JP2007333546A - Piezoelectric single crystal vibrator and piezoelectric vibration gyroscope - Google Patents

Piezoelectric single crystal vibrator and piezoelectric vibration gyroscope Download PDF

Info

Publication number
JP2007333546A
JP2007333546A JP2006165464A JP2006165464A JP2007333546A JP 2007333546 A JP2007333546 A JP 2007333546A JP 2006165464 A JP2006165464 A JP 2006165464A JP 2006165464 A JP2006165464 A JP 2006165464A JP 2007333546 A JP2007333546 A JP 2007333546A
Authority
JP
Japan
Prior art keywords
single crystal
piezoelectric single
piezoelectric
crystal vibrator
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006165464A
Other languages
Japanese (ja)
Inventor
Koichi Okamoto
幸一 岡本
Koichi Shuda
浩一 習田
Masaya Kawabe
雅也 川辺
Mitsuharu Chiba
光晴 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2006165464A priority Critical patent/JP2007333546A/en
Publication of JP2007333546A publication Critical patent/JP2007333546A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric single crystal vibrator, small-sized, having high function and low-cost, and a piezoelectric vibration gyroscope constructed by the piezoelectric single crystal vibrator. <P>SOLUTION: A reference potential electrode 16a on the upper surface is electrically connected to a reference potential electrode 16b on the lower surface through a through hole formed on an additional mass part, and a detecting electrode 20a on the upper surface is electrically connected to a detecting electrode 20c on the lower surface through a through hole 13a, whereby the wired electrodes can be reduced, and the number of nodes to a circuit board can be reduced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、圧電単結晶材料を用いた圧電単結晶振動子およびそれを用いて構成された圧電振動ジャイロに関するもので、特に圧電単結晶振動子の構造および実装方法に関するものである。   The present invention relates to a piezoelectric single crystal vibrator using a piezoelectric single crystal material and a piezoelectric vibration gyro configured using the piezoelectric single crystal vibrator, and more particularly to a structure and mounting method of a piezoelectric single crystal vibrator.

圧電振動子は、センサ、発振器、表面弾性波フィルタ、超音波モータ、音響素子、トランスなど、幅広い分野に用いられている。圧電振動子に用いられる圧電材料の中でも、特に圧電単結晶材料は、一般に機械的品質係数(以下、Qmと表す)が高く、温度変化に対する特性変化が小さく、材料が均一で信頼性が高く、材料の量産性が優れている等の特徴があり、特にセンサ、発振器、表面弾性波フィルタなど、電子部品向けの振動子としてよく用いられている。   Piezoelectric vibrators are used in a wide range of fields such as sensors, oscillators, surface acoustic wave filters, ultrasonic motors, acoustic elements, transformers, and the like. Among piezoelectric materials used for piezoelectric vibrators, in particular, piezoelectric single crystal materials generally have a high mechanical quality factor (hereinafter referred to as Qm), a small characteristic change with respect to a temperature change, a uniform material and high reliability, It is characterized by excellent mass productivity of materials and is often used as a vibrator for electronic parts such as sensors, oscillators, surface acoustic wave filters, and the like.

これらの圧電単結晶材料を用いた圧電振動子を大量生産する場合の一例として、以下のような製法が用いられる。まず、圧電単結晶のウエハーに電極となる金属薄膜をスパッタや真空蒸着等で成膜し、いわゆるフォトリソグラフでレジストをパターニングした後、金属薄膜をエッチングして電極パターンを形成する。その後、再びフォトリソグラフでレジストをパターニングして、圧電単結晶をエッチング処理したり、またはサンドブラストで研削したりして所望の振動子形状に加工し、最後にダイシングソーで振動子を個片に切り分けることで、1枚のウエハーから多数の圧電単結晶振動子を得ている。   As an example of mass production of piezoelectric vibrators using these piezoelectric single crystal materials, the following manufacturing method is used. First, a metal thin film serving as an electrode is formed on a piezoelectric single crystal wafer by sputtering, vacuum deposition, or the like, a resist is patterned by so-called photolithography, and then the metal thin film is etched to form an electrode pattern. After that, the resist is patterned again by photolithography, and the piezoelectric single crystal is etched or sandblasted to be processed into a desired vibrator shape. Finally, the vibrator is cut into individual pieces by a dicing saw. Thus, a large number of piezoelectric single crystal vibrators are obtained from one wafer.

