JP2007264113A - Optical film, polarizing plate, and image display device - Google Patents

Optical film, polarizing plate, and image display device Download PDF

Info

Publication number
JP2007264113A
JP2007264113A JP2006086304A JP2006086304A JP2007264113A JP 2007264113 A JP2007264113 A JP 2007264113A JP 2006086304 A JP2006086304 A JP 2006086304A JP 2006086304 A JP2006086304 A JP 2006086304A JP 2007264113 A JP2007264113 A JP 2007264113A
Authority
JP
Japan
Prior art keywords
film
group
layer
refractive index
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006086304A
Other languages
Japanese (ja)
Inventor
Tetsuya Asakura
徹也 朝倉
Ryuji Saneto
竜二 実藤
Katsumi Inoue
克己 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006086304A priority Critical patent/JP2007264113A/en
Publication of JP2007264113A publication Critical patent/JP2007264113A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical film which is high in contrast, is free from glare and character blurring, and is good in black tightness and a polarizing plate and display device using the optical film. <P>SOLUTION: The optical film having a light diffusion layer on a transparent support body is characterized in that; the ratio I(0°)/IO of the exit light intensity I(0°) in the normal direction of the surface of the film when the transmission scattered light is the exit light intensity IO in the normal direction of the transparent support body is 30 to 100%; the ratio I(6°)/IO in the position inclined 6° in the longitudinal direction of the film from the normal direction of the film surface is 0.70 to 5.0%; and the ratio I(30°)/IO to IO of the exit light intensity I(30°) in the position inclined 30° in the longitudinal direction of the film from the normal direction of the film surface is 0.0001 to 0.007%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光学フィルム、並びにそれを用いた偏光板、及び画像表示装置に関する。   The present invention relates to an optical film, a polarizing plate using the same, and an image display device.

近年、液晶表示装置(LCD)は大画面化が進み、例えば反射防止フィルム、光拡散シート等の光学フィルムを配置した液晶表示装置が増大している。例えば反射防止フィルムは、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、陰極管表示装置(CRT)などのような様々な画像表示装置において、外光の反射や像の映り込みによるコントラスト低下を防止するために、ディスプレイの表面に配置される。また、反射防止フィルムとしては、光拡散性等を利用して防眩性を付与した防眩性反射防止フィルムも用いられている。   In recent years, liquid crystal display devices (LCD) have increased in screen size, and for example, liquid crystal display devices having an optical film such as an antireflection film or a light diffusion sheet are increasing. For example, the antireflection film is used in various image display devices such as a liquid crystal display device (LCD), a plasma display panel (PDP), an electroluminescence display (ELD), and a cathode ray tube display device (CRT). In order to prevent a decrease in contrast due to image reflection, it is arranged on the surface of the display. Further, as the antireflection film, an antiglare antireflection film imparted with an antiglare property using light diffusibility or the like is also used.

また、近年行われているデジタルハイビジョン放送によるデータ放送の場合、液晶表示装置は防眩性以外に1)コントラストの改善(白輝度UP、黒輝度down)、2)高精細化(ギラツキの軽減、文字ボケの軽減)、3)表示体を黒表示にした状態での優れた黒しまり、4)視野角の改善、等の改善が要求される。   In addition, in the case of data broadcasting by digital high-definition broadcasting that has been carried out in recent years, the liquid crystal display device has 1) improved contrast (white brightness UP, black brightness down), 2) higher definition (reducing glare, Reduction of character blur) 3) Excellent blackening in a state where the display body is displayed in black 4) Improvement of viewing angle, etc. are required.

「ギラツキ」の発生により、高精細な表示装置においては表示品質が著しく劣化する。この現象は、防眩性を付与する表面突起が微小なレンズとなり、いわゆる「レンズ効果」によって、光拡散シートを通過し、ユーザーの目に届く光に生じる輝度のバラツキに起因する。   Due to the occurrence of “glare”, the display quality of a high-definition display device is significantly deteriorated. This phenomenon is caused by variation in luminance generated in light reaching the user's eyes through the light diffusion sheet due to the so-called “lens effect” due to the surface projection that imparts antiglare properties becomes a minute lens.

ギラツキの改善を満たす光拡散フィルムとして、散乱角度強度I(5°)/I(0°)、I(20°)/I(0°)を規定した防眩性反射防止フィルムが開示されている(特許文献1)。該文献では、光拡散層の屈折率と、これに含まれる透光性粒子との屈折率差が大きいため、光拡散性層内を通過する光の内部散乱及び散乱角度を大きくすることで、ギラツキを抑える方式が提案されている。   As a light diffusing film satisfying the improvement of glare, an antiglare antireflection film which defines scattering angle intensities I (5 °) / I (0 °) and I (20 °) / I (0 °) is disclosed. (Patent Document 1). In this document, since the refractive index difference between the refractive index of the light diffusing layer and the translucent particles contained therein is large, by increasing the internal scattering and scattering angle of the light passing through the light diffusing layer, A method for suppressing glare has been proposed.

また、散乱光強度の極大値を示す散乱角度が0.1〜10°である防眩性フィルムが開示されている(特許文献2)。
特開2003−248101号公報 特開2004−306328号公報
Moreover, the anti-glare film whose scattering angle which shows the maximum value of scattered light intensity is 0.1-10 degrees is disclosed (patent document 2).
JP 2003-248101 A JP 2004-306328 A

特許文献1に記載の発明では、ギラツキの軽減及び文字ボケは改善できても、内部散乱性が高すぎるため、白表示時の白輝度の低下及び黒表示時の黒輝度の上昇が生じることがある。
特許文献2に記載の発明では、スピノーダル分解による層分離により防眩性を持たせる必要が有り、その構造を高度に制御する必要が有り、大量生産が非常に困難であることが予期される。
したがって、上記1)〜4)改善を同時に満たす光拡散層を有する光学フィルムの開発が望まれている。
本発明の目的は、防眩性を有し、1)コントラストの改善、2)高精細化(ギラツキ、文字ボケの軽減)、3)表示体を黒表示にした状態での黒しまり、4)視野角の拡大を同時に満たす光学フィルムの提供にある。また、本発明の別の目的は、そのような光学フィルムを用いた偏光板やディスプレイ装置の提供にある。
In the invention described in Patent Document 1, although the glare reduction and the character blur can be improved, the internal scattering property is too high, so that a decrease in white luminance during white display and an increase in black luminance during black display may occur. is there.
In the invention described in Patent Document 2, it is necessary to provide antiglare properties by layer separation by spinodal decomposition, and the structure needs to be highly controlled, and mass production is expected to be very difficult.
Therefore, development of an optical film having a light diffusion layer that satisfies the above 1) to 4) improvements is desired.
The object of the present invention is to have anti-glare properties, 1) improvement of contrast, 2) higher definition (glare and character blurring reduction), 3) blackening in a state where the display body is displayed in black, 4) It is to provide an optical film that simultaneously satisfies the widening of the viewing angle. Another object of the present invention is to provide a polarizing plate and a display device using such an optical film.

本発明者は上述の課題を解決すべく鋭意検討した結果、下記構成とすることにより、本発明を完成するに至った。
すなわち本発明は、下記の構成により達成したものである。
As a result of intensive studies to solve the above-described problems, the present inventors have completed the present invention by adopting the following configuration.
That is, the present invention has been achieved by the following configuration.

(1)
透明支持体上に光拡散層を有する光学フィルムであって、透過散乱光が該透明支持体の法線方向における出射光強度I0のとき、
フィルムの表面の法線方向における出射光強度I(0°)のI0に対する比I(0°)/I0が30%〜100%であり、
フィルム表面の法線方向からフィルムの長手方向に6°傾いた位置における出射光強度I(6°)のI0に対する比I(6°)/I0が0.70%〜5.0%であり、且つ、
フィルム表面の法線方向からフィルムの長手方向に30°傾いた位置における出射光強度I(30°)のI0に対する比I(30°)/I0が0.0001〜0.007%であることを特徴とする光学フィルム。
(2)
前記フィルムの表面の法線方向における出射光強度I(0°)の前記I0に対する比I(0°)/I0が40%〜95%であり、
前記フィルム表面の法線方向からフィルムの長手方向に6°傾いた位置における出射光強度I(6°)のI0に対する比I(6°)/I0が1.0%〜4.5%であり、且つ、
前記フィルム表面の法線方向からフィルムの長手方向に30°傾いた位置における出射光強度I(30°)のI0に対する比I(30°)/I0が0.0005〜0.004%
であることを特徴とする(1)に記載の光学フィルム。
(3)
前記光学フィルムの内部ヘイズが10〜40%であることを特徴とする(1)又は(2)に記載の光学フィルム。
(4)
前記光拡散層の算術平均粗さ(Ra)が0.03〜0.30μmであり、かつ凹凸の平均間隔(Sm)が40〜200μmであることを特徴とする(1)〜(3)のいずれかに記載の光学フィルム。
(5)
前記光学フィルムの表面ヘイズが0.3〜20%であることを特徴とする(1)〜(4)のいずれかに記載の光学フィルム。
(6)
前記光拡散層が、電離放射線硬化性化合物、オルガノシラン化合物、および透光性粒子を含有していることを特徴とする(1)〜(5)のいずれかに記載の光学フィルム。
(7)
前記光拡散層に含有される透光性粒子の屈折率と該透光性粒子を除いた光拡散層の屈折率との差が絶対値として0.05未満であることを特徴とする(1)〜(6)のいずれかに記載の光学フィルム。
(8)
前記光拡散層が、三次元の立体構造を有する透光性微粒子の凝集部を複数含有し、表面凹凸形状を有することを特徴とする(1)〜(7)のいずれかに記載の光学フィルム。
(9)
前記光拡散層が少なくとも2層であり、透光性微粒子が下層に存在することを特徴とする(1)〜(8)のいずれかに記載の光学フィルム。
(10)
透明支持体上に、直接または他の層を介して透明支持体より低屈折率である低屈折率層を有することを特徴とする(1)〜(9)のいずれかに記載の光学フィルム。
(11)
2枚の保護フィルムの間に偏光膜を有する偏光板であって、該保護フィルムのうちの少なくとも1枚が(1)〜(10)のいずれかに記載の光学フィルムであることを特徴とする偏光板。
(12)
(1)〜(10)のいずれかに記載の光学フィルム又は(11)記載の偏光板を有する画像表示装置であって、前記光拡散層が視認側になるように配置されていることを特徴とする画像表示装置。
(1)
An optical film having a light diffusing layer on a transparent support, wherein transmitted scattered light has an emitted light intensity I0 in the normal direction of the transparent support,
The ratio I (0 °) / I0 of the emitted light intensity I (0 °) in the normal direction of the film surface to I0 is 30% to 100%,
The ratio I (6 °) / I0 of the emitted light intensity I (6 °) to I0 at a position inclined by 6 ° from the normal direction of the film surface to the longitudinal direction of the film is 0.70% to 5.0%, and,
The ratio I (30 °) / I0 of the emitted light intensity I (30 °) to I0 at a position inclined by 30 ° from the normal direction of the film surface to the longitudinal direction of the film is 0.0001 to 0.007%. A featured optical film.
(2)
The ratio I (0 °) / I0 of the emitted light intensity I (0 °) in the normal direction of the surface of the film to the I0 is 40% to 95%,
The ratio I (6 °) / I0 of the emitted light intensity I (6 °) to I0 at a position inclined by 6 ° from the normal direction of the film surface to the longitudinal direction of the film is 1.0% to 4.5%. ,and,
The ratio I (30 °) / I0 of the emitted light intensity I (30 °) to I0 at a position inclined by 30 ° from the normal direction of the film surface to the longitudinal direction of the film is 0.0005 to 0.004%.
The optical film as described in (1), wherein
(3)
The optical film according to (1) or (2), wherein an internal haze of the optical film is 10 to 40%.
(4)
The arithmetic average roughness (Ra) of the light diffusion layer is 0.03 to 0.30 μm, and the average interval (Sm) of the unevenness is 40 to 200 μm. The optical film in any one.
(5)
The optical film according to any one of (1) to (4), wherein a surface haze of the optical film is 0.3 to 20%.
(6)
The optical film according to any one of (1) to (5), wherein the light diffusion layer contains an ionizing radiation curable compound, an organosilane compound, and translucent particles.
(7)
The difference between the refractive index of the light transmissive particles contained in the light diffusing layer and the refractive index of the light diffusing layer excluding the light transmissive particles is less than 0.05 as an absolute value (1) )-(6) The optical film in any one.
(8)
The optical film according to any one of (1) to (7), wherein the light diffusion layer includes a plurality of aggregated portions of translucent fine particles having a three-dimensional solid structure and has an uneven surface shape. .
(9)
The optical film according to any one of (1) to (8), wherein the light diffusing layer is at least two layers, and translucent fine particles are present in the lower layer.
(10)
The optical film according to any one of (1) to (9), which has a low refractive index layer having a lower refractive index than that of the transparent support directly or via another layer on the transparent support.
(11)
A polarizing plate having a polarizing film between two protective films, wherein at least one of the protective films is the optical film according to any one of (1) to (10). Polarizer.
(12)
An image display device having the optical film according to any one of (1) to (10) or the polarizing plate according to (11), wherein the light diffusing layer is disposed on the viewing side. An image display device.

本発明によれば、本発明の光学フィルムを適用したディスプレイのコントラストが高く、文字ボケがなく、黒しまり感、ギラツキ感を優位に抑えることができる光学フィルムが得られる。また、本発明の反射防止フィルムを備えたディスプレイ装置、並びに本発明の光学フィルムを用いた偏光板を備えたディスプレイ装置は、外光の映り込みや背景の映り込みが少なく、極めて視認性が高く、表示品位が高い。さらに、本発明によれば、コントラストが高く、文字ボケがなく、黒しまり感、ギラツキ感を優位に抑えることができる光学フィルムが安価で容易に製造できる。   ADVANTAGE OF THE INVENTION According to this invention, the contrast of the display which applied the optical film of this invention is high, there is no character blur, and the optical film which can suppress a feeling of blackening and a glare feeling predominately is obtained. In addition, the display device provided with the antireflection film of the present invention and the display device provided with the polarizing plate using the optical film of the present invention have very low visibility and little reflection of external light and background. The display quality is high. Furthermore, according to the present invention, an optical film that has high contrast, no character blur, and can suppress the feeling of darkening and glare can be easily manufactured at low cost.

特に、本発明の光学フィルムは、コントラストの改善は、夜間に暗い部屋で実感できる暗室コントラストだけでなく、日中の外光下や、室内灯による明るい部屋での明室コントラストの改善もなされる。   In particular, in the optical film of the present invention, the improvement of the contrast is not only the dark room contrast that can be realized in a dark room at night, but also the improvement of the bright room contrast in a bright room by daylight or by a room light. .

以下、本発明について更に詳細に説明する。なお、本明細書において、数値が物性値、特性値等を表す場合に、「(数値1)〜(数値2)」という記載は「(数値1)以上(数値2)以下」の意味を表す。また、本明細書において、「(メタ)アクリレート」との記載は、「アクリレート及びメタクリレートの少なくともいずれか」の意味を表す。「(メタ)アクリル酸」等も同様である。さらに、本発明でいう「支持体上」には、該支持体の直接の表面をいう場合と、該支持体の上に何らかの層(膜)を設けた表面をいう場合の両方を含む趣旨である。   Hereinafter, the present invention will be described in more detail. In the present specification, when a numerical value represents a physical property value, a characteristic value, etc., the description “(numerical value 1) to (numerical value 2)” means “(numerical value 1) or more and (numerical value 2) or less”. . In the present specification, the description “(meth) acrylate” means “at least one of acrylate and methacrylate”. The same applies to “(meth) acrylic acid” and the like. Furthermore, the term “on the support” in the present invention includes both the case where the surface directly refers to the support and the case where the surface includes a layer (film) provided on the support. is there.

