JP2007266403A - Cooling device for electronics equipment - Google Patents

Cooling device for electronics equipment Download PDF

Info

Publication number
JP2007266403A
JP2007266403A JP2006090894A JP2006090894A JP2007266403A JP 2007266403 A JP2007266403 A JP 2007266403A JP 2006090894 A JP2006090894 A JP 2006090894A JP 2006090894 A JP2006090894 A JP 2006090894A JP 2007266403 A JP2007266403 A JP 2007266403A
Authority
JP
Japan
Prior art keywords
flow path
cooling
storage tank
liquid storage
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006090894A
Other languages
Japanese (ja)
Other versions
JP4572174B2 (en
Inventor
Toshiaki Shibuya
俊明 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Embedded Products Ltd
Original Assignee
NEC Embedded Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Embedded Products Ltd filed Critical NEC Embedded Products Ltd
Priority to JP2006090894A priority Critical patent/JP4572174B2/en
Publication of JP2007266403A publication Critical patent/JP2007266403A/en
Application granted granted Critical
Publication of JP4572174B2 publication Critical patent/JP4572174B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling device for an electronics equipment having a structure capable of capturing an air bubble in a flow channel in a common storage tank with either horizontal or vertical state. <P>SOLUTION: A storage tank 19 in communication with the flow channel 17 with a coolant circulated through a continuous hole 70 is provided, a regulatory part 71 gradually tapered to an inside of the tank 19 is provided in a periphery of the hole 70, a taper part 80 gradually tapered from a downstream to an upstream of the coolant flow direction is provided in the flow channel 17 in the vicinity of the continuous hole; and a space 85 in communication with both the channel 17 and the tank 19 by a periphery surface 84 of the taper part 80 and an inner periphery surface 72 of a regulatory part 71, and capable of temporarily storing the air bubble in the channel 17 is formed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、冷却装置に関し、特に電子機器に搭載された電子部品を冷却するのに適した冷却装置に関する。   The present invention relates to a cooling device, and more particularly to a cooling device suitable for cooling an electronic component mounted on an electronic device.

電子機器には、動作中に熱を発する電子部品が複数搭載されていることが多い。例えば、コンピュータに搭載されるCPU(Central Processing Unit)などは、その動作中に多くの熱を発することが知られている。さらに、近年の処理量の増大と処理速度の高速化に伴って、CPUなどが発する熱量は増加の一途を辿っている。一方、電子機器に搭載される電子部品は、その耐熱信頼性や動作特性の温度依存性などの理由から使用環境温度が制限されているのが一般的である。そこで、動作中に熱を発する電子部品を備えた電子機器においては、当該電子機器の内部やそこに搭載されている電子部品を効率的に冷却するための冷却装置が必要となる。   Electronic devices often have a plurality of electronic components that generate heat during operation. For example, it is known that a CPU (Central Processing Unit) mounted on a computer generates a lot of heat during its operation. Furthermore, the amount of heat generated by the CPU and the like has been steadily increasing as the amount of processing increases and the processing speed increases in recent years. On the other hand, an electronic component mounted on an electronic device generally has a limited use environment temperature for reasons such as heat resistance reliability and temperature dependence of operating characteristics. Therefore, in an electronic device provided with an electronic component that generates heat during operation, a cooling device is required for efficiently cooling the inside of the electronic device and the electronic component mounted therein.

ここで、電子機器の内部やそこに搭載されている電子部品を冷却する方式は、空冷方式と液冷方式とに大別される。液冷方式の冷却装置は、少なくともポンプと流路とを有し、ポンプの作用によって流路内を循環する冷媒と電子部品との間の熱交換によって電子部品を冷却する(例えば、特許文献1参照)。しかし、上記のような基本構造を有する液冷方式の冷却装置には、温度変化などに起因して流路内に発生した気泡がポンプに流入すると、異音発生や圧力低下などの不具合が発生するといった問題があった。そこで、冷媒が循環する流路の途中に貯液槽を設け、該貯液槽によって流路内の気泡を捕捉(トラップ)する技術が特許文献2によって提案されている。さらに、特許文献2では、電子機器が水平状態で使用される場合のみでなく、垂直状態で使用される場合でも流路内の気泡を捕捉すべく、流路途中に2つの貯液槽を設けることが開示されている。すなわち、ノート型パソコンなどは、一般的に机上において平置きで使用されるが、スタンドに立てたり、壁に掛けたりして縦置きで使用されることもある。この場合、電子機器が平置き状態(水平状態)の時と、縦置き状態(垂直状態)の時とで、冷媒よりも比重の軽い流路内の気泡と貯液槽との相対的位置関係が異なり、水平状態では十分に捕捉可能であった気泡が、垂直状態では十分に捕捉できなくなることがある。そこで、特許文献2には、図14に示す基本構造を有する冷却装置が開示されている。この冷却装置は、ポンプ200と、2次元平面内に展開された流路201と、流路201の途中に設けられた平置き型貯液槽202および縦置き型貯液槽203とを有する。両貯液槽202、203は、流路201内の圧力変動を緩和したり、流路201内の気泡を捕捉したりする役割を果たす。但し、平置き型貯液槽202は、当該冷却装置が搭載された電子機器が平置きで使用される場合にのみ上記役割を果たし、縦置き型貯液槽203は、縦置きで使用される場合にのみ上記役割を果たす。
特開2003−67087号公報 WO2005/001674号パンフレット([0079]〜[0089]、図26、図27)
Here, methods for cooling the inside of an electronic device and electronic components mounted thereon are roughly classified into an air cooling method and a liquid cooling method. The liquid cooling type cooling device has at least a pump and a flow path, and cools the electronic component by heat exchange between the refrigerant circulating in the flow path and the electronic component by the action of the pump (for example, Patent Document 1). reference). However, in the liquid cooling type cooling device having the basic structure as described above, when bubbles generated in the flow path due to a temperature change or the like flow into the pump, problems such as abnormal noise and pressure drop occur. There was a problem such as. Therefore, Patent Document 2 proposes a technique in which a liquid storage tank is provided in the middle of the flow path through which the refrigerant circulates and air bubbles in the flow path are captured (trapped) by the liquid storage tank. Furthermore, in Patent Document 2, not only when the electronic apparatus is used in a horizontal state, but also when used in a vertical state, two liquid storage tanks are provided in the middle of the flow path in order to capture bubbles in the flow path. It is disclosed. That is, a notebook personal computer or the like is generally used in a flat position on a desk, but may be used in a vertical position by standing on a stand or hanging on a wall. In this case, the relative positional relationship between the bubbles in the flow path having a specific gravity lighter than that of the refrigerant and the liquid storage tank when the electronic device is in a flat state (horizontal state) and in a vertical state (vertical state) However, in some cases, bubbles that were sufficiently trapped in the horizontal state cannot be trapped sufficiently in the vertical state. Therefore, Patent Document 2 discloses a cooling device having the basic structure shown in FIG. This cooling device has a pump 200, a flow path 201 developed in a two-dimensional plane, and a flat-type liquid storage tank 202 and a vertical-type liquid storage tank 203 provided in the middle of the flow path 201. Both liquid storage tanks 202 and 203 serve to alleviate pressure fluctuations in the flow path 201 and capture bubbles in the flow path 201. However, the flat-type liquid storage tank 202 plays the above role only when the electronic device on which the cooling device is mounted is used in a flat position, and the vertical-type liquid storage tank 203 is used in a vertical position. It plays the above role only if.
JP 2003-67087 A WO2005 / 001674 pamphlet ([0079] to [0089], FIG. 26, FIG. 27)

電子機器に対して小型化、薄型化、軽量化の要求が強いことは周知の事実であり、電子部品は極めて高密度で実装されている。従って、電子機器に冷却装置を搭載するに際しては、冷却装置自体がなるべく小型、薄型、軽量であることが望ましいことは勿論、電子部品のレイアウトの自由度が冷却装置の存在によって阻害されないことが望ましい。しかし、特許文献2に開示されている冷却装置では、流路の途中に平置き型と縦置き型という種類の異なる2つの貯液槽を設ける必要がある。   It is a well-known fact that there is a strong demand for downsizing, thinning, and weight reduction of electronic devices, and electronic components are mounted with extremely high density. Therefore, when mounting a cooling device on an electronic device, it is desirable that the cooling device itself be as small, thin, and lightweight as possible, and it is desirable that the degree of freedom in the layout of electronic components is not hindered by the presence of the cooling device. . However, in the cooling device disclosed in Patent Document 2, it is necessary to provide two different liquid storage tanks of a flat type and a vertical type in the middle of the flow path.

