JP2001181062A - Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same - Google Patents

Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same

Info

Publication number
JP2001181062A
JP2001181062A JP36411099A JP36411099A JP2001181062A JP 2001181062 A JP2001181062 A JP 2001181062A JP 36411099 A JP36411099 A JP 36411099A JP 36411099 A JP36411099 A JP 36411099A JP 2001181062 A JP2001181062 A JP 2001181062A
Authority
JP
Japan
Prior art keywords
resin
impregnated
composite
thermosetting resin
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36411099A
Other languages
Japanese (ja)
Inventor
Toshiya Sedaka
俊哉 瀬高
Takayoshi Kimura
孝義 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP36411099A priority Critical patent/JP2001181062A/en
Publication of JP2001181062A publication Critical patent/JP2001181062A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin-impregnated C/C material which has a high elastic modulus, a high heat conductivity, a low electric resistivity, a low thermal expansion coefficient, a small gas transmittance and excellent physical natures, and to provide a method for producing the same. SOLUTION: This resin-impregnated C/C material is characterized by impregnating and curing a C/C material with a thermosetting resin, and having an elastic modulus of 60 to 110 GPa, a thermal expansion coefficient of -0.46 to -0.21×10-6/ deg.C, a heat conductivity of 2.5 to 6.0 W/mk, an electric resistivity of 25 to 60 μΩm, and a gas transmittance of 1 to 3×10-7 m2/sec. The method for producing the resin-impregnated C/C material comprises impregnating carbon fibers with a thermosetting resin, molding the obtained composite material, calcining and carbonizing the molded product in a non-oxidizing atmosphere, further graphitizing the first carbonized product to produce the C/C composite material as the substrate, impregnating the substrate with a thermosetting resin, and then thermally curing the impregnated product, and is characterized by adjusting the porosity of the C/C composite material to 5 to 25%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い弾性率を備
え、高熱伝導率および低電気比抵抗ならびに熱膨張率が
小さく、例えば半導体製造装置の搬送用テーブルやアー
ム、あるいは産業用ロボットのアーム等の構造部材とし
て好適に用いられる樹脂含浸炭素繊維強化炭素複合材
(以下「樹脂含浸C/C材」ともいう)とその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a high elastic modulus, a high thermal conductivity, a low electric resistivity and a small coefficient of thermal expansion. The present invention relates to a resin-impregnated carbon fiber reinforced carbon composite material (hereinafter also referred to as a “resin-impregnated C / C material”) suitably used as a structural member of the present invention and a method for producing the same.

【0002】[0002]

【従来の技術】C/C材は、炭素繊維の複合化による卓
越した比強度、比弾性率を有するうえに炭素材特有の軽
量性と優れた耐熱性および化学的安定性を備えているた
め、航空・宇宙機用の構造材料や高温炉用部材をはじめ
半導体製造用の各種部材、例えばCZ法による単結晶引
き上げ用のルツボ、ヒータ、炉材など、高温苛酷な条件
下で使用される用途分野で有用されている。
2. Description of the Related Art C / C materials have excellent specific strength and specific elastic modulus due to the compounding of carbon fibers, and also have the lightness, excellent heat resistance and chemical stability inherent to carbon materials. Applications used under severe high-temperature conditions, such as structural materials for aerospace equipment, high-temperature furnace materials, and various other materials for semiconductor manufacturing, such as crucibles, heaters, and furnace materials for pulling single crystals by the CZ method. Has been useful in the field.

【0003】このC/C材を製造する代表的な技術とし
ては (1)マトリックスとなる熱硬化性樹脂を含浸した炭
素繊維の織布を積層し、プレス等で所定形状に圧縮成形
したプリプレグ成形体を非酸化性雰囲気下で焼成炭化、
黒鉛化処理する方法、 (2)熱硬化性樹脂に浸した炭素繊
維のトウをフィラメントワインディング法で所定形状に
成形し、このプリプレグ成形体を同様に焼成炭化、黒鉛
化処理する方法、 (3)炭素繊維のプリフォーム組織中に
CVD(化学的気相蒸着法)により熱分解炭素を沈着さ
せる方法、などが知られている。
[0003] Typical techniques for producing this C / C material include: (1) prepreg molding in which a woven fabric of carbon fibers impregnated with a thermosetting resin as a matrix is laminated and compression-molded into a predetermined shape by a press or the like. Calcining the body in a non-oxidizing atmosphere,
A method of graphitizing, (2) a method of forming a carbon fiber tow soaked in a thermosetting resin into a predetermined shape by a filament winding method, and similarly calcining and carbonizing the prepreg molded body, and a method of graphitizing, (3) A method of depositing pyrolytic carbon by CVD (chemical vapor deposition) in a preform structure of carbon fibers is known.

【0004】このうち、大型のC/C材を得るためには
(1)の方法が工業的手段として最も実用性に優れてい
る。しかしながら、この方法を採る場合には圧縮成形時
に相当量の熱硬化性樹脂が外部に圧出したり、プリプレ
グ成形体を焼成炭化する過程で熱硬化性樹脂に含まれる
揮発性成分が揮散したり、焼成炭化および黒鉛化時に収
縮を伴うために、得られるC/C材の材質組織には微細
な空孔が生じ、低密度、低強度なものとなり易い難点が
ある。そこで、C/C材の材質組織の空孔中に炭化性の
フェノール樹脂やフラン樹脂などの熱硬化性樹脂や石炭
系や石油系のピッチを強制含浸したのち焼成する二次的
な緻密化処理が一般に行われている。
In order to obtain a large C / C material,
The method (1) is the most practical as an industrial means. However, when employing this method, a considerable amount of thermosetting resin is pressed out during compression molding, or volatile components contained in the thermosetting resin are volatilized in the process of firing and carbonizing the prepreg molded body, Due to shrinkage during firing carbonization and graphitization, the resulting microstructure of the C / C material has fine holes, which tend to be low density and low strength. Therefore, secondary densification treatment in which the pores of the material structure of the C / C material are forcibly impregnated with a thermosetting resin such as a carbonizable phenol resin or a furan resin, or a coal or petroleum pitch, and then fired. Is commonly done.

【0005】また、得られるC/C材の性能は、炭素繊
維と熱硬化性樹脂との結合力に影響され、その結合力は
炭素繊維と熱硬化性樹脂との界面濡れ性に支配され、濡
れ性が悪いと強固な複合組織を得ることが困難となる。
The performance of the obtained C / C material is affected by the bonding strength between the carbon fiber and the thermosetting resin, and the bonding strength is governed by the interface wettability between the carbon fiber and the thermosetting resin. Poor wettability makes it difficult to obtain a strong composite structure.

【0006】そこで、界面濡れ性を改善するために炭素
繊維の表面を改質する方法が知られており、例えば、特
開平3−115172号公報にはマトリックス結合材と
同系の物質を炭素繊維表面に被覆したのち熱処理して薄
層の黒鉛皮膜を形成した炭素繊維を用いる製造方法が、
特開平5−254936号公報には粗面化度2.0〜
3.0の範囲で引張弾性率40tonf/mm2(390 GPa)
以上の炭素繊維を気相又は液層酸化してX線光電子分光
法による表面酸素量をO1S/C1S=0.20〜0.40
とした炭素繊維集合体に炭素化収率が40%以上のマト
リックス樹脂を含浸塗布した炭素繊維強化炭素複合材用
成形材料が、開示されている。
Therefore, a method of modifying the surface of carbon fiber to improve interfacial wettability is known. For example, Japanese Patent Application Laid-Open No. 3-115172 discloses a method in which a substance similar to a matrix binder is coated on the surface of carbon fiber. A production method using carbon fibers that have been coated and then heat-treated to form a thin graphite film,
JP-A-5-254936 discloses that the degree of surface roughening is 2.0 to 2.0.
Tensile modulus 40 tonf / mm 2 (390 GPa) in the range of 3.0
The above carbon fiber is oxidized in a gas phase or a liquid layer, and the surface oxygen content by X-ray photoelectron spectroscopy is determined as O 1S / C 1S = 0.20 to 0.40.
A molding material for a carbon fiber reinforced carbon composite material, in which a matrix resin having a carbonization yield of 40% or more is impregnated and applied to the carbon fiber assembly described above.

【0007】一方、C/C材のマトリックス炭素部は破
壊脆性が小さいために、繰り返し荷重を掛けた場合にマ
トリックス炭素が炭素繊維から欠落し易い難点があり、
この難点を防ぐために、C/C材に樹脂を含浸して硬化
させた樹脂含浸C/C材が開発されている。しかしなが
ら、含浸樹脂の耐熱性が低いために高温雰囲気での使用
が制限される欠点があり、特開平3−261661号公
報には比較的耐熱性の高い液状ポリイミド樹脂を含浸し
て硬化させる製法が開示されている。
On the other hand, since the matrix carbon portion of the C / C material has a small fracture brittleness, there is a problem that the matrix carbon is liable to drop out of the carbon fiber when a repeated load is applied.
In order to prevent this difficulty, a resin impregnated C / C material has been developed in which a C / C material is impregnated with a resin and cured. However, the impregnated resin has a drawback that its use in a high-temperature atmosphere is limited due to its low heat resistance. Japanese Patent Application Laid-Open No. 3-261661 discloses a method of impregnating and curing a liquid polyimide resin having relatively high heat resistance. It has been disclosed.

【0008】[0008]

【発明が解決しようとする課題】一般的に、C/C材は
剛性が高く、また、C/C材のマトリックスを構成する
熱硬化性樹脂の炭化部は破壊脆性が小さいために、ねじ
りやたわみに対する耐性が小さくなるという問題点があ
り、また、上記の特開平3−261661号公報におい
ても、単に耐熱温度の比較的高いポリイミド樹脂を用い
て、300℃以下の温度域における強度の向上を図るも
のであって、ねじりやたわみに対する耐性の向上につい
てはなんら意図されていない。
Generally, the C / C material has a high rigidity, and the carbonized portion of the thermosetting resin constituting the matrix of the C / C material has a small fracture brittleness, so that the C / C material has a low toughness. There is a problem that resistance to deflection is reduced. Also, in the above-mentioned JP-A-3-261661, improvement in strength in a temperature range of 300 ° C. or less is simply achieved by using a polyimide resin having a relatively high heat-resistant temperature. It is intended and is not intended to improve resistance to torsion or deflection.

【0009】そこで、本発明者らは、上記C/C材のも
つ問題点を解消するために鋭意研究を進めた結果、C/
C材の材質組織に生じた微細な空孔に熱硬化性樹脂を含
浸して、硬化し、空孔部を硬化樹脂で充填させる際に、
C/C材の空孔、すなわち気孔率を特定することにより
樹脂含浸C/C材の物理的性状が改善できることを見出
した。
The inventors of the present invention have made intensive studies to solve the problems of the C / C material, and as a result,
When impregnating the fine pores generated in the material structure of the C material with the thermosetting resin and curing, and filling the pores with the cured resin,
It has been found that the physical properties of the resin-impregnated C / C material can be improved by specifying the pores of the C / C material, that is, the porosity.

【0010】本発明は、この知見に基づいて開発された
ものであって、その目的は高い弾性率を備え、高熱伝導
率および低電気比抵抗ならびに熱膨張率が小さい樹脂含
浸C/C材とその製造方法を提供することにある。
The present invention has been developed based on this finding, and has as its object to provide a resin-impregnated C / C material having a high modulus of elasticity, a high thermal conductivity, a low electrical resistivity, and a small coefficient of thermal expansion. It is to provide a manufacturing method thereof.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による樹脂含浸C/C材は、C/C材に熱硬
化性樹脂を含浸、硬化してなり、弾性率が60〜110
GPa、熱膨張率が−0.46〜−0.21×10-6
℃、熱伝導率が2.5〜6.0W/mK、電気比抵抗が25
〜60μΩm 、気体透過度が1〜3×10-7m2/secの物
性を有することを構成上の特徴とする。
A resin-impregnated C / C material according to the present invention for achieving the above object is obtained by impregnating and curing a C / C material with a thermosetting resin, and has an elastic modulus of 60 to 60%. 110
GPa, coefficient of thermal expansion −0.46 to −0.21 × 10 −6 /
° C, thermal conductivity 2.5 ~ 6.0W / mK, electrical resistivity 25
It is characterized in that it has physical properties of 1〜360 μΩm and gas permeability of 1-3 × 10 −7 m 2 / sec.

【0012】また、その製造方法は炭素繊維に熱硬化性
樹脂を含浸して複合成形したのち、非酸化性雰囲気中で
焼成炭化し、得られた一次焼成体を更に黒鉛化して作製
したC/C複合体を基材とし、該基材に熱硬化性樹脂を
含浸して加熱硬化する樹脂含浸C/C材の製造方法にお
いて、C/C複合体の気孔率を5〜25%の範囲に調整
することを特徴とし、C/C複合体の気孔率の調整は一
次焼成体に熱硬化性樹脂を再含浸して非酸化性雰囲気中
で焼成炭化する操作を反復するか、或いは化学気相浸透
法(CVI法)によりC/C複合体の空孔中に熱分解炭
素を沈着する方法で行うことができる。
[0012] Further, the method of producing the C / C is obtained by impregnating a carbon fiber with a thermosetting resin, forming a composite, calcining and carbonizing in a non-oxidizing atmosphere, and further graphitizing the obtained primary fired body. In a method for producing a resin-impregnated C / C material in which a C composite is used as a base material and the base material is impregnated with a thermosetting resin and heat-cured, the porosity of the C / C composite is set in a range of 5 to 25%. The porosity of the C / C composite is adjusted by repeating the operation of re-impregnating the primary fired body with a thermosetting resin and firing and carbonizing in a non-oxidizing atmosphere, or by chemical vapor phase. It can be carried out by a method of depositing pyrolytic carbon in pores of the C / C composite by a permeation method (CVI method).

【0013】[0013]

【発明の実施の形態】本発明の樹脂含浸C/C材は、C
/C材の空孔中に熱硬化性樹脂を含浸して硬化したもの
であり、C/C材の空孔が硬化樹脂により充填され、緻
密化した組織構造から構成されている。C/C材は強化
材となる炭素繊維を骨格としてマトリックス炭素と強固
に結合した材質強度に優れた複合材であるが、炭素質マ
トリックスが硬質で脆性であるために剛性が高く、ねじ
りやたわみなどのねばりに乏しく、これらの力が作用し
た場合の耐性が充分でない。
BEST MODE FOR CARRYING OUT THE INVENTION The resin-impregnated C / C material of the present invention
/ C material is impregnated with a thermosetting resin in the pores and cured, and the pores of the C / C material are filled with the cured resin and have a dense structure. The C / C material is a composite material having excellent material strength, which is firmly bonded to matrix carbon using carbon fiber as a reinforcing material as a skeleton. However, the carbonaceous matrix is hard and brittle, so it has high rigidity, torsion and bending. And the resistance when these forces act is not sufficient.

【0014】本発明の樹脂含浸C/C材は、このC/C
材の空孔中が熱硬化性樹脂により充填されており、C/
C材の炭素質マトリックスおよび炭素繊維の骨格部分が
高弾性を有する熱硬化性樹脂により補強され、弾性率が
向上するとともに、組織が緻密化し、熱膨張率が小さ
く、熱伝導率および電気比抵抗が改善される。
The resin-impregnated C / C material of the present invention
The pores of the material are filled with thermosetting resin, and C /
The carbonaceous matrix of the C material and the skeleton portion of the carbon fiber are reinforced by a thermosetting resin having high elasticity, and the elastic modulus is improved, the structure is densified, the thermal expansion coefficient is small, the thermal conductivity and the electrical resistivity are improved. Is improved.

【0015】すなわち、具体的には、弾性率が60〜1
10 GPa、熱膨張率が−0.46〜−0.21×10-6
/℃、熱伝導率が2.5〜6.0W/mK、電気比抵抗が2
5〜60μΩm 、気体透過度が1〜3×10-7m2/secの
物性をバランスよく備えた、樹脂含浸C/C材が提供さ
れる。
That is, specifically, the elastic modulus is 60 to 1
10 GPa, coefficient of thermal expansion -0.46 to -0.21 × 10 -6
/ ° C, thermal conductivity 2.5-6.0 W / mK, electrical resistivity 2
There is provided a resin-impregnated C / C material having well-balanced physical properties of 5 to 60 μΩm and gas permeability of 1 to 3 × 10 −7 m 2 / sec.

【0016】本発明の樹脂含浸C/C材は、炭素繊維に
熱硬化性樹脂を含浸して複合成形したのち、非酸化性雰
囲気中で焼成炭化し、得られた一次焼成体を更に黒鉛化
して作製したC/C複合体を基材とし、該基材に熱硬化
性樹脂を含浸して加熱硬化する方法により製造される。
The resin impregnated C / C material of the present invention is obtained by impregnating carbon fiber with a thermosetting resin, forming a composite, calcining and carbonizing in a non-oxidizing atmosphere, and further graphitizing the obtained primary calcined body. The C / C composite prepared as described above is used as a base material, and the base material is impregnated with a thermosetting resin and then heated and cured.

【0017】本発明の樹脂含浸C/C材の基材となるC
/C材は、公知の方法により作製されたものが用いられ
る。すなわち、強化材となる炭素繊維には、ポリアクリ
ロニトリル系、レーヨン系、ピッチ系などの各種原料か
ら製造された平織、朱子織、綾織などの織布、これを一
次元または多次元方向に配向した繊維成形体、フエル
ト、トウなどが使用され、これらの炭素繊維にマトリッ
クス結合材となるフェノール系、フラン系など残炭率が
50重量%以上の熱硬化性樹脂あるいはタール、ピッチ
などを浸漬、塗布などの手段により含浸し、加熱硬化し
て複合成形体を作製する。
C as a base material of the resin-impregnated C / C material of the present invention
As the / C material, a material prepared by a known method is used. In other words, the carbon fiber used as the reinforcing material, polyacrylonitrile-based, rayon-based, plain weave manufactured from various raw materials such as pitch-based, satin weave, twill weave and other woven fabrics, which are oriented in one-dimensional or multi-dimensional directions Fiber moldings, felts, tows, etc. are used, and these carbon fibers are immersed and coated with a thermosetting resin such as a phenol-based or furan-based resin with a residual carbon ratio of 50% by weight or more, such as phenol or furan, or tar or pitch. Impregnation by such means as above, and heat curing to produce a composite molded article.

【0018】次いで、窒素、アルゴンなどの非酸化性雰
囲気中で800℃以上の温度、好ましくは1000〜1
500℃の温度で焼成炭化して一次焼成体を得る。得ら
れた一次焼成体は、非酸化性雰囲気中で1600〜30
00℃、好ましくは2000〜3000℃の温度で黒鉛
化してC/C複合体を作製する。
Next, in a non-oxidizing atmosphere such as nitrogen or argon, at a temperature of 800 ° C. or more, preferably 1000 to 1
Firing and carbonizing at a temperature of 500 ° C. to obtain a primary fired body. The primary fired body obtained is 1600 to 30 in a non-oxidizing atmosphere.
It is graphitized at a temperature of 00C, preferably 2000-3000C to produce a C / C composite.

【0019】このC/C複合体を基材として、その空孔
中に熱硬化性樹脂を含浸して加熱硬化することにより樹
脂含浸C/C材が製造されるが、本発明の樹脂含浸C/
C材の製造方法は、C/C複合体の気孔率を5〜25%
の範囲に調整することを特徴とするものである。すなわ
ち、C/C複合体の作製過程においては、マトリックス
結合材中の揮発性成分の揮散や炭化、黒鉛化処理時の収
縮によりC/C複合体の組織には微細な空孔が生じる。
この空孔に熱硬化性樹脂を含浸して加熱硬化し、硬化し
た樹脂により空孔内を充填する場合、空孔内を充分に充
填して物理的性状の改善向上を図るために、その気孔率
を5〜25%の範囲に調整することが必要となる。
A resin-impregnated C / C material is produced by impregnating a thermosetting resin in the pores of the C / C composite as a base material and curing by heating. /
The method for producing the C material is to increase the porosity of the C / C composite by 5 to 25%.
Is adjusted within the range of That is, in the production process of the C / C composite, fine pores are generated in the structure of the C / C composite due to volatilization of volatile components in the matrix binder, carbonization, and shrinkage during the graphitization treatment.
When the pores are impregnated with a thermosetting resin and heat-cured, and the interior of the pores is filled with the cured resin, the pores are sufficiently filled to improve the physical properties. It is necessary to adjust the ratio in the range of 5 to 25%.

【0020】C/C複合体に熱硬化性樹脂を含浸する方
法は、例えばC/C複合体を含浸容器に入れて、130
0Pa以下に減圧してC/C複合体の空孔中に吸蔵されて
いるガスを脱気したのち、フェノール樹脂、エポキシ樹
脂、フラン樹脂などの熱硬化性樹脂を容器内に流入させ
て500〜2000 KPa程度に加圧して含浸する方法に
より行うことができる。
A method for impregnating a C / C composite with a thermosetting resin is as follows.
After decompressing the gas occluded in the pores of the C / C composite by reducing the pressure to 0 Pa or less, a thermosetting resin such as a phenol resin, an epoxy resin, or a furan resin is flowed into the container to reach 500 to It can be carried out by a method of impregnating under pressure of about 2000 KPa.

【0021】この場合、C/C複合体の気孔率が5%未
満では効率よく空孔中に樹脂を充填することが困難であ
り、一方、25%を上回ると空孔中への樹脂の充填が不
充分となり、物理的性状の改善効果が達成されなくな
る。含浸した熱硬化性樹脂は100〜170℃程度の温
度に加熱して硬化され、C/C複合体の空孔は硬化樹脂
により充填され緻密化され、物理的性状の改善が図られ
る。
In this case, if the porosity of the C / C composite is less than 5%, it is difficult to efficiently fill the pores with the resin, while if it exceeds 25%, the resin is filled into the pores. Is insufficient, and the effect of improving the physical properties cannot be achieved. The impregnated thermosetting resin is cured by heating to a temperature of about 100 to 170 ° C., and the pores of the C / C composite are filled with the cured resin and densified to improve the physical properties.

【0022】C/C複合体の気孔率の調整は、作製した
一次焼成体に熱硬化性樹脂を再含浸して、窒素、アルゴ
ンなどの非酸化性雰囲気中800℃以上の温度、好まし
くは1000〜1500℃の温度で焼成炭化する操作を
反復して行うことにより、所定の気孔率に制御すること
ができる。再含浸は、例えば一次焼成体を容器に入れ
て、1300Pa以下に減圧して一次焼成体内の空孔中に
吸蔵されているガスを脱気したのち熱硬化性樹脂を容器
内に流入させて500〜2000 KPa程度に加圧して含
浸する方法により行われる。
The porosity of the C / C composite is adjusted by re-impregnating the prepared primary fired body with a thermosetting resin, and in a non-oxidizing atmosphere such as nitrogen or argon at a temperature of 800 ° C. or higher, preferably 1000 ° C. By repeatedly performing the operation of calcining and carbonizing at a temperature of 11500 ° C., the porosity can be controlled to a predetermined porosity. For the re-impregnation, for example, the primary fired body is put into a container, the pressure is reduced to 1300 Pa or less, and the gas occluded in the pores in the primary fired body is degassed. It is carried out by a method of impregnating by pressurizing to about 2000 KPa.

【0023】一方、熱分解炭素を沈着する方法はC/C
複合体をCVD反応装置にセットして、反応温度を12
00〜1300℃、装置内圧力を1300〜13000
Pa、原料ガス濃度を5〜20 vol%に制御して、C/C
複合体の空孔に熱分解炭素を沈着させるものである。こ
こで、原料ガスにはメタン、プロパン、プロピレン、ベ
ンゼン等の炭化水素ガスを使用し、キャリアガスとして
アルゴン、水素等を使用して熱分解炭素が析出される。
On the other hand, the method of depositing pyrolytic carbon is C / C
The complex was set in a CVD reactor and the reaction temperature was set to 12
00-1300 ° C, pressure inside the device is 1300-13000
Pa, source gas concentration is controlled to 5-20 vol%, C / C
This is to deposit pyrolytic carbon in the pores of the composite. Here, pyrolytic carbon is deposited using a hydrocarbon gas such as methane, propane, propylene, or benzene as a source gas and using argon, hydrogen, or the like as a carrier gas.

【0024】[0024]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
Hereinafter, examples of the present invention will be described in comparison with comparative examples.

【0025】実施例1〜3 ポリアクリロニトリル系高強度タイプの平織炭素繊維織
布に、フェノール樹脂初期縮合物(残炭率50%)を塗布
して十分に含浸させ、48時間風乾してプリプレグシー
トを作製した。このプリプレグシートを16枚積層して
200×200mmのモールドに入れ、温度110℃、圧
力2MPa の熱圧条件で5時間プレスして一次硬化したの
ち、250℃の温度に加熱して完全に硬化させ、複合成
形体を作製した。
Examples 1 to 3 A phenol resin precondensate (residual carbon ratio: 50%) was applied to a polyacrylonitrile-based high-strength plain-woven carbon fiber woven fabric, sufficiently impregnated, and air-dried for 48 hours to prepare a prepreg sheet. Was prepared. Sixteen of these prepreg sheets are stacked and placed in a 200 × 200 mm mold, pressed for 5 hours under the conditions of a temperature of 110 ° C. and a pressure of 2 MPa to perform primary curing, and then heated to a temperature of 250 ° C. to be completely cured. A composite molded body was produced.

【0026】次いで、この複合成形体を窒素雰囲気に保
持した焼成炉に移し、5℃/hrの昇温速度で1000℃
まで加熱し、5時間保持して焼成炭化して一次焼成体を
作製した。次に、この一次焼成体を密閉容器に入れ、4
00Paに減圧したのち、フェノール樹脂初期縮合物を注
入して785 KPaに加圧して室温で含浸させ、次いで容
器から取り出し、10℃/hrの昇温速度で1000℃の
温度で焼成して緻密化した。このフェノール樹脂を再含
浸して焼成炭化して緻密化する操作を数回繰り返し行っ
た。
Next, the composite molded body was transferred to a firing furnace maintained in a nitrogen atmosphere, and was heated at a temperature rising rate of 5 ° C./hr to 1000 ° C.
, And kept for 5 hours to obtain a primary fired body by firing and carbonizing. Next, this primary fired body is placed in a closed container, and
After reducing the pressure to 00 Pa, a phenolic resin precondensate is injected, pressurized to 785 KPa and impregnated at room temperature, then taken out of the container and calcined at a rate of 10 ° C./hr at a temperature of 1000 ° C. for densification. did. The operation of re-impregnating the phenol resin, firing and carbonizing to densify was repeated several times.

【0027】実施例4 実施例1〜3と同一の方法で作製した一次焼成体を、高
周波誘導加熱方式のCVD装置の反応炉内にセットし、
原料ガスにはプロパンガス、キャリアガスには水素を用
い、総ガス流量を1.0 dm3/minに設定した。CVI反
応は真空炉内中で1200℃の温度に加熱したのち、水
素ガスを導入し、再び炉内温度が1200℃に達した時
点で原料ガスを10 vol%の濃度で導入し、熱分解炭素
を沈着させた。この際の炉内圧力は6600Paとなるよ
うに圧力コントローラーで制御した。
Example 4 A primary fired body produced in the same manner as in Examples 1 to 3 was set in a reactor of a CVD apparatus of a high-frequency induction heating system.
Propane gas was used as a source gas, and hydrogen was used as a carrier gas, and the total gas flow rate was set to 1.0 dm 3 / min. In the CVI reaction, after heating to a temperature of 1200 ° C. in a vacuum furnace, hydrogen gas is introduced, and when the temperature in the furnace reaches 1200 ° C. again, a raw material gas is introduced at a concentration of 10 vol. Was deposited. At this time, the pressure in the furnace was controlled by a pressure controller so as to be 6600 Pa.

【0028】これらのフェノール樹脂を再含浸して焼成
炭化し、或いは熱分解炭素を沈着した焼成体を2000
℃に加熱、黒鉛化して、気孔率の異なるC/C複合体
(200×200×4mm)を作製した。これらのC/C
複合体を基材として密閉容器に入れ、400Paに減圧し
たのち、フェノール樹脂を注入して785 KPaに加圧し
て室温で含浸させた。次いで、容器から取り出し、17
0℃で一次硬化させ、更に250℃の温度で24時間加
熱してフェノール樹脂を完全に硬化して樹脂含浸C/C
材を製造した。
These phenolic resins are re-impregnated and calcined and carbonized, or a calcined body on which pyrolytic carbon is deposited is 2,000
The mixture was heated to ℃ and graphitized to produce C / C composites (200 × 200 × 4 mm) having different porosity. These C / C
The composite was placed in a closed container as a base material, and after reducing the pressure to 400 Pa, a phenol resin was injected, and the mixture was pressurized to 785 KPa and impregnated at room temperature. Then remove from the container, 17
Primary curing at 0 ° C, and further heating at 250 ° C for 24 hours to completely cure the phenolic resin and impregnate C / C
Lumber was manufactured.

【0029】このようにして製造した樹脂含浸C/C材
について、下記の方法により引張強度、弾性率、熱膨張
率、熱伝導率、電気比抵抗、気体透過度を測定し、その
結果をC/C複合体の気孔率とともに表1に示した。 引張強度;ASTM D3039に準拠して、試験片 150×13×
4t mm 、評定部 7mm、クロスヘッドスピード 1.3mm/min
の条件で測定した。 弾性率;上記の引張試験で得られた荷重−ひずみ曲線
において初期の直線部の傾きより算出した。 熱膨張率;レーザ−干渉法(温度範囲 −40〜+85
℃)により測定した。 熱伝導率;レーザーフラッシュ法により測定した。 電気比抵抗;JIS R7202 に準拠し、電圧降下法により
測定した。 気体透過度;JIS K7126 に準拠し、差圧法により測定
した。
The tensile strength, elastic modulus, coefficient of thermal expansion, coefficient of thermal conductivity, electrical resistivity, and gas permeability of the resin-impregnated C / C material manufactured as described above were measured by the following methods. The results are shown in Table 1 together with the porosity of the / C composite. Tensile strength: Test specimen 150 × 13 × according to ASTM D3039
4t mm, Rating section 7mm, Crosshead speed 1.3mm / min
It measured on condition of. Elastic modulus: Calculated from the slope of the initial linear portion in the load-strain curve obtained in the above tensile test. Coefficient of thermal expansion; Laser-interferometry (temperature range -40 to +85
° C). Thermal conductivity: measured by a laser flash method. Electric resistivity: Measured by a voltage drop method according to JIS R7202. Gas permeability: Measured by the differential pressure method according to JIS K7126.

【0030】比較例1 実施例と同様にして、ポリアクリロニトリル系高強度タ
イプの平織炭素繊維織布にフェノール樹脂初期縮合物
(残炭率50%)を塗布して十分に含浸させ、48時間風
乾してプリプレグシートを作製した。このプリプレグシ
ートを16枚積層して200×200mmのモールドに入
れ、温度110℃、圧力2 MPaの熱圧条件で5時間プレ
スして一次硬化したのち、250℃に加熱して完全に硬
化させ、炭素繊維強化プラスチック複合材(CFRP)
を作製した。このCFRPについて実施例と同一の方法
により、引張強度、弾性率、熱膨張率、熱伝導率、電気
比抵抗、気体透過度を測定し、その結果を表1に併載し
た。
Comparative Example 1 In the same manner as in the Example, a polyacrylonitrile-based high-strength type plain woven carbon fiber woven fabric was coated with a phenol resin initial condensate (residual carbon ratio: 50%), sufficiently impregnated, and air-dried for 48 hours. Thus, a prepreg sheet was prepared. Sixteen of these prepreg sheets are laminated and placed in a 200 × 200 mm mold, pressed at a temperature of 110 ° C. and a pressure of 2 MPa for 5 hours for primary curing, then heated to 250 ° C. to be completely cured, Carbon fiber reinforced plastic composite (CFRP)
Was prepared. The tensile strength, elastic modulus, coefficient of thermal expansion, thermal conductivity, electrical resistivity, and gas permeability of this CFRP were measured in the same manner as in the examples, and the results are shown in Table 1.

【0031】比較例2 比較例1と同様の方法でCFRPを作製し、更に焼成炭
化、黒鉛化してC/C材を作製した。得られたC/C材
を実施例と同一の方法により、引張強度、弾性率、熱膨
張率、熱伝導率、電気比抵抗、気体透過度を測定し、そ
の結果を表1に併載した。
Comparative Example 2 A CFRP was produced in the same manner as in Comparative Example 1, and was further calcined and carbonized to produce a C / C material. The obtained C / C material was measured for tensile strength, elastic modulus, coefficient of thermal expansion, thermal conductivity, electrical resistivity, and gas permeability by the same method as in the example, and the results are shown in Table 1.

【0032】[0032]

【表1】 [Table 1]

【0033】表1の結果から、特定した気孔率を有する
C/C複合体の空孔に熱硬化性樹脂を充填し、緻密化し
た実施例の樹脂含浸C/C材は、物理的性状が改善され
て、弾性率、熱膨張率、熱伝導率、電気比抵抗、気体透
過度などの物性がバランスよく付与されていることが判
る。
From the results shown in Table 1, the resin-impregnated C / C material of the embodiment in which the pores of the C / C composite having the specified porosity are filled with a thermosetting resin and densified, has a physical property of It can be seen that the properties are improved and the physical properties such as the elastic modulus, the thermal expansion coefficient, the thermal conductivity, the electric resistivity, and the gas permeability are provided in a well-balanced manner.

【0034】[0034]

【発明の効果】以上のとおり、本発明の樹脂含浸C/C
材によれば、C/C材の空孔中に熱硬化性樹脂を含浸硬
化し、C/C材の空孔が硬化樹脂により充填され、緻密
化した組織構造から構成されている。そして、C/C材
の炭素質マトリックスおよび炭素繊維の骨格部分が高弾
性を有する熱硬化性樹脂により補強され、弾性率が向上
するとともに、組織が緻密化し、熱膨張率が小さく、熱
伝導率、電気比抵抗および気体透過度などの物理的性状
が改善され、ねじりやたわみに対し優れた耐性が付与さ
れる。したがって、例えば半導体製造装置の搬送用テー
ブルやアーム、あるいは産業用ロボットのアーム等の構
造部材として好適に用いることができる。また、その製
造方法によれば、このような優れた物性を備えた樹脂含
浸C/C材の製造が可能となる。
As described above, the resin-impregnated C / C of the present invention is used.
According to the material, the pores of the C / C material are impregnated and cured with the thermosetting resin, the pores of the C / C material are filled with the cured resin, and the pores are formed into a dense structure. Then, the carbonaceous matrix of the C / C material and the skeleton portion of the carbon fiber are reinforced by a thermosetting resin having high elasticity, and the elastic modulus is improved, the structure is densified, the thermal expansion coefficient is small, and the thermal conductivity is low. Physical properties such as electrical resistivity and gas permeability are improved, and excellent resistance to torsion and bending is imparted. Therefore, it can be suitably used as a structural member such as a transfer table or arm of a semiconductor manufacturing apparatus or an arm of an industrial robot. Further, according to the manufacturing method, a resin-impregnated C / C material having such excellent physical properties can be manufactured.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維強化炭素複合材に熱硬化性樹脂
を含浸、硬化してなり、弾性率が60〜110 GPa、熱
膨張率が−0.46〜−0.21×10-6/℃、熱伝導
率が2.5〜6.0W/mK、電気比抵抗が25〜60μΩ
m 、気体透過度が1〜3×10-7m2/secの物性を有する
ことを特徴とする樹脂含浸炭素繊維強化炭素複合材。
1. A carbon fiber reinforced carbon composite material impregnated with a thermosetting resin and cured to have an elastic modulus of 60 to 110 GPa and a thermal expansion coefficient of -0.46 to -0.21 × 10 -6 / ° C, thermal conductivity 2.5 ~ 6.0W / mK, electrical resistivity 25 ~ 60μΩ
m, a resin-impregnated carbon fiber reinforced carbon composite material having physical properties of 1-3 × 10 −7 m 2 / sec.
【請求項2】 炭素繊維に熱硬化性樹脂を含浸して複合
成形したのち、非酸化性雰囲気中で焼成炭化し、得られ
た一次焼成体を更に黒鉛化して作製したC/C複合体を
基材とし、該基材に熱硬化性樹脂を含浸して加熱硬化す
る樹脂含浸炭素繊維強化炭素複合材の製造方法におい
て、C/C複合体の気孔率を5〜25%の範囲に調整す
ることを特徴とする樹脂含浸炭素繊維強化炭素複合材の
製造方法。
2. A C / C composite produced by impregnating a carbon fiber with a thermosetting resin to form a composite, calcining and carbonizing in a non-oxidizing atmosphere, and further graphitizing the obtained primary calcined body. In the method for producing a resin-impregnated carbon fiber reinforced carbon composite material in which a base material is impregnated with a thermosetting resin and heat-cured, the porosity of the C / C composite is adjusted to a range of 5 to 25%. A method for producing a resin-impregnated carbon fiber reinforced carbon composite material, comprising:
【請求項3】 C/C複合体の気孔率が5〜25%の範
囲になるまで、一次焼成体に熱硬化性樹脂を再含浸して
非酸化性雰囲気中で焼成炭化する操作を反復するか、或
いは化学気相浸透法(CVI法)によりC/C複合体の
空孔中に熱分解炭素を沈着する請求項2記載の樹脂含浸
炭素繊維強化炭素複合材の製造方法。
3. The operation of re-impregnating the primary fired body with a thermosetting resin and firing and carbonizing in a non-oxidizing atmosphere is repeated until the porosity of the C / C composite falls within the range of 5 to 25%. The method for producing a resin-impregnated carbon fiber reinforced carbon composite according to claim 2, wherein pyrolytic carbon is deposited in the pores of the C / C composite by a chemical vapor infiltration method (CVI method).
JP36411099A 1999-12-22 1999-12-22 Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same Pending JP2001181062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36411099A JP2001181062A (en) 1999-12-22 1999-12-22 Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36411099A JP2001181062A (en) 1999-12-22 1999-12-22 Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same

Publications (1)

Publication Number Publication Date
JP2001181062A true JP2001181062A (en) 2001-07-03

Family

ID=18481005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36411099A Pending JP2001181062A (en) 1999-12-22 1999-12-22 Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same

Country Status (1)

Country Link
JP (1) JP2001181062A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004270127A (en) * 2003-03-04 2004-09-30 Snecma Propulsion Solide Method for producing fiber blank and method for producing fiber reinforced composite material part
JP2010539699A (en) * 2007-09-14 2010-12-16 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus having a rotating filter device
KR101549952B1 (en) * 2013-11-08 2015-09-03 국방과학연구소 Manufacturing method of the exit cone for propulsion nozzle unit
JP2016097654A (en) * 2014-11-26 2016-05-30 積水化学工業株式会社 Fiber base material, resin sheet, method for producing fiber base material and method for producing resin sheet
CN111362714A (en) * 2020-03-18 2020-07-03 德翼高科(杭州)科技有限公司 Preparation method of carbon-ceramic brake disc

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004270127A (en) * 2003-03-04 2004-09-30 Snecma Propulsion Solide Method for producing fiber blank and method for producing fiber reinforced composite material part
JP2010539699A (en) * 2007-09-14 2010-12-16 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus having a rotating filter device
KR101549952B1 (en) * 2013-11-08 2015-09-03 국방과학연구소 Manufacturing method of the exit cone for propulsion nozzle unit
JP2016097654A (en) * 2014-11-26 2016-05-30 積水化学工業株式会社 Fiber base material, resin sheet, method for producing fiber base material and method for producing resin sheet
CN111362714A (en) * 2020-03-18 2020-07-03 德翼高科(杭州)科技有限公司 Preparation method of carbon-ceramic brake disc
CN111362714B (en) * 2020-03-18 2021-09-07 德翼高科(杭州)科技有限公司 Preparation method of carbon-ceramic brake disc

Similar Documents

Publication Publication Date Title
US6576076B1 (en) Process for producing fiber-reinforced silicon carbide composites
KR101241775B1 (en) Method for preparing high density fiber reinforced silicon carbide composite materials
US5665464A (en) Carbon fiber-reinforced carbon composite material and process for the preparation thereof
JP2007535461A (en) Process for producing carbon fiber reinforced ceramic composites
CN114920574A (en) Method for preparing large-size carbon-carbon crucible by three-dimensional weaving of carbon fibers
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JP3983459B2 (en) Carbon fiber reinforced carbon composite screw
JP3829964B2 (en) Method for producing carbon fiber reinforced carbon composite
JP2002255664A (en) C/c composite material and production method therefor
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JPH0292886A (en) Production of carbon fiber-reinforced composite material having oxidation resistance
JP3058180B2 (en) Boron carbide-containing carbon fiber reinforced carbon composite material, method for producing the same, and hot press material using the same
JP2579563B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
KR102390228B1 (en) Fiber reinforced composite material and manufacturing method thereof
JP2001048664A (en) Production of carbon fiber-reinforced carbon material
JP4420371B2 (en) Manufacturing method of screw member made of C / C material
JPH0532457A (en) Carbon fiber-reinforced carbon composite material and its production
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JP3548597B2 (en) Oxidation-resistant treatment method of carbon fiber reinforced carbon composite
JP2000169250A (en) Production of carbon fiber reinforced carbon composite material
JP2003012374A (en) Method of manufacturing carbon fiber reinforcing carbon material
JP3599791B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JP3957229B2 (en) Method for producing carbon fiber reinforced carbon composite material
KR20220080425A (en) Fabrication Method of Carbon/Carbon Composite using Carbon Fiber
JP2762461B2 (en) Method for producing carbon fiber reinforced carbon composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318