前記したように本発明の光学フィルムは、透明支持体上に、光拡散層を有する光学フィルムであり、該光拡散層が特定の散乱強度を有する。
従来の技術においては、光拡散層として、内部散乱(ヘイズ)が低い、シリカ粒子を用いた光拡散フィルムは、液晶表示装置に設置した場合、白表示での輝度が高く、黒表示での輝度が低い、いわゆるコントラストが高いフィルムであるが、ギラツキ感、文字ボケが非常に悪く、視野角も広がらない。
逆に内部散乱(ヘイズ)が高いフィルムではギラツキ感、文字ボケが改善し、視野角が広がるが、白表示での輝度の低下および黒表示での輝度が高くいわゆるコントラストが低い。
従来の研究ではコントラストと、ギラツキ感・文字ボケ・視野角拡大は独立に制御できず、すべてを満たすことは従来できていなかった。
本発明者らは誠意努力し、コントラスト(白輝度、黒輝度)、ギラツキ感、文字ボケ、黒しまりそれぞれがある透過散乱光(透過拡散光とも呼ぶ)の角度と相関することを明確化し、透過散乱光の形を決めることで、コントラストと、ギラツキ感・文字ボケ・視野角拡大をすべて満たすことを見出した。本来、液晶表示装置のセルの光散乱プロファイルと光学フィルムの光拡散プロファイルより、最適な拡散角度分布を計算上で求めることが可能であると考えられるが、実際の観察と計算値では合わず、計算上から光学性能と透過拡散光の関係を明確化することは困難であった。
様々な透過散乱光の形状違いのフィルムを作製し、コントラストと、ギラツキ感・文字ボケ・視野角拡大それぞれ相関する透過散乱角を分析した結果、白輝度は透過散乱光の−2°〜2°、黒輝度は透過散乱光の20°〜40°、ギラツキ感・文字ボケは4.5°〜6.5°、黒しまりは20°〜40°と相関があった。本発明者らは、その結果に基づき、透過散乱光の3カ所(−2°〜2°、4.5°〜6.5°、20°〜40°)の光強度を決めることで、コントラスト、ギラツキ感、文字ボケ、黒しまりすべてを満たすフィルムを見出した。なお、透過散乱光は0°以外には強いピーク状の角度分布プロファイルにならないので、それぞれ0°、6°、30°の散乱強度各値の代表値としている。
As described above, the optical film of the present invention is an optical film having a light diffusion layer on a transparent support, and the light diffusion layer has a specific scattering intensity.
In the conventional technology, a light diffusion film using silica particles having a low internal scattering (haze) as a light diffusion layer has a high luminance for white display and a luminance for black display when installed in a liquid crystal display device. Is a film with low contrast, so-called high contrast, but the glare and letter blur are very poor and the viewing angle does not widen.
On the other hand, a film with high internal scattering (haze) improves glare and character blur and widens the viewing angle, but lowers brightness in white display and brightness in black display, so-called contrast is low.
In conventional research, contrast, glare, text blur, and viewing angle expansion cannot be controlled independently, and it has not been possible to satisfy all of them.
The present inventors have made sincere efforts to clarify that the contrast (white luminance, black luminance), glare, character blur, and black spots correlate with the angle of transmitted scattered light (also referred to as transmitted diffused light). By determining the shape of the scattered light, they found that the contrast, glare, text blur, and viewing angle expansion were all satisfied. Originally, it is thought that the optimal diffusion angle distribution can be obtained by calculation from the light scattering profile of the cell of the liquid crystal display device and the light diffusion profile of the optical film, but the actual observation and the calculated value do not match, It was difficult to clarify the relationship between optical performance and transmitted diffused light from the viewpoint of calculation.
Films with different shapes of transmitted and scattered light were prepared and analyzed for transmission and scattering angles that correlated with contrast, glare, text blur, and viewing angle expansion. As a result, white luminance was -2 ° to 2 ° of transmitted and scattered light. The black luminance was correlated with the transmitted scattered light of 20 ° to 40 °, the glare and letter blur was 4.5 ° to 6.5 °, and the black spot was correlated with 20 ° to 40 °. Based on the results, the inventors determined the light intensity at three locations (−2 ° to 2 °, 4.5 ° to 6.5 °, and 20 ° to 40 °) of the transmitted scattered light, thereby increasing the contrast. , Found a film that satisfies all of the glare, blurred characters, and black spots. Since transmitted scattered light does not have a strong peak angle distribution profile other than 0 °, it is used as a representative value for each of the scattering intensity values of 0 °, 6 °, and 30 °.

具体的には、透過散乱光が該透明支持体の法線方向における出射光強度I0のとき、フィルムの表面の法線方向における出射光強度I(0°)のI0に対する比I(0°)/I0が 30%〜100%であることが好ましく、40%〜95%であることが更に好ましく、60%〜90%であることが最も好ましい。30%〜100%の場合は白発色時の白輝度に低下がないため、表示画面が暗くならず、好ましい。   Specifically, when the transmitted scattered light has an outgoing light intensity I0 in the normal direction of the transparent support, the ratio I (0 °) of the outgoing light intensity I (0 °) in the normal direction of the film surface to I0. / I0 is preferably 30% to 100%, more preferably 40% to 95%, and most preferably 60% to 90%. When it is 30% to 100%, the white luminance at the time of white color development does not decrease, and the display screen is not darkened, which is preferable.

また、フィルム表面の法線方向からフィルムの長手方向に6°傾いた位置における出射光強度I(6°)のI0に対する比I(6°)/I0が 0.70%〜5.0%であることが好ましく、1.0%〜4.5%であることが更に好ましく、1.2%〜4.0%であることが最も好ましい。0.70〜5.0%であると、150ppi(150pixels/inch)以下の高精細の液晶表示装置であってもギラツキが発生せず、文字ボケもおきなく好ましい。   Further, the ratio I (6 °) / I0 of the emitted light intensity I (6 °) to I0 at a position inclined by 6 ° from the normal direction of the film surface to the longitudinal direction of the film is 0.70% to 5.0%. Preferably, it is 1.0% to 4.5%, more preferably 1.2% to 4.0%. When it is 0.70 to 5.0%, glare does not occur even in a high-definition liquid crystal display device of 150 ppi (150 pixels / inch) or less, and character blurring does not occur.

フィルム表面の法線方向からフィルムの長手方向に30°傾いた位置における出射光強度I(30°)のI0に対する比I(30°)/I0が 0.0001〜0.007%であることが好ましく、0.0005%〜0.004%であることが更に好ましく、0.001%〜0.003%であることが最も好ましい。0.0001〜0.007%であると、黒表示での黒輝度が上がらず、特に照度の低い環境で映画等の暗いシーンを見た場合の黒が明るくならず、深みのある黒が表現できる。   The ratio I (30 °) / I0 of the emitted light intensity I (30 °) to I0 at a position inclined by 30 ° from the normal direction of the film surface to the longitudinal direction of the film is 0.0001 to 0.007%. Preferably, it is 0.0005% to 0.004%, more preferably 0.001% to 0.003%. If it is 0.0001 to 0.007%, the black luminance in black display does not increase, and the darkness when viewing a dark scene such as a movie in an environment with particularly low illuminance is not bright, and deep black is expressed. it can.

比I(0°)/I0、I(6°)/I0、及びI(30°)/I0がそれぞれ30%〜100%、0.70%〜5.0%、0.0001〜0.007%であることが好ましく、40%〜95%、1.0%〜4.5%、0.0005%〜0.004%であることが更に好ましく、60%〜90%、1.2%〜4.0%、0.001%〜0.003%であることが特に好ましい。   The ratios I (0 °) / I0, I (6 °) / I0, and I (30 °) / I0 are 30% to 100%, 0.70% to 5.0%, 0.0001 to 0.007, respectively. %, Preferably 40% to 95%, 1.0% to 4.5%, more preferably 0.0005% to 0.004%, 60% to 90%, 1.2% to 4.0% and 0.001% to 0.003% are particularly preferable.

これらの物性値は光学フィルムの表面形状、内部散乱特性が関係し、光拡散層が透光性粒子(透光性微粒子とも呼ぶ)と透光性樹脂(バインダーとも呼ぶ)とで主に形成されている態様においては、<1>透光性微粒子を除く光拡散層と透光性微粒子との屈折率差、<2>透光性微粒子の粒径、<3>透光性微粒子の使用量、<4>光拡散層の厚み、<5>塗布液溶剤組成・塗布/乾燥条件、<6>透光性微粒子と透光性樹脂の親疎水性などにより決定される。本発明では所望の透過拡散光の角度プロファイルを得るため、特に、透過散乱光の角度プロファイルの3カ所の光強度達成するためにこれらの<1>〜<6>の条件を制御し、上記課題を解決した。   These physical property values are related to the surface shape and internal scattering characteristics of the optical film, and the light diffusion layer is mainly formed of translucent particles (also called translucent fine particles) and translucent resin (also called binder). <1> difference in refractive index between the light diffusing layer excluding the light transmitting fine particles and the light transmitting fine particles, <2> the particle size of the light transmitting fine particles, and <3> the amount of the light transmitting fine particles used. <4> Thickness of the light diffusing layer, <5> Coating liquid solvent composition / coating / drying conditions, <6> Hydrophobic hydrophobicity of the translucent fine particles and the translucent resin. In the present invention, in order to obtain a desired angle profile of transmitted diffused light, in particular, in order to achieve the light intensity at three positions of the angle profile of transmitted scattered light, these <1> to <6> conditions are controlled, Solved.

透過拡散光の角度プロファイルの制御は、前記態様においては散乱体(透光性粒子と透明樹脂)の特性が重要になる。一般に、散乱体の特性は上記<1>透光性粒子を除く光拡散層と透光性粒子との屈折率差、<2>透光性粒子の粒子径の組み合わせで定まるはずだが、本発明のように、低角(4.5°〜6.0°)の散乱を大きく、且つ広角(20°〜30°)の散乱性を小さくするためには、上記<3>透光性微粒子の使用量を含め<1>〜<3>を精密に制御する必要がある。
逆に、散乱光の角度プロファイルが所望の値になれば、<1>〜<3>については限定する必要はない。また、散乱体として、非球形透光性粒子や相分離を用いても、所望の透過拡散光の角度プロファイルにすることも可能である。
各々の制御因子に係わる説明は以下におこなっていく。
In controlling the angle profile of transmitted diffused light, the characteristics of the scatterers (translucent particles and transparent resin) are important in the above embodiment. In general, the characteristics of the scatterer should be determined by the combination of <1> the refractive index difference between the light diffusing layer excluding the translucent particles and the translucent particles, and <2> the particle diameter of the translucent particles. As described above, in order to increase the low-angle (4.5 ° to 6.0 °) scattering and reduce the wide-angle (20 ° to 30 °) scattering, <3> It is necessary to precisely control <1> to <3> including the amount used.
On the contrary, if the angle profile of scattered light becomes a desired value, it is not necessary to limit <1> to <3>. Further, even if non-spherical translucent particles or phase separation is used as the scatterer, a desired angle profile of transmitted diffused light can be obtained.
The explanation regarding each control factor will be given below.

本発明の光学フィルムは、透明支持体上に、光拡散層を有する光学フィルムである。当該光拡散層は、透光性粒子とバインダーとを含有することも好ましい。また、本発明の光学フィルムは、該光学フィルムの光拡散層に直接または他の層を介して低屈折率層を積層して、反射防止フィルムとして好適に用いることができる。本明細書では、透明支持体上に形成される、物理的、光学的な機能を有する層を機能層と言う。本発明の光学フィルム、反射防止フィルムは、光拡散層、低屈折率層といった機能層の他にも、必要に応じてその他の機能層を有することができる。   The optical film of the present invention is an optical film having a light diffusion layer on a transparent support. It is also preferable that the light diffusion layer contains translucent particles and a binder. The optical film of the present invention can be suitably used as an antireflection film by laminating a low refractive index layer directly or via another layer on the light diffusion layer of the optical film. In the present specification, a layer having physical and optical functions formed on a transparent support is referred to as a functional layer. The optical film and antireflection film of the present invention can have other functional layers as required in addition to functional layers such as a light diffusion layer and a low refractive index layer.

1.本発明の構成物
まず、本発明のフィルムに使用することのできる各種化合物について記載する。
1. First, the various compounds that can be used in the film of the present invention will be described.

最初に、電離放射線硬化性化合物、必要に応じて用いられるオルガノシラン化合物、開始剤などの、フィルム各層のバインダーを形成するのに用いられる成分について説明する。
本発明における光拡散層は、電離放射線硬化性化合物、オルガノシラン化合物、および透光性粒子を含有することが好ましい。
First, components used to form a binder for each layer of the film, such as an ionizing radiation curable compound, an organosilane compound used as necessary, and an initiator will be described.
The light diffusion layer in the present invention preferably contains an ionizing radiation curable compound, an organosilane compound, and translucent particles.

1−(1)多官能モノマー、多官能オリゴマー
本発明のフィルムは、電離放射線硬化性化合物の架橋反応、又は、重合反応により形成されることができる。すなわち、バインダーを形成する成分として電離放射線硬化性の多官能モノマーや多官能オリゴマーを含む塗布組成物を透明支持体上に塗布し、多官能モノマーや多官能オリゴマーを架橋反応、又は、重合反応させることにより形成することができる。
電離放射線硬化性の多官能モノマーや多官能オリゴマーの官能基としては、光、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。
光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和の重合性官能基等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。
また、本発明のフィルムは、熱硬化性化合物を用いて形成することもでき、電離放射線硬化性化合物と熱硬化性化合物を併用してもよい。
1- (1) Multifunctional monomer, polyfunctional oligomer The film of the present invention can be formed by a crosslinking reaction or a polymerization reaction of an ionizing radiation curable compound. That is, a coating composition containing an ionizing radiation-curable polyfunctional monomer or polyfunctional oligomer as a component for forming a binder is coated on a transparent support, and the polyfunctional monomer or polyfunctional oligomer is subjected to a crosslinking reaction or a polymerization reaction. Can be formed.
The functional group of the ionizing radiation curable polyfunctional monomer or polyfunctional oligomer is preferably a light, electron beam, or radiation polymerizable group, and among them, a photopolymerizable functional group is preferable.
Examples of the photopolymerizable functional group include unsaturated polymerizable functional groups such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group. Among them, a (meth) acryloyl group is preferable.
Moreover, the film of this invention can also be formed using a thermosetting compound, and may use together an ionizing radiation-curable compound and a thermosetting compound.