本発明の目的は、電子機器が水平・垂直のいずれの状態にあっても、共通の貯液槽によって流路内の気泡を十分に捕捉可能な冷却装置を提供することである。   An object of the present invention is to provide a cooling device capable of sufficiently capturing bubbles in a flow path by a common liquid storage tank regardless of whether the electronic device is in a horizontal or vertical state.

上記目的を達成する本発明の電子機器用冷却装置は、冷媒が循環可能な流路と、前記流路に冷媒を循環させるポンプと、連通孔を介して前記流路と連通する貯液槽とを有する電子機器用冷却装置であって、前記連通孔近傍の流路内に、該流路内の気泡を捕捉し、捕捉した気泡を前記貯液槽側へ導く捕捉部が設けられていることを特徴とする。   The cooling device for electronic equipment of the present invention that achieves the above object includes a flow path through which a refrigerant can circulate, a pump that circulates the refrigerant in the flow path, and a liquid storage tank that communicates with the flow path through a communication hole. A cooling device for electronic equipment having a capture portion that captures bubbles in the flow path and guides the captured bubbles to the storage tank side in the flow path near the communication hole. It is characterized by.

前記捕捉部と前記貯液槽との間には、前記捕捉部によって捕捉された気泡を一時的に貯留可能な空間が形成されていることが望ましい。   It is desirable that a space capable of temporarily storing bubbles captured by the capturing unit is formed between the capturing unit and the liquid storage tank.

また、前記連通孔の周囲に、前記貯液槽の内部に向けて次第に先細りになる筒状の規制部を設け、該規制部の内面と前記捕捉部の外面とによって、前記空間が形成することが望ましい。   In addition, a cylindrical restriction portion that gradually tapers toward the inside of the liquid storage tank is provided around the communication hole, and the space is formed by the inner surface of the restriction portion and the outer surface of the capturing portion. Is desirable.

また、前記捕捉部は、前記流路内の冷媒の流れ方向下流側から上流側に向けて次第に先細りになるテーパ状であることが望ましい。   Further, it is desirable that the trapping portion has a tapered shape that gradually tapers from the downstream side in the flow direction of the refrigerant in the flow path toward the upstream side.

また、前記捕捉部の冷媒の流れ方向上流側の端部は、前記規制部の開口中心よりも前記上流側に位置していることが望ましい。   Moreover, it is desirable that the upstream end of the trapping portion in the refrigerant flow direction is located on the upstream side of the opening center of the restricting portion.

また、前記捕捉部の最大径部は、前記流路の内面に密接していることが望ましい。   Moreover, it is desirable that the maximum diameter portion of the capturing portion is in close contact with the inner surface of the flow path.

本発明の電子機器用冷却装置では、該装置が平置きのときは勿論のこと、斜め縦向きや縦向きのときにも流路内の気泡を共通の貯液槽で捕捉することができる。   In the cooling apparatus for electronic equipment according to the present invention, air bubbles in the flow path can be captured by the common liquid storage tank not only when the apparatus is placed flat but also obliquely and vertically.

以下、本発明の電子機器用冷却装置の実施形態の一例について図面を参照しながら詳細に説明する。尚、図面を通して、同様な構成要素には同一の符号を付している。   Hereinafter, an example of an embodiment of a cooling device for an electronic device according to the present invention will be described in detail with reference to the drawings. Throughout the drawings, similar components are denoted by the same reference numerals.

図1(a)〜(c)は、本例の電子機器用冷却装置の基本構造を示す模式図である。本例の電子機器用冷却装置は、第1冷却パネル1と、第2冷却パネル2と、第1冷却パネル1と第2冷却パネル2とを連結し、第1冷却パネル1を第2冷却パネル2に対して、図1(c)に矢印で示す方向に開閉自在に軸支する連結部3、4とを有する。   FIGS. 1A to 1C are schematic views showing the basic structure of the electronic apparatus cooling apparatus of this example. The electronic apparatus cooling apparatus of the present example connects the first cooling panel 1, the second cooling panel 2, the first cooling panel 1 and the second cooling panel 2, and the first cooling panel 1 is connected to the second cooling panel. 2 has connecting portions 3 and 4 that are pivotally supported so as to be openable and closable in a direction indicated by an arrow in FIG.

本例の電子機器用冷却装置は、第1冷却パネル1および第2冷却パネル2内に形成された流路に水や不凍液等の冷媒を循環させることによって、発熱を伴うCPUやその他の発熱部品Xを冷却する機能を有する。図1(a)に示す符号5は、当該冷却装置が搭載される電子機器が備えるバッテリーを仮想的に示したものであり、第2冷却パネル2は、バッテリー5の設置エリアを避けた形状になっている。もっとも、図示されている第1冷却パネル1および第2冷却パネル2の形状は一例である。第1冷却パネル1および第2冷却パネル2の形状は、電子機器に搭載する際の各種の制約によって適宜決定される。   The electronic apparatus cooling apparatus of the present example is a CPU or other heat generating component that generates heat by circulating a coolant such as water or antifreeze liquid through a flow path formed in the first cooling panel 1 and the second cooling panel 2. It has a function of cooling X. Reference numeral 5 shown in FIG. 1A is a virtual representation of a battery included in an electronic device in which the cooling device is mounted, and the second cooling panel 2 has a shape that avoids the installation area of the battery 5. It has become. But the shape of the 1st cooling panel 1 and the 2nd cooling panel 2 shown in figure is an example. The shape of the 1st cooling panel 1 and the 2nd cooling panel 2 is suitably determined by the various restrictions at the time of mounting in an electronic device.

第1冷却パネル1は、例えば銅(Cu)やアルミニウム(Al)などの熱伝導性の良い金属材料によって形成されている。図1に示すように、第1冷却パネル1の内部には、流路11とマイクロチャネル構造12とが形成されている。また、第1冷却パネル1の上下面には、空冷フィン13がそれぞれ設けられており、空冷フィン13が設けられているエリア13Aの流路11は、放熱効果を高めるために、図2に示すように蛇行している。再び図1(a)を参照すると、空冷フィン13の近傍には、冷却ファン14が設けられている。この冷却ファン14によって、第1冷却パネル1に設けられた空冷フィン13に冷却風が供給される。   The first cooling panel 1 is formed of a metal material having good thermal conductivity such as copper (Cu) or aluminum (Al). As shown in FIG. 1, a flow path 11 and a microchannel structure 12 are formed inside the first cooling panel 1. Air cooling fins 13 are respectively provided on the upper and lower surfaces of the first cooling panel 1, and the flow path 11 in the area 13A where the air cooling fins 13 are provided is shown in FIG. Meander. Referring to FIG. 1A again, a cooling fan 14 is provided in the vicinity of the air cooling fin 13. The cooling fan 14 supplies cooling air to the air cooling fins 13 provided in the first cooling panel 1.