携帯電話、携帯オーディオ、デジタルカメラなどの携帯機器の市場が益々大きくなっていく中で、それに使用される電子部品の小型化、高機能化、低コスト化が強く要求されている。圧電単結晶振動子を用いた電子部品の場合、圧電単結晶振動子の振動を阻害することなく圧電単結晶振動子を回路基板上に固定し、かつ所望の機能を働かせるために圧電単結晶振動子と回路基板を電気的に接続する実装手段が必要となる。これらの圧電単結晶振動子を信号処理回路が配線された回路基板に実装する方法として、ワイヤーボンディング法、GGI法(Gold to Gold Interconnection)、あるいは導電接着剤を用いた方法で実装配線し、最後に封止して製品としている。   As the market for portable devices such as mobile phones, portable audios, and digital cameras grows larger, there is a strong demand for downsizing, higher functionality, and lower costs of electronic components used in the market. In the case of electronic parts using a piezoelectric single crystal vibrator, the piezoelectric single crystal vibration is used to fix the piezoelectric single crystal vibrator on the circuit board without hindering the vibration of the piezoelectric single crystal vibrator and to perform a desired function. A mounting means for electrically connecting the child and the circuit board is required. As a method of mounting these piezoelectric single crystal vibrators on a circuit board wired with a signal processing circuit, the wiring bonding method, the GGI method (Gold to Gold Interconnection), or a method using a conductive adhesive is used. The product is sealed.

特許文献1には、ワイヤーボンディング法により接続された圧電デバイスの例が開示されている。   Patent Document 1 discloses an example of a piezoelectric device connected by a wire bonding method.

また、特許文献2には、電極とICチップとをGGI法により電気的に接続した磁気センサの例が開示されている。   Patent Document 2 discloses an example of a magnetic sensor in which an electrode and an IC chip are electrically connected by a GGI method.

また、特許文献3には、上下面のパターン電極と内層電極とをスルーホールにて導通させた表面実装型圧電振動子の例が開示されている。   Further, Patent Document 3 discloses an example of a surface mount type piezoelectric vibrator in which upper and lower pattern electrodes and inner layer electrodes are electrically connected through a through hole.

特開2005−094461号公報JP 2005-094461 A 特開2005−003477号公報JP 2005-003477 A 特開2005−065104号公報JP 2005-0665104 A

特許文献1に開示されているワイヤーボンディング法を使用する場合、圧電単結晶振動子を回路基板に接着剤で固定し、圧電単結晶振動子の電極と回路基板の電極とにワイヤーを引き回して電気的な接続を取る際、ワイヤーを引き回すための空間が必要となり、また圧電単結晶振動子の電極と回路基板の電極との距離がある程度必要といった問題があり、小型化に不利であった。また、実装が接着固定、配線と2段階の工程となるので製造コストが高くなってしまうという問題もあった。   When the wire bonding method disclosed in Patent Document 1 is used, the piezoelectric single crystal vibrator is fixed to the circuit board with an adhesive, and the wire is routed between the electrode of the piezoelectric single crystal vibrator and the electrode of the circuit board. In order to make a simple connection, there is a problem that a space for routing the wire is required, and there is a problem that a certain distance is required between the electrode of the piezoelectric single crystal vibrator and the electrode of the circuit board. In addition, since the mounting is a two-step process including adhesive fixing and wiring, there is also a problem that the manufacturing cost increases.

特許文献2に開示しているGGI法を使用する場合、固定と電気的接続を同時にできるが、金(Au)を使用するために材料コストの高騰、さらにGGI法だけでは接続強度が不足するため、一般的に補強のためのシリコーン等によるアンダーフィル材が必要となり、そのために材料コスト、製造コストが高くなってしまうという問題があった。   When the GGI method disclosed in Patent Document 2 is used, fixing and electrical connection can be performed at the same time. However, since gold (Au) is used, the material cost increases, and the connection strength is insufficient only by the GGI method. In general, an underfill material made of silicone or the like for reinforcement is required, which causes a problem that the material cost and the manufacturing cost increase.

一方、導電接着剤を用いた場合、固定と電気的接続を同時にできるので製造コストを抑えることができ、また金(Au)よりも価格的に安い銀(Ag)を一般的に用いるので材料コストも抑えることができ、接着強度を確保しながら接着剤塗布面積を小さくすれば製品の小型化にも対応が可能となり、ワイヤーボンディング法やGGI法と比較して、導電接着剤を使用する方法はあらゆる面で有利な実装方法といえる。そこで、導電接着剤を用い、圧電単結晶振動子に複数もしくは高性能な機能を付与させるために、圧電単結晶振動子上に多数の電極を形成して実現させる手段がある。しかしながら、圧電単結晶振動子の小型化に伴って、形成できる電極には制約があり、圧電単結晶振動子上での配線が困難、もしくは不可となる問題があった。   On the other hand, when conductive adhesive is used, fixing and electrical connection can be performed at the same time, so manufacturing costs can be reduced, and silver (Ag), which is cheaper than gold (Au), is generally used, so material costs It is possible to reduce the size of the product by reducing the adhesive application area while ensuring the adhesive strength. Compared to the wire bonding method and the GGI method, the method of using a conductive adhesive is This is an advantageous mounting method in all aspects. Therefore, there is a means that uses a conductive adhesive to form a large number of electrodes on the piezoelectric single crystal vibrator to realize a plurality of or high-performance functions in the piezoelectric single crystal vibrator. However, with the miniaturization of the piezoelectric single crystal vibrator, there are restrictions on the electrodes that can be formed, and there is a problem that wiring on the piezoelectric single crystal vibrator is difficult or impossible.

そこで、スルーホール方法を用いて上下面のパターン電極と内層電極とをスルーホールにて導通させることにより、回路が簡単に形成され易くする方法がある。しかしながら、特許文献3に開示しているスルーホール方法では、現段階では、小型化には十分に対応しているとはいえなく、複雑な回路パターンの形成には問題があった。   In view of this, there is a method of easily forming a circuit by electrically connecting the pattern electrodes on the upper and lower surfaces and the inner layer electrode through the through holes using the through hole method. However, the through-hole method disclosed in Patent Document 3 is not sufficiently compatible with downsizing at the present stage, and there is a problem in forming a complicated circuit pattern.

本発明は、従来の課題を解決すべくなされたもので、小型、高機能で低コストな圧電単結晶振動子およびこの圧電単結晶振動子を用いて構成された圧電振動ジャイロを提供することにある。   The present invention has been made to solve the conventional problems, and provides a piezoelectric single crystal vibrator that is small, highly functional, and low in cost, and a piezoelectric vibration gyro configured using the piezoelectric single crystal vibrator. is there.

本発明は、前記課題の解決のため、圧電単結晶材料から成る圧電単結晶板の表裏両面の主面上に電極が形成されており、導電接着剤によって、回路基板と電気的に導通し、かつ機械的に固定されてなる圧電単結晶振動子であって、圧電単結晶板の一部にスルーホールを形成し、一方の主面上に形成された電極と、残り他方の主面上に形成された電極とがスルーホールを介して電気的に接続されたことを特徴とする圧電単結晶振動子である。   In order to solve the above problems, the present invention has electrodes formed on the main surfaces of the front and back surfaces of a piezoelectric single crystal plate made of a piezoelectric single crystal material, and is electrically connected to a circuit board by a conductive adhesive. A piezoelectric single crystal resonator that is mechanically fixed, wherein a through hole is formed in a part of the piezoelectric single crystal plate, an electrode formed on one main surface, and a remaining main surface The piezoelectric single crystal vibrator is characterized in that the formed electrode is electrically connected through a through hole.

さらに、圧電単結晶振動子を用いて構成されたことを特徴とする圧電振動ジャイロである。   Further, the piezoelectric vibration gyro is configured by using a piezoelectric single crystal vibrator.