光重合性官能基を有する光重合性多官能モノマーの具体例としては、
ネオペンチルグリコールアクリレート、1,6−ヘキサンジオール(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート等のアルキレングリコールの(メタ)アクリル酸ジエステル類;
トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリオキシアルキレングリコールの(メタ)アクリル酸ジエステル類;
ペンタエリスリトールジ(メタ)アクリレート等の多価アルコールの(メタ)アクリル酸ジエステル類;
2,2−ビス{4−(アクリロキシ・ジエトキシ)フェニル}プロパン、2−2−ビス{4−(アクリロキシ・ポリプロポキシ)フェニル}プロパン等のエチレンオキシドあるいはプロピレンオキシド付加物の(メタ)アクリル酸ジエステル類;
等を挙げることができる。
As a specific example of a photopolymerizable polyfunctional monomer having a photopolymerizable functional group,
(Meth) acrylic acid diesters of alkylene glycol such as neopentyl glycol acrylate, 1,6-hexanediol (meth) acrylate, propylene glycol di (meth) acrylate;
(Meth) acrylic acid diesters of polyoxyalkylene glycols such as triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate;
(Meth) acrylic acid diesters of polyhydric alcohols such as pentaerythritol di (meth) acrylate;
(Meth) acrylic acid diesters of ethylene oxide or propylene oxide adducts such as 2,2-bis {4- (acryloxy · diethoxy) phenyl} propane and 2-bis {4- (acryloxy · polypropoxy) phenyl} propane ;
Etc.

さらにはエポキシ(メタ)アクリレート類、ウレタン(メタ)アクリレート類、ポリエステル(メタ)アクリレート類も、光重合性多官能モノマーとして、好ましく用いられる。   Furthermore, epoxy (meth) acrylates, urethane (meth) acrylates, and polyester (meth) acrylates are also preferably used as the photopolymerizable polyfunctional monomer.

中でも、多価アルコールと(メタ)アクリル酸とのエステル類が好ましい。さらに好ましくは、1分子中に3個以上の(メタ)アクリロイル基を有する多官能モノマーが好ましい。具体的には、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、1,2,4−シクロヘキサンテトラ(メタ)アクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、(ジ)ペンタエリスリトールトリアクリレート、(ジ)ペンタエリスリトールペンタアクリレート、(ジ)ペンタエリスリトールテトラ(メタ)アクリレート、(ジ)ペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールトリアクリレート、トリペンタエリスリトールヘキサトリアクリレート等が挙げられる。   Among these, esters of polyhydric alcohol and (meth) acrylic acid are preferable. More preferably, a polyfunctional monomer having 3 or more (meth) acryloyl groups in one molecule is preferable. Specifically, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, 1,2,4-cyclohexanetetra (meth) acrylate, pentaglycerol triacrylate, pentaerythritol tetra (meth) acrylate, penta Erythritol tri (meth) acrylate, (di) pentaerythritol triacrylate, (di) pentaerythritol pentaacrylate, (di) pentaerythritol tetra (meth) acrylate, (di) pentaerythritol hexa (meth) acrylate, tripentaerythritol triacrylate , Tripentaerythritol hexatriacrylate and the like.

モノマーバインダーとしては、各層の屈折率を制御するために、屈折率の異なるモノマーを用いることが出来る。特に高屈折率モノマーの例としては、ビス(4−メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4−メタクリロキシフェニル−4’−メトキシフェニルチオエーテル等が含まれる。
また、例えば特開2005−76005号、同2005−36105号に記載されたデンドリマーや、例えば特開2005−60425号記載のようなノルボルネン環含有モノマーを用いることもできる。
As the monomer binder, monomers having different refractive indexes can be used to control the refractive index of each layer. Examples of particularly high refractive index monomers include bis (4-methacryloylthiophenyl) sulfide, vinyl naphthalene, vinyl phenyl sulfide, 4-methacryloxyphenyl-4′-methoxyphenyl thioether, and the like.
Further, for example, dendrimers described in JP-A-2005-76005 and JP-A-2005-36105, and norbornene ring-containing monomers as described in JP-A-2005-60425 can also be used.

多官能モノマーは、二種類以上を併用してもよい。
これらのエチレン性不飽和基を有するモノマーの重合は、光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる。
光重合性多官能モノマーの重合反応には、光重合開始剤を用いることが好ましい。光重合開始剤としては、光ラジカル重合開始剤と光カチオン重合開始剤が好ましく、特に好ましいのは光ラジカル重合開始剤である。
Two or more polyfunctional monomers may be used in combination.
Polymerization of these monomers having an ethylenically unsaturated group can be carried out by irradiation with ionizing radiation or heating in the presence of a photo radical initiator or a thermal radical initiator.
It is preferable to use a photopolymerization initiator for the polymerization reaction of the photopolymerizable polyfunctional monomer. As the photopolymerization initiator, a photoradical polymerization initiator and a photocationic polymerization initiator are preferable, and a photoradical polymerization initiator is particularly preferable.

1−(2)ポリマーバインダー
また、本発明のフィルムは、無架橋のポリマーあるいは架橋しているポリマーをバインダー成分に適用することができる。架橋しているポリマーはアニオン性基を有するのが好ましい。架橋しているアニオン性基を有するポリマーは、アニオン性基を有するポリマーの主鎖が架橋している構造を有する。
1- (2) Polymer Binder In the film of the present invention, an uncrosslinked polymer or a crosslinked polymer can be applied to the binder component. The crosslinked polymer preferably has an anionic group. The polymer having a crosslinked anionic group has a structure in which the main chain of the polymer having an anionic group is crosslinked.

ポリマーの主鎖の例には、ポリオレフィン(飽和炭化水素)、ポリエーテル、ポリウレア、ポリウレタン、ポリエステル、ポリアミン、ポリアミドおよびメラミン樹脂が含まれる。ポリオレフィン主鎖、ポリエーテル主鎖およびポリウレア主鎖が好ましく、ポリオレフィン主鎖およびポリエーテル主鎖がさらに好ましく、ポリオレフィン主鎖が最も好ましい。
ポリオレフィン主鎖は飽和炭化水素からなる。ポリオレフィン主鎖は、例えば、不飽和重合性基の付加重合反応により得られる。ポリエーテル主鎖は、エーテル結合(−O−)によって繰り返し単位が結合している。ポリエーテル主鎖は、例えば、エポキシ基の開環重合反応により得られる。ポリウレア主鎖は、ウレア結合(−NH−CO−NH−)によって、繰り返し単位が結合している。ポリウレア主鎖は、例えば、イソシアネート基とアミノ基との縮重合反応により得られる。ポリウレタン主鎖はウレタン結合(−NH−CO−O−)によって、繰り返し単位が結合している。ポリウレタン主鎖は、例えば、イソシアネート基と、水酸基(N−メチロール基を含む)との縮重合反応により得られる。ポリエステル主鎖は、エステル結合(−CO−O−)によって繰り返し単位が結合している。ポリエステル主鎖は、例えば、カルボキシル基(酸ハライド基を含む)と水酸基(N−メチロール基を含む)との縮重合反応により得られる。ポリアミン主鎖はイミノ結合(−NH−)によって、繰り返し単位が結合している。ポリアミン主鎖は、例えば、エチレンイミン基の開環重合反応により得られる。ポリアミド主鎖は、アミド結合(−NH−CO−)によって、繰り返し単位が結合している。ポリアミド主鎖は、例えば、イソシアネート基とカルボキシル基(酸ハライド基を含む)との反応により得られる。メラミン樹脂主鎖は、例えば、トリアジン基(例、メラミン)とアルデヒド(例、ホルムアルデヒド)との縮重合反応により得られる。なお、メラミン樹脂は、主鎖そのものが架橋構造を有する。
Examples of the polymer main chain include polyolefin (saturated hydrocarbon), polyether, polyurea, polyurethane, polyester, polyamine, polyamide and melamine resin. A polyolefin main chain, a polyether main chain and a polyurea main chain are preferable, a polyolefin main chain and a polyether main chain are more preferable, and a polyolefin main chain is most preferable.
The polyolefin main chain consists of saturated hydrocarbons. The polyolefin main chain is obtained, for example, by an addition polymerization reaction of an unsaturated polymerizable group. The polyether main chain has repeating units bonded by an ether bond (—O—). The polyether main chain is obtained, for example, by a ring-opening polymerization reaction of an epoxy group. In the polyurea main chain, repeating units are bonded by a urea bond (—NH—CO—NH—). The polyurea main chain is obtained, for example, by a condensation polymerization reaction between an isocyanate group and an amino group. In the polyurethane main chain, repeating units are bonded by a urethane bond (—NH—CO—O—). The polyurethane main chain is obtained, for example, by a polycondensation reaction between an isocyanate group and a hydroxyl group (including an N-methylol group). The polyester main chain has repeating units bonded by an ester bond (—CO—O—). The polyester main chain is obtained, for example, by a polycondensation reaction between a carboxyl group (including an acid halide group) and a hydroxyl group (including an N-methylol group). The polyamine main chain has repeating units bonded by imino bonds (—NH—). The polyamine main chain is obtained, for example, by a ring-opening polymerization reaction of an ethyleneimine group. The polyamide main chain has repeating units bonded by an amide bond (—NH—CO—). The polyamide main chain is obtained, for example, by a reaction between an isocyanate group and a carboxyl group (including an acid halide group). The melamine resin main chain is obtained, for example, by a polycondensation reaction between a triazine group (eg, melamine) and an aldehyde (eg, formaldehyde). In the melamine resin, the main chain itself has a crosslinked structure.

アニオン性基は、ポリマーの主鎖に直接結合させるか、あるいは連結基を介して主鎖に結合させる。アニオン性基は、連結基を介して側鎖として主鎖に結合させることが好ましい。
アニオン性基の例としては、カルボン酸基(カルボキシル)、スルホン酸基(スルホ)およびリン酸基(ホスホノ)などが挙げられ、スルホン酸基およびリン酸基が好ましい。
アニオン性基は塩の状態であってもよい。アニオン性基と塩を形成するカチオンは、アルカリ金属イオンであることが好ましい。また、アニオン性基のプロトンは解離していてもよい。
アニオン性基とポリマーの主鎖とを結合する連結基は、−CO−、−O−、アルキレン基、アリーレン基、およびこれらの組合せから選ばれる二価の基であることが好ましい。
The anionic group is bonded directly to the main chain of the polymer or bonded to the main chain via a linking group. The anionic group is preferably bonded to the main chain as a side chain via a linking group.
Examples of the anionic group include a carboxylic acid group (carboxyl), a sulfonic acid group (sulfo), and a phosphoric acid group (phosphono), and a sulfonic acid group and a phosphoric acid group are preferable.
The anionic group may be in a salt state. The cation that forms a salt with the anionic group is preferably an alkali metal ion. Moreover, the proton of the anionic group may be dissociated.
The linking group that binds the anionic group and the polymer main chain is preferably a divalent group selected from —CO—, —O—, an alkylene group, an arylene group, and combinations thereof.

架橋構造は二以上の主鎖を化学的に結合(好ましくは共有結合)するものであるが、三以上の主鎖を共有結合することが好ましい。架橋構造は、−CO−、−O−、−S−、窒素原子、リン原子、脂肪族残基、芳香族残基およびこれらの組合せから選ばれる二価以上の基からなることが好ましい。   The crosslinked structure is a structure in which two or more main chains are chemically bonded (preferably covalent bonds), but it is preferable to covalently bond three or more main chains. The crosslinked structure is preferably composed of a divalent or higher valent group selected from —CO—, —O—, —S—, a nitrogen atom, a phosphorus atom, an aliphatic residue, an aromatic residue, and combinations thereof.

架橋しているアニオン性基を有するポリマーは、アニオン性基を有する繰り返し単位と、架橋構造を有する繰り返し単位とを有するコポリマーであることが好ましい。コポリマー中のアニオン性基を有する繰り返し単位の割合は、2〜96質量%であることが好ましく、4〜94質量%であることがさらに好ましく、6〜92質量%であることが最も好ましい。繰り返し単位は、二以上のアニオン性基を有していてもよい。コポリマー中の架橋構造を有する繰り返し単位の割合は、4〜98質量%であることが好ましく、6〜96質量%であることがさらに好ましく、8〜94質量%であることが最も好ましい。   The crosslinked polymer having an anionic group is preferably a copolymer having a repeating unit having an anionic group and a repeating unit having a crosslinked structure. The proportion of the repeating unit having an anionic group in the copolymer is preferably 2 to 96% by mass, more preferably 4 to 94% by mass, and most preferably 6 to 92% by mass. The repeating unit may have two or more anionic groups. The proportion of the repeating unit having a crosslinked structure in the copolymer is preferably 4 to 98% by mass, more preferably 6 to 96% by mass, and most preferably 8 to 94% by mass.

架橋しているアニオン性基を有するポリマーの繰り返し単位は、アニオン性基と架橋構造の双方を有していてもよい。また、その他の繰り返し単位(アニオン性基も架橋構造もない繰り返し単位)が含まれていてもよい。
その他の繰り返し単位としては、アミノ基または四級アンモニウム基を有する繰り返し単位およびベンゼン環を有する繰り返し単位が好ましい。アミノ基または四級アンモニウム基は、アニオン性基と同様に無機粒子の分散状態を維持する機能を有する。なお、アミノ基、四級アンモニウム基およびベンゼン環は、アニオン性基を有する繰り返し単位あるいは架橋構造を有する繰り返し単位に含まれていても同様の効果が得られる。
アミノ基または四級アンモニウム基を有する繰り返し単位では、アミノ基または四級アンモニウム基は、ポリマーの主鎖に直接結合させるか、あるいは連結基を介して主鎖に結合させる。アミノ基または四級アンモニウム基は、連結基を介して側鎖として、主鎖に結合させることが好ましい。アミノ基または四級アンモニウム基は、二級アミノ基、三級アミノ基または四級アンモニウム基であることが好ましく、三級アミノ基または四級アンモニウム基であることがさらに好ましい。二級アミノ基、三級アミノ基または四級アンモニウム基の窒素原子に結合する基は、アルキル基であることが好ましく、炭素原子数が1〜12のアルキル基であることが好ましく、炭素原子数が1〜6のアルキル基であることがさらに好ましい。四級アンモニウム基の対イオンは、ハライドイオンであることが好ましい。アミノ基または四級アンモニウム基とポリマーの主鎖とを結合する連結基は、−CO−、−NH−、−O−、アルキレン基、アリーレン基、およびこれらの組合せから選ばれる二価の基であることが好ましい。架橋しているアニオン性基を有するポリマーが、アミノ基または四級アンモニウム基を有する繰り返し単位を含む場合、その割合は0.06〜32質量%であることが好ましく、0.08〜30質量%であることがさらに好ましく、0.1〜28質量%であることが最も好ましい。
The repeating unit of the polymer having a crosslinked anionic group may have both an anionic group and a crosslinked structure. Further, other repeating units (repeating units having neither an anionic group nor a crosslinked structure) may be contained.
Other repeating units are preferably a repeating unit having an amino group or a quaternary ammonium group and a repeating unit having a benzene ring. The amino group or the quaternary ammonium group has a function of maintaining the dispersed state of the inorganic particles, like the anionic group. The same effect can be obtained even when the amino group, quaternary ammonium group and benzene ring are contained in a repeating unit having an anionic group or a repeating unit having a crosslinked structure.
In a repeating unit having an amino group or a quaternary ammonium group, the amino group or quaternary ammonium group is directly bonded to the main chain of the polymer or bonded to the main chain through a linking group. The amino group or quaternary ammonium group is preferably bonded to the main chain as a side chain via a linking group. The amino group or quaternary ammonium group is preferably a secondary amino group, a tertiary amino group or a quaternary ammonium group, more preferably a tertiary amino group or a quaternary ammonium group. The group bonded to the nitrogen atom of the secondary amino group, tertiary amino group or quaternary ammonium group is preferably an alkyl group, preferably an alkyl group having 1 to 12 carbon atoms, Is more preferably an alkyl group of 1 to 6. The counter ion of the quaternary ammonium group is preferably a halide ion. The linking group that connects the amino group or quaternary ammonium group to the polymer main chain is a divalent group selected from -CO-, -NH-, -O-, an alkylene group, an arylene group, and combinations thereof. Preferably there is. When the polymer having a crosslinked anionic group contains a repeating unit having an amino group or a quaternary ammonium group, the ratio is preferably 0.06 to 32% by mass, and 0.08 to 30% by mass. It is more preferable that it is 0.1 to 28% by mass.