図3および図4を参照しつつ、第1冷却パネル1についてさらに詳しく説明する。第1冷却パネル1は、図3に示す下側放熱板20と、図4に示す上側放熱板30とを拡散接合、ロウ付け接合、レーザ溶接等の接合技術によって接合したものである。図3に示すように、下側放熱板20には、幅6.0mm、深さ1.5mmの溝21と、幅0.5mm、深さ1.5mmの狭幅溝22とが形成されており、これらを上側放熱板30で覆うことによって、流路11およびマイクロチャネル構造12が形成されている。尚、下側放熱板20への溝21および狭幅溝22の形成は、プレスによってこれら溝を形成する方法や、これら溝を形成した状態で成型する方法や、研削によって形成する方法などが考えられる。   The first cooling panel 1 will be described in more detail with reference to FIGS. 3 and 4. The first cooling panel 1 is obtained by joining the lower heat radiating plate 20 shown in FIG. 3 and the upper heat radiating plate 30 shown in FIG. 4 by a joining technique such as diffusion bonding, brazing bonding, or laser welding. As shown in FIG. 3, a groove 21 having a width of 6.0 mm and a depth of 1.5 mm and a narrow groove 22 having a width of 0.5 mm and a depth of 1.5 mm are formed in the lower radiator plate 20. The flow path 11 and the microchannel structure 12 are formed by covering with the upper radiator plate 30. The formation of the grooves 21 and the narrow grooves 22 on the lower heat sink 20 may be performed by a method of forming these grooves by pressing, a method of forming these grooves in a formed state, a method of forming by grinding, or the like. It is done.

さらに、下側放熱板20には、流路11に冷媒が流入する流入口である開口Bと、流路11から冷媒が流出する流出口である開口Cが形成されている。開口Bには、図1に示す金属管23が、開口Cには、同図に示す金属管24がそれぞれ接続されている。金属管23、24には、フレキシブルな金属管が用いられ、第1冷却パネル1を第2冷却パネル2に対して開閉する際の障害にならないようになっている。   Further, the lower heat radiating plate 20 is formed with an opening B that is an inlet through which the refrigerant flows into the flow path 11 and an opening C that is an outlet through which the refrigerant flows out of the flow path 11. A metal tube 23 shown in FIG. 1 is connected to the opening B, and a metal tube 24 shown in FIG. As the metal tubes 23 and 24, flexible metal tubes are used so as not to obstruct the opening and closing of the first cooling panel 1 with respect to the second cooling panel 2.

当該冷却装置は、第1冷却パネル1の下側放熱板20の下面のマイクロチャネル構造12が形成されているエリアが、消費電力が大きく、しかも小面積で局所的に発熱を伴うCPUやその他の発熱部品Xの上面に接触するようにして電子機器に搭載される。発熱部品Xで発生した熱は、下側放熱板20を介してマイクロチャネル構造12を流れる冷媒に伝えられる。マイクロチャネル構造12は、第1冷却パネル1の下側放熱板20が発熱部品Xに接触するエリアに、当該エリア以上の面積で形成されている。尚、本例では、並列する38本の狭幅溝22によってマイクロチャネル構造12が形成されている。   In the cooling device, the area where the microchannel structure 12 on the lower surface of the lower heat sink 20 of the first cooling panel 1 is formed consumes a large amount of power, and is a small area with a CPU that generates heat locally and other areas. It is mounted on the electronic device so as to be in contact with the upper surface of the heat generating component X. Heat generated by the heat generating component X is transmitted to the refrigerant flowing through the microchannel structure 12 via the lower heat radiating plate 20. The microchannel structure 12 is formed in an area where the lower heat sink 20 of the first cooling panel 1 is in contact with the heat generating component X with an area larger than the area. In this example, the microchannel structure 12 is formed by 38 narrow grooves 22 arranged in parallel.

図5に示すように、流路11とマイクロチャネル構造12との間には、流路11側からマクロチヤネル構造12側に向けて徐々に幅が拡大し、その末端でマイクロチャネル構造12の幅と同一となる拡張部15が形成されている。さらに、拡張部15には、流路11から流れてくる冷媒をマイクロチャネル構造12の幅方向に拡散させるためのガイド板16が形成されている。ガイド板16は、冷媒の流れの上流側から順次配置された左右一対の第1ガイド板16a、第2ガイド板16bおよび第3ガイド板16cからなる。各ガイド板の長さは、上流に位置するガイド板ほど長く、第1ガイド板16aが第2ガイド板16bよりも長く、第2ガイド板16bが第3ガイド板16cよりも長い。また、各ガイド板は、冷媒の流れ方向に対して角度θだけ傾いているが、その角度θは、上流に位置するガイド板ほど大きい。すなわち、第1ガイド板16aの傾斜角度θは第2ガイド板16bの傾斜角度θよりも大きく、第2ガイド板16bの傾斜角度θは第3ガイド板16cの傾斜角度θよりも大きい。   As shown in FIG. 5, between the channel 11 and the microchannel structure 12, the width gradually increases from the channel 11 side toward the macrochannel structure 12 side, and the width of the microchannel structure 12 at the end. An extension 15 that is the same as is formed. Furthermore, a guide plate 16 for diffusing the refrigerant flowing from the flow path 11 in the width direction of the microchannel structure 12 is formed in the extended portion 15. The guide plate 16 includes a pair of left and right first guide plates 16a, second guide plates 16b, and third guide plates 16c that are sequentially arranged from the upstream side of the refrigerant flow. The length of each guide plate is longer in the upstream guide plate, the first guide plate 16a is longer than the second guide plate 16b, and the second guide plate 16b is longer than the third guide plate 16c. Each guide plate is inclined by an angle θ with respect to the flow direction of the refrigerant. The angle θ is larger as the guide plate is located upstream. That is, the inclination angle θ of the first guide plate 16a is larger than the inclination angle θ of the second guide plate 16b, and the inclination angle θ of the second guide plate 16b is larger than the inclination angle θ of the third guide plate 16c.

次に、図6〜図8を参照しつつ第2冷却パネル2について詳しく説明する。第2冷却パネル2は、例えば銅(Cu)やアルミニウム(Al)などの熱伝導性の良い金属材料に形成されている。図6に示すように、第2冷却パネル2の内部には、流路17が形成され、上面には循環ポンプ18と貯液槽19とが設けられている。第2冷却パネル2は、図7および図8にそれぞれ示す下側放熱板40と上側放熱板50とを拡散接合、ロウ付け接合、レーザ溶接等の接合技術によって接合したものである。下側放熱板40には、幅20.0mm、深さ0.8mmの溝41が形成されており、この溝41を上側放熱板50で覆うことによって流路17が形成されている。尚、下側放熱板40への溝41の形成は、プレスによって溝41を形成する方法や、溝41を形成した状態で成型する方法や、研削によって溝41を形成する方法が考えられる。また、溝41は、上側放熱板50に形成してもよく、或いは、上側放熱板50と下側放熱板40の双方に形成してもよい。   Next, the second cooling panel 2 will be described in detail with reference to FIGS. The second cooling panel 2 is formed of a metal material having good thermal conductivity such as copper (Cu) or aluminum (Al). As shown in FIG. 6, a flow path 17 is formed inside the second cooling panel 2, and a circulation pump 18 and a liquid storage tank 19 are provided on the upper surface. The second cooling panel 2 is obtained by joining the lower heat radiating plate 40 and the upper heat radiating plate 50 shown in FIGS. 7 and 8 by a joining technique such as diffusion bonding, brazing bonding, or laser welding. A groove 41 having a width of 20.0 mm and a depth of 0.8 mm is formed in the lower heat radiating plate 40, and the flow path 17 is formed by covering the groove 41 with the upper heat radiating plate 50. In addition, formation of the groove | channel 41 to the lower side heat sink 40 can consider the method of forming the groove | channel 41 with a press, the method of shape | molding in the state which formed the groove | channel 41, and the method of forming the groove | channel 41 by grinding. Further, the groove 41 may be formed in the upper heat radiating plate 50 or may be formed in both the upper heat radiating plate 50 and the lower heat radiating plate 40.