従って、本発明によれば、小型、高機能で低コストな圧電単結晶振動子およびこの圧電単結晶振動子を用いて構成された圧電振動ジャイロを得ることができる。   Therefore, according to the present invention, it is possible to obtain a small-sized, high-function, low-cost piezoelectric single crystal vibrator and a piezoelectric vibration gyro configured using the piezoelectric single crystal vibrator.

図1は本発明の実施の形態に係わる圧電単結晶振動子のスルーホール部の説明図である。図1(a)はスルーホール部(付加質量部11aの近傍)の拡大図、図1(b)はA−A'断面図である。本発明の実施の形態を、図面を参照しながら説明する。上面の基準電位電極16aは付加質量部に形成されたスルーホール12aを介して下面の基準電位電極16bと電気的に接続され、また上面の検出電極20aはスルーホール13aを介して下面の検出電極20cと電気的に接続されている。   FIG. 1 is an explanatory view of a through hole portion of a piezoelectric single crystal vibrator according to an embodiment of the present invention. FIG. 1A is an enlarged view of a through hole portion (in the vicinity of the additional mass portion 11a), and FIG. 1B is a cross-sectional view along AA ′. Embodiments of the present invention will be described with reference to the drawings. The upper reference potential electrode 16a is electrically connected to the lower reference potential electrode 16b via a through hole 12a formed in the additional mass portion, and the upper detection electrode 20a is connected to the lower detection electrode via the through hole 13a. 20c is electrically connected.

図2は本発明の実施の形態に係わる圧電単結晶振動子の外形を示した上面図である。図3は本発明の実施の形態に係わる圧電単結晶振動子の上面の電極配置図である。図4は本発明の実施の形態に係わる圧電単結晶振動子の下面の電極配置図である。本発明の実施の形態を、図面を参照しながら説明する。この圧電単結晶振動子は、2軸の角速度が検出可能な圧電振動ジャイロとなっている。以下説明の便宜上、図2、図3、図4に示した様に圧電単結晶振動子の厚み方向をX軸、図面上の縦方向をY軸、図面上の横方向をZ軸とする。   FIG. 2 is a top view showing the outer shape of the piezoelectric single crystal resonator according to the embodiment of the present invention. FIG. 3 is an electrode arrangement diagram on the upper surface of the piezoelectric single crystal resonator according to the embodiment of the present invention. FIG. 4 is an electrode arrangement diagram of the lower surface of the piezoelectric single crystal resonator according to the embodiment of the present invention. Embodiments of the present invention will be described with reference to the drawings. This piezoelectric single crystal vibrator is a piezoelectric vibration gyro capable of detecting a biaxial angular velocity. For convenience of explanation, as shown in FIGS. 2, 3, and 4, the thickness direction of the piezoelectric single crystal vibrator is taken as the X axis, the vertical direction in the drawing is taken as the Y axis, and the horizontal direction in the drawing is taken as the Z axis.

図2の外形を示した上面図より、圧電単結晶振動子1は矩形状板に貫通加工をして、矩形状板の一部を打ち抜くことにより、内部にアーム15a、15b、15c、15dと振動部である4つの付加質量部11a、11b、11c、11dを保持する構造体が一体物として形成されている。付加質量部には、各々スルーホール12aと13a、12bと14a、12cと13b、12dと14bが形成されている。また、圧電単結晶振動子1は圧電振動ジャイロとして機能させるための電極、および振動効率および検出効率を向上させるための電極が表裏両面に形成されている。図3の上面の電極配置図より、上面には駆動電極17a、17b、18a、18b、検出電極20a、20b、21a、21b、基準電位電極16aが形成されている。図4の下面の電極配置図より、下面には駆動電極17c、17d、19a、19b、検出電極20c、20d、21c、21d、基準電位電極16bが形成されている。   From the top view showing the outer shape of FIG. 2, the piezoelectric single crystal vibrator 1 penetrates into a rectangular plate and punches out a part of the rectangular plate, so that the arms 15 a, 15 b, 15 c, 15 d A structure that holds the four additional mass portions 11a, 11b, 11c, and 11d, which are the vibration portions, is formed as an integral body. Through holes 12a and 13a, 12b and 14a, 12c and 13b, and 12d and 14b are formed in the additional mass part, respectively. In addition, the piezoelectric single crystal vibrator 1 is formed with electrodes for functioning as a piezoelectric vibration gyro and electrodes for improving vibration efficiency and detection efficiency on both the front and back surfaces. From the electrode arrangement diagram on the upper surface of FIG. 3, the drive electrodes 17a, 17b, 18a and 18b, the detection electrodes 20a, 20b, 21a and 21b, and the reference potential electrode 16a are formed on the upper surface. From the electrode arrangement diagram on the lower surface of FIG. 4, the drive electrodes 17c, 17d, 19a, 19b, the detection electrodes 20c, 20d, 21c, 21d, and the reference potential electrode 16b are formed on the lower surface.