1−(3)含フッ素ポリマーバインダー
本発明のフィルムにおいて、特に反射防止フィルムが有する低屈折率層には含フッ素ポリマーをバインダー成分に好ましく用いることが出来る。
含フッ素ポリマーを形成するための含フッ素ビニルモノマーとしてはフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えばビスコート6FM(商品名、大阪有機化学工業(株)製)やR−2020(商品名、ダイキン工業(株)製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられるが、好ましくはパーフルオロオレフィン類であり、屈折率、溶解性、透明性、入手性等の観点から特に好ましくはヘキサフルオロプロピレンである。これらの含フッ素ビニルモノマーの組成比を上げれば屈折率を下げることができるが、皮膜強度は低下する。本発明では含フッ素ポリマーのフッ素含率が20〜60質量%となるように含フッ素ビニルモノマーを導入することが好ましく、より好ましくは25〜55質量%の場合であり、特に好ましくは30〜50質量%の場合である。
1- (3) Fluorine-containing polymer binder In the film of the present invention, a fluorine-containing polymer can be preferably used as a binder component, particularly in the low refractive index layer of the antireflection film.
Fluorinated vinyl monomers for forming a fluorinated polymer include fluoroolefins (eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, etc.), (meth) acrylic acid moieties or fully fluorinated alkyl ester derivatives (For example, Biscoat 6FM (trade name, manufactured by Osaka Organic Chemical Industry Co., Ltd.) and R-2020 (trade name, manufactured by Daikin Industries, Ltd.)), complete or partially fluorinated vinyl ethers, and the like are preferable. Is a perfluoroolefin, and hexafluoropropylene is particularly preferable from the viewpoint of refractive index, solubility, transparency, availability, and the like. Increasing the composition ratio of these fluorinated vinyl monomers can lower the refractive index but lowers the film strength. In the present invention, it is preferable to introduce the fluorine-containing vinyl monomer so that the fluorine content of the fluorine-containing polymer is 20 to 60% by mass, more preferably 25 to 55% by mass, particularly preferably 30 to 50%. This is a case of mass%.

含フッ素ポリマーの架橋反応性付与のための構成単位としては主として以下の(A)、(B)、(C)で示される単位が挙げられる。
(A):グリシジル(メタ)アクリレート、グリシジルビニルエーテルのように分子内にあらかじめ自己架橋性官能基を有するモノマーの重合によって得られる構成単位、
(B):カルボキシル基やヒドロキシ基、アミノ基、スルホ基等を有するモノマー(例えば(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、マレイン酸、クロトン酸等)の重合によって得られる構成単位、
(C):分子内に上記(A)または(B)の官能基と反応する基とそれとは別に架橋性官能基を有する化合物を、上記(A)または(B)の構成単位と反応させて得られる構成単位、(例えばヒドロキシル基に対してアクリル酸クロリドを作用させる等の手法で合成できる構成単位)が挙げられる。
Examples of the structural unit for imparting crosslinking reactivity to the fluoropolymer include units represented by the following (A), (B), and (C).
(A): a structural unit obtained by polymerization of a monomer having a self-crosslinkable functional group in the molecule in advance such as glycidyl (meth) acrylate and glycidyl vinyl ether,
(B): a monomer having a carboxyl group, a hydroxy group, an amino group, a sulfo group, etc. (for example, (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate, allyl acrylate, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether) , Maleic acid, crotonic acid, etc.)
(C): reacting a compound having a crosslinkable functional group separately from the group that reacts with the functional group of (A) or (B) in the molecule with the structural unit of (A) or (B). Examples of the structural unit to be obtained include (for example, a structural unit that can be synthesized by a technique such as allowing acrylic acid chloride to act on a hydroxyl group).

上記(C)の構成単位としては、上記(A)又は(B)の官能基と反応する基とは別の架橋性官能基が光重合性基であることが好ましい。光重合性基としては、例えば(メタ)アクリロイル基、アルケニル基、シンナモイル基、シンナミリデンアセチル基、ベンザルアセトフェノン基、スチリルピリジン基、α−フェニルマレイミド基、フェニルアジド基、スルフォニルアジド基、カルボニルアジド基、ジアゾ基、o−キノンジアジド基、フリルアクリロイル基、クマリン基、ピロン基、アントラセン基、ベンゾフェノン基、スチルベン基、ジチオカルバメート基、キサンテート基、1,2,3−チアジアゾール基、シクロプロペン基、アザジオキサビシクロ基などを挙げることができ、これらは1種のみでなく2種以上であってもよい。これらのうち、(メタ)アクリロイル基およびシンナモイル基が好ましく、特に好ましくは(メタ)アクリロイル基である。   As the structural unit (C), a crosslinkable functional group different from the group that reacts with the functional group (A) or (B) is preferably a photopolymerizable group. Examples of the photopolymerizable group include (meth) acryloyl group, alkenyl group, cinnamoyl group, cinnamylideneacetyl group, benzalacetophenone group, styrylpyridine group, α-phenylmaleimide group, phenylazide group, sulfonylazide group, carbonyl Azide group, diazo group, o-quinonediazide group, furylacryloyl group, coumarin group, pyrone group, anthracene group, benzophenone group, stilbene group, dithiocarbamate group, xanthate group, 1,2,3-thiadiazole group, cyclopropene group, An azadioxabicyclo group etc. can be mentioned, These may be not only 1 type but 2 or more types. Of these, a (meth) acryloyl group and a cinnamoyl group are preferable, and a (meth) acryloyl group is particularly preferable.

光重合性基含有共重合体を調製するための具体的な方法としては、下記の方法を挙げることができるが、これらに限定されるものではない。
a.水酸基を含有してなる架橋性官能基含有共重合体に、(メタ)アクリル酸クロリドを反応させてエステル化する方法、
b.水酸基を含有してなる架橋性官能基含有共重合体に、イソシアネート基を含有する(メタ)アクリル酸エステルを反応させてウレタン化する方法、
c.エポキシ基を含有してなる架橋性官能基含有共重合体に、(メタ)アクリル酸を反応させてエステル化する方法、
d.カルボキシル基を含有してなる架橋性官能基含有共重合体に、エポキシ基を含有する含有(メタ)アクリル酸エステルを反応させてエステル化する方法。
尚、上記光重合性基の導入量は任意に調節することができ、塗膜面状安定性・無機粒子共存時の面状故障低下・膜強度向上などの点からカルボキシル基やヒドロキシル基等を一定量残すことも好ましい。
Specific methods for preparing the photopolymerizable group-containing copolymer include, but are not limited to, the following methods.
a. A method of esterifying by reacting a (meth) acrylic acid chloride with a crosslinkable functional group-containing copolymer containing a hydroxyl group,
b. A method of urethanization by reacting an isocyanate group-containing (meth) acrylic ester with a crosslinkable functional group-containing copolymer containing a hydroxyl group,
c. A method of reacting (meth) acrylic acid with a crosslinkable functional group-containing copolymer containing an epoxy group,
d. A method in which a crosslinkable functional group-containing copolymer containing a carboxyl group is reacted with a containing (meth) acrylic acid ester containing an epoxy group for esterification.
The amount of the photopolymerizable group introduced can be arbitrarily adjusted. From the viewpoints of surface stability of the coating film, reduction of surface failure when coexisting with inorganic particles, and improvement of film strength, carboxyl groups, hydroxyl groups, etc. It is also preferable to leave a certain amount.

本発明に有用な含フッ素ポリマーでは、上記含フッ素ビニルモノマーから導かれる繰返し単位および、側鎖に(メタ)アクリロイル基を有する繰返し単位などの架橋反応性付与のための構成単位とともに、必要に応じて基材への密着性、ポリマーのTg(皮膜硬度に寄与する)、溶剤への溶解性、透明性、滑り性、防塵・防汚性等種々の観点から適宜その他のビニルモノマーを共重合することもできる。これらのビニルモノマーは目的に応じて複数を組み合わせてもよく、合計で含フッ素ポリマー中の0〜65モル%の範囲で導入されていることが好ましく、0〜40モル%の範囲であることがより好ましく、0〜30モル%の範囲であることが特に好ましい。   In the fluorine-containing polymer useful in the present invention, a repeating unit derived from the above-mentioned fluorine-containing vinyl monomer and a structural unit for imparting crosslinking reactivity such as a repeating unit having a (meth) acryloyl group in the side chain, as necessary, Copolymerize other vinyl monomers as appropriate from various viewpoints such as adhesion to substrates, polymer Tg (contributes to film hardness), solubility in solvents, transparency, slipperiness, dustproof / antifouling properties, etc. You can also. A plurality of these vinyl monomers may be combined depending on the purpose, and are preferably introduced in the range of 0 to 65 mol% in the total in the fluoropolymer, and in the range of 0 to 40 mol%. More preferably, it is particularly preferably in the range of 0 to 30 mol%.

併用可能なその他のビニルモノマー単位には特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル、アクリル酸2‐ヒドロキシエチル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2−ヒドロキシエチル等)、スチレン誘導体(スチレン、p−ヒドロキシメチルスチレン、p−メトキシスチレン等)、ビニルエーテル類(メチルビニルエーテル、エチルビニルエーテル、シクロヘキシルビニルエーテル、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、不飽和カルボン酸類(アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸等)、アクリルアミド類(N、N−ジメチルアクリルアミド、N−tert−ブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類(N、N−ジメチルメタクリルアミド)、アクリロニトリル等を挙げることができる。   Other vinyl monomer units that can be used in combination are not particularly limited. For example, olefins (ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.), acrylic esters (methyl acrylate, methyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate), methacrylic acid esters (methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-hydroxyethyl methacrylate, etc.), styrene derivatives (styrene, p-hydroxymethylstyrene) , P-methoxystyrene, etc.), vinyl ethers (methyl vinyl ether, ethyl vinyl ether, cyclohexyl vinyl ether, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, etc.), vinyl esters (vinegar) Vinyl, vinyl propionate, vinyl cinnamate, etc.), unsaturated carboxylic acids (acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, etc.), acrylamides (N, N-dimethylacrylamide, N-tert-butylacrylamide) N-cyclohexylacrylamide), methacrylamides (N, N-dimethylmethacrylamide), acrylonitrile and the like.

本発明で特に有用な含フッ素ポリマーは、パーフルオロオレフィンとビニルエーテル類またはビニルエステル類のランダム共重合体である。特に単独で架橋反応可能な基((メタ)アクリロイル基等のラジカル反応性基、エポキシ基、オキセタニル基等の開環重合性基等)を有していることが好ましい。これらの架橋反応性基含有重合単位はポリマーの全重合単位の5〜70mol%を占めていることが好ましく、特に好ましくは30〜60mol%の場合である。好ましいポリマーについては、特開2002−243907号、特開2002−372601号、特開2003−26732号、特開2003−222702号、特開2003−294911号、特開2003−329804号、特開2004−4444、特開2004−45462号に記載のものを挙げることができる。   The fluorine-containing polymer particularly useful in the present invention is a random copolymer of perfluoroolefin and vinyl ethers or vinyl esters. In particular, it preferably has a group capable of undergoing a crosslinking reaction alone (a radical reactive group such as a (meth) acryloyl group, a ring-opening polymerizable group such as an epoxy group or an oxetanyl group). These crosslinkable group-containing polymerized units preferably occupy 5 to 70 mol% of the total polymerized units of the polymer, particularly preferably 30 to 60 mol%. Regarding preferred polymers, JP-A-2002-243907, JP-A-2002-372601, JP-A-2003-26732, JP-A-2003-222702, JP-A-2003-294911, JP-A-2003-329804, JP-A-2004. -4444 and JP, 2004-45462, A can be mentioned.

また本発明で好ましく用いられる含フッ素ポリマーには防汚性を付与する目的で、ポリシロキサン構造が導入されていることが好ましい。ポリシロキサン構造の導入方法に制限はないが例えば特開平6−93100号、特開平11−189621号、同11−228631号、特開2000−313709号の各公報に記載のごとく、シリコーンマクロアゾ開始剤を用いてポリシロキサンブロック共重合成分を導入する方法、特開平2−251555号、同2−308806号の各公報に記載のごとくシリコーンマクロマーを用いてポリシロキサングラフト共重合成分を導入する方法が好ましい。特に好ましい化合物としては、特開平11−189621号の実施例1、2、及び3のポリマー、又は特開平2−251555号の共重合体A−2及びA−3を挙げることができる。これらのポリシロキサン成分はポリマー中の0.5〜10質量%であることが好ましく、特に好ましくは1〜5質量%である。   In addition, a polysiloxane structure is preferably introduced into the fluorine-containing polymer preferably used in the present invention for the purpose of imparting antifouling properties. There is no limitation on the method of introducing the polysiloxane structure, but for example, as described in JP-A-6-93100, JP-A-11-189621, JP-A-11-228631 and JP-A-2000-313709, the initiation of silicone macroazo A method of introducing a polysiloxane block copolymer component using an agent, and a method of introducing a polysiloxane graft copolymer component using a silicone macromer as described in JP-A-2-251555 and JP-A-2-308806. preferable. Particularly preferred compounds include the polymers of Examples 1, 2, and 3 of JP-A-11-189621, and the copolymers A-2 and A-3 of JP-A-2-251555. These polysiloxane components are preferably 0.5 to 10% by mass in the polymer, and particularly preferably 1 to 5% by mass.

本発明に好ましく用いることのできる含フッ素ポリマーの好ましい分子量は、質量平均分子量が5000以上、より好ましくは10000〜500000、最も好ましくは15000〜200000である。平均分子量の異なるポリマーを併用することで塗膜面状の改良や耐傷性の改良を行うこともできる。   The preferred molecular weight of the fluorine-containing polymer that can be preferably used in the present invention is 5000 or more, more preferably 10,000 to 500,000, and most preferably 15,000 to 200,000. By using polymers having different average molecular weights in combination, it is possible to improve the surface state of the coating film and the scratch resistance.

上記のポリマーに対しては特開平10−25388号公報および特開2000−17028号公報に記載のごとく適宜重合性不飽和基を有する硬化剤を併用してもよい。また、特開2002−145952号に記載のごとく含フッ素の多官能の重合性不飽和基を有する化合物との併用も好ましい。多官能の重合性不飽和基を有する化合物の例としては、前記多官能モノマーを挙げることができる。これら化合物は、特にポリマー本体に重合性不飽和基を有する化合物を用いた場合に耐擦傷性改良に対する併用効果が大きく好ましい。   As described in JP-A-10-25388 and JP-A-2000-17028, a curing agent having a polymerizable unsaturated group may be used in combination with the above polymer. Moreover, combined use with the compound which has a fluorine-containing polyfunctional polymerizable unsaturated group as described in Unexamined-Japanese-Patent No. 2002-145952 is also preferable. Examples of the compound having a polyfunctional polymerizable unsaturated group include the polyfunctional monomer. These compounds are particularly preferred because they have a large combined effect for improving scratch resistance, particularly when a compound having a polymerizable unsaturated group is used in the polymer body.