第2冷却パネル2の流路17の中央部、すなわち下側放熱板40に形成された溝41の中央部には、複数の支持部42が所定間隔で形成されている。支持部42は、下側放熱板40と上側放熱板50とを接合する際の強度を確保するためのものである。流路17の幅が広くなるほど、また、深さが浅くなるほど冷却性能は向上する一方、耐圧性能は低下する。従って、冷却性能の観点からすると、流路17の幅をできる限り広くすると共に、深さを浅くすることが要求されるが、そうすると耐圧性能が低下してしまう。このため、支持部42によって耐圧性能の向上を図っている。もっとも、支持部42の形成位置は流路17の中央部に限定されることなく、例えば、格子状もしくは千鳥状に支持部42を配列してもよい。尚、本例では、上記寸法の流路17の中央部に、幅0.5mm、長さ2.0mmの支持部42が20.0mm間隔で形成されている。   A plurality of support portions 42 are formed at predetermined intervals in the central portion of the flow path 17 of the second cooling panel 2, that is, in the central portion of the groove 41 formed in the lower radiator plate 40. The support part 42 is for ensuring the strength when the lower heat sink 40 and the upper heat sink 50 are joined. As the width of the channel 17 becomes wider and the depth becomes shallower, the cooling performance is improved, while the pressure resistance performance is lowered. Therefore, from the viewpoint of the cooling performance, it is required to make the width of the flow path 17 as wide as possible and to make the depth shallow, but this will reduce the pressure resistance performance. For this reason, the pressure resistance is improved by the support portion 42. However, the formation position of the support portion 42 is not limited to the central portion of the flow path 17, and the support portions 42 may be arranged in a lattice shape or a zigzag shape, for example. In this example, support portions 42 having a width of 0.5 mm and a length of 2.0 mm are formed at intervals of 20.0 mm in the center of the channel 17 having the above dimensions.

さらに、上側放熱板50には、図8に示すように、貯液槽19に連通する開口(分岐孔)51と、流路17から循環ポンプ18に冷媒が戻る冷媒流入口52と、循環ポンプ18から流路17に向かって冷媒が送り出される冷媒流出口53と、流路17から冷媒が流出する出口である開口Aと、流路17に冷媒が流入する入口である開口Dとが形成されている。開口Aには、図1に示す金属管23が、開口Dには、同図に示す金属管24がそれぞれ接続されている。尚、第2冷却パネル2に、マイクロチャネル構造12と同様のマイクロチャネル構造を形成してもよい。   Further, as shown in FIG. 8, the upper radiator plate 50 includes an opening (branch hole) 51 communicating with the liquid storage tank 19, a refrigerant inlet 52 for returning the refrigerant from the flow path 17 to the circulation pump 18, and a circulation pump. A refrigerant outlet 53 through which the refrigerant is sent out from the flow path 18 toward the flow path 17, an opening A that is an outlet from which the refrigerant flows out of the flow path 17, and an opening D that is an inlet through which the refrigerant flows into the flow path 17 are formed. ing. A metal tube 23 shown in FIG. 1 is connected to the opening A, and a metal tube 24 shown in FIG. Note that a microchannel structure similar to the microchannel structure 12 may be formed on the second cooling panel 2.

次に、本例の電子機器用冷却装置における冷媒の流れについて説明する。第2冷却パネル2の上面に設けられた循環ポンプ18から吐出された冷媒は、冷媒流出口53を介して第2冷却パネル2内に形成されている流路17に送り出され、開口A、金属管23および開口Bを介して第1冷却パネル1に流入する。第1冷却パネル1に流入した冷媒は、第1冷却パネル1内に形成されている流路11を通り、マイクロチャネル構造12に流入する。   Next, the flow of the refrigerant in the electronic apparatus cooling apparatus of this example will be described. The refrigerant discharged from the circulation pump 18 provided on the upper surface of the second cooling panel 2 is sent to the flow path 17 formed in the second cooling panel 2 through the refrigerant outlet 53, and the opening A, metal It flows into the first cooling panel 1 through the pipe 23 and the opening B. The refrigerant flowing into the first cooling panel 1 flows through the flow channel 11 formed in the first cooling panel 1 and flows into the microchannel structure 12.

マイクロチャネル構造12に流入した冷媒は、発熱部品Xで発生した熱を吸熱し、空冷フィン13が設けられているエリアに形成されている蛇行した流路11を通り、開口C、金属管24および開口Dを介して第2冷却パネル2に流入する。第2冷却パネル2に流入した冷媒は、第2冷却パネル2内に形成されている流路17を通り、貯液槽19に連通する分岐孔51の下方を通過して冷媒流入口52に至り、再び循環ポンプ18に戻る。このように循環ポンプ18によって冷媒を循環させることにより、発熱部品Xで発生した熱を熱伝達により第1冷却パネル1および第2冷却パネル2の全体に熱拡散させ、放熱効果を高めている。   The refrigerant that has flowed into the microchannel structure 12 absorbs the heat generated in the heat generating component X, passes through the meandering flow path 11 formed in the area where the air cooling fins 13 are provided, the opening C, the metal tube 24, and It flows into the second cooling panel 2 through the opening D. The refrigerant that has flowed into the second cooling panel 2 passes through the flow path 17 formed in the second cooling panel 2, passes under the branch hole 51 that communicates with the liquid storage tank 19, and reaches the refrigerant inlet 52. Return to the circulation pump 18 again. By circulating the refrigerant by the circulation pump 18 in this way, the heat generated by the heat generating component X is diffused throughout the first cooling panel 1 and the second cooling panel 2 by heat transfer, thereby enhancing the heat dissipation effect.

次に、第2冷却パネル2の上側放熱板50に取り付けられる循環ポンプ18の構成について図9、図10を参照しつつ詳細に説明する。図9は、循環ポンプ18の構成を示す図であり、(a)は分解斜視図、(b)は断面図である。図10は循環ポンプ18の実装方法を示す断面図である。   Next, the configuration of the circulation pump 18 attached to the upper radiator plate 50 of the second cooling panel 2 will be described in detail with reference to FIGS. 9 and 10. 9A and 9B are diagrams showing the configuration of the circulation pump 18, wherein FIG. 9A is an exploded perspective view and FIG. 9B is a cross-sectional view. FIG. 10 is a cross-sectional view showing a method for mounting the circulation pump 18.

図9に示すように、循環ポンプ18は、ポンプ筐体60と、ゴム樹脂製のOリング61と、圧電振動板62と、圧電振動板62を押さえる天板63とからなる。ポンプ筐体60には、第2冷却パネル2の上側放熱板50に形成されている冷媒流入口52および冷媒流出口53にそれぞれ連通する吸込ポート64および吐出ポート65が形成されていると共に、ポンプ室66となる空間が形成されている。吸込ポート64には、ポンプ室66から流路17への逆流を防止する第1チェック弁67が、吐出ポート65には、流路17からポンプ室66への逆流を防止する第2チェック弁68がそれぞれ設けられている。両チェック弁67、68は、金属の薄板リード弁で構成され、スポット溶接やネジ止めによりポンプ筐体60の底面に装着されている。   As shown in FIG. 9, the circulation pump 18 includes a pump housing 60, a rubber resin O-ring 61, a piezoelectric diaphragm 62, and a top plate 63 that holds the piezoelectric diaphragm 62. The pump housing 60 is formed with a suction port 64 and a discharge port 65 respectively communicating with the refrigerant inlet 52 and the refrigerant outlet 53 formed in the upper radiator plate 50 of the second cooling panel 2. A space serving as a chamber 66 is formed. The suction port 64 has a first check valve 67 that prevents backflow from the pump chamber 66 to the flow path 17, and the discharge port 65 has a second check valve 68 that prevents backflow from the flow path 17 to the pump chamber 66. Are provided. Both check valves 67 and 68 are metal thin plate reed valves, and are mounted on the bottom surface of the pump housing 60 by spot welding or screwing.

圧電振動板62は、循環ポンプ18の駆動源である圧電撓み振動板であり、圧電素子と弾性板とを接合することで構成され、かつ、冷媒液に圧電素子が直接接しないように水密モールドが施されている。圧電素子としては、圧電セラミックまたは圧電単結晶などを用いることができる。弾性板としては、りん青銅等の銅合金、ステンレス合金などの金属薄板、カーボンファイバーの薄板、PET板といった樹脂薄板などを用いることができる。圧電振動板62の詳細構造は、ユニモルフ、バイモルフ等の他、圧電素子を積層した積層型構造のものでもよい。   The piezoelectric diaphragm 62 is a piezoelectric flexural diaphragm that is a drive source of the circulation pump 18, and is configured by joining a piezoelectric element and an elastic plate, and is a watertight mold so that the piezoelectric element does not directly contact the coolant. Is given. As the piezoelectric element, a piezoelectric ceramic or a piezoelectric single crystal can be used. As the elastic plate, a copper alloy such as phosphor bronze, a metal thin plate such as a stainless alloy, a carbon fiber thin plate, a resin thin plate such as a PET plate, or the like can be used. The detailed structure of the piezoelectric diaphragm 62 may be a unimorph, bimorph, or the like, or a laminated structure in which piezoelectric elements are laminated.

上記構成を有する循環ポンプ18は、図10に示すようにして実装される。まず図10(a)に示すように、第2冷却パネル2の上側放熱板50にポンプ筐体60を金属の拡散接合、ロウ付け接合、レーザ溶接等の接合技術により固定して一体化させる。このときポンプ筐体60には、吸込ポート64、吐出ポート65、ポンプ室66となる空間、第1チェック弁67および第2チェック弁68が予め加工または装着されている。   The circulating pump 18 having the above configuration is mounted as shown in FIG. First, as shown in FIG. 10A, the pump housing 60 is fixed to and integrated with the upper radiator plate 50 of the second cooling panel 2 by a joining technique such as metal diffusion joining, brazing joining, or laser welding. At this time, the suction casing 64, the discharge port 65, the space serving as the pump chamber 66, the first check valve 67, and the second check valve 68 are processed or mounted in the pump housing 60 in advance.

次に、図10(b)に示すように、Oリング61を嵌め込み、その上に圧電振動板62を載せ、ポンプ室66を形成する。その後、天板63でしっかりとOリング61を密着させて水密性を確保し、かつ圧電振動板62の周縁を固定する。このとき、天板63は、該天板63とは別体のネジによってポンプ筐体60に固定されていても構わないし、天板63の周囲に形成したネジをポンプ筐体60に形成されているネジに螺合させても構わない。   Next, as shown in FIG. 10 (b), an O-ring 61 is fitted and a piezoelectric diaphragm 62 is placed thereon to form a pump chamber 66. Thereafter, the O-ring 61 is brought into close contact with the top plate 63 to ensure watertightness, and the periphery of the piezoelectric diaphragm 62 is fixed. At this time, the top plate 63 may be fixed to the pump housing 60 by a screw separate from the top plate 63, and screws formed around the top plate 63 are formed on the pump housing 60. The screw may be screwed to the screw.

これまで説明したように、循環ポンプ18を第2冷却パネル2に接合して一体化させることにより、圧力損失ならびに液漏れ等が防止される。また、循環ポンプ18と第2冷却パネル2とが一体化されるので、薄型化が可能であり、かつ安価となる。具体的には、本例の電子機器用冷却装置の厚み(高さ)は、循環ポンプ18が配置された最大部分で7.0mm以下になる。   As explained so far, pressure loss and liquid leakage are prevented by joining the circulation pump 18 to the second cooling panel 2 and integrating them. Moreover, since the circulation pump 18 and the 2nd cooling panel 2 are integrated, thickness reduction is possible and it becomes cheap. Specifically, the thickness (height) of the electronic device cooling apparatus of the present example is 7.0 mm or less at the maximum portion where the circulation pump 18 is disposed.

以上、循環ポンプ18の構成について説明したが、ここで説明した構成は一例であり、循環ポンプ18の構成は上記構成に限定されない。   As mentioned above, although the structure of the circulation pump 18 was demonstrated, the structure demonstrated here is an example and the structure of the circulation pump 18 is not limited to the said structure.

次に貯液槽19の構成について説明する。貯液槽19は、図6に示すように、中空の円盤形であり、循環ポンプ18の手前(冷媒が循環ポンプ18に流入する手前)の流路17上に設けられている。より具体的には、図11に示すように、貯液槽19の底面に形成されている連通孔70と第2冷却パネル2の上側放熱板50に形成されている分岐孔51とが連通するように配置されている。従って、温度変化その他の要因によって流路11(図1、図2)や流路17内に発生した気泡は、流路17の分岐孔51の下方を通過する際に、冷媒との比重差によって貯液槽19に捕捉(トラップ)される。この結果、気泡が流路11、17内を延々と循環し続けることがなく、循環ポンプ18に気泡が混入して不具合を生じさせることもない。さらに、貯液槽19の上部に溜まった気泡(空気)は、温度変化にともなう冷媒の膨張収縮に起因する流路11、17内の圧力変動を緩和する働きをする。   Next, the configuration of the liquid storage tank 19 will be described. As shown in FIG. 6, the liquid storage tank 19 has a hollow disk shape, and is provided on the flow path 17 before the circulation pump 18 (before refrigerant flows into the circulation pump 18). More specifically, as shown in FIG. 11, the communication hole 70 formed in the bottom surface of the liquid storage tank 19 and the branch hole 51 formed in the upper radiator plate 50 of the second cooling panel 2 communicate with each other. Are arranged as follows. Therefore, bubbles generated in the flow path 11 (FIGS. 1 and 2) and the flow path 17 due to temperature change and other factors pass due to the difference in specific gravity with the refrigerant when passing below the branch hole 51 of the flow path 17. It is trapped in the liquid storage tank 19. As a result, the bubbles do not continue to circulate endlessly in the flow paths 11 and 17, and the bubbles do not enter the circulation pump 18 and cause a problem. Furthermore, bubbles (air) accumulated in the upper part of the liquid storage tank 19 serve to alleviate pressure fluctuations in the flow paths 11 and 17 due to expansion and contraction of the refrigerant accompanying a temperature change.

一方、貯液槽19内の空気が流路17に再び流出すると、その空気が循環ポンプ18に混入して不具合を生じさせる虞がある。そこで、連通孔70の周囲には、断面形状が台形円錐状の規制部71が設けられている。より具体的には、分岐孔51側から貯液槽19の内部(上部)に向けて次第に先細りになる規制部71が設けられている。かかる規制部71により、当該電子機器用冷却装置が上下逆さまになった場合にも、貯液槽19内の空気をできるだけ該貯液槽19内に留めることが可能となる。ここで、貯液槽19内の空気を流路17に戻さないためには、規制部71の上端が常に冷媒に浸されている必要がある。そこで、冷媒の液面が常に規制部71の上端よりも上方に位置するように、貯液槽19の容積および冷媒の量が設定されている。   On the other hand, when the air in the liquid storage tank 19 flows out again into the flow path 17, the air may enter the circulation pump 18 and cause a problem. Therefore, a restricting portion 71 having a trapezoidal conical cross section is provided around the communication hole 70. More specifically, a restricting portion 71 that is gradually tapered from the branch hole 51 side toward the inside (upper part) of the liquid storage tank 19 is provided. With this restricting portion 71, even when the electronic device cooling apparatus is turned upside down, the air in the liquid storage tank 19 can be kept in the liquid storage tank 19 as much as possible. Here, in order not to return the air in the liquid storage tank 19 to the flow path 17, it is necessary that the upper end of the restricting portion 71 is always immersed in the refrigerant. Therefore, the volume of the liquid storage tank 19 and the amount of the refrigerant are set so that the liquid level of the refrigerant is always located above the upper end of the restricting portion 71.

さらに、分岐孔51の直下の流路17内には、冷媒の流れ方向下流側から上流側に向けて次第に先細りになるテーパ状の捕捉部(以下「テーパ部80」)を備えた筒状の案内部材81が設けられている。案内部材81は、テーパ部80の開口端面82が規制部71の開口中心(図11に鎖線で示す)と一致する位置に配置されており、テーパ部80以外の筒部83の外面は流路17の内面に密接している。すなわち、流路17内を流れる冷媒は、案内部材81の内側を通って該案内部材81よりも下流側に流れ、案内部材81と流路17との間を抜けて下流側に流れることはない。   Further, in the flow path 17 immediately below the branch hole 51, a cylindrical shape provided with a tapered capturing portion (hereinafter referred to as “taper portion 80”) that gradually tapers from the downstream side in the refrigerant flow direction toward the upstream side. A guide member 81 is provided. The guide member 81 is disposed at a position where the opening end surface 82 of the tapered portion 80 coincides with the opening center of the restricting portion 71 (shown by a chain line in FIG. 11), and the outer surface of the cylindrical portion 83 other than the tapered portion 80 is a flow path. Close to the inner surface of 17. That is, the refrigerant flowing in the flow path 17 flows through the inside of the guide member 81 to the downstream side of the guide member 81 and does not flow between the guide member 81 and the flow path 17 to the downstream side. .

ここで、当該電子機器用冷却装置が図11に示す状態から図12(a)に示す状態に移行した場合、すなわち、平置き状態から斜め縦置き状態に移行した場合、流路17内の気泡はテーパ部80の外周面84に当たって捕捉され、該外周面84と規制部71の内周面72とによって囲まれた空間85内に一時的に貯留される。そして、空間85内に該空間85の容積を超える量の気泡(空気)が溜まると、空気は規制部71の縁73を越えて貯液槽19内へ移動する。このとき、テーパ部80の開口端面82が規制部71の開口中心と一致しているので、すなわち、開口端面82が規制部の縁73よりも上流側に位置しているので、空間85内の空気が流路17内へ移動することはない。要するに、開口端面82が規制部の縁73よりも上流側に位置していれば、テーパ部80の開口端面82を規制部71の開口中心と一致させることは必ずしも必要ではない。   Here, when the electronic device cooling device has shifted from the state shown in FIG. 11 to the state shown in FIG. 12A, that is, when the electronic device cooling device has shifted from the flat state to the diagonally vertical state, the bubbles in the flow path 17 Is captured by hitting the outer peripheral surface 84 of the tapered portion 80 and temporarily stored in a space 85 surrounded by the outer peripheral surface 84 and the inner peripheral surface 72 of the restricting portion 71. When the amount of bubbles (air) exceeding the volume of the space 85 accumulates in the space 85, the air moves over the edge 73 of the restricting portion 71 and into the liquid storage tank 19. At this time, since the opening end surface 82 of the tapered portion 80 coincides with the opening center of the restricting portion 71, that is, the opening end surface 82 is located upstream of the edge 73 of the restricting portion, Air does not move into the flow path 17. In short, it is not always necessary to make the opening end surface 82 of the tapered portion 80 coincide with the opening center of the restricting portion 71 if the opening end surface 82 is positioned upstream of the edge 73 of the restricting portion.

尚、当該電子機器用冷却装置の傾斜が図12(a)に示されている状態よりも緩やかである場合には、テーパ部80の外周面84に当たって捕捉された気泡が該外周面84および規制部71の内周面72に沿って移動し、貯液槽19へ達することもある。すなわち、空間85に一時的に貯留されることなく、直接貯液槽19に流入することもある。   When the inclination of the electronic device cooling device is gentler than the state shown in FIG. 12A, bubbles trapped by hitting the outer peripheral surface 84 of the tapered portion 80 are prevented from the outer peripheral surface 84 and the regulation. It may move along the inner peripheral surface 72 of the portion 71 and reach the liquid storage tank 19. That is, it may flow directly into the liquid storage tank 19 without being temporarily stored in the space 85.

一方、当該電子機器用冷却装置が図11や図12(a)に示す状態から図12(b)に示す状態に移行した場合、すなわち、平置き状態や斜め縦置き状態から縦置き状態(垂直状態)に移行した場合にも、流路17内の気泡は上記と同様の原理でテーパ部80によって捕捉され、空間85内に一時的に貯留された後に貯液槽19に移動する。尚、電子機器用冷却装置が斜め縦置き状態のときには、流路17内を流れる気泡は、テーパ部外周面84のうち、主に分岐孔51に面したエリアに当たる。しかし、垂直状態のときには、テーパ部外周面84の何れのエリアに気泡が当たるかは特定できない。しかし、テーパ部外周面84は、角のない連続面であるので、何れのエリアに当たった気泡も該外周面84に沿ってテーパ部80の周方向に移動し、最終的には空間85に達する。   On the other hand, when the electronic device cooling apparatus has shifted from the state shown in FIG. 11 or 12A to the state shown in FIG. 12B, that is, from the flat or oblique vertical state (vertical state). Also in the state, the bubbles in the flow path 17 are captured by the tapered portion 80 on the same principle as described above, and are temporarily stored in the space 85 and then moved to the liquid storage tank 19. When the electronic device cooling device is in the obliquely vertical state, the bubbles flowing in the flow path 17 mainly hit the area of the tapered portion outer peripheral surface 84 facing the branch hole 51. However, in the vertical state, it cannot be specified which area of the outer peripheral surface 84 of the tapered portion the bubble hits. However, since the outer peripheral surface 84 of the tapered portion is a continuous surface without corners, bubbles that hit any area also move in the circumferential direction of the tapered portion 80 along the outer peripheral surface 84, and finally into the space 85. Reach.

以上のように、本発明の電子機器用冷却装置では、該装置が水平状態のときは勿論こと、斜め縦置きや縦置き状態のときにも流路内の気泡を共通の貯液槽で捕捉することができる。   As described above, in the electronic device cooling device of the present invention, not only when the device is in a horizontal state, but also in a slanting vertical or vertical state, air bubbles in the flow path are captured by a common storage tank. can do.

尚、規制部71は、貯液槽19と別に成形し、貯液槽19に後付けしてもよいし、貯液槽19と一体成形してもよい。また、案内部材81は、第2冷却パネル2の上側放熱板50または下側放熱板40と一体成形してもよく、後付けしてもよい。さらには、上側放熱板50および下側放熱板40のそれぞれに、案内部材81の一部を一体成形し、両放熱板50、40を接合すると、流路17とともに案内部材81が形成されるようにしてもよい。また、貯液槽19の形状は円盤形に限られず、必要に応じて変更することができる。例えば、流路に沿って細長の長方形、小判形、楕円形などにすることもできる。   The regulating portion 71 may be formed separately from the liquid storage tank 19 and may be retrofitted to the liquid storage tank 19 or may be integrally formed with the liquid storage tank 19. Further, the guide member 81 may be integrally formed with the upper radiator plate 50 or the lower radiator plate 40 of the second cooling panel 2 or may be retrofitted. Further, when a part of the guide member 81 is formed integrally with each of the upper heat radiating plate 50 and the lower heat radiating plate 40 and both the heat radiating plates 50 and 40 are joined, the guide member 81 is formed together with the flow path 17. It may be. Further, the shape of the liquid storage tank 19 is not limited to a disk shape, and can be changed as necessary. For example, an elongated rectangle, an oval shape, an oval shape, or the like can be formed along the flow path.

次に、本例の電子機器用冷却装置の電子機器への実装状態の一例について説明する。図13(a)は実装状態の一例を示す模式的斜視図、図13(b)は、同図(a)のZ−Z’断面図である。これらの図は、本例の電子機器用冷却装置がノート型パソコンに実装された例を示している。図示されているノート型パソコン90では、上面に複数の入力キー91が設けられた筐体92に液晶パネル93が回動可能に軸支されている。筐体92は厚みが30〜40mmであり、内部には、DVD-RAM94、FD-RAM95、HDD96、バッテリー97、メモリーカード98などの比較的大型で厚みの異なる主要電子部品と、CPUなどの発熱部品99が実装されたマザーボード100とが収容されている。そして、本例の電子機器用冷却装置は、第1冷却パネル1がマザーボード100の上側に、第2冷却パネル2がマザーボード100の下側に位置するように配置され、第1冷却パネル1のうちマイクロチャネル構造12が形成されているエリアが発熱部品99と接触している。   Next, an example of the mounting state of the electronic device cooling apparatus of this example on an electronic device will be described. FIG. 13A is a schematic perspective view showing an example of a mounted state, and FIG. 13B is a Z-Z ′ sectional view of FIG. These drawings show an example in which the electronic apparatus cooling apparatus of this example is mounted on a notebook personal computer. In the illustrated notebook computer 90, a liquid crystal panel 93 is pivotally supported by a casing 92 having a plurality of input keys 91 provided on the upper surface. The casing 92 has a thickness of 30 to 40 mm. Inside, a relatively large main electronic component having a different thickness, such as a DVD-RAM 94, an FD-RAM 95, an HDD 96, a battery 97, and a memory card 98, and heat generated by a CPU, etc. The motherboard 100 on which the component 99 is mounted is accommodated. And the cooling device for electronic devices of this example is arrange | positioned so that the 1st cooling panel 1 may be located above the motherboard 100, and the 2nd cooling panel 2 may be located below the motherboard 100. The area where the microchannel structure 12 is formed is in contact with the heat generating component 99.

図13は、本発明の電子機器用冷却装置の実装状態の一例を示すものであって、本発明の電子機器用冷却装置が実装される電子機器はノート型パソコンに限定されるものではない。また、その実装状態は、電子機器内部の電子部品のレイアウトその他に応じて適宜変更可能である。   FIG. 13 shows an example of a mounting state of the electronic device cooling device of the present invention, and the electronic device on which the electronic device cooling device of the present invention is mounted is not limited to a notebook personal computer. Further, the mounting state can be changed as appropriate according to the layout of the electronic components in the electronic device and the like.

本発明の電子機器用冷却装置の実施形態の一例を示す図であって、(a)は上面図、(b)(c)は異なる方向の側面図である。It is a figure which shows an example of embodiment of the cooling device for electronic devices of this invention, Comprising: (a) is a top view, (b) (c) is a side view of a different direction. 空冷フィンの下の流路を示す拡大図である。It is an enlarged view which shows the flow path under an air cooling fin. (a)は第1冷却パネルを構成する下側放熱板の上面図、(b)は(a)のX−X’断面図である。(A) is a top view of the lower heat sink which comprises a 1st cooling panel, (b) is X-X 'sectional drawing of (a). (a)は第1冷却パネルを構成する上側放熱板の上面図、(b)は側面図である。(A) is a top view of the upper side heat sink which comprises a 1st cooling panel, (b) is a side view. マイクロチャネル構造手前の拡大部を示す拡大図である。It is an enlarged view which shows the enlarged part before a microchannel structure. 第2冷却パネルを示す図であって、(a)は上面図、(b)(c)は異なる方向の側面図である。It is a figure which shows a 2nd cooling panel, Comprising: (a) is a top view, (b) (c) is a side view of a different direction. (a)は第2冷却パネルを構成する下側放熱板の上面図、(b)は(a)のY−Y’断面図である。(A) is a top view of the lower heat sink which comprises a 2nd cooling panel, (b) is Y-Y 'sectional drawing of (a). 第1冷却パネルを構成する上側放熱板の上面図である。It is a top view of the upper side heat sink which comprises a 1st cooling panel. (a)は循環ポンプの分解斜視図、(b)は断面図である。(A) is a disassembled perspective view of a circulation pump, (b) is sectional drawing. 循環ポンプの実装状態を示す断面図である。It is sectional drawing which shows the mounting state of a circulation pump. 貯液槽及びその近傍の流路を示す断面図である。It is sectional drawing which shows a liquid storage tank and the flow path of the vicinity. (a)は本発明の電子機器用冷却装置が斜め縦置きにされたときの貯液槽及びその近傍の流路を示す断面図、(b)は本発明の電子機器用冷却装置が垂直にされたときの貯液槽及びその近傍の流路を示す断面図である。(A) is sectional drawing which shows the liquid storage tank when the cooling device for electronic devices of this invention is set | placed diagonally vertically, and the flow path of the vicinity, (b) is the cooling device for electronic devices of this invention perpendicularly | vertically It is sectional drawing which shows the liquid storage tank when it was done, and the flow path of the vicinity. 本発明の電子機器用冷却装置の電子機器への実装状態の一例を示す図である。It is a figure which shows an example of the mounting state to the electronic device of the cooling device for electronic devices of this invention. 従来の電子機器用冷却装置の一例を示す上面図である。It is a top view which shows an example of the conventional cooling device for electronic devices.

符号の説明Explanation of symbols

1 第1冷却パネル
2 第2冷却パネル
11、17 流路
12 マイクロチャネル構造
18 循環ポンプ
19 貯液槽
20、40 下側放熱板
30、50 上側放熱板
70 連通孔
71 規制部
72 内周面
80 テーパ部
81 案内部材
82 開口端面
83 筒部
84 外周面
85 空間
DESCRIPTION OF SYMBOLS 1 1st cooling panel 2 2nd cooling panel 11, 17 Flow path 12 Micro channel structure 18 Circulation pump 19 Reservoir tank 20, 40 Lower heat sink 30, 50 Upper heat sink 70 Communication hole 71 Restriction part 72 Inner peripheral surface 80 Tapered portion 81 Guide member 82 Open end surface 83 Tube portion 84 Outer peripheral surface 85 Space

Claims (6)

冷媒が循環可能な流路と、前記流路に冷媒を循環させるポンプと、連通孔を介して前記流路と連通する貯液槽とを有する電子機器用冷却装置であって、
前記連通孔近傍の流路内に、該流路内の気泡を捕捉し、捕捉した気泡を前記貯液槽側へ導く捕捉部が設けられていることを特徴とする電子機器用冷却装置。
A cooling apparatus for electronic equipment, comprising: a flow path through which a refrigerant can circulate; a pump that circulates the refrigerant in the flow path; and a liquid storage tank that communicates with the flow path through a communication hole;
The electronic apparatus cooling apparatus according to claim 1, further comprising: a capturing unit configured to capture air bubbles in the flow path in the vicinity of the communication hole and guide the captured air bubbles toward the liquid storage tank.
前記捕捉部と前記貯液槽との間に、前記捕捉部によって捕捉された気泡を一時的に貯留可能な空間が形成されていることを特徴とする請求項1記載の電子機器用冷却装置。   The electronic device cooling device according to claim 1, wherein a space capable of temporarily storing bubbles captured by the capturing unit is formed between the capturing unit and the liquid storage tank. 前記連通孔の周囲に、前記貯液槽の内部に向けて次第に先細りになる筒状の規制部が設けられ、該規制部の内面と前記捕捉部の外面とによって、前記空間が形成されていることを特徴とする請求項2記載の電子機器用冷却装置。   A cylindrical restricting portion that gradually tapers toward the inside of the liquid storage tank is provided around the communication hole, and the space is formed by the inner surface of the restricting portion and the outer surface of the capturing portion. The electronic device cooling device according to claim 2, wherein 前記捕捉部が前記流路内の冷媒の流れ方向下流側から上流側に向けて次第に先細りになるテーパ状であることを特徴とする請求項1乃至請求項3のいずれかに記載の電子機器用冷却装置。   4. The electronic device according to claim 1, wherein the trapping portion has a tapered shape that gradually tapers from a downstream side in a flow direction of the refrigerant in the flow path toward an upstream side. 5. Cooling system. 前記捕捉部の冷媒の流れ方向上流側の端部が、前記規制部の開口中心よりも前記上流側に位置していることを特徴とする請求項3又は請求項4記載の電子機器用冷却装置。   5. The electronic apparatus cooling device according to claim 3, wherein an end of the capturing part on the upstream side in the refrigerant flow direction is located on the upstream side with respect to an opening center of the restricting part. . 前記捕捉部の最大径部が前記流路の内面に密接していることを特徴とする請求項4又は請求項5記載の電子機器用冷却装置。

6. The electronic apparatus cooling device according to claim 4, wherein a maximum diameter portion of the capturing portion is in close contact with an inner surface of the flow path.

JP2006090894A 2006-03-29 2006-03-29 Cooling device for electronic equipment Expired - Fee Related JP4572174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090894A JP4572174B2 (en) 2006-03-29 2006-03-29 Cooling device for electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090894A JP4572174B2 (en) 2006-03-29 2006-03-29 Cooling device for electronic equipment

Publications (2)

Publication Number Publication Date
JP2007266403A true JP2007266403A (en) 2007-10-11
JP4572174B2 JP4572174B2 (en) 2010-10-27

Family

ID=38639083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090894A Expired - Fee Related JP4572174B2 (en) 2006-03-29 2006-03-29 Cooling device for electronic equipment

Country Status (1)

Country Link
JP (1) JP4572174B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016267A (en) * 2008-07-07 2010-01-21 Hitachi Ltd Electronic device
JP2012528458A (en) * 2009-05-26 2012-11-12 シーレイト リミテッド ライアビリティー カンパニー System and method for changing the temperature of an electrical energy storage device or electrochemical energy generation device using a microchannel
JP2016181547A (en) * 2015-03-23 2016-10-13 日本電気株式会社 Heat sink, cooling structure and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026498A (en) * 2003-07-03 2005-01-27 Matsushita Electric Ind Co Ltd Cooling device
JP2005167224A (en) * 2003-11-11 2005-06-23 Showa Denko Kk Expansion tank device, its manufacturing method, and liquid-cooled heat radiator
JP2005285947A (en) * 2004-03-29 2005-10-13 Toshiba Home Technology Corp Cooling device
JP2006059903A (en) * 2004-08-18 2006-03-02 Nec Viewtechnology Ltd Cooling device and electronic apparatus equipped therewith

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026498A (en) * 2003-07-03 2005-01-27 Matsushita Electric Ind Co Ltd Cooling device
JP2005167224A (en) * 2003-11-11 2005-06-23 Showa Denko Kk Expansion tank device, its manufacturing method, and liquid-cooled heat radiator
JP2005285947A (en) * 2004-03-29 2005-10-13 Toshiba Home Technology Corp Cooling device
JP2006059903A (en) * 2004-08-18 2006-03-02 Nec Viewtechnology Ltd Cooling device and electronic apparatus equipped therewith

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016267A (en) * 2008-07-07 2010-01-21 Hitachi Ltd Electronic device
JP2012528458A (en) * 2009-05-26 2012-11-12 シーレイト リミテッド ライアビリティー カンパニー System and method for changing the temperature of an electrical energy storage device or electrochemical energy generation device using a microchannel
US9065159B2 (en) 2009-05-26 2015-06-23 The Invention Science Fund I, Llc System and method of altering temperature of an electrical energy storage device or an electrochemical energy generation device using microchannels
US9093725B2 (en) 2009-05-26 2015-07-28 The Invention Science Fund I, Llc System for altering temperature of an electrical energy storage device or an electrochemical energy generation device using microchannels based on states of the device
US9433128B2 (en) 2009-05-26 2016-08-30 Deep Science, Llc System and method of operating an electrical energy storage device or an electrochemical energy generation device, during charge or discharge using microchannels and high thermal conductivity materials
JP2016181547A (en) * 2015-03-23 2016-10-13 日本電気株式会社 Heat sink, cooling structure and device

Also Published As

Publication number Publication date
JP4572174B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP4561632B2 (en) Electronic equipment cooling device
JP3594900B2 (en) Display integrated computer
US7114551B2 (en) Liquid cooling module
US7407000B2 (en) Liquid cooling device
US7694723B2 (en) Water block
US20080180910A1 (en) Portable Electronic Apparatus
US20080179044A1 (en) Heat dissipating device
US20060291168A1 (en) Heat dissipating module and heat sink assembly using the same
JP5084516B2 (en) Electronic equipment cooling system
JPWO2005001674A1 (en) Electronic device cooling device
JP2006287017A (en) Cooling jacket
US10921067B2 (en) Water-cooling radiator structure with internal partition member
JP2012204554A (en) Cooling unit
US20050183848A1 (en) Coolant tray of liquid based cooling device
US20060005953A1 (en) Liquid cooling device
JP2006039663A (en) Liquid-circulating system and liquid-cooling system using the same
JP4572174B2 (en) Cooling device for electronic equipment
JP5117287B2 (en) Electronic equipment cooling system
JP5760797B2 (en) Cooling unit
JP2005344562A (en) Pump, cooling device and electronic apparatus including cooling device
JP2006200796A (en) Radiator integrated with tank
JP2005317033A (en) Display device integrated computer, and cooling module used therein
JP2005150240A (en) Liquid circulation type cooling apparatus and electronic apparatus using same
JP4731366B2 (en) Cooling system
US20050092468A1 (en) Water tray of liquid based cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4572174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees