JP2007333800A - Microscope lighting device and microscope apparatus having the same - Google Patents

Microscope lighting device and microscope apparatus having the same Download PDF

Info

Publication number
JP2007333800A
JP2007333800A JP2006162530A JP2006162530A JP2007333800A JP 2007333800 A JP2007333800 A JP 2007333800A JP 2006162530 A JP2006162530 A JP 2006162530A JP 2006162530 A JP2006162530 A JP 2006162530A JP 2007333800 A JP2007333800 A JP 2007333800A
Authority
JP
Japan
Prior art keywords
light
microscope
light source
lens
white
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006162530A
Other languages
Japanese (ja)
Inventor
Yukio Kanjiyou
行男 冠城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006162530A priority Critical patent/JP2007333800A/en
Publication of JP2007333800A publication Critical patent/JP2007333800A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microscope lighting device which is small in size, is simple in adjustment of a wavelength characteristic of illumination light, is inexpensive, and is high brightness, and a microscope apparatus having the same. <P>SOLUTION: The microscope lighting device has a light source 1, a collector lens 4 for collecting the light from the light source, and a condenser lens 20 for irradiating a specimen 10 with the light from the collector lens 4. The light source 1 is two-dimensionally arrayed with two or more kinds of white LEDs 2, 3 varying in wavelength distributions and includes a control means 24 controlling the light emission intensity of the white LEDs 2, 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、顕微鏡の照明装置とこれを有する顕微鏡装置に関する。   The present invention relates to a microscope illumination apparatus and a microscope apparatus having the same.

従来、試料が波長依存性を有する場合、試料を照明する光の波長分布を変えて照明することが提案されている(例えば、特許文献1参照)。
特開平11−287958号公報
Conventionally, when a sample has wavelength dependency, it has been proposed to illuminate by changing the wavelength distribution of light that illuminates the sample (see, for example, Patent Document 1).
JP-A-11-287958

しかしながら、特許文献1に開示されている照明装置は、赤色(R)LED、緑色(G)LED、および青色(B)LEDをそれぞれ準備し、それぞれの発光強度を調節することによって、観察する試料の波長特性に対応しているため、試料の波長特性に合わせるには、試料を観察しながらRGB3色の各LEDの発光強度をそれぞれ調節する必要があり、光源の面積が大型化し、光源の調節が煩雑かつ高価になると言う問題があった。   However, the illumination device disclosed in Patent Document 1 is a sample to be observed by preparing a red (R) LED, a green (G) LED, and a blue (B) LED and adjusting the emission intensity of each. In order to match the wavelength characteristics of the sample, it is necessary to adjust the light emission intensity of each of the RGB three colors while observing the sample. However, there is a problem that it becomes complicated and expensive.

本発明は、上記課題に鑑みて行われたものであり、小型で照明光の波長特性の調節が簡単で安価な高輝度の顕微鏡照明装置とこれを有する顕微鏡装置を提供することを課題とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a high-intensity microscope illuminating device that is small, easily adjusts the wavelength characteristics of illumination light, and inexpensive, and a microscope device having the same. .

上記課題を解決するために、本発明は、光源と、前記光源からの光を集光するコレクタレンズと、前記コレクタレンズからの光を標本に照射するコンデンサレンズとを有し、前記光源は、波長分布の異なる二種類以上の白色LEDが二次元に配列され、前記白色LEDの点灯を制御する制御手段を具備するすることを特徴とする顕微鏡照明装置を提供する。   In order to solve the above problems, the present invention includes a light source, a collector lens that collects light from the light source, and a condenser lens that irradiates a sample with light from the collector lens, and the light source includes: Provided is a microscope illuminating device characterized in that two or more types of white LEDs having different wavelength distributions are two-dimensionally arranged and control means for controlling lighting of the white LEDs is provided.

また、本発明は、前記顕微鏡照明装置を有することを特徴とする顕微鏡装置を提供する。   The present invention also provides a microscope apparatus comprising the microscope illumination apparatus.

本発明によれば、小型で照明光の波長特性の調節が簡単で安価な高輝度の顕微鏡照明装置とこれを有する顕微鏡装置を提供することができる。   According to the present invention, it is possible to provide a high-intensity microscope illumination apparatus that is small in size, easily adjusted in wavelength characteristics of illumination light, and inexpensive, and a microscope apparatus having the microscope illumination apparatus.

以下、本発明の実施の形態に関し図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の第1実施の形態にかかる顕微鏡照明装置を有する顕微鏡装置の概略構成図であり、(a)は顕微鏡装置の概略構成図を、(b)は顕微鏡照明装置に用いられる光源の概略構成を示す。図2は、分光特性を示し、(a)は赤外カットフィルタの分光特性の一例を、(b)は青色成分が相対的に多い白色LEDの分光特性の一例を、(c)は緑色から赤色成分が相対的に多い白色LEDの分光特性の一例をそれぞれ示している。   FIG. 1 is a schematic configuration diagram of a microscope apparatus having the microscope illumination apparatus according to the first embodiment of the present invention, wherein (a) is a schematic configuration diagram of the microscope apparatus, and (b) is used for the microscope illumination apparatus. 1 shows a schematic configuration of a light source. FIG. 2 shows spectral characteristics, (a) shows an example of spectral characteristics of an infrared cut filter, (b) shows an example of spectral characteristics of a white LED having a relatively large blue component, and (c) starts from green. An example of spectral characteristics of a white LED with a relatively large red component is shown.

図1において、後述する複数のLED2,3を二次元状に配置して構成されたLEDアレイ光源1(以後、単に光源と記す)からの光は、コレクタレンズ4で集光され、光路を略90度折り曲げるためのミラー5で光路を偏向され、コレクタレンズ4の後側焦点位置近傍に配置されたフライアイレンズ6に入射する。フライアイレンズ6を射出した光は、光拡散板7で均一な照明光にされ、開口絞り8の開口を通過してコンデンサレンズ20に入射し、コレクタレンズ20でXYステージ9に載置された標本10に集光される。このようにして、顕微鏡照明装置22が構成されている。なお、本顕微鏡照明装置22では、光拡散板7を配置しなくてもフライアイレンズ7で光源1からの光を均一にする事が可能であるが、光拡散板7を配置することによって光源1からの光の均一性をより良くすることができる。また、光路を略90度偏向するためのミラー5を配置せずに、光源1とコレクタレンズ4を、コンデンサレンズ20からの光軸の延長上(図1の紙面上で上下方向)に配置することも可能である。ミラー5で光路を略90度偏向することによって、光源1からコンデンサレンズ20までの高さ(図1の紙面上で上下方向)を低くした顕微鏡照明装置22とすることが可能になる。   In FIG. 1, light from an LED array light source 1 (hereinafter simply referred to as a light source) configured by arranging a plurality of LEDs 2 and 3 to be described later in a two-dimensional manner is collected by a collector lens 4 and the optical path is substantially omitted. The optical path is deflected by the mirror 5 for bending 90 degrees, and enters the fly-eye lens 6 disposed in the vicinity of the rear focal position of the collector lens 4. The light emitted from the fly-eye lens 6 is made uniform illumination light by the light diffusion plate 7, passes through the aperture of the aperture stop 8, enters the condenser lens 20, and is placed on the XY stage 9 by the collector lens 20. The sample 10 is condensed. In this way, the microscope illumination device 22 is configured. In this microscope illumination device 22, it is possible to make the light from the light source 1 uniform with the fly-eye lens 7 without arranging the light diffusing plate 7, but by arranging the light diffusing plate 7, the light source The uniformity of the light from 1 can be improved. Further, the light source 1 and the collector lens 4 are arranged on the extension of the optical axis from the condenser lens 20 (vertical direction on the paper surface of FIG. 1) without arranging the mirror 5 for deflecting the optical path by approximately 90 degrees. It is also possible. By deflecting the optical path by approximately 90 degrees with the mirror 5, the microscope illuminator 22 having a reduced height from the light source 1 to the condenser lens 20 (vertical direction on the paper surface of FIG. 1) can be obtained.

標本10を透過した光は、対物レンズ11で集光され、光路を略90度偏向する為のミラー12aを有するリレーレンズ光学系12を介してカメラ15の撮像素子(例えば、CCDやCMOS等)14に結像され、撮像素子14で撮像され画像処理装置16を介してモニター17で標本10の像が観察される。カメラ15には、撮像素子14の入射側に可視光以上の赤外線をカットする赤外カットフィルタ13が配設されている。このようにして、顕微鏡照明装置22を有する顕微鏡装置100が構成されている。   The light transmitted through the specimen 10 is collected by the objective lens 11 and the image sensor (for example, CCD, CMOS, etc.) of the camera 15 via the relay lens optical system 12 having a mirror 12a for deflecting the optical path by approximately 90 degrees. The image of the sample 10 is imaged by the image pickup device 14, picked up by the image pickup device 14, and observed by the monitor 17 through the image processing device 16. The camera 15 is provided with an infrared cut filter 13 that cuts infrared light that is greater than or equal to visible light on the incident side of the image sensor 14. In this way, the microscope apparatus 100 including the microscope illumination device 22 is configured.

ここでLEDを照明光源として用いた際における課題について簡単に説明する。   Here, a problem when the LED is used as an illumination light source will be briefly described.

従来、省電力、省スペース、コストダウンなどのため標本の照明には、高輝度の白色LEDである、青色成分が相対的に多い白色LED(図2(b)参照)が使用されている。   Conventionally, a white LED (see FIG. 2B) that has a relatively large blue component, which is a high-intensity white LED, is used to illuminate the specimen for power saving, space saving, cost reduction, and the like.

また、カメラ15には赤外カットフィルタ13が撮像素子14の前に装着されており、赤外カットフィルタ13の分光特性は図2(a)に示すように赤外光の遮断に加え、近赤外に近い650nm付近の波長の光の透過率が低く約10%程度になっている。   In addition, an infrared cut filter 13 is attached to the camera 15 in front of the image sensor 14, and the spectral characteristics of the infrared cut filter 13 are not limited to blocking infrared light, as shown in FIG. The transmittance of light having a wavelength near 650 nm close to infrared is low and is about 10%.

このような状態で標本10の像をカメラ15で撮像する場合、相対的に青色成分の光が多い光で標本10を照明し、青色光の透過率が高い赤外カットフィルタ13を介して撮像するために、カメラ15で得られる像は、相対的に青色成分が多い像となる。この像に基くカメラ15のホワイトバランス調整は、最も少ない赤色成分の信号強度を電気的に上げる必要がある。このために、カメラ15からの画像データは赤色成分の信号のノイズが増加し、色再現性に問題が生じ、諧調や鮮やかさが再現されないという問題がある。特に、赤色HE染色標本などの赤色の情報が重要な標本では問題となる。   When an image of the specimen 10 is captured by the camera 15 in such a state, the specimen 10 is illuminated with light having a relatively large amount of blue component light, and is captured through the infrared cut filter 13 having a high blue light transmittance. Therefore, the image obtained by the camera 15 is an image having a relatively large blue component. The white balance adjustment of the camera 15 based on this image needs to electrically increase the signal intensity of the smallest red component. For this reason, the image data from the camera 15 has a problem that the noise of the red component signal increases, causing a problem in color reproducibility, and gradation and vividness are not reproduced. In particular, it becomes a problem in a sample in which red information such as a red HE-stained sample is important.

そこで本第1実施の形態にかかる顕微鏡照明装置100では、光源1に青色成分の多い白色LED2と緑色から赤色成分の多い白色LED3(図2(c)参照)を混合して2次元状に配置することによって、緑色から赤色成分の光を相対的の増加させることを可能にしている。このように、白色LED2と3の光を混合することで、より自然光に近い照明光を実現できる。   Therefore, in the microscope illuminating device 100 according to the first embodiment, the light source 1 is mixed with the white LED 2 having a large blue component and the white LED 3 having a large amount of green to red components (see FIG. 2C) and arranged in a two-dimensional manner. By doing so, it is possible to relatively increase the light of the green to red component. Thus, by mixing the light of the white LEDs 2 and 3, illumination light closer to natural light can be realized.

本第1実施の形態では、図1(b)に示すように、光源1は、青色成分の多い白色LED2を光軸に対して対称に配置し、さらに緑色から赤色成分の多い白色LED3を光軸Iに対して対称に配置して構成している。具体的には、青色成分の多い白色LED2aは青色成分の多い白色LED2bと光軸Iに対して対称な位置に配置され、同様に2cは2dと、2fは2eと光軸Iに対して対称な位置にそれぞれ配置されている。また、緑色から赤色成分の多い白色LED3も同様に、3aは3bと、3cは3dと光軸Iに対して対称な位置にそれぞれ配置されている。そして、それぞれの白色LEDは、LEDの点灯を制御する制御装置24で、所定の波長分布特性や輝度に応じて点灯制御される。なお、点灯或いは消灯の際には、それぞれの白色LEDの対称性を保存するように、制御装置24で点灯及び消灯の制御が行われる。なお、白色LED2、3の個数は図示された個数に限定されないことは言うまでもない。また、白色LED2と白色LED3の個数の比も上記6対4に限定されないことは言うまでもない。これら白色LED2、3の個数や個数の比は、適宜変更して構成することができる。   In the first embodiment, as shown in FIG. 1B, the light source 1 arranges white LEDs 2 having a large blue component symmetrically with respect to the optical axis, and further emits white LEDs 3 having a large amount of green to red components. They are arranged symmetrically with respect to the axis I. Specifically, the white LED 2a having a large blue component is disposed at a position symmetrical to the optical axis I with respect to the white LED 2b having a large blue component, and similarly, 2c is symmetrical to the optical axis I, and 2f is symmetrical to the optical axis I. It is arranged at each position. Similarly, the white LEDs 3 having a large amount of green to red components are also arranged at positions symmetrical with respect to the optical axis I, 3a being 3b, and 3c being 3d. Each white LED is controlled to be turned on in accordance with predetermined wavelength distribution characteristics and luminance by the control device 24 that controls the lighting of the LEDs. When the light is turned on or off, the control device 24 controls turning on and off so as to preserve the symmetry of each white LED. Needless to say, the number of white LEDs 2 and 3 is not limited to the illustrated number. Needless to say, the ratio of the number of white LEDs 2 and white LEDs 3 is not limited to the above 6 to 4. The number of white LEDs 2 and 3 and the ratio of the numbers can be appropriately changed.

このように、青色成分の多い白色LED2と緑色から赤色成分の多い白色LED3を有する光源1を用いることで、所望の輝度と波長分布特性を有する光を標本10に照射することが可能になる。この結果、緑色から赤色成分の波長を格段に増加させることが可能となり、赤色の情報が重要なHE染色標本などの観察において、赤色の発色性が格段に改善でき、赤色の階調や鮮やかさを再現した画像を取得することが可能になる。また、ホワイトバランスを取る際に、従来のように、カメラ15の赤色成分の信号のゲインを極端に増加させる必要がなくなり、赤色成分の信号ノイズを減少させることができ、良好な画像を取得することが可能になる。また、青色系統の染色標本についてもホワイトバランスを良好に取れるので、青色の階調や鮮やかさを再現した画像を取得することが可能になる。   In this way, by using the light source 1 having the white LED 2 having a large blue component and the white LED 3 having a green to red component, it is possible to irradiate the sample 10 with light having desired luminance and wavelength distribution characteristics. As a result, the wavelength of the green to red component can be significantly increased, and in the observation of HE-stained specimens where red information is important, the red color development can be greatly improved, and the red gradation and vividness can be improved. Can be obtained. Further, when white balance is achieved, it is not necessary to increase the gain of the red component signal of the camera 15 as in the conventional case, and the signal noise of the red component can be reduced, and a good image is obtained. It becomes possible. In addition, since a white balance can be satisfactorily obtained for a dyed sample of a blue color system, it is possible to acquire an image that reproduces blue gradation and vividness.

(第2実施の形態)
図3は、本発明の第2実施の形態にかかる顕微鏡照明装置を有する顕微鏡装置の概略構成図であり、(a)は、顕微鏡装置を、(b)は、青色成分の多い白色LEDの配置を、(c)は緑色から赤色成分の多い白色LEDの配置をそれぞれ示す。第1実施の形態と同様の構成には同じ符号を付し説明を省略する。また、カメラ15の赤外カットフィルタ13の分光特性は図2(a)と同様であり、青色成分の多い白色LEDの分光特性は図2(b)と同様であり、緑色から赤色成分の多い白色LEDの分光特性は図(c)と同様である。
(Second Embodiment)
FIG. 3 is a schematic configuration diagram of a microscope apparatus having a microscope illumination apparatus according to a second embodiment of the present invention, where (a) is a microscope apparatus, and (b) is an arrangement of white LEDs having a large blue component. (C) shows the arrangement of white LEDs with many green to red components. The same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. Further, the spectral characteristic of the infrared cut filter 13 of the camera 15 is the same as that of FIG. 2A, and the spectral characteristic of the white LED having a large blue component is the same as that of FIG. The spectral characteristics of the white LED are the same as in FIG.

本第2実施の形態にかかる顕微鏡照明装置122は、青色成分の多い白色LED2を二次元配列した光源1aとコレクタレンズ4aからなる光源部51と、緑色から赤色成分の多い白色LED3を二次元配列した光源1bとコレクタレンズ4bからなる光源部52とが別体に構成され、顕微鏡照明装置122の光軸に配置されたハーフミラー5bで両方の光が合成されて、標本10に照射される。また、フライアイレンズ6はコレクタレンズ4aとコレクタレンズ4bの両方の後側焦点位置近傍に配置されている。その他の構成は第1実施の形態と同様であり説明を省略する。なお、白色LED2、3の個数は設計により適宜変更が可能である。このようにして、顕微鏡照明装置122を有する顕微鏡装置200が構成されている。   The microscope illumination device 122 according to the second embodiment is a two-dimensional array of a light source unit 51 including a light source 1a and a collector lens 4a in which white LEDs 2 having a large blue component are two-dimensionally arrayed, and a white LED 3 having a large amount of green to red components. The light source 1b and the light source unit 52 including the collector lens 4b are configured separately, and both light beams are synthesized by the half mirror 5b disposed on the optical axis of the microscope illumination device 122 and irradiated onto the specimen 10. The fly-eye lens 6 is disposed in the vicinity of the rear focal position of both the collector lens 4a and the collector lens 4b. Other configurations are the same as those of the first embodiment, and a description thereof will be omitted. The number of white LEDs 2 and 3 can be changed as appropriate according to the design. In this way, the microscope apparatus 200 including the microscope illumination apparatus 122 is configured.

本第2実施の形態にかかる顕微鏡照明装置122では、光源1aは青色成分の多い白色LED2を二次元に配列して構成し、光源1bは緑色から赤色成分の多い白色LED3を二次元に配列して構成している。また、それぞれのLED2、3の個々のLEDの点灯及び消灯の制御は制御装置24で行われる。このように光源1a及び1bを構成することで、所望の輝度とバランスの取れた波長成分を有する光を標本10に照射することが可能となり、第1実施の形態と同様の効果を奏することが可能になる。   In the microscope illumination device 122 according to the second embodiment, the light source 1a is configured by two-dimensionally arranging white LEDs 2 having a large blue component, and the light source 1b is configured by two-dimensionally arranging white LEDs 3 having a large amount of green to red components. Is configured. Further, the control device 24 controls the turning on and off of the individual LEDs 2 and 3. By configuring the light sources 1a and 1b in this way, it is possible to irradiate the specimen 10 with light having a wavelength component balanced with desired luminance, and the same effects as in the first embodiment can be obtained. It becomes possible.

また、それぞれのLED2、3の配列は、光軸Iに対して対称な位置に配置されるように配列されている。また、LED2、3の点灯及び消灯も、対称性を損なわないように制御装置24により制御される。これにより、標本10に均一な合成光を照射することが可能になる。   Further, the arrays of the LEDs 2 and 3 are arranged so as to be arranged at symmetrical positions with respect to the optical axis I. The lighting and extinguishing of the LEDs 2 and 3 are also controlled by the control device 24 so as not to impair the symmetry. Thereby, it becomes possible to irradiate the sample 10 with uniform synthetic light.

以上、本発明によれば、顕微鏡照明装置22、122は、緑色から赤色成分が十分に得られることから、顕微鏡装置100、200のカメラ15のホワイトバランス調整によって、赤色成分信号を電気的に極端にゲインアップする必要がないため、赤色成分信号にノイズが載ることがなく、染色標本画像の色再現性、特にHE染色標本など赤色の発色性が格段に改善され、赤色の階調や鮮やかさを改善した画像を取得することが可能になる。また、青色、緑色の各色の忠実な再現にも寄与し全体的な画像の色が褪せた様子がなく鮮明な色再現を実現できる。また、白色LEDを使用することで省スペース、低電力、低発熱などコストダウンおよび環境への配慮も同時に達成することができる。なお、上述の実施の形態では、二種類の分光特性の異なる白色LEDを用いた場合について説明したが、分光特性の異なる三種類以上の白色LEDを用いて構成することも可能である。   As described above, according to the present invention, since the microscope illumination devices 22 and 122 can sufficiently obtain the red component from green, the red component signal is electrically converted to the extreme by adjusting the white balance of the camera 15 of the microscope devices 100 and 200. Because there is no need to increase the gain, the red component signal does not contain noise, and the color reproducibility of the stained specimen image, especially the red color development such as the HE stained specimen, is remarkably improved, and the red gradation and vividness are improved. It becomes possible to obtain an improved image. In addition, it contributes to faithful reproduction of each color of blue and green, and it is possible to realize a clear color reproduction without fading the overall image color. Further, by using a white LED, it is possible to simultaneously achieve cost reduction and environmental considerations such as space saving, low power, and low heat generation. In the above-described embodiment, the case where two types of white LEDs having different spectral characteristics are used has been described, but it is also possible to configure using three or more types of white LEDs having different spectral characteristics.

なお、上述の実施の形態は例に過ぎず、上述の構成や形状に限定されるものではなく、本発明の範囲内において適宜修正、変更が可能である。   The above-described embodiment is merely an example, and is not limited to the above-described configuration and shape, and can be appropriately modified and changed within the scope of the present invention.

本発明の第1実施の形態にかかる顕微鏡照明装置を有する顕微鏡装置の概略構成図であり、(a)は顕微鏡装置の概略構成図を、(b)は顕微鏡照明装置に用いられる光源の概略構成を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram of the microscope apparatus which has the microscope illuminating device concerning 1st Embodiment of this invention, (a) is a schematic block diagram of a microscope apparatus, (b) is a schematic structure of the light source used for a microscope illuminating device. Indicates. 分光特性を示し、(a)は赤外カットフィルタの分光特性の一例を、(b)は青色成分が相対的に多い白色LEDの分光特性の一例を、(c)は緑色から赤色成分が相対的に多い白色LEDの分光特性の一例をそれぞれ示している。(A) is an example of the spectral characteristic of the infrared cut filter, (b) is an example of the spectral characteristic of a white LED having a relatively large blue component, and (c) is a relative component from green to red. One example of spectral characteristics of white LEDs is shown. 本発明の第2実施の形態にかかる顕微鏡照明装置を有する顕微鏡装置の概略構成図であり、(a)は、顕微鏡装置を、(b)は、青色成分の多い白色LEDの配置を、(c)は緑色から赤色成分の多い白色LEDの配置をそれぞれ示す。It is a schematic block diagram of the microscope apparatus which has the microscope illuminating device concerning 2nd Embodiment of this invention, (a) is a microscope apparatus, (b) is arrangement | positioning of white LED with many blue components, (c) ) Shows the arrangement of white LEDs with a large amount of green to red components.

符号の説明Explanation of symbols

1、1a、1b LED光源
2 青色成分の多い白色LED
3 緑色から赤色成分の多い白色LED
4 コレクタレンズ
5 ミラー
6 フライアイレンズ
7 光拡散板
8 開口絞り
9 XYステージ
10 標本
11 対物レンズ
12 リレーレンズ光学系
13 赤外カットフィルタ
14 撮像素子
15 カメラ
16 画像処理装置
17 モニタ
20 コンデンサレンズ
22、122 顕微鏡照明装置
24 制御装置
51、52 光源部
100、200 顕微鏡装置
I 光軸
1, 1a, 1b LED light source 2 White LED with many blue components
3 White LED with many green to red components
4 collector lens 5 mirror 6 fly eye lens 7 light diffusion plate 8 aperture stop 9 XY stage 10 specimen 11 objective lens 12 relay lens optical system 13 infrared cut filter 14 image sensor 15 camera 16 image processing device 17 monitor 20 condenser lens 22 122 Microscope illumination device 24 Control device 51, 52 Light source unit 100, 200 Microscope device I Optical axis

Claims (6)

光源と、
前記光源からの光を集光するコレクタレンズと、
前記コレクタレンズからの光を標本に照射するコンデンサレンズとを有し、
前記光源は、波長分布の異なる二種類以上の白色LEDが二次元に配列され、前記白色LEDの点灯を制御する制御手段を具備するすることを特徴とする顕微鏡照明装置。
A light source;
A collector lens that collects light from the light source;
A condenser lens that irradiates the sample with light from the collector lens;
2. The microscope illumination apparatus according to claim 1, wherein the light source includes two or more types of white LEDs having different wavelength distributions arranged two-dimensionally and includes a control unit that controls lighting of the white LEDs.
前記白色LEDは、同一平面上に光軸に対して対称に配設されていることを特徴とする請求項1に記載の顕微鏡照明装置。   The microscope illumination apparatus according to claim 1, wherein the white LEDs are arranged symmetrically with respect to the optical axis on the same plane. 前記白色LEDは、第1の白色LEDから成る第1の光源と、第2の白色LEDから成る第2の光源とを有し、
前記第1の光源からの光と前記第2の光源からの光を合成する合成手段を有することを特徴とする請求項1に記載の顕微鏡照明装置。
The white LED has a first light source composed of a first white LED and a second light source composed of a second white LED,
The microscope illumination apparatus according to claim 1, further comprising: a combining unit that combines light from the first light source and light from the second light source.
前記コレクタレンズの後側焦点位置近傍にフライアイレンズが配設されていることを特徴とする請求項1から3のいずれか1項に記載の顕微鏡照明装置。   The microscope illumination apparatus according to any one of claims 1 to 3, wherein a fly-eye lens is disposed in the vicinity of a rear focal position of the collector lens. 前記コレクタレンズの後側焦点位置と前記コンデンサレンズとの間に光拡散板を有することを特徴とする請求項1から4のいずれか1項に記載の顕微鏡照明装置。   5. The microscope illumination apparatus according to claim 1, further comprising a light diffusion plate between a rear focal position of the collector lens and the condenser lens. 6. 請求項1から5のいずれか1項に記載の顕微鏡照明装置を有することを特徴とする顕微鏡装置。   A microscope apparatus comprising the microscope illumination apparatus according to claim 1.
JP2006162530A 2006-06-12 2006-06-12 Microscope lighting device and microscope apparatus having the same Pending JP2007333800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006162530A JP2007333800A (en) 2006-06-12 2006-06-12 Microscope lighting device and microscope apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006162530A JP2007333800A (en) 2006-06-12 2006-06-12 Microscope lighting device and microscope apparatus having the same

Publications (1)

Publication Number Publication Date
JP2007333800A true JP2007333800A (en) 2007-12-27

Family

ID=38933366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006162530A Pending JP2007333800A (en) 2006-06-12 2006-06-12 Microscope lighting device and microscope apparatus having the same

Country Status (1)

Country Link
JP (1) JP2007333800A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004714A1 (en) * 2009-07-06 2011-01-13 株式会社ニコン Microscope
WO2016142153A1 (en) * 2015-03-12 2016-09-15 Koninklijke Philips N.V. Illumination unit for digital pathology scanning
US20180341097A1 (en) * 2017-05-25 2018-11-29 Olympus Corporation Microscope illumination device and microscope
US10852522B2 (en) 2016-11-25 2020-12-01 Olympus Corporation Microscope illumination device and microscope

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001184918A (en) * 1999-12-24 2001-07-06 Sanyo Electric Co Ltd Method of controlling chromaticity of plane light source apparatus
JP2002238846A (en) * 2001-02-21 2002-08-27 Asahi Optical Co Ltd Light source device for endoscope
JP2003005083A (en) * 2001-06-25 2003-01-08 Nikon Corp Microscope illumination device
JP2003298118A (en) * 2002-03-28 2003-10-17 Toshiba Lighting & Technology Corp Led lighting device
JP2004363055A (en) * 2003-06-06 2004-12-24 Stanley Electric Co Ltd Led lighting device
WO2006001259A1 (en) * 2004-06-24 2006-01-05 Olympus Corporation Fluorescent photometric device
JP2007311114A (en) * 2006-05-17 2007-11-29 Olympus Corp Lighting optical system using solid light emitting element emitting white light, and optical device equipped with it

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001184918A (en) * 1999-12-24 2001-07-06 Sanyo Electric Co Ltd Method of controlling chromaticity of plane light source apparatus
JP2002238846A (en) * 2001-02-21 2002-08-27 Asahi Optical Co Ltd Light source device for endoscope
JP2003005083A (en) * 2001-06-25 2003-01-08 Nikon Corp Microscope illumination device
JP2003298118A (en) * 2002-03-28 2003-10-17 Toshiba Lighting & Technology Corp Led lighting device
JP2004363055A (en) * 2003-06-06 2004-12-24 Stanley Electric Co Ltd Led lighting device
WO2006001259A1 (en) * 2004-06-24 2006-01-05 Olympus Corporation Fluorescent photometric device
JP2007311114A (en) * 2006-05-17 2007-11-29 Olympus Corp Lighting optical system using solid light emitting element emitting white light, and optical device equipped with it

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004714A1 (en) * 2009-07-06 2011-01-13 株式会社ニコン Microscope
JP5472831B2 (en) * 2009-07-06 2014-04-16 株式会社ニコン Microscope equipment
US8922886B2 (en) 2009-07-06 2014-12-30 Nikon Corporation Microscope apparatus having surface light emitter with specific positioning
WO2016142153A1 (en) * 2015-03-12 2016-09-15 Koninklijke Philips N.V. Illumination unit for digital pathology scanning
US10663710B2 (en) 2015-03-12 2020-05-26 Koninklijke Philips N.V. Illumination unit for digital pathology scanning
US10852522B2 (en) 2016-11-25 2020-12-01 Olympus Corporation Microscope illumination device and microscope
US20180341097A1 (en) * 2017-05-25 2018-11-29 Olympus Corporation Microscope illumination device and microscope
US10788657B2 (en) * 2017-05-25 2020-09-29 Olympus Corporation Microscope illumination device and microscope

Similar Documents

Publication Publication Date Title
EP1750154B2 (en) Microscope illumination apparatus
JP4625837B2 (en) Flashlight that forms a uniform image
US7832894B2 (en) Illuminating device for microscopes
JP4040841B2 (en) Lighting equipment for microscopes
JP6408239B2 (en) Method for illuminating an object in a digital light microscope, digital light microscope and bright-field reflected light illumination device for digital light microscope
JP5806504B2 (en) Imaging apparatus and microscope system including the same
JP2010514101A (en) Irradiation source comprising light-emitting diodes for stained biological samples
CN102520507B (en) Method and device for acquiring confocal microscopic image
JP2005345716A (en) Microscope
EP1558042A3 (en) Compact projection system using multiple light sources
JP2007068699A (en) Light source unit
EP1569464A3 (en) Optical arrangement for non-inverting illumination system
US20050259437A1 (en) Apparatus, systems and methods relating to illumination for microscopes
Bosse et al. Open LED illuminator: a simple and inexpensive LED illuminator for fast multicolor particle tracking in neurons
JP2007333800A (en) Microscope lighting device and microscope apparatus having the same
JP2010256623A (en) Microscope observation apparatus
JP2006220818A (en) Confocal microscope
JP2002238846A (en) Light source device for endoscope
WO2016084310A1 (en) Image acquisition device, image formation system, and image formation method
RU2007145712A (en) SIGNAL PROCESSING DEVICE FOR DEVICES INTENDED FOR BIOLOGICAL OBSERVATIONS
CN101563932B (en) Projection image display device having two modulation stages, including one aperature modulation stage
JPH11287958A (en) Ccd microscope and lighting device used for the same
JP2006018162A (en) Illuminating apparatus and projector
US20240019679A1 (en) Digital microscope and method of operating a digital microscope
JP3948962B2 (en) Imaging apparatus having a light source for irradiating a subject

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120321