1−(4)オルガノシラン化合物
本発明のフィルムを構成する層のうちの少なくとも1層は、その層を形成する塗布液中に、オルガノシラン化合物の加水分解物および/またはその部分縮合物の少なくとも一種の成分、いわゆるゾル成分(以降このように称する場合もある)を含有することが耐擦傷性の点で好ましい。
とくに反射防止フィルムにおいては反射防止能と耐擦傷性を両立させるために、低屈折率層と光拡散層の共にゾル成分を含有することが特に好ましい。このゾル成分は、塗布液を塗布後、乾燥、加熱工程で縮合して硬化物を形成しこれらの層のバインダーの一部となる。また、該硬化物が重合性不飽和結合を有する場合、活性光線の照射により3次元構造を有するバインダーが形成される。
1- (4) Organosilane compound At least one of the layers constituting the film of the present invention contains at least one of a hydrolyzate of an organosilane compound and / or a partial condensate thereof in the coating solution forming the layer. It is preferable from the viewpoint of scratch resistance that it contains a kind of component, a so-called sol component (hereinafter sometimes referred to as such).
In particular, in the antireflection film, it is particularly preferable that both the low refractive index layer and the light diffusion layer contain a sol component in order to achieve both antireflection ability and scratch resistance. This sol component is condensed by a drying and heating process after coating the coating solution to form a cured product and becomes a part of the binder of these layers. Moreover, when this hardened | cured material has a polymerizable unsaturated bond, the binder which has a three-dimensional structure is formed by irradiation of actinic light.

オルガノシラン化合物は、下記一般式1で表されるものを好ましく用いることができる。
一般式1:(R−Si(X)4−m
上記一般式1において、R1は置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を表す。アルキル基としては、炭素数1〜30のアルキル基か好ましく、より好ましくは炭素数1〜16、特に好ましくは1〜6のものである。アルキル基の具体例として、メチル、エチル、プロピル、イソプロピル、ヘキシル、デシル、ヘキサデシル等が挙げられる。アリール基としてはフェニル、ナフチル等が挙げられ、好ましくはフェニル基である。
Xは、水酸基または加水分解可能な基を表し、例えばアルコキシ基(炭素数1〜5のアルコキシ基が好ましい。例えばメトキシ基、エトキシ基等が挙げられる)、ハロゲン原子(例えばCl、Br、I等)、及びRCOO(Rは水素原子または炭素数1〜6のアルキル基が好ましい。例えばCHCOO、CCOO等が挙げられる)で表される基が挙げられ、好ましくはアルコキシ基であり、特に好ましくはメトキシ基またはエトキシ基である。
mは1〜3の整数を表し、好ましくは1または2である。
1およびXが複数存在するとき、複数のR1およびXはそれぞれ同じであっても異なっていても良い。
As the organosilane compound, those represented by the following general formula 1 can be preferably used.
General formula 1: (R < 1 >) m- Si (X) 4-m
In the general formula 1, R 1 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. As an alkyl group, a C1-C30 alkyl group is preferable, More preferably, it is C1-C16, Most preferably, it is a C1-C6 thing. Specific examples of the alkyl group include methyl, ethyl, propyl, isopropyl, hexyl, decyl, hexadecyl and the like. Examples of the aryl group include phenyl and naphthyl, and a phenyl group is preferable.
X represents a hydroxyl group or a hydrolyzable group, for example, an alkoxy group (preferably an alkoxy group having 1 to 5 carbon atoms, such as a methoxy group or an ethoxy group), a halogen atom (for example, Cl, Br, I or the like). ) And R 2 COO (R 2 is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Examples include CH 3 COO, C 2 H 5 COO, etc.), preferably An alkoxy group, particularly preferably a methoxy group or an ethoxy group.
m represents an integer of 1 to 3, and is preferably 1 or 2.
When R 1 and X there are a plurality, the plurality of R 1 and X may be different even in the same, respectively.

一般式1中、R1に含まれる置換基としては特に制限はないが、ハロゲン原子(フッ素、塩素、臭素等)、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基(メチル、エチル、i−プロピル、n−プロピル、t−ブチル等)、アリール基(フェニル、ナフチル等)、芳香族ヘテロ環基(フリル、ピラゾリル、ピリジル等)、アルコキシ基(メトキシ、エトキシ、i−プロポキシ、ヘキシルオキシ等)、アリールオキシ(フェノキシ等)、アルキルチオ基(メチルチオ、エチルチオ等)、アリールチオ基(フェニルチオ等)、アルケニル基(ビニル、1−プロペニル等)、アシルオキシ基(アセトキシ、アクリロイルオキシ、メタクリロイルオキシ等)、アルコキシカルボニル基(メトキシカルボニル、エトキシカルボニル等)、アリールオキシカルボニル基(フェノキシカルボニル等)、カルバモイル基(カルバモイル、N−メチルカルバモイル、N,N−ジメチルカルバモイル、N−メチル−N−オクチルカルバモイル等)、アシルアミノ基(アセチルアミノ、ベンゾイルアミノ、アクリルアミノ、メタクリルアミノ等)等が挙げられ、これら置換基は更に置換されていても良い。
1は置換アルキル基もしくは置換アリール基であることが好ましい。
1が複数存在するとき、複数のR1はそれぞれ同じであっても異なっていても良い。
一般式1の化合物は2種以上を併用してもよい。
In General Formula 1, the substituent contained in R 1 is not particularly limited, but is a halogen atom (fluorine, chlorine, bromine, etc.), hydroxyl group, mercapto group, carboxyl group, epoxy group, alkyl group (methyl, ethyl, i -Propyl, n-propyl, t-butyl, etc.), aryl groups (phenyl, naphthyl, etc.), aromatic heterocyclic groups (furyl, pyrazolyl, pyridyl, etc.), alkoxy groups (methoxy, ethoxy, i-propoxy, hexyloxy, etc.) ), Aryloxy (such as phenoxy), alkylthio group (such as methylthio, ethylthio), arylthio group (such as phenylthio), alkenyl group (such as vinyl and 1-propenyl), acyloxy group (such as acetoxy, acryloyloxy, methacryloyloxy), alkoxy Carbonyl group (methoxycarbonyl, ethoxycarbonyl, etc. , Aryloxycarbonyl groups (phenoxycarbonyl, etc.), carbamoyl groups (carbamoyl, N-methylcarbamoyl, N, N-dimethylcarbamoyl, N-methyl-N-octylcarbamoyl, etc.), acylamino groups (acetylamino, benzoylamino, acrylicamino) , Methacrylamino and the like), and these substituents may be further substituted.
R 1 is preferably a substituted alkyl group or a substituted aryl group.
When R 1 there are a plurality, it may be different even multiple R 1 is the same, respectively.
Two or more compounds of the general formula 1 may be used in combination.

本発明に用いられるオルガノシラン化合物としては、下記一般式2で表されるビニル重合性の置換基を有するオルガノシラン化合物を用いることも好ましい。尚、一般式2の化合物は、前記一般式1の化合物2種類を出発原料として合成することができる。
一般式2
As the organosilane compound used in the present invention, an organosilane compound having a vinyl polymerizable substituent represented by the following general formula 2 is also preferably used. In addition, the compound of the general formula 2 can be synthesized using two kinds of the compounds of the general formula 1 as starting materials.
General formula 2

Figure 2007264113
Figure 2007264113

上記一般式2において、Rは水素原子、メチル基、メトキシ基、アルコキシカルボニル基、シアノ基、フッ素原子、または塩素原子を表す。アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。水素原子、メチル基、メトキシ基、メトキシカルボニル基、シアノ基、フッ素原子、および塩素原子が好ましく、水素原子、メチル基、メトキシカルボニル基、フッ素原子、および塩素原子が更に好ましく、水素原子およびメチル基が特に好ましい。
Yは単結合または*−COO−**、*−CONH−**もしくは*−O−**を表し、単結合、*−COO−**および*−CONH−**が好ましく、単結合および*−COO−**が更に好ましく、*−COO−**が特に好ましい。*は=C(R)−に結合する位置を、**はLに結合する位置を表す。
In the above general formula 2, R 2 represents a hydrogen atom, a methyl group, a methoxy group, an alkoxycarbonyl group, a cyano group, a fluorine atom, or a chlorine atom. Examples of the alkoxycarbonyl group include a methoxycarbonyl group and an ethoxycarbonyl group. A hydrogen atom, a methyl group, a methoxy group, a methoxycarbonyl group, a cyano group, a fluorine atom, and a chlorine atom are preferable, a hydrogen atom, a methyl group, a methoxycarbonyl group, a fluorine atom, and a chlorine atom are more preferable, and a hydrogen atom and a methyl group Is particularly preferred.
Y represents a single bond or * -COO-**, * -CONH-** or * -O-**, preferably a single bond, * -COO-** or * -CONH-**, * -COO-** is more preferable, and * -COO-** is particularly preferable. * Represents a position bonded to ═C (R 2 ) —, and ** represents a position bonded to L.

一般式2中、Lは2価の連結鎖を表す。具体的には、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、内部に連結基(例えば、エーテル、エステル、アミドなど)を有する置換もしくは無置換のアルキレン基、内部に連結基を有する置換もしくは無置換のアリーレン基が挙げられ、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、内部に連結基を有するアルキレン基が好ましく、無置換のアルキレン基、無置換のアリーレン基、内部にエーテルあるいはエステル連結基を有するアルキレン基が更に好ましく、無置換のアルキレン基、内部にエーテルあるいはエステル連結基を有するアルキレン基が特に好ましい。置換基は、ハロゲン、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基、アリール基等が挙げられ、これら置換基は更に置換されていても良い。   In General Formula 2, L represents a divalent linking chain. Specifically, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted alkylene group having a linking group (for example, ether, ester, amide, etc.) inside, and a linking group inside. A substituted or unsubstituted arylene group, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, an alkylene group having a linking group therein is preferred, an unsubstituted alkylene group, an unsubstituted arylene group Further, an alkylene group having an ether or ester linking group inside is more preferable, an unsubstituted alkylene group, and an alkylene group having an ether or ester linking group inside is particularly preferable. Examples of the substituent include a halogen, a hydroxyl group, a mercapto group, a carboxyl group, an epoxy group, an alkyl group, and an aryl group, and these substituents may be further substituted.

一般式2中、lおよびmは2つの成分のそれぞれのモル%を表す。lはl=100−mの数式を満たす数を表し、mは0〜50の数を表す。mは0〜40の数がより好ましく、0〜30の数が特に好ましい。
〜Rは、ハロゲン原子、水酸基、無置換のアルコキシ基、もしくは無置換のアルキル基が好ましい。R〜Rは塩素原子、水酸基、無置換の炭素数1〜6のアルコキシ基がより好ましく、水酸基、炭素数1〜3のアルコキシ基が更に好ましく、水酸基もしくはメトキシ基が特に好ましい。
は水素原子、アルキル基、アルコキシ基、アルコキシカルボニル基、シアノ基、フッ素原子、または塩素原子を表す。アルキル基はメチル基、エチル基など、アルコキシ基としては、メトキシ基、エトキシ基、アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。水素原子、メチル基、メトキシ基、メトキシカルボニル基、シアノ基、フッ素原子、および塩素原子が好ましく、水素原子、メチル基、メトキシカルボニル基、フッ素原子、および塩素原子が更に好ましく、水素原子およびメチル基が特に好ましい。
は前述の一般式1のRと同義であり、水酸基もしくは無置換のアルキル基がより好ましく、水酸基もしくは炭素数1〜3のアルキル基が更に好ましく、水酸基もしくはメチル基が特に好ましい。
In general formula 2, l and m represent the mol% of each of the two components. l represents a number satisfying an expression of l = 100−m, and m represents a number from 0 to 50. As for m, the number of 0-40 is more preferable, and the number of 0-30 is especially preferable.
R 3 to R 5 are preferably a halogen atom, a hydroxyl group, an unsubstituted alkoxy group, or an unsubstituted alkyl group. R 3 to R 5 are more preferably a chlorine atom, a hydroxyl group, or an unsubstituted alkoxy group having 1 to 6 carbon atoms, more preferably a hydroxyl group or an alkoxy group having 1 to 3 carbon atoms, and particularly preferably a hydroxyl group or a methoxy group.
R 6 represents a hydrogen atom, an alkyl group, an alkoxy group, an alkoxycarbonyl group, a cyano group, a fluorine atom, or a chlorine atom. Examples of the alkyl group include a methyl group and an ethyl group. Examples of the alkoxy group include a methoxy group, an ethoxy group, and an alkoxycarbonyl group as a methoxycarbonyl group and an ethoxycarbonyl group. A hydrogen atom, a methyl group, a methoxy group, a methoxycarbonyl group, a cyano group, a fluorine atom, and a chlorine atom are preferable, a hydrogen atom, a methyl group, a methoxycarbonyl group, a fluorine atom, and a chlorine atom are more preferable, and a hydrogen atom and a methyl group Is particularly preferred.
R 7 has the same meaning as R 1 in formula 1 above, more preferably a hydroxyl group or an unsubstituted alkyl group, still more preferably a hydroxyl group or an alkyl group having 1 to 3 carbon atoms, and particularly preferably a hydroxyl group or a methyl group.

以下に一般式1の化合物で表される化合物の出発原料の具体例を示すが、限定されるものではない。尚、先に述べたように、一般式2の化合物は、前記一般式1の化合物2種類を出発原料として合成することもできる。   Although the specific example of the starting material of the compound represented by the compound of General formula 1 below is shown, it is not limited. As described above, the compound of the general formula 2 can be synthesized using two kinds of the compounds of the general formula 1 as starting materials.

Figure 2007264113
Figure 2007264113

Figure 2007264113
Figure 2007264113

Figure 2007264113
Figure 2007264113

Figure 2007264113
Figure 2007264113

Figure 2007264113
Figure 2007264113

Figure 2007264113
Figure 2007264113

Figure 2007264113
Figure 2007264113

M−48 メチルトリメトキシシラン   M-48 Methyltrimethoxysilane

これらのうち、重合性基を含有するオルガノシランとしては(M−1)、(M−2)、及び(M−25)が特に好ましい。
本発明の効果を得るためには、オルガノシランの加水分解物および/またはその部分縮合物における前記ビニル重合性基を含有するオルガノシランの含有量は、30質量%〜100質量%が好ましく、50質量%〜100質量%がより好ましく、70質量%〜95質量%が更に好ましい。前記ビニル重合性基を含有するオルガノシランの含有量が30質量%以上であれば、固形物が生じたり、液が濁ったり、ポットライフが悪化したり、分子量の制御が困難(分子量の増大)であったり、重合性基の含有量の少なさに伴う重合後の性能(例えば反射防止膜の耐傷性)の向上が得られにくかったりするなどの問題が起こらないので好ましい。一般式2で表される化合物を合成する場合は、前記ビニル重合性基を含有するオルガノシランとして(M−1)、(M−2)、前記ビニル重合性基を有さないオルガノシランとして(M−19)〜(M−21)および(M−48)の中からそれぞれ1種をそれぞれ上記の量で組み合わせて用いると好ましい。
Of these, (M-1), (M-2), and (M-25) are particularly preferable as the organosilane containing a polymerizable group.
In order to obtain the effect of the present invention, the content of the organosilane containing the vinyl polymerizable group in the hydrolyzate of organosilane and / or its partial condensate is preferably 30% by mass to 100% by mass, The mass% is more preferably 100% by mass, and more preferably 70% by mass to 95% by mass. If the content of the organosilane containing the vinyl polymerizable group is 30% by mass or more, solids are produced, the liquid is turbid, the pot life is deteriorated, and the molecular weight is difficult to control (increase in molecular weight). Or problems such as difficulty in obtaining improved performance after polymerization (for example, scratch resistance of the antireflection film) due to a low content of the polymerizable group. When synthesizing the compound represented by the general formula 2, (M-1) and (M-2) as organosilanes containing the vinyl polymerizable group, and organosilanes having no vinyl polymerizable group ( It is preferable to use one of each of M-19) to (M-21) and (M-48) in combination in the above amounts.

本発明で好ましく用いられるオルガノシランの加水分解物およびその部分縮合物の少なくともいずれかは塗布品性能の安定化のためには揮発性を抑えることが好ましく、具体的には、105℃における1時間当たりの揮発量が5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることが特に好ましい。   In order to stabilize the performance of the coated product, at least one of the hydrolyzate of organosilane and the partial condensate thereof preferably used in the present invention preferably suppresses volatility, specifically, 1 hour at 105 ° C. The amount of volatilization per unit is preferably 5% by mass or less, more preferably 3% by mass or less, and particularly preferably 1% by mass or less.

本発明に用いられるゾル成分は上記オルガノシランを加水分解および/または部分縮合することにより調製される。
加水分解縮合反応は加水分解性基(X)1モルに対して0.05〜2.0モル、好ましくは0.1〜1.0モルの水を添加し、本発明に用いられる触媒の存在下、25〜100℃で、撹拌することにより行われる。
The sol component used in the present invention is prepared by hydrolysis and / or partial condensation of the organosilane.
In the hydrolysis condensation reaction, 0.05 to 2.0 mol, preferably 0.1 to 1.0 mol of water is added to 1 mol of the hydrolyzable group (X), and the presence of the catalyst used in the present invention is present. Under stirring at 25-100 ° C.

本発明で用いられるオルガノシランの加水分解物およびその部分縮合物の少なくともいずれかにおいて、ビニル重合性基を含有するオルガノシランの加水分解物およびその部分縮合物いずれかの質量平均分子量は、分子量が300未満の成分を除いた場合に、450〜20000が好ましく、500〜10000がより好ましく、550〜5000が更に好ましく、600〜3000が更に好ましい。
オルガノシランの加水分解物および/またはその部分縮合物における分子量が300以上の成分のうち、分子量が20000より大きい成分は10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることが更に好ましい。分子量が20000より大きい成分が10質量%以下であれば、そのようなオルガノシランの加水分解物および/またはその部分縮合物を含有する硬化性組成物を硬化させて得られる硬化皮膜は、その透明性や基板との密着性が充分となる。
In at least one of the hydrolyzate of organosilane and its partial condensate used in the present invention, the mass average molecular weight of either the hydrolyzate of organosilane containing a vinyl polymerizable group or its partial condensate is the molecular weight. When excluding less than 300 components, 450 to 20000 is preferable, 500 to 10,000 is more preferable, 550 to 5000 is still more preferable, and 600 to 3000 is still more preferable.
Of the components having a molecular weight of 300 or more in the hydrolyzate of organosilane and / or its partial condensate, the component having a molecular weight of more than 20000 is preferably 10% by mass or less, more preferably 5% by mass or less. More preferably, it is 3 mass% or less. If the component having a molecular weight greater than 20000 is 10% by mass or less, a cured film obtained by curing such a curable composition containing a hydrolyzate of organosilane and / or a partial condensate thereof is transparent. And adhesion to the substrate are sufficient.

ここで、質量平均分子量及び分子量は、TSKgel GMHxL、TSKgel G4000HxL、TSKgel G2000HxL(何れも東ソー(株)製の商品名)のカラムを使用したGPC分析装置により、溶媒テトラヒドロフラン(THF)、示差屈折計検出によるポリスチレン換算で表した分子量であり、各分子量成分の含有量は、分子量が300以上の成分のピーク面積を100%とした場合の、前記分子量範囲のピークの面積%である。
分散度(質量平均分子/数平均分子量)は3.0〜1.1が好ましく、2.5〜1.1がより好ましく、2.0〜1.1が更に好ましく、1.5〜1.1が特に好ましい。
Here, the mass average molecular weight and the molecular weight were measured using a solvent tetrahydrofuran (THF) and a differential refractometer detection using a GPC analyzer using columns of TSKgel GMHxL, TSKgel G4000HxL, and TSKgel G2000HxL (all trade names manufactured by Tosoh Corporation). The molecular weight expressed in terms of polystyrene is based on the molecular weight, and the content of each molecular weight component is the area% of the peak in the molecular weight range when the peak area of the component having a molecular weight of 300 or more is defined as 100%.
The dispersity (mass average molecule / number average molecular weight) is preferably 3.0 to 1.1, more preferably 2.5 to 1.1, still more preferably 2.0 to 1.1, and 1.5 to 1. 1 is particularly preferred.

本発明で用いられるオルガノシランの加水分解物および部分縮合物の29Si−NMR分析により一般式1のXが−OSiの形で縮合している状態を確認できる。
この時、Siの3つの結合が−OSiの形で縮合している場合(T3)、Siの2つの結合が−OSiの形で縮合している場合(T2)、Siの1つの結合が−OSiの形で縮合している場合(T1)、Siが全く縮合していない場合を(T0)とした場合に縮合率αは、下記数式(II)で表される。
数式(II):α=(T3×3+T2×2+T1×1)/3/(T3+T2+T1+T0)
縮合率αは0.2〜0.95が好ましく、0.3〜0.93がより好ましく、0.4〜0.9がとくに好ましい。
前記下限値以上であれば、加水分解や縮合が十分に進行し、モノマー成分が増えることがないため硬化が十分な皮膜が得られ、前記上限値以下であれば、加水分解や縮合が進みすぎることがなく、加水分解可能な基が適度に残留するため、バインダーポリマー、樹脂基板、無機微粒子などの相互作用が低下することなく、これらを用いることにより優れた効果が得られる。
The 29 Si-NMR analysis of the hydrolyzate and partial condensate of organosilane used in the present invention can confirm the state in which X in the general formula 1 is condensed in the form of -OSi.
At this time, when three bonds of Si are condensed in the form of -OSi (T3), when two bonds of Si are condensed in the form of -OSi (T2), one bond of Si is- When the condensation is performed in the form of OSi (T1), and the case where Si is not condensed at all (T0), the condensation rate α is expressed by the following formula (II).
Formula (II): α = (T3 × 3 + T2 × 2 + T1 × 1) / 3 / (T3 + T2 + T1 + T0)
The condensation rate α is preferably 0.2 to 0.95, more preferably 0.3 to 0.93, and particularly preferably 0.4 to 0.9.
If it is at least the lower limit, hydrolysis and condensation will proceed sufficiently, and the monomer component will not increase, so that a film with sufficient curing can be obtained. Since the hydrolyzable group remains moderately, an excellent effect can be obtained by using these without reducing the interaction between the binder polymer, the resin substrate, the inorganic fine particles and the like.

次に、本発明で用いるオルガノシラン化合物の加水分解物および部分縮合物について詳細を説明する。
オルガノシランの加水分解反応、それに引き続く縮合反応は、一般に触媒の存在下で行われる。触媒としては、塩酸、硫酸、硝酸等の無機酸類;シュウ酸、酢酸、酪酸、マレイン酸、クエン酸、ギ酸、メタンスルホン酸、トルエンスルホン酸等の有機酸類;水酸化ナトリウム、水酸化カリウム、アンモニア等の無機塩基類;トリエチルアミン、ピリジン等の有機塩基類;トリイソプロポキシアルミニウム、テトラブトキシジルコニウム、テトラブチルチタネート、ジブチル錫ジラウレート等の金属アルコキシド類;Zr、TiまたはAlなどの金属を中心金属とする金属キレート化合物等;KF、NH4Fなどの含フッ素化合物が挙げられる。
上記触媒は単独で使用しても良く、或いは複数種を併用しても良い。
Next, the hydrolyzate and partial condensate of the organosilane compound used in the present invention will be described in detail.
The hydrolysis reaction of organosilane and the subsequent condensation reaction are generally carried out in the presence of a catalyst. Catalysts include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid; organic acids such as oxalic acid, acetic acid, butyric acid, maleic acid, citric acid, formic acid, methanesulfonic acid, toluenesulfonic acid; sodium hydroxide, potassium hydroxide, ammonia Inorganic bases such as triethylamine, pyridine, etc .; metal alkoxides such as triisopropoxyaluminum, tetrabutoxyzirconium, tetrabutyltitanate, dibutyltin dilaurate; metals such as Zr, Ti or Al as the central metal Metal chelate compounds and the like; Fluorine-containing compounds such as KF and NH4F are listed.
The said catalyst may be used independently or may use multiple types together.

オルガノシランの加水分解・縮合反応は、無溶媒でも、溶媒中でも行うことができるが成分を均一に混合するために有機溶媒を用いることが好ましく、例えばアルコール類、芳香族炭化水素類、エーテル類、ケトン類、エステル類などが好適である。
溶媒はオルガノシランと触媒を溶解させるものが好ましい。また、有機溶媒が塗布液あるいは塗布液の一部として用いることが工程上好ましく、含フッ素ポリマーなどのその他の素材と混合した場合に、溶解性あるいは分散性を損なわないものが好ましい。
The organosilane hydrolysis / condensation reaction can be carried out in the absence of a solvent or in a solvent, but an organic solvent is preferably used in order to mix the components uniformly. For example, alcohols, aromatic hydrocarbons, ethers, Ketones and esters are preferred.
The solvent preferably dissolves the organosilane and the catalyst. In addition, it is preferable in the process that an organic solvent is used as a coating liquid or a part of the coating liquid, and those that do not impair solubility or dispersibility when mixed with other materials such as a fluorine-containing polymer are preferable.

このうち、アルコール類としては、例えば1価アルコールまたは2価アルコールを挙げることができ、このうち1価アルコールとしては炭素数1〜8の飽和脂肪族アルコールが好ましい。
これらのアルコール類の具体例としては、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、エチレングリコールモノブチルエーテル、などを挙げることができる。
Among these, examples of the alcohols include monohydric alcohols and dihydric alcohols. Among these, monohydric alcohols are preferably saturated aliphatic alcohols having 1 to 8 carbon atoms.
Specific examples of these alcohols include methanol, ethanol, n-propyl alcohol, i-propyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol. And monobutyl ether.

また、芳香族炭化水素類の具体例としては、ベンゼン、トルエン、キシレンなどを、エーテル類の具体例としては、テトラヒドロフラン、ジオキサンなど、ケトン類の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、酢酸エチレングリコールモノエチルエーテルなどを、エステル類の具体例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、炭酸プロピレンなどを挙げることができる。
これらの有機溶媒は、1種単独であるいは2種以上を混合して使用することもできる。オルガノシランの加水分解・縮合反応における固形分の濃度は特に限定されるものではないが通常1質量%〜100質量%の範囲である。
Specific examples of aromatic hydrocarbons include benzene, toluene, xylene and the like. Specific examples of ethers include tetrahydrofuran and dioxane. Specific examples of ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, Specific examples of esters such as diisobutyl ketone, cyclohexanone, and ethylene glycol monoethyl ether include ethyl acetate, propyl acetate, butyl acetate, and propylene carbonate.
These organic solvents can be used alone or in combination of two or more. The concentration of the solid content in the hydrolysis / condensation reaction of organosilane is not particularly limited, but is usually in the range of 1% by mass to 100% by mass.

加水分解反応は、オルガノシランの加水分解性基1モルに対して0.05〜2モル、好ましくは0.1〜1モルの水を添加し、上記溶媒の存在下あるいは非存在下に、そして触媒の存在下に、25〜100℃で、撹拌することにより行われる。
本発明においては、一般式ROH(式中、Rは炭素数1〜10のアルキル基を示す)で表されるアルコールと一般式RCOCHCOR (式中、Rは炭素数1〜10のアルキル基、Rは炭素数1〜10のアルキル基または炭素数1〜10のアルコキシ基を示す)で表される化合物とを配位子とした、Zr、TiまたはAlから選ばれる金属を中心金属とする少なくとも1種の金属キレート化合物の存在下で、25〜100℃で撹拌することにより加水分解を行うことが好ましい。
もしくは触媒に含フッ素化合物を使用する場合、含F化合物が完全に加水分解・縮合を進行させる能力が有るため、添加する水量を選択することにより重合度が決定でき、任意の分子量の設定が可能となるので好ましい。すなわち、平均重合度Mのオルガノシラン加水分解物/部分縮合物を調整するためには、Mモルの加水分解性オルガノシランに対して(M−1)モルの水を使用すれば良い。
In the hydrolysis reaction, 0.05 to 2 mol, preferably 0.1 to 1 mol of water is added to 1 mol of hydrolyzable group of the organosilane, in the presence or absence of the solvent, and It is carried out by stirring at 25-100 ° C. in the presence of a catalyst.
In the present invention, (wherein, R 3 represents an alkyl group having 1 to 10 carbon atoms) Formula R 3 OH alcohol of the general formula R 4 COCH 2 COR 5 (formula represented by, R 4 is carbon From Zr, Ti, or Al having a ligand represented by a compound represented by an alkyl group having 1 to 10 carbon atoms, R 5 represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms) It is preferable to perform hydrolysis by stirring at 25 to 100 ° C. in the presence of at least one metal chelate compound having a selected metal as a central metal.
Alternatively, when a fluorine-containing compound is used for the catalyst, the F-containing compound has the ability to completely proceed with hydrolysis and condensation, so the degree of polymerization can be determined by selecting the amount of water to be added, and any molecular weight can be set Therefore, it is preferable. That is, in order to adjust the organosilane hydrolyzate / partial condensate having an average degree of polymerization M, (M-1) mol of water may be used with respect to M mol of hydrolyzable organosilane.

金属キレート化合物は、一般式ROH(式中、Rは炭素数1〜10のアルキル基を示す)で表されるアルコールとRCOCHCOR(式中、Rは炭素数1〜10のアルキル基、Rは炭素数1〜10のアルキル基または炭素数1〜10のアルコキシ基を示す)で表される化合物とを配位子とした、Zr、Ti、Alから選ばれる金属を中心金属とするものであれば特に制限なく好適に用いることができる。この範疇であれば、2種以上の金属キレート化合物を併用しても良い。本発明に用いられる 金属キレート化合物は、一般式Zr(ORp1(RCOCHCORp2、Ti(ORq1(RCOCHCORq2、およびAl(ORr1(RCOCHCORr2で表される化合物群から選ばれるものが好ましく、前記オルガノシラン化合物の加水分解物および部分縮合物の縮合反応を促進する作用をなす。
金属キレート化合物中のRおよびRは、同一または異なってもよく炭素数1〜10のアルキル基、具体的にはエチル基、n−プロピル基、i−プロピル基、n−ブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、フェニル基などである。また、Rは、前記と同様の炭素数1〜10のアルキル基のほか、炭素数1〜10のアルコキシ基、例えばメトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、sec −ブトキシ基、t−ブトキシ基などである。また、金属キレート化合物中のp1、p2、q1、q2、r1、およびr2は、それぞれp1+p2=4、q1+q2=4、r1+r2=3となる様に決定される整数を表す。
Metal chelate compounds (wherein, R 3 represents an alkyl group having 1 to 10 carbon atoms) Formula R 3 OH alcohol and R 4 COCH 2 COR 5 (wherein represented by, R 4 is C 1 -C To 10 alkyl groups, R 5 represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms), and is selected from Zr, Ti, and Al. Any metal having a metal as a central metal can be suitably used without particular limitation. Within this category, two or more metal chelate compounds may be used in combination. The metal chelate compound used in the present invention has a general formula of Zr (OR 3 ) p1 (R 4 COCHCOR 5 ) p2 , Ti (OR 3 ) q1 (R 4 COCHCOR 5 ) q2 , and Al (OR 3 ) r1 (R 4 Those selected from the group of compounds represented by COCHCOR 5 ) r2 are preferred, and they serve to promote the condensation reaction of the hydrolyzate and partial condensate of the organosilane compound.
R 3 and R 4 in the metal chelate compound may be the same or different and each is an alkyl group having 1 to 10 carbon atoms, specifically, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, sec -Butyl group, t-butyl group, n-pentyl group, phenyl group and the like. R 5 represents an alkyl group having 1 to 10 carbon atoms as described above, or an alkoxy group having 1 to 10 carbon atoms such as a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, and n-butoxy. Group, sec-butoxy group, t-butoxy group and the like. Moreover, p1, p2, q1, q2, r1, and r2 in the metal chelate compound represent integers determined so as to be p1 + p2 = 4, q1 + q2 = 4, and r1 + r2 = 3, respectively.

これらの金属キレート化合物の具体例としては、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジ−n−ブトキシビス(エチルアセトアセテート)ジルコニウム、n−ブトキシトリス(エチルアセトアセテート)ジルコニウム、テトラキス(n−プロピルアセトアセテート)ジルコニウム、テトラキス(アセチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウムなどのジルコニウムキレート化合物;ジイソプロポキシ・ビス(エチルアセトアセテート)チタニウム、ジイソプロポキシ・ビス(アセチルアセテート)チタニウム、ジイソプロポキシ・ビス(アセチルアセトン)チタニウムなどのチタニウムキレート化合物;ジイソプロポキシエチルアセトアセテートアルミニウム、ジイソプロポキシアセチルアセトナートアルミニウム、イソプロポキシビス(エチルアセトアセテート)アルミニウム、イソプロポキシビス(アセチルアセトナート)アルミニウム、トリス(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナート)アルミニウム、モノアセチルアセトナート・ビス(エチルアセトアセテート)アルミニウムなどのアルミニウムキレート化合物などが挙げられる。
これらの金属キレート化合物のうち好ましいものは、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジイソプロポキシビス(アセチルアセトナート)チタニウム、ジイソプロポキシエチルアセトアセテートアルミニウム、トリス(エチルアセトアセテート)アルミニウムである。これらの金属キレート化合物は、1種単独であるいは2種以上混合して使用することができる。また、これらの金属キレート化合物の部分加水分解物を使用することもできる。
Specific examples of these metal chelate compounds include tri-n-butoxyethylacetoacetate zirconium, di-n-butoxybis (ethylacetoacetate) zirconium, n-butoxytris (ethylacetoacetate) zirconium, tetrakis (n-propylacetate). Zirconium chelate compounds such as acetate) zirconium, tetrakis (acetylacetoacetate) zirconium, tetrakis (ethylacetoacetate) zirconium; diisopropoxy bis (ethylacetoacetate) titanium, diisopropoxy bis (acetylacetate) titanium, diiso Titanium chelate compounds such as propoxy bis (acetylacetone) titanium; diisopropoxyethyl acetoacetate aluminum, diisopropyl Poxyacetylacetonate aluminum, isopropoxybis (ethylacetoacetate) aluminum, isopropoxybis (acetylacetonate) aluminum, tris (ethylacetoacetate) aluminum, tris (acetylacetonate) aluminum, monoacetylacetonate bis (ethyl) An aluminum chelate compound such as acetoacetate) aluminum.
Among these metal chelate compounds, tri-n-butoxyethyl acetoacetate zirconium, diisopropoxybis (acetylacetonate) titanium, diisopropoxyethyl acetoacetate aluminum, and tris (ethyl acetoacetate) aluminum are preferable. These metal chelate compounds can be used individually by 1 type or in mixture of 2 or more types. Moreover, the partial hydrolyzate of these metal chelate compounds can also be used.

金属キレート化合物は、前記オルガノシラン化合物に対し、好ましくは0.01〜50質量%、より好ましくは0.1〜50質量%、さらに好ましくは0.5〜10質量%の割合で用いられる。金属キレート化合物が上記範囲で用いられることによりオルガノシラン化合物の縮合反応が早く、塗膜の耐久性が良好であり、オルガノシラン化合物の加水分解物および部分縮合物と金属キレート化合物を含有してなる組成物の保存安定性が良好である。   The metal chelate compound is preferably used in a proportion of 0.01 to 50% by mass, more preferably 0.1 to 50% by mass, and still more preferably 0.5 to 10% by mass with respect to the organosilane compound. When the metal chelate compound is used within the above range, the condensation reaction of the organosilane compound is fast, the durability of the coating film is good, and the hydrolyzate and partial condensate of the organosilane compound and the metal chelate compound are contained. The storage stability of the composition is good.

本発明に用いられる塗布液には、上記ゾル成分および金属キレート化合物を含む組成物に加えて、β−ジケトン化合物およびβ−ケトエステル化合物の少なくともいずれかが添加されることが好ましい。以下にさらに説明する。
本発明で使用されるのは、一般式RCOCH2 CORで表されるβ−ジケトン化合物およびβ−ケトエステル化合物の少なくともいずれかであり、本発明に用いられる組成物の安定性向上剤として作用するものである。すなわち、前記金属キレート化合物(ジルコニウム、チタニウムおよびアルミニウム化合物の少なくともいずれかの化合物)中の金属原子に配位することにより、これらの金属キレート化合物によるオルガノシラン化合物の加水分解物および部分縮合物の縮合反応を促進する作用を抑制し、得られる組成物の保存安定性を向上させる作用をなすものと考えられる。β−ジケトン化合物およびβ−ケトエステル化合物を構成するRおよびRは、前記金属キレート化合物を構成するRおよびRと同様である。
In addition to the composition containing the sol component and the metal chelate compound, at least one of a β-diketone compound and a β-ketoester compound is preferably added to the coating solution used in the present invention. This will be further described below.
In the present invention, at least one of a β-diketone compound and a β-ketoester compound represented by the general formula R 4 COCH 2 COR 5 is used as a stability improver for the composition used in the present invention. It works. That is, by coordinating with a metal atom in the metal chelate compound (a compound of at least one of zirconium, titanium and aluminum compounds), condensation of hydrolyzate and partial condensate of organosilane compound by these metal chelate compounds It is considered that the action of accelerating the reaction is suppressed and the action of improving the storage stability of the resulting composition is achieved. R 4 and R 5 constituting the β- diketone compound and β- ketoester compound are the same as R 4 and R 5 constituting the metal chelate compound.

このβ−ジケトン化合物およびβ−ケトエステル化合物の具体例としては、アセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸−n−プロピル、アセト酢酸−i−プロピル、アセト酢酸−n−ブチル、アセト酢酸−sec-ブチル、アセト酢酸−t−ブチル、2,4−ヘキサン−ジオン、2,4−ヘプタン−ジオン、3,5−ヘプタン−ジオン、2,4−オクタン−ジオン、2,4−ノナン−ジオン、5−メチル−ヘキサン−ジオンなどを挙げることができる。これらのうち、アセト酢酸エチルおよびアセチルアセトンが好ましく、特にアセチルアセトンが好ましい。これらのβ−ジケトン化合物およびβ−ケトエステル化合物は、1種単独でまたは2種以上を混合して使用することもできる。本発明においてβ−ジケトン化合物およびβ−ケトエステル化合物は、金属キレート化合物1モルに対し好ましくは2モル以上、より好ましくは3〜20モル用いられる。2モル以上にすることにより、得られる組成物の保存安定性を向上することができ好ましい。   Specific examples of the β-diketone compound and β-ketoester compound include acetylacetone, methyl acetoacetate, ethyl acetoacetate, acetoacetate-n-propyl, acetoacetate-i-propyl, acetoacetate-n-butyl, acetoacetate- sec-butyl, acetoacetate-t-butyl, 2,4-hexane-dione, 2,4-heptane-dione, 3,5-heptane-dione, 2,4-octane-dione, 2,4-nonane-dione , 5-methyl-hexane-dione and the like. Of these, ethyl acetoacetate and acetylacetone are preferred, and acetylacetone is particularly preferred. These β-diketone compounds and β-ketoester compounds can be used alone or in admixture of two or more. In the present invention, the β-diketone compound and the β-ketoester compound are preferably used in an amount of 2 mol or more, more preferably 3 to 20 mol, per 1 mol of the metal chelate compound. By making it 2 mol or more, the storage stability of the composition obtained can be improved, which is preferable.

上記オルガノシラン化合物の加水分解物および部分縮合物の含有量は、比較的薄膜である反射防止層の場合は少なく、厚膜であるハードコート層や光拡散層の場合は多いことが好ましい。含有量は効果の発現、屈折率、膜の形状・面状等を考慮すると、含有層(添加層)形成用組成物の全固形分の0.1〜50質量%が好ましく、0.5〜30質量%がより好ましく、1〜15質量%が最も好ましい。この範囲であると、塗布後、乾燥、加熱工程で縮合して硬化物を形成し、上記反射防止層、ハードコート層、光拡散層のバインダーの一部になり、耐擦傷性が向上する。   The content of the hydrolyzate and partial condensate of the organosilane compound is preferably small in the case of a relatively thin antireflection layer and large in the case of a thick hard coat layer or light diffusion layer. The content is preferably 0.1 to 50% by mass based on the total solid content of the composition for forming a containing layer (added layer), considering the expression of the effect, the refractive index, the shape / surface shape of the film, and the like. 30 mass% is more preferable, and 1-15 mass% is the most preferable. Within this range, after coating, it is condensed by a drying and heating step to form a cured product, and becomes a part of the binder of the antireflection layer, hard coat layer, and light diffusion layer, and the scratch resistance is improved.

1−(5)開始剤
各種の重合性化合物、例えばエチレン性不飽和基を有するモノマーの重合は、光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる。
本発明のフィルムを作製するに当り、光開始剤あるいは熱開始剤を併用することができる。
1- (5) Initiator Polymerization of various polymerizable compounds, for example, monomers having an ethylenically unsaturated group, can be carried out by irradiation with ionizing radiation or heating in the presence of a photo radical initiator or a thermal radical initiator. .
In producing the film of the present invention, a photoinitiator or a thermal initiator can be used in combination.

<光開始剤>
光ラジカル重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類(特開2001−139663号等)、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、ロフィンダイマー類、オニウム塩類、ボレート塩類、活性エステル類、活性ハロゲン類、無機錯体、クマリン類などが挙げられる。
アセトフェノン類の例には、2,2−ジメトキシアセトフェノン、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシ−ジメチルフェニルケトン、1−ヒドロキシ−ジメチル−p−イソプロピルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン、4−フェノキシジクロロアセトフェノン、4−t−ブチル−ジクロロアセトフェノン、が含まれる。
<Photoinitiator>
Examples of photo radical polymerization initiators include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides (JP-A No. 2001-139663, etc.), 2, 3 -Dialkyldione compounds, disulfide compounds, fluoroamine compounds, aromatic sulfoniums, lophine dimers, onium salts, borate salts, active esters, active halogens, inorganic complexes, coumarins and the like.
Examples of acetophenones include 2,2-dimethoxyacetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxy-dimethylphenylketone, 1-hydroxy-dimethyl-p-isopropylphenylketone, 1-hydroxy Cyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropiophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone, 4-phenoxydichloroacetophenone, 4-t- Butyl-dichloroacetophenone is included.

ベンゾイン類の例には、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジメチルケタール、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテルおよびベンゾインイソプロピルエーテルが含まれる。
ベンゾフェノン類の例には、ベンゾフェノン、ヒドロキシベンゾフェノン、4−ベンゾイル−4’−メチルジフェニルサルファイド、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノンおよびp−クロロベンゾフェノン、4,4’−ジメチルアミノベンゾフェノン(ミヒラーケトン)、3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノンなどが含まれる。
Examples of benzoins include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyl dimethyl ketal, benzoin benzene sulfonate, benzoin toluene sulfonate, benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether It is.
Examples of benzophenones include benzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone and p-chlorobenzophenone, 4,4′-dimethylaminobenzophenone (Michler ketone), 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, and the like are included.

ボレート塩としては、例えば、特許第2764769号、特開2002−116539号等の各公報、および、Kunz,Martin“Rad Tech’98.Proceeding April 19〜22頁,1998年,Chicago”等に記載される有機ホウ酸塩記載される化合物があげられる。例えば、前記特開2002−116539号明細書の段落番号[0022]〜[0027]記載の化合物が挙げられる。またその他の有機ホウ素化合物としては、特開平6−348011号公報、特開平7−128785号公報、特開平7−140589号公報、特開平7−306527号公報、特開平7−292014号公報等の有機ホウ素遷移金属配位錯体等が具体例として挙げられ、具体例にはカチオン性色素とのイオンコンプレックス類が挙げられる。   Examples of the borate salt are described in Japanese Patent Nos. 2764769 and 2002-116539, and Kunz, Martin “Rad Tech'98. Proceeding April 19-22, 1998, Chicago”. And the organic borate compounds described. For example, the compounds described in JP-A-2002-116539, paragraph numbers [0022] to [0027] can be mentioned. Examples of other organic boron compounds include JP-A-6-348011, JP-A-7-128785, JP-A-7-140589, JP-A-7-306527, and JP-A-7-292014. Specific examples include organoboron transition metal coordination complexes and the like, and specific examples include ion complexes with cationic dyes.

ホスフィンオキシド類の例には、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシドが含まれる。
活性エステル類の例には1、2−オクタンジオン、1−[4−(フェニルチオ)−,2−(O−ベンゾイルオキシム)]、スルホン酸エステル類、環状活性エステル化合物などが含まれる。
具体的には特開2000−80068記載の実施例記載化合物1〜21が特に好ましい。
オニウム塩類の例には、芳香族ジアゾニウム塩、芳香族ヨードニウム塩、芳香族スルホニウム塩が挙げられる。
Examples of phosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
Examples of active esters include 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], sulfonic acid esters, cyclic active ester compounds, and the like.
Specifically, Examples 1 to 21 described in JP-A 2000-80068 are particularly preferable.
Examples of the onium salts include aromatic diazonium salts, aromatic iodonium salts, and aromatic sulfonium salts.

活性ハロゲン類としては、具体的には、若林 等の“Bull Chem.Soc Japan”42巻、2924頁(1969年)、米国特許第3,905,815号明細書、特開平5−27830号、M.P.Hutt“Jurnal of Heterocyclic Chemistry”1巻(3号),(1970年)等に記載の化合物が挙げられ、特に、トリハロメチル基が置換したオキサゾール化合物:s−トリアジン化合物が挙げられる。より好適には、少なくとも一つのモノ、ジまたはトリハロゲン置換メチル基がs−トリアジン環に結合したs−トリアジン誘導体が挙げられる。具体的な例にはS−トリアジンやオキサチアゾール化合物が知られており、2−(p−メトキシフェニル)−4,6−ビス(トリクロルメチル)−s−トリアジン、2−(p−メトキシフェニル)−4,6−ビス(トリクロルメチル)−s−トリアジン、2−(p−スチリルフェニル)−4,6−ビス(トリクロルメチル)−s−トリアジン、2−(3−Br−4−ジ(エチル酢酸エステル)アミノ)フェニル)−4,6−ビス(トリクロルメチル)−s−トリアジン、2−トリハロメチル−5−(p−メトキシフェニル)−1,3,4−オキサジアゾールが含まれる。具体的には特開昭58−15503のp14〜p30、特開昭55−77742のp6〜p10、特公昭60−27673のp287記載のNo.1〜No.8、特開昭60−239736のp443〜p444のNo.1〜No.17、US−4701399のNo.1〜19などの化合物が特に好ましい。
無機錯体の例にはビス(η−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフルオロ−3−(1H−ピロール−1−イル)−フェニル)チタニウムが挙げられる。
クマリン類の例には3−ケトクマリンが挙げられる。
Specific examples of the active halogens include Wakabayashi et al., “Bull Chem. Soc Japan” 42, 2924 (1969), US Pat. No. 3,905,815, JP-A-5-27830, M.M. P. Examples include compounds described in Hutt “Journal of Heterocyclic Chemistry”, Vol. 1 (No. 3), (1970), and in particular, oxazole compounds substituted with a trihalomethyl group: s-triazine compounds. More preferred are s-triazine derivatives in which at least one mono-, di- or trihalogen-substituted methyl group is bonded to the s-triazine ring. Specific examples include S-triazine and oxathiazole compounds, such as 2- (p-methoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (p-methoxyphenyl). -4,6-bis (trichloromethyl) -s-triazine, 2- (p-styrylphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (3-Br-4-di (ethyl) Acetate) amino) phenyl) -4,6-bis (trichloromethyl) -s-triazine, 2-trihalomethyl-5- (p-methoxyphenyl) -1,3,4-oxadiazole. Specifically, p.14 to p30 in JP-A-58-15503, p6-p10 in JP-A-55-77742, and p287 in JP-B-60-27673. 1-No. 8, No. pp. 443 to p444 of JP-A-60-239736. 1-No. 17, No. 4,701,399. Compounds such as 1-19 are particularly preferred.
Examples of inorganic complexes include bis (η 5 -2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium.
Examples of coumarins include 3-ketocoumarin.

これらの開始剤は単独でも混合して用いても良い。
「最新UV硬化技術」,(株)技術情報協会,1991年,p.159、及び、「紫外線硬化システム」 加藤清視著、平成元年、総合技術センター発行、p.65〜148にも種々の例が記載されており本発明に有用である。
These initiators may be used alone or in combination.
“Latest UV Curing Technology”, Technical Information Association, 1991, p. 159, and “UV curing system” written by Kayo Kiyomi, 1989, General Technology Center, p. Various examples are also described in 65-148 and are useful in the present invention.

市販の光ラジカル重合開始剤としては、日本化薬(株)製のKAYACURE(DETX−S,BP−100,BDMK,CTX,BMS,2−EAQ,ABQ,CPTX,EPD,ITX,QTX,BTC,MCAなど)、チバ・スペシャルティ・ケミカルズ(株)製のイルガキュア(651,184,500,819,907,369,1173,1870,2959,4265,4263など)、サートマー社製のEsacure(KIP100F,KB1,EB3,BP,X33,KT046,KT37,KIP150,TZT)等およびそれらの組合せが好ましい例として挙げられる。   Commercially available photo radical polymerization initiators include KAYACURE (DETX-S, BP-100, BDKM, CTX, BMS, 2-EAQ, ABQ, CPTX, EPD, ITX, QTX, BTC, manufactured by Nippon Kayaku Co., Ltd. MCA, etc.), Irgacure (651, 184, 500, 819, 907, 369, 1173, 1870, 2959, 4265, 4263, etc.) manufactured by Ciba Specialty Chemicals, Ltd., Esacure (KIP100F, KB1, manufactured by Sartomer) EB3, BP, X33, KT046, KT37, KIP150, TZT) and the like and combinations thereof are preferred examples.

光重合開始剤は、多官能モノマー100質量部に対して、0.1〜15質量部の範囲で使用することが好ましく、より好ましくは1〜10質量部の範囲である。   It is preferable to use a photoinitiator in the range of 0.1-15 mass parts with respect to 100 mass parts of polyfunctional monomers, More preferably, it is the range of 1-10 mass parts.

<光増感剤>
光重合開始剤に加えて、光増感剤を用いてもよい。光増感剤の具体例として、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、ミヒラーケトンおよびチオキサントン、などを挙げることができる。
更にアジド化合物、チオ尿素化合物、メルカプト化合物などの助剤を1種以上組み合わせて用いてもよい。
市販の光増感剤としては、日本化薬(株)製のKAYACURE(DMBI,EPA)などが挙げられる。
<Photosensitizer>
In addition to the photopolymerization initiator, a photosensitizer may be used. Specific examples of the photosensitizer include n-butylamine, triethylamine, tri-n-butylphosphine, Michler's ketone and thioxanthone.
Further, one or more auxiliary agents such as an azide compound, a thiourea compound, and a mercapto compound may be used in combination.
Examples of commercially available photosensitizers include KAYACURE (DMBI, EPA) manufactured by Nippon Kayaku Co., Ltd.

<熱開始剤>
熱ラジカル開始剤としては、有機あるいは無機過酸化物、有機アゾ及びジアゾ化合物等を用いることができる。
具体的には、有機過酸化物として過酸化ベンゾイル、過酸化ハロゲンベンゾイル、過酸化ラウロイル、過酸化アセチル、過酸化ジブチル、クメンヒドロぺルオキシド、ブチルヒドロぺルオキシド、無機過酸化物として、過酸化水素、過硫酸アンモニウム、過硫酸カリウム等、アゾ化合物として2,2’−アゾビス(イソブチロニトリル)、2,2’−アゾビス(プロピオニトリル)、1,1’−アゾビス(シクロヘキサンカルボニトリル)等、ジアゾ化合物としてジアゾアミノベンゼン、p−ニトロベンゼンジアゾニウム等が挙げられる。
<Thermal initiator>
As the thermal radical initiator, organic or inorganic peroxides, organic azo, diazo compounds, and the like can be used.
Specifically, benzoyl peroxide, halogen benzoyl peroxide, lauroyl peroxide, acetyl peroxide, dibutyl peroxide, cumene hydroperoxide, butyl hydroperoxide as organic peroxides, hydrogen peroxide, peroxides as inorganic peroxides. Diazo compounds such as ammonium sulfate, potassium persulfate and the like, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (propionitrile), 1,1′-azobis (cyclohexanecarbonitrile), etc. And diazoaminobenzene, p-nitrobenzenediazonium and the like.

熱開始剤は、多官能モノマー100質量部に対して、0.1〜15質量部の範囲で使用することが好ましく、より好ましくは1〜10質量部の範囲である。   It is preferable to use a thermal initiator in the range of 0.1-15 mass parts with respect to 100 mass parts of polyfunctional monomers, More preferably, it is the range of 1-10 mass parts.

1−(6)架橋性化合物
本発明を構成するモノマーあるいはポリマーバインダーが単独で十分な硬化性を有しない場合には、架橋性化合物を配合することにより、必要な硬化性を付与することができる。
例えばポリマー本体に水酸基含有する場合には、各種アミノ化合物を硬化剤として用いることが好ましい。架橋性化合物として用いられるアミノ化合物は、例えば、ヒドロキシアルキルアミノ基及びアルコキシアルキルアミノ基のいずれか一方又は両方を合計で2個以上含有する化合物であり、具体的には、例えば、メラミン系化合物、尿素系化合物、ベンゾグアナミン系化合物、グリコールウリル系化合物等を挙げることができる。
1- (6) Crosslinkable compound When the monomer or polymer binder constituting the present invention alone does not have sufficient curability, necessary curability can be imparted by blending the crosslinkable compound. .
For example, when the polymer body contains a hydroxyl group, various amino compounds are preferably used as the curing agent. The amino compound used as the crosslinkable compound is, for example, a compound containing a total of two or more of any one or both of a hydroxyalkylamino group and an alkoxyalkylamino group. Specifically, for example, a melamine compound, Examples include urea compounds, benzoguanamine compounds, glycoluril compounds, and the like.

メラミン系化合物は、一般にトリアジン環に窒素原子が結合した骨格を有する化合物として知られているものであり、具体的には、メラミン、アルキル化メラミン、メチロールメラミン、アルコキシ化メチルメラミン等を挙げることができるが、1分子中にメチロール基及びアルコキシ化メチル基のいずれか一方又は両方を合計で2個以上有するものが好ましい。具体的には、メラミンとホルムアルデヒドとを塩基性条件下で反応させて得られるメチロール化メラミン、アルコキシ化メチルメラミン、又はそれらの誘導体が好ましく、特に硬化性樹脂組成物に良好な保存安定性が得られる点、及び良好な反応性が得られる点で、アルコキシ化メチルメラミンが好ましい。架橋性化合物として用いられるメチロール化メラミン及びアルコシ化メチルメラミンには特に制約はなく、例えば、文献「プラスチック材料講座[8]ユリア・メラミン樹脂」(日刊工業新聞社)に記載されている方法で得られる各種の樹脂状物の使用も可能である。   Melamine compounds are generally known as compounds having a skeleton in which a nitrogen atom is bonded to a triazine ring, and specific examples include melamine, alkylated melamine, methylol melamine, alkoxylated methyl melamine, and the like. However, it is preferable to have one or both of a methylol group and an alkoxylated methyl group in one molecule in total. Specifically, methylolated melamine, alkoxylated methylmelamine, or a derivative thereof obtained by reacting melamine and formaldehyde under basic conditions is preferable, and good storage stability is obtained particularly for the curable resin composition. Alkoxylated methyl melamine is preferable in that it can be obtained and good reactivity can be obtained. There are no particular restrictions on the methylolated melamine and the alkoxylated methylmelamine used as the crosslinkable compound. For example, the methylolated melamine and the alkoxylated methylmelamine can be obtained by the method described in the document “Plastic Materials Course [8] Urea Melamine Resin” (Nikkan Kogyo Shimbun). Various resinous materials can be used.

また、尿素系化合物としては、尿素の他、ポリメチロール化尿素その誘導体であるアルコキシ化メチル尿素、ウロン環を有するメチロール化ウロン及びアルコキシ化メチルウロン等を挙げることができる。そして、尿素誘導体等の化合物についても、上記の文献に記載されている各種樹脂状物の使用が可能である。   In addition to urea, examples of the urea compound include polymethylolated urea, alkoxylated methylurea which is a derivative thereof, methylolated uron having a uron ring, and alkoxylated methyluron. And also about compounds, such as a urea derivative, the use of the various resinous materials described in said literature is possible.

1−(7)硬化触媒
本発明のフィルムには、硬化を促進する硬化触媒として電離放射線または熱の照射により発生したラジカルや酸を使用することができる。
1- (7) Curing Catalyst In the film of the present invention, radicals and acids generated by irradiation with ionizing radiation or heat can be used as a curing catalyst for promoting curing.

<熱酸発生剤>
熱酸発生剤の具体例としては、例えば、各種脂肪族スルホン酸とその塩、クエン酸、酢酸、マレイン酸等の各種脂肪族カルボン酸とその塩、安息香酸、フタル酸等の各種芳香族カルボン酸とその塩、アルキルベンゼンスルホン酸とそのアンモニウム塩、アミン塩、各種金属塩、リン酸や有機酸のリン酸エステル等を挙げることができる。
市販されている材料としては、キャタリスト4040、キャタリスト4050、キャタリスト600、キャタリスト602、キャタリスト500、キャタリスト296−9、以上日本サイテックインダストリーズ(株)製、やNACUREシリーズ155、1051、5076、4054JやそのブロックタイプのNACUREシリーズ2500、5225、X49−110、3525、4167以上キング社製などが挙げられる。
この熱酸発生剤の使用割合は、含有層(添加層)形成用組成物の全固形分100質量部に対して、好ましくは0.01〜10質量部、さらに好ましくは0.1〜5質量部である。添加量がこの範囲であると、該組成物の保存安定性が良好で塗膜の耐擦傷性も良好なものとなる。
<Heat acid generator>
Specific examples of the thermal acid generator include various aliphatic sulfonic acids and salts thereof, various aliphatic carboxylic acids and salts thereof such as citric acid, acetic acid and maleic acid, and various aromatic carboxylic acids such as benzoic acid and phthalic acid. Examples thereof include acids and salts thereof, alkylbenzenesulfonic acids and ammonium salts thereof, amine salts, various metal salts, phosphoric acid and phosphoric acid esters of organic acids, and the like.
Examples of commercially available materials include catalyst 4040, catalyst 4050, catalyst 600, catalyst 602, catalyst 500, catalyst 296-9, and more made by Nippon Cytec Industries, Inc., and NACURE series 155, 1051, 5076, 4054J and its block type NACURE series 2500, 5225, X49-110, 3525, 4167 or more manufactured by King Corporation, and the like.
The use ratio of the thermal acid generator is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, with respect to 100 parts by mass of the total solid content of the composition for forming the containing layer (addition layer). Part. When the addition amount is within this range, the storage stability of the composition is good and the scratch resistance of the coating film is also good.

<感光性酸発生剤、光酸発生剤>
更に光重合開始剤として用いることができる光酸発生剤について詳述する。
酸発生剤としては、光カチオン重合の光開始剤、色素類の光消色剤、光変色剤、またはマイクロレジスト等に使用されている公知の酸発生剤等、公知の化合物およびそれらの混合物等が挙げられる。また、酸発生剤としては、例えば、有機ハロゲン化合物、ジスルホン化合物、オニウム化合物等が挙げられ、これらのうち有機ハロゲン化合物の具体例は、前記<光開始剤>の記載と同様のものが挙げられる。
感光性酸発生剤としては、例えば、(1)ヨードニウム塩、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、アンモニウム塩、ピリジニウム塩等の各種オニウム塩;(2)β−ケトエステル、β−スルホニルスルホンとこれらのα−ジアゾ化合物等のスルホン化合物;(3)アルキルスルホン酸エステル、ハロアルキルスルホン酸エステル、アリールスルホン酸エステル、イミノスルホネート等のスルホン酸エステル類;(4)スルホンイミド化合物類;(5)ジアゾメタン化合物類;を挙げることができる。
オニウム塩としては、ジアゾニウム塩、アンモニウム塩、イミニウム塩、ホスホニウム塩、ヨードニウム塩、スルホニウム塩、アルソニウム塩、セレノニウム塩等が挙げられる。中でも、ジアゾニウム塩、ヨードニウム塩、スルホニウム塩、イミニウム塩が、光重合開始の光感度、化合物の素材安定性等の点から好ましい。例えば特開2002−29162号明細書の段落番号[0058]〜[0059]に記載の化合物等が挙げられる。
<Photosensitive acid generator, photoacid generator>
Furthermore, the photo-acid generator which can be used as a photoinitiator is explained in full detail.
Examples of the acid generator include a photoinitiator for photocationic polymerization, a photodecolorant for dyes, a photochromic agent, a known acid generator used in a microresist, and the like, a known compound, and a mixture thereof. Is mentioned. Examples of the acid generator include organic halogen compounds, disulfone compounds, onium compounds, and the like. Specific examples of the organic halogen compounds among these include the same as those described in <Photoinitiator>. .
Examples of the photosensitive acid generator include (1) various onium salts such as iodonium salts, sulfonium salts, phosphonium salts, diazonium salts, ammonium salts, pyridinium salts; (2) β-ketoesters, β-sulfonylsulfones and these. sulfone compounds such as α-diazo compounds; (3) sulfonic acid esters such as alