリマーの前驅体を混合した混合物から成形した炭素繊維強化の樹脂の複合体を製造する段階と、
前記炭素繊維強化の樹脂の複合体を高温熱処理して内部から外部に蒸着速度を早くしながら、急速の熱勾配の化学気相の浸透の工程で熱分解の炭素を蒸着して炭素繊維強化の炭素の複合体を製造する段階と、
前記炭素繊維強化の炭素の複合体の気孔に液状のケイ素を浸透させる段階を含むことを特徴とする炭素繊維強化のセラミックの複合体の製造方法。
Producing a carbon fiber reinforced resin composite formed from a mixture of carbon fiber and a precursor of a carbon-containing polymer;
The carbon fiber reinforced resin composite is heat-treated at a high temperature to increase the deposition rate from the inside to the outside. Producing a carbon composite;
A method for producing a carbon fiber reinforced ceramic composite comprising the step of impregnating liquid silicon into pores of the carbon fiber reinforced carbon composite.
前記混合物には、前記炭素繊維が10〜60wt% 、前記炭素含有のポリマーの前驅体が30〜60wt% で含まれることを特徴とする請求項1記載の炭素繊維強化のセラミックの複合体の製造方法。   2. The composite of carbon fiber reinforced ceramic according to claim 1, wherein the mixture contains 10 to 60 wt% of the carbon fiber and 30 to 60 wt% of a precursor of the carbon-containing polymer. Method. 前記混合物には、炭化ケイ素の粉末が30wt% 以下、炭素の粉末が30wt% 以下が含まれることを特徴とする請求項2記載の炭素繊維強化のセラミックの複合体の製造方法。   3. The method for producing a composite of carbon fiber reinforced ceramic according to claim 2, wherein the mixture contains silicon carbide powder of 30 wt% or less and carbon powder of 30 wt% or less. 前記炭素繊維強化の樹脂の複合体は、前記混合物と炭素織物が交代に積層したことを特徴とする請求項2、又は3記載の炭素繊維強化のセラミックの複合体の製造方法。   4. The method for producing a carbon fiber reinforced ceramic composite according to claim 2, wherein the carbon fiber reinforced resin composite is formed by alternately laminating the mixture and a carbon fabric. 前記成形体には、混合の過程で混合した前記混合物によって、炭素繊維とケイ素の反応を防ぐ1 次の表面層が形成され、前記1 次の表面層は、前記液状のケイ素を浸透させる段階で前記液状のケイ素と化学反応して炭化ケイ素とケイ素からなったセラミックの基地層から形成されるのを特徴とする請求項4記載の炭素繊維強化のセラミックの複合体の製造方法。   In the molded body, a primary surface layer that prevents a reaction between carbon fibers and silicon is formed by the mixture that is mixed in the mixing process, and the primary surface layer is in a stage of infiltrating the liquid silicon. 5. The method for producing a carbon fiber reinforced ceramic composite according to claim 4, wherein the composite is formed from a ceramic base layer made of silicon carbide and silicon by chemical reaction with the liquid silicon. 前記成形体は、不活性ガスの雰囲気の下で900 〜2200℃の温度で熱処理した後、前記急速の熱勾配の化学気相の浸透の工程で蒸着する段階で、1 次の表面層の上に2次の表面層である熱分解の炭素の基地層が蒸着するのを特徴とする請求項1記載の炭素繊維強化のセラミックの複合体の製造方法。   The molded body is heat-treated at a temperature of 900 to 2200 ° C. in an inert gas atmosphere, and then deposited in the chemical vapor infiltration process of the rapid thermal gradient. 2. A method for producing a carbon fiber reinforced ceramic composite according to claim 1, wherein a pyrolytic carbon base layer as a secondary surface layer is deposited on the surface. 前記急速の熱勾配の化学気相の浸透の工程で蒸着する段階で炭化水素ガスを用いて熱分解の反応の温度が700 〜1200℃、反応の圧力が188 〜1130torrの範囲でなるのを特徴とする請求項1記載の炭素繊維強化のセラミックの複合体の製造方法。   The temperature of the pyrolysis reaction using a hydrocarbon gas is 700 to 1200 ° C. and the reaction pressure is in the range of 188 to 1130 torr in the step of vapor deposition in the rapid thermal gradient chemical vapor infiltration process. A method for producing a carbon fiber reinforced ceramic composite according to claim 1. 前記急速の熱勾配の化学気相の浸透の工程で蒸着する段階で、蒸着の領域を内部から外部に少なくとも複数個に分けて、それぞれの領域で互に異なる速度で蒸着するのを特徴とする請求項1記載の炭素繊維強化のセラミックの複合体の製造方法。   In the step of depositing in the rapid thermal gradient chemical vapor infiltration step, the deposition region is divided into at least a plurality of regions from the inside to the outside, and the regions are deposited at different rates. A method for producing a carbon fiber reinforced ceramic composite according to claim 1. 前記蒸着の領域は、0.5 〜3.0mm/hrの蒸着速度の範囲で内部から外部に蒸着する
のを特徴とする請求項1記載の炭素繊維強化のセラミックの複合体の製造方法。
2. The method for producing a carbon fiber reinforced ceramic composite according to claim 1, wherein the vapor deposition region is vapor-deposited from the inside to the outside within a vapor deposition rate range of 0.5 to 3.0 mm / hr.
前記炭素繊維強化の炭素の複合体は、見かけ密度が1.0 〜1.7g/cm、前記液状のケ
イ素の浸透の経路に利用される開いた気孔を5 〜30% を有することを特徴とする請求項1記載の炭素繊維強化のセラミックの複合体の製造方法。
The carbon fiber reinforced carbon composite has an apparent density of 1.0 to 1.7 g / cm 3 and 5 to 30% of open pores used for the liquid silicon infiltration path. Item 8. A method for producing a carbon fiber reinforced ceramic composite according to Item 1.
前記液状のケイ素を浸透させる段階は、前記炭素繊維強化の炭素の複合体をケイ素の粉末の上に積層させて、反応器の内部を100torr 以下で保持した後、ケイ素の融解点である1410℃以上の温度で加熱して液状のケイ素をプリフォームの内部に浸透させると共に、複数個の炭素層と化学反応を誘導するのを特徴とする請求項1記載の炭素繊維強化のセラミ
ックの複合体の製造方法。
The step of infiltrating the liquid silicon comprises laminating the carbon fiber reinforced carbon composite on the silicon powder and maintaining the inside of the reactor at 100 torr or less, and then the melting point of silicon is 1410 ° C. 2. The carbon fiber reinforced ceramic composite according to claim 1, wherein said composite is heated at the above temperature so that liquid silicon penetrates into the preform and induces a chemical reaction with a plurality of carbon layers. Production method.
炭素のフェルトプリフォームを製造する段階と、
前記炭素のフェルトプリフォームを内部から外部に蒸着速度を早くしながら、急速の熱勾配の化学気相の浸透の工程で蒸着して炭素繊維強化の炭素の複合体を製造する段階と、
前記炭素繊維強化の炭素の複合体の気孔に液状のケイ素を浸透させる段階を含むことを特徴とする炭素繊維強化のセラミックの複合体の製造方法。
Producing a carbon felt preform;
Vaporizing the carbon felt preform from the inside to the outside while increasing the deposition rate in a chemical vapor infiltration process with a rapid thermal gradient to produce a carbon fiber reinforced carbon composite;
A method for producing a carbon fiber reinforced ceramic composite comprising the step of impregnating liquid silicon into pores of the carbon fiber reinforced carbon composite.
前記炭素のフェルトプリフォームは、オキシペン、ペン、レーヨン、ピッチ系などの炭素系の繊維のいずれかからなることを特徴とする請求項12記載の炭素繊維強化のセラミックの複合体の製造方法。   13. The method for producing a carbon fiber reinforced ceramic composite according to claim 12, wherein the carbon felt preform is made of any one of carbon fibers such as oxypen, pen, rayon, and pitch. 前記炭素のフェルトプリフォームは、マットの積層を0 ゜/+60゜/-60゜のような準等方性として、Z 軸に10mm以下の炭素繊維が補強されることを特徴とする請求項12記載の炭素繊維強化のセラミックの複合体の製造方法。   The carbon felt preform is characterized in that a mat laminate is quasi-isotropic such as 0 ° / + 60 ° / -60 °, and carbon fibers of 10 mm or less are reinforced on the Z axis. 12. A process for producing a carbon fiber reinforced ceramic composite according to 12. 前記炭素のフェルトプリフォームには、前記急速の熱勾配の化学気相の浸透の工程で蒸着する段階によって5 〜100μmの厚さの熱分解の炭素層が蒸着することを特徴とする請
求項12記載の炭素繊維強化のセラミックの複合体の製造方法。
13. The carbon felt preform is deposited with a pyrolytic carbon layer having a thickness of 5 to 100 [mu] m according to the step of vapor deposition in the rapid thermal gradient chemical vapor infiltration process. A method for producing a carbon fiber reinforced ceramic composite as described.
前記液状のケイ素を浸透させる段階で、前記炭素繊維強化の炭素の複合体に液状のケイ素を含浸して、X 、Y 、Z の3 軸に炭素繊維が補強されることを特徴とする請求項12記載の炭素繊維強化のセラミックの複合体の製造方法。   The carbon fiber is reinforced in three axes of X, Y and Z by impregnating the carbon fiber-reinforced carbon composite with liquid silicon in the step of infiltrating the liquid silicon. 12. A process for producing a carbon fiber reinforced ceramic composite according to 12. 前記急速の熱勾配の化学気相の浸透の工程で蒸着する段階で、炭化水素ガスを使用して熱分解の反応の温度が700 〜1200℃、反応の圧力が188 〜1130torrの範囲でなるのを特徴とする請求項12記載の炭素繊維強化のセラミックの複合体の製造方法。   In the step of vapor deposition in the rapid thermal gradient chemical vapor infiltration process, the temperature of the pyrolysis reaction using a hydrocarbon gas is 700-1200 ° C., and the reaction pressure is in the range of 188-1130 torr. 13. A method for producing a carbon fiber reinforced ceramic composite according to claim 12. 前記急速の熱勾配の化学気相の浸透の工程で蒸着する段階で、蒸着の領域を内部から外部に少なくとも複数個に分けて、それぞれの領域で互に異なる速度で蒸着するのを特徴とする請求項12記載の炭素繊維強化のセラミックの複合体の製造方法。   In the step of depositing in the rapid thermal gradient chemical vapor infiltration step, the deposition region is divided into at least a plurality of regions from the inside to the outside, and the regions are deposited at different rates. A method for producing a carbon fiber reinforced ceramic composite according to claim 12. 前記蒸着の領域は、0.5 〜3.0mm/hrの蒸着速度の範囲で、内部から外部に蒸着す
るのを特徴とする請求項12記載の炭素繊維強化のセラミックの複合体の製造方法。
13. The method of manufacturing a carbon fiber reinforced ceramic composite according to claim 12, wherein the vapor deposition region is vapor-deposited from the inside to the outside within a range of a deposition rate of 0.5 to 3.0 mm / hr.
前記炭素繊維強化の炭素の複合体は、見かけ密度が1.0 〜1.7g/cm、前記液状のケ
イ素の浸透の経路に利用される開いた気孔を5 〜30% を有することを特徴とする請求項12記載の炭素繊維強化のセラミックの複合体の製造方法。
The carbon fiber reinforced carbon composite has an apparent density of 1.0 to 1.7 g / cm 3 and 5 to 30% of open pores used for the liquid silicon infiltration path. Item 13. A method for producing a carbon fiber reinforced ceramic composite according to Item 12.
前記液状のケイ素を浸透させる段階は、前記炭素繊維強化の炭素の複合体をケイ素の粉末の上に積層させ、反応器の内部を100torr 以下で保持した後、ケイ素の融解点である1410℃以上の温度で加熱し、液状のケイ素を前記炭素のフェルトプリフォームの内部に浸透させると共に、複数個の炭素層と化学反応を誘導するのを特徴とする請求項12記載の炭素繊維強化のセラミックの複合体の製造方法。   The step of infiltrating the liquid silicon comprises laminating the carbon fiber reinforced carbon composite on the silicon powder and holding the interior of the reactor at 100 torr or less, and then the melting point of silicon is 1410 ° C. or higher The carbon fiber reinforced ceramic according to claim 12, wherein the carbon fiber reinforced ceramic is heated at a temperature of about 10 μm to infiltrate liquid silicon into the carbon felt preform and induce a chemical reaction with the plurality of carbon layers. A method for producing a composite.
JP2007510630A 2004-05-28 2005-05-27 Process for producing carbon fiber reinforced ceramic composites Pending JP2007535461A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020040038589A KR100624094B1 (en) 2004-05-28 2004-05-28 The method of producing carbon fiber reinforced ceramic matrix composites
PCT/KR2005/001581 WO2005115945A1 (en) 2004-05-28 2005-05-27 Method of producing carbon fiber reinforced ceramic matrix composites

Publications (1)

Publication Number Publication Date
JP2007535461A true JP2007535461A (en) 2007-12-06

Family

ID=35450796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007510630A Pending JP2007535461A (en) 2004-05-28 2005-05-27 Process for producing carbon fiber reinforced ceramic composites

Country Status (5)

Country Link
US (1) US20080143005A1 (en)
EP (1) EP1758837A4 (en)
JP (1) JP2007535461A (en)
KR (1) KR100624094B1 (en)
WO (1) WO2005115945A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180226A (en) * 2011-02-28 2012-09-20 Nippon Steel Corp Steel manufacturing facility member, and method of manufacturing steel-manufacturing facility member
JP2014513393A (en) * 2011-04-06 2014-05-29 シュンク・コーレンストッフテヒニーク・ゲーエムベーハー Method for manufacturing resistance heating element and resistance heating element
CN104507676A (en) * 2012-05-16 2015-04-08 派特欧赛拉米克斯股份公司 Shaped composite material
CN105016760A (en) * 2015-07-09 2015-11-04 西北工业大学 Preparation method for ultra-high-temperature ceramic modified C/C composite material
JP2018083755A (en) * 2018-01-09 2018-05-31 ペトロチェラミクス ソシエタ ペル アチオニ Shaped composite material
KR102258338B1 (en) * 2020-11-25 2021-05-31 국방과학연구소 Fabrication Method of Carbon Composite

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2428671B (en) * 2005-07-29 2011-08-31 Surface Transforms Plc Method for the manufacture of carbon fibre-reinforced ceramic brake or clutch disks
DE102006026549A1 (en) 2006-06-08 2007-12-13 Audi Ag Process for producing friction discs of ceramic materials with improved friction layer
CN101028752B (en) * 2007-04-17 2010-04-14 洛阳鹏飞耐火耐磨材料有限公司 Abrasive ceramic member preparation method
US8281603B2 (en) * 2008-08-11 2012-10-09 United Technologies Corporation Fastener assembly for connecting rocket engine nozzles
TWI482329B (en) * 2012-08-23 2015-04-21 Atomic Energy Council A charging/discharging apparatus having two flows
KR101071878B1 (en) 2009-06-08 2011-10-10 주식회사 씨알-텍 Carbon composite, manufacturing method thereof, disk for clutch, and manufacturing method thereof
JP5504827B2 (en) * 2009-10-30 2014-05-28 日立化成株式会社 Disc-shaped friction member
WO2011111766A1 (en) * 2010-03-11 2011-09-15 三菱化学株式会社 Method and jig for producing silicon
US9181134B1 (en) 2011-04-27 2015-11-10 Israzion Ltd. Process of converting textile solid waste into graphite simple or complex shaped manufacture
US8597772B2 (en) 2011-09-20 2013-12-03 Honeywell International Inc. Corrugated carbon fiber preform
KR101318113B1 (en) * 2011-12-05 2013-10-18 주식회사 데크 Refractory composite and method for manufacturing the same
CN102584308B (en) * 2012-02-03 2013-04-24 西北工业大学 Preparation method of carbon fiber/zirconia nano-wire hybrid reinforced material
JPWO2014081005A1 (en) * 2012-11-26 2017-01-05 東洋炭素株式会社 Method for controlling characteristics of ceramic carbon composite material and ceramic carbon composite material
KR102059879B1 (en) * 2013-02-22 2019-12-31 한국에너지기술연구원 Fiber reinforced ceramic composite materials honeycomb and method for preparing the same
JP6027929B2 (en) * 2013-03-29 2016-11-16 大陽日酸株式会社 Method for adjusting vapor phase growth apparatus
US20160229753A1 (en) * 2013-09-19 2016-08-11 United Technologies Corporation Method of fabricating a ceramic article
FR3024051A1 (en) * 2014-07-28 2016-01-29 Total Raffinage Chimie CERAMIC MATERIAL PLATE ROOM FOR FLUID CATALYTIC CRACKING UNIT
FR3024050A1 (en) * 2014-07-28 2016-01-29 Total Raffinage Chimie FUEL INJECTION ELEMENT IN A REGENERATOR OF A FLUID CATALYTIC CRACKING UNIT
FR3024049A1 (en) * 2014-07-28 2016-01-29 Total Raffinage Chimie DEVICE FOR TERMINATING A REACTOR OF A FLUID CATALYTIC CRACKING UNIT
FR3024054B1 (en) * 2014-07-28 2020-07-10 Total Raffinage Chimie INJECTOR IN CERAMIC MATERIAL FOR FLUID CATALYTIC CRACKING UNIT
FR3024053B1 (en) * 2014-07-28 2020-07-24 Total Raffinage Chimie GAS INJECTION ELEMENT IN A REGENERATOR OF A FLUID CATALYTIC CRACKING UNIT
US9677845B2 (en) 2015-04-02 2017-06-13 Lancer Systems L.P. Firearm handguard having heat-reducing features
US10401028B2 (en) * 2015-06-05 2019-09-03 Rolls-Royce American Technologies, Inc. Machinable CMC insert
CN105040925B (en) * 2015-07-01 2018-07-10 内蒙古筑友建材有限公司 A kind of impact-resistant abrasion-proof ceramic coating structure and its construction method
RU2727172C2 (en) * 2015-12-16 2020-07-21 Басф Се Reactor for carrying out heterogeneously catalyzed gas-phase reactions and use thereof
CN106957181B (en) * 2016-01-11 2019-11-01 山东理工大学 The preparation method of resin dispersion hafnium carbide silicon carbide―carbon fiber friction material
CN105924199B (en) * 2016-04-27 2019-02-19 航天材料及工艺研究所 A kind of fast preparation method of low cost carbon/carbon compound material
US10144675B2 (en) 2016-10-24 2018-12-04 Honeywell International Inc. Segmented carbon fiber preform
US10365061B1 (en) * 2016-12-29 2019-07-30 Aaron E. Painter Firearm barrel with non-metal outer sleeve
US11179917B2 (en) * 2017-01-09 2021-11-23 General Electric Company CMC ply assembly, CMC article, and method for forming CMC article
CN108274826A (en) * 2018-01-22 2018-07-13 山东大学 A kind of high temperature resistant erosion resistance carbon fibre reinforced pipe and preparation method thereof
CN108178633B (en) * 2018-01-24 2021-08-17 湖南屹林材料技术有限公司 Skid body material for medium-low speed maglev train and preparation method thereof
IT201800009953A1 (en) 2018-10-31 2020-05-01 Petroceramics Spa Method and assembly of infiltration and rapid vapor deposition of porous components
EP3647459A1 (en) 2018-10-31 2020-05-06 Petroceramics S.p.A. Method and an assembly by chemical vapor infiltration of porous components
CN109678521A (en) * 2019-01-29 2019-04-26 潍坊工商职业学院 A kind of preparation method that silicon carbide is ceramic layered
KR102309595B1 (en) 2019-09-16 2021-10-06 국방과학연구소 Ceramic matrix composite for transmitting electromagnetic wave and method thereof
CN111348931B (en) * 2020-03-26 2024-02-09 孚迪斯石油化工(葫芦岛)有限公司 Annular carbon/carbon composite material gas phase permeation method
CN111548177A (en) * 2020-04-23 2020-08-18 山东工业陶瓷研究设计院有限公司 Preparation method of carbon fiber reinforced ceramic matrix composite and pyrolytic carbon interface layer
CN112125691A (en) * 2020-09-19 2020-12-25 山东天久高科新材料有限公司 Preparation method of modified carbon-carbon composite material
CN113004041B (en) * 2021-03-09 2023-04-07 贵州木易精细陶瓷有限责任公司 Gradient carbide ceramic and preparation method thereof
CN113149683A (en) * 2021-04-29 2021-07-23 上海骐杰碳素材料有限公司 Carbon or carbon ceramic composite material short fiber preform, product and preparation method thereof
CN113858651B (en) * 2021-08-26 2023-03-14 中国航空制造技术研究院 Design method of high-throughput process test flow of fiber reinforced resin matrix composite material
CN114225843B (en) * 2021-12-06 2022-08-05 中南大学 Zone-limited directional flow full-saturation infiltration reactor and method for preparing carbon/carbon composite material brake disc
CN114455968B (en) * 2022-02-10 2023-08-29 航天材料及工艺研究所 C/SiC-SiO 2 Composite material and preparation method thereof
CN115231938A (en) * 2022-07-22 2022-10-25 常州翊翔炭材科技有限公司 Preparation method of carbon/carbon composite material brake disc
CN115385708B (en) * 2022-08-18 2023-07-11 西北工业大学 Preparation method of superhigh temperature ceramic selective area suction filtration modified carbon/carbon composite material and suction filtration device
CN115385710B (en) * 2022-09-05 2023-11-03 华东理工大学 Mixed-woven fiber reinforced porous carbon-based composite material and preparation method thereof
CN115448744B (en) * 2022-09-14 2023-09-12 湖南博云新材料股份有限公司 Preparation method of carbon/carbon throat liner
CN115894060B (en) * 2022-10-10 2023-11-14 北京天宜上佳高新材料股份有限公司 Preparation method of carbon fiber brake disc
CN115536419B (en) * 2022-10-14 2023-09-29 湖南博云新材料股份有限公司 Aviation carbon ceramic brake material and preparation method thereof
EP4368852A1 (en) * 2022-11-14 2024-05-15 REBRAKE Ceramic Brake Service GmbH Method for manufacturing friction units
CN116283326B (en) * 2023-02-22 2024-04-16 陕西天策新材料科技有限公司 Carbon fiber reinforced ceramic encapsulated graphite heat-conducting plate and preparation method thereof
CN116082053B (en) * 2023-02-24 2024-05-03 中南大学 Rapid preparation method of ceramic modified carbon/carbon composite material
CN116332663A (en) * 2023-03-02 2023-06-27 中南大学 Preparation method of carbon/carbon-silicon carbide composite material
CN116803951B (en) * 2023-07-19 2024-03-05 北京亦盛精密半导体有限公司 High-purity high-resistivity silicon carbide workpiece and forming process thereof
CN117447222B (en) * 2023-12-26 2024-04-02 富优特(山东)新材料科技有限公司 Preparation method of carbon fiber reinforced carbon-based composite material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223180A (en) * 1990-01-26 1991-10-02 Ishikawajima Harima Heavy Ind Co Ltd Production of composite material
JPH04272803A (en) * 1991-02-28 1992-09-29 Kawasaki Heavy Ind Ltd Molding method for heat-resistant composite material
KR100198154B1 (en) * 1996-10-29 1999-06-15 추호석 A thermal gradient cvd for manufacturing c/c composite, and device thereof
JP2001505863A (en) * 1996-10-14 2001-05-08 ソシエテ・ナシオナル・デテユード・エ・ドウ・コンストリユクシオン・ドウ・モトール・ダヴイアシオン、“エス.エヌ.ウ.セ.エム.アー.” Friction member of composite carbon / carbon-silicon carbide material and method of manufacturing the same
JP2001146485A (en) * 1999-11-15 2001-05-29 Ngk Insulators Ltd Tray for firing powder
JP2001192270A (en) * 1999-02-09 2001-07-17 Ngk Insulators Ltd Carbon fiber composite material

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4737328A (en) * 1985-07-29 1988-04-12 General Electric Company Infiltration of material with silicon
US5067999A (en) * 1990-08-10 1991-11-26 General Atomics Method for providing a silicon carbide matrix in carbon-fiber reinforced composites
US5294489A (en) * 1992-04-02 1994-03-15 General Electric Company Protective coating with reactive interlayer on reinforcement in silicon carbide composite
JPH06247782A (en) * 1993-02-19 1994-09-06 Tokai Carbon Co Ltd Production of oxidation resistant c/c composite material
US5348774A (en) * 1993-08-11 1994-09-20 Alliedsignal Inc. Method of rapidly densifying a porous structure
FR2711646B1 (en) * 1993-10-27 1996-02-09 Europ Propulsion Method of chemical vapor infiltration of a pyrocarbon matrix within a porous substrate with establishment of a temperature gradient in the substrate.
DE4409099C2 (en) * 1994-03-17 1997-02-20 Dornier Gmbh Process for producing a fiber composite material with a ceramic matrix and use of such a material
JPH082976A (en) * 1994-06-17 1996-01-09 Ishikawajima Harima Heavy Ind Co Ltd Production of carbon fiber/carbon-based composite material
JP3548605B2 (en) * 1994-08-18 2004-07-28 東海カーボン株式会社 Oxidation-resistant treatment of carbon fiber reinforced carbon composites
FR2732677B1 (en) * 1995-04-07 1997-06-27 Europ Propulsion CHEMICAL STEAM INFILTRATION PROCESS WITH VARIABLE INFILTRATION PARAMETERS
KR100198152B1 (en) * 1996-10-16 1999-06-15 추호석 A cvd method for manufacturing c/c composites using modified process gas
DE19710105A1 (en) * 1997-03-12 1998-09-17 Sgl Technik Gmbh Silicon carbide body reinforced with short graphite fibers
FR2778403B1 (en) * 1998-05-07 2000-08-04 Snecma CARBON / CARBON COMPOSITE MATERIAL HAVING INCREASED OXIDATION RESISTANCE
JP2001048664A (en) * 1999-08-11 2001-02-20 Tokai Carbon Co Ltd Production of carbon fiber-reinforced carbon material
KR100447840B1 (en) * 2002-05-20 2004-09-08 주식회사 데크 Manufacturing method for carbon-carbon composites

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223180A (en) * 1990-01-26 1991-10-02 Ishikawajima Harima Heavy Ind Co Ltd Production of composite material
JPH04272803A (en) * 1991-02-28 1992-09-29 Kawasaki Heavy Ind Ltd Molding method for heat-resistant composite material
JP2001505863A (en) * 1996-10-14 2001-05-08 ソシエテ・ナシオナル・デテユード・エ・ドウ・コンストリユクシオン・ドウ・モトール・ダヴイアシオン、“エス.エヌ.ウ.セ.エム.アー.” Friction member of composite carbon / carbon-silicon carbide material and method of manufacturing the same
KR100198154B1 (en) * 1996-10-29 1999-06-15 추호석 A thermal gradient cvd for manufacturing c/c composite, and device thereof
JP2001192270A (en) * 1999-02-09 2001-07-17 Ngk Insulators Ltd Carbon fiber composite material
JP2001146485A (en) * 1999-11-15 2001-05-29 Ngk Insulators Ltd Tray for firing powder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180226A (en) * 2011-02-28 2012-09-20 Nippon Steel Corp Steel manufacturing facility member, and method of manufacturing steel-manufacturing facility member
JP2014513393A (en) * 2011-04-06 2014-05-29 シュンク・コーレンストッフテヒニーク・ゲーエムベーハー Method for manufacturing resistance heating element and resistance heating element
CN104507676A (en) * 2012-05-16 2015-04-08 派特欧赛拉米克斯股份公司 Shaped composite material
JP2015523948A (en) * 2012-05-16 2015-08-20 ペトロチェラミクス ソシエタ ペル アチオニ Molded composite material
US10710341B2 (en) 2012-05-16 2020-07-14 Petroceramics S.P.A. Shaped composite material
CN105016760A (en) * 2015-07-09 2015-11-04 西北工业大学 Preparation method for ultra-high-temperature ceramic modified C/C composite material
JP2018083755A (en) * 2018-01-09 2018-05-31 ペトロチェラミクス ソシエタ ペル アチオニ Shaped composite material
KR102258338B1 (en) * 2020-11-25 2021-05-31 국방과학연구소 Fabrication Method of Carbon Composite

Also Published As

Publication number Publication date
KR100624094B1 (en) 2006-09-19
US20080143005A1 (en) 2008-06-19
EP1758837A4 (en) 2010-04-14
WO2005115945A1 (en) 2005-12-08
KR20050113090A (en) 2005-12-01
EP1758837A1 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
JP2007535461A (en) Process for producing carbon fiber reinforced ceramic composites
US8039053B2 (en) Method for making a part of composite material with ceramic matrix and resulting part
JP6155439B2 (en) Manufacturing method of parts made of CMC material
KR100447840B1 (en) Manufacturing method for carbon-carbon composites
US6576076B1 (en) Process for producing fiber-reinforced silicon carbide composites
US6024898A (en) Article and method for making complex shaped preform and silicon carbide composite by melt infiltration
CN110330351B (en) Preparation method and product of SiC fiber reinforced SiC ceramic-based part
RU2668431C2 (en) Method of fabricating composite parts by low melting point impregnation
KR20100010023A (en) A method of fabricating a thermostructural composite material part, and a part obtained thereby
JP6764317B2 (en) Molded insulation with surface layer and its manufacturing method
KR100417161B1 (en) Method for manufacturing carbon/silicon-carbide composite
EP2578556B1 (en) Method and ceramic component
US7011786B2 (en) Process for producing shaped bodies comprising fiber-reinforced ceramic materials
CN109095929B (en) Preparation method of carbon-ceramic brake disc
KR101956683B1 (en) Manufacturing method of fiber reinforced ceramic matrix composites containing metal carbide filler
KR102258338B1 (en) Fabrication Method of Carbon Composite
KR101467665B1 (en) THE MANUFACTURING METHOD FOR C-SiC COMPOSITES
CN114230347A (en) Preparation method and product of continuous fiber reinforced ZrC/SiC composite part
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
KR101540306B1 (en) Method for manufacturing SiCf/SiC composites
Liu et al. Research on manufacturing process of carbon-carbon composites as ablation resistance materials
JP2782891B2 (en) Method for producing fiber-reinforced inorganic material
JPH11130553A (en) Carbon/carbon composite material
JPH0912376A (en) High toughness ceramics and its production
JP2000256064A (en) Composite material impregnated with highly oxidation resistant si and its production

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100127

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100203

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100225

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100304

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100326

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706