前述の様に、基準電位電極16aと16bは、スルーホール12a、12b、12c、12dを介して電気的に接続され、また上面の検出電極20aはスルーホール13aを介して下面の検出電極20cと電気的に接続されている。同様に他の付加質量部においても、検出電極21aがスルーホール14aを介して検出電極21dと、検出電極20bがスルーホール13bを介して検出電極20dと、検出電極21bがスルーホール14bを介して検出電極21cと電気的に接続されている。   As described above, the reference potential electrodes 16a and 16b are electrically connected via the through holes 12a, 12b, 12c, and 12d, and the upper detection electrode 20a is connected to the lower detection electrode 20c via the through hole 13a. Electrically connected. Similarly, in the other additional mass portions, the detection electrode 21a is connected to the detection electrode 21d via the through hole 14a, the detection electrode 20b is connected to the detection electrode 20d via the through hole 13b, and the detection electrode 21b is connected to the detection hole 21b via the through hole 14b. It is electrically connected to the detection electrode 21c.

この圧電単結晶振動子の製造プロセスの一例を簡単に説明する。圧電単結晶材料としては、水晶、ニオブ酸リチウム、タンタル酸リチウム、ランガサイト、酸化亜鉛のいずれかが用いられる。これらのウエハー上に、フォトリソグラフによりパターニングしたレジストをマスクとして、エッチングもしくはサンドブラストを行いスルーホールを形成する。次に電極としてCrを下地としてAuをスパッタもしくは真空蒸着により成膜する。このとき、スルーホールの内壁にも成膜されるので、上面と下面との導通が確保される。この後フォトリソグラフによりパターニングしたレジストをマスクとして、エッチングでAuおよびCrを除去して電極を形成する。次に再びフォトリソグラフによりパターニングしたレジストをマスクとしてエッチングもしくはサンドブラストによって貫通加工を行い、圧電単結晶振動子が得られる。こうして得られた圧電単結晶振動子1はパッケージに導電接着剤で固定かつ電気的接続をとって実装される。   An example of the manufacturing process of this piezoelectric single crystal vibrator will be briefly described. As the piezoelectric single crystal material, quartz, lithium niobate, lithium tantalate, langasite, or zinc oxide is used. Through holes are formed on these wafers by etching or sand blasting using a resist patterned by photolithography as a mask. Next, a film of Au is formed by sputtering or vacuum deposition with Cr as a base as an electrode. At this time, since the film is also formed on the inner wall of the through hole, conduction between the upper surface and the lower surface is ensured. Thereafter, using a resist patterned by photolithography as a mask, Au and Cr are removed by etching to form an electrode. Next, penetration processing is performed by etching or sandblasting using a resist patterned by photolithography again as a mask to obtain a piezoelectric single crystal vibrator. The piezoelectric single crystal vibrator 1 thus obtained is mounted on the package with a conductive adhesive fixed and electrically connected.

上面において、駆動電極17aおよび17bと駆動電極18aおよび18bとの間に交流電圧を印加し、下面では、前記駆動電極とは逆位相で、駆動電極17cおよび17dと駆動電極19aおよび19bとの間に交流電圧を印加する。その結果、付加質量部11aおよび11cがX軸方向に振動し、それとは逆位相に11bおよび11dがX軸方向に振動する。この振動状態でY軸まわりに回転角速度が印加されるとコリオリ力により、Z軸方向の振動が励振され、それを検出電極20aおよび20cと検出電極20bおよび20dとから電気的に検出することができる。Z軸まわりに回転角速度が印加されるとコリオリ力によりY軸方向の振動が励振されるので、これを検出電極21aおよび21dと検出電極21bおよび21cとから電気的に検出する。これらの検出信号を信号処理して出力することで、2軸の角速度が検出できる圧電振動ジャイロを得ることができる。   On the top surface, an AC voltage is applied between the drive electrodes 17a and 17b and the drive electrodes 18a and 18b, and on the bottom surface, the drive electrodes 17c and 17d and the drive electrodes 19a and 19b are in reverse phase with the drive electrodes. AC voltage is applied to As a result, the additional mass portions 11a and 11c vibrate in the X-axis direction, and 11b and 11d vibrate in the X-axis direction in the opposite phase. When a rotational angular velocity is applied around the Y-axis in this vibration state, vibration in the Z-axis direction is excited by Coriolis force, and this can be electrically detected from the detection electrodes 20a and 20c and the detection electrodes 20b and 20d. it can. When a rotational angular velocity is applied around the Z axis, vibration in the Y axis direction is excited by the Coriolis force, and this is electrically detected from the detection electrodes 21a and 21d and the detection electrodes 21b and 21c. By processing these detection signals and outputting them, a piezoelectric vibration gyro capable of detecting a biaxial angular velocity can be obtained.

本発明の場合、駆動効率や検出効率を向上させるために両主面に電極を形成しつつ、検出電極、基準電位電極をスルーホールを介して配線することができるので、アーム15a、15b、15c、15dに配線する電極を削減することができ、また回路基板との接続点数を削減することができるので、小型化に対応しやすい。またさらに電極数が増えた場合でもスルーホールを増やして配線を簡略化することも可能である。スルーホールは付加質量部に形成されているので、スルーホールの体積相当分が軽くなるだけで振動状態そのものには影響を与えなく、振動子としての特性を得ることができる。スルーホールは付加質量部でなくとも、振動状態の影響のない外縁部など圧電効果もしくは逆圧電効果の発生しない部分に形成しても良い。   In the case of the present invention, since the detection electrode and the reference potential electrode can be wired through the through-holes while forming electrodes on both main surfaces in order to improve drive efficiency and detection efficiency, the arms 15a, 15b, 15c , 15d can be reduced, and the number of connection points with the circuit board can be reduced. Further, even when the number of electrodes increases, it is possible to simplify the wiring by increasing the number of through holes. Since the through-hole is formed in the additional mass portion, the vibration characteristic itself is not affected by only reducing the volume corresponding to the volume of the through-hole, and the characteristics as a vibrator can be obtained. The through hole may be formed not in the additional mass portion but in a portion where the piezoelectric effect or the inverse piezoelectric effect does not occur, such as an outer edge portion which is not affected by the vibration state.

次に具体的な実施例を挙げ、本発明の圧電単結晶振動子および圧電振動ジャイロについて、さらに詳しく説明する。   Next, specific examples will be given, and the piezoelectric single crystal vibrator and the piezoelectric vibration gyro of the present invention will be described in more detail.

圧電単結晶材料としてニオブ酸リチウムを用い、外形寸法が4mmx4mmx厚み0.25mm、各付加質量部大きさを0.75mmx1mm、付加質量部に形成されたスルーホールは0.1mm×0.1mmの大きさとなる図2で示した形状の圧電単結晶振動子を作製した。   Lithium niobate is used as the piezoelectric single crystal material, the outer dimensions are 4 mm x 4 mm x thickness 0.25 mm, each additional mass part size is 0.75 mm x 1 mm, and the through hole formed in the additional mass part is 0.1 mm x 0.1 mm A piezoelectric single crystal resonator having the shape shown in FIG.

この圧電単結晶振動子に1.5Vpp(ピークトゥーピーク)で駆動した場合、X軸方向の振動の共振周波数はおよそ20kHzとなり、圧電振動ジャイロとしての感度は、信号処理回路の増幅率が200倍の時でY軸回りの回転角速度およびZ軸回りの回転角速度共におよそ0.3mV/゜/秒が得られ、1つの圧電単結晶振動子で、2軸の角速度が検出可能となった。   When this piezoelectric single crystal vibrator is driven at 1.5 Vpp (peak to peak), the resonance frequency of vibration in the X-axis direction is about 20 kHz, and the sensitivity as a piezoelectric vibration gyro is 200 times the amplification factor of the signal processing circuit. At this time, a rotational angular velocity about the Y axis and a rotational angular velocity about the Z axis were both about 0.3 mV / ° / second, and a single piezoelectric single crystal vibrator could detect the biaxial angular velocity.

本発明の実施の形態に係わる圧電単結晶振動子のスルーホール部の説明図。図1(a)はスルーホール部(付加質量部11aの近傍)の拡大図。図1(b)はA−A'断面図。Explanatory drawing of the through-hole part of the piezoelectric single crystal vibrator concerning embodiment of this invention. FIG. 1A is an enlarged view of a through hole portion (in the vicinity of the additional mass portion 11a). FIG.1 (b) is AA 'sectional drawing. 本発明の実施の形態に係わる圧電単結晶振動子の外形を示した上面図。The top view which showed the external shape of the piezoelectric single crystal vibrator concerning embodiment of this invention. 本発明の実施の形態に係わる圧電単結晶振動子の上面の電極配置図。The electrode arrangement | positioning figure of the upper surface of the piezoelectric single crystal vibrator concerning embodiment of this invention. 本発明の実施の形態に係わる圧電単結晶振動子の下面の電極配置図。The electrode arrangement | positioning figure of the lower surface of the piezoelectric single crystal vibrator concerning embodiment of this invention.

符号の説明Explanation of symbols

1 圧電単結晶振動子
10 圧電単結晶
11a〜11d 付加質量部
12a〜12d スルーホール
13a、13b スルーホール
14a、14b スルーホール
15a〜15d アーム
16a、16b 基準電位電極
17a〜17d 駆動電極
18a、18b 駆動電極
19a、19b 駆動電極
20a〜20d 検出電極
21a〜21d 検出電極
DESCRIPTION OF SYMBOLS 1 Piezoelectric single crystal vibrator 10 Piezoelectric single crystal 11a-11d Additional mass part 12a-12d Through hole 13a, 13b Through hole 14a, 14b Through hole 15a-15d Arm 16a, 16b Reference potential electrode 17a-17d Drive electrode 18a, 18b Drive Electrode 19a, 19b Drive electrode 20a-20d Detection electrode 21a-21d Detection electrode

Claims (2)

圧電単結晶材料から成る圧電単結晶板の表裏両面の主面上に電極が形成されており、導電接着剤によって、回路基板と電気的に導通し、かつ機械的に固定されてなる圧電単結晶振動子であって、前記圧電単結晶板の一部にスルーホールを形成し、一方の主面上に形成された前記電極と、残り他方の前記主面上に形成された前記電極とがスルーホールを介して電気的に接続されたことを特徴とする圧電単結晶振動子。   A piezoelectric single crystal in which electrodes are formed on the main surfaces of the front and back surfaces of a piezoelectric single crystal plate made of a piezoelectric single crystal material, and are electrically connected to a circuit board by a conductive adhesive and mechanically fixed. A vibrator, wherein a through hole is formed in a part of the piezoelectric single crystal plate, and the electrode formed on one main surface and the electrode formed on the other main surface pass through. A piezoelectric single crystal vibrator characterized in that it is electrically connected through a hole. 前記請求項1に記載の圧電単結晶振動子を用いて構成されたことを特徴とする圧電振動ジャイロ。   A piezoelectric vibration gyro comprising the piezoelectric single crystal resonator according to claim 1.
JP2006165464A 2006-06-15 2006-06-15 Piezoelectric single crystal vibrator and piezoelectric vibration gyroscope Pending JP2007333546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006165464A JP2007333546A (en) 2006-06-15 2006-06-15 Piezoelectric single crystal vibrator and piezoelectric vibration gyroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006165464A JP2007333546A (en) 2006-06-15 2006-06-15 Piezoelectric single crystal vibrator and piezoelectric vibration gyroscope

Publications (1)

Publication Number Publication Date
JP2007333546A true JP2007333546A (en) 2007-12-27

Family

ID=38933158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006165464A Pending JP2007333546A (en) 2006-06-15 2006-06-15 Piezoelectric single crystal vibrator and piezoelectric vibration gyroscope

Country Status (1)

Country Link
JP (1) JP2007333546A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287957A (en) * 1996-02-21 1997-11-04 Fujitsu Ltd Tuning fork type piezoelectric vibration gyro
JP2004125458A (en) * 2002-09-30 2004-04-22 Seiko Epson Corp Tuning-fork piezoelectric vibration reed and piezoelectric vibration gyro
JP2007108044A (en) * 2005-10-14 2007-04-26 Nec Tokin Corp Element for vibrating gyroscope, and vibrating gyroscope
JP2007327758A (en) * 2006-06-06 2007-12-20 Nec Tokin Corp Piezoelectric single-crystal oscillator and piezoelectric vibration gyroscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287957A (en) * 1996-02-21 1997-11-04 Fujitsu Ltd Tuning fork type piezoelectric vibration gyro
JP2004125458A (en) * 2002-09-30 2004-04-22 Seiko Epson Corp Tuning-fork piezoelectric vibration reed and piezoelectric vibration gyro
JP2007108044A (en) * 2005-10-14 2007-04-26 Nec Tokin Corp Element for vibrating gyroscope, and vibrating gyroscope
JP2007327758A (en) * 2006-06-06 2007-12-20 Nec Tokin Corp Piezoelectric single-crystal oscillator and piezoelectric vibration gyroscope

Similar Documents

Publication Publication Date Title
JP5678727B2 (en) Vibration device, method for manufacturing vibration device, electronic apparatus
JP5655501B2 (en) Vibration element, vibrator, and electronic device
JP6136349B2 (en) Electronic device, electronic apparatus, and moving object
JP2013205328A (en) Vibration piece, sensor unit and electronic apparatus
JP2013050321A (en) Physical quantity detector and electronic apparatus
JP5970690B2 (en) SENSOR ELEMENT, SENSOR UNIT, ELECTRONIC DEVICE, AND SENSOR UNIT MANUFACTURING METHOD
JP5030135B2 (en) Piezoelectric single crystal vibrator and piezoelectric vibration gyro
JP5987426B2 (en) Vibrating piece, manufacturing method of vibrating piece, sensor unit, electronic device
JP2012257141A (en) Crystal vibrating piece, gyro sensor, electronic apparatus and manufacturing method of crystal vibrating piece
JP3941736B2 (en) Quartz vibrating piece, manufacturing method thereof, quartz crystal device using quartz crystal vibrating piece, mobile phone device using quartz crystal device, and electronic apparatus using quartz crystal device
JP2007327758A (en) Piezoelectric single-crystal oscillator and piezoelectric vibration gyroscope
JP5434712B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP5716557B2 (en) Vibrating piece, gyro sensor, electronic device, and method of manufacturing the vibrating piece
JP6210345B2 (en) Gyro sensor element, gyro sensor unit, electronic device, and manufacturing method of gyro sensor unit
JP2008003017A (en) Piezo-electric single crystal vibrator and piezoelectric vibrating gyroscope
JP2007181130A (en) Piezoelectric device and method of manufacturing the same
JP2013234873A (en) Vibrating piece and manufacturing method for the vibrating piece, gyro sensor, and electronic apparatus and mobile body
JP5533349B2 (en) Bending vibrator, bending vibrator, oscillator, and electronic device
JP2007333546A (en) Piezoelectric single crystal vibrator and piezoelectric vibration gyroscope
JP2010044005A (en) Piezoelectric vibrator, and piezo-electric device
JP2009128020A (en) Piezoelectric vibration gyroscope using tuning fork type piezoelectric single crystal vibrator
JP2005241380A (en) Piezo-electric device, cellular phone unit using piezo-electric device and electronic device using piezo-electric device
JP2011182306A (en) Piezoelectric device and method of manufacturing the same
JP2007093400A (en) Bending vibration type piezoelectric vibration chip, tuning fork type piezoelectric vibrator, and angular speed detection sensor
JP5240931B2 (en) Piezoelectric vibrator and piezoelectric oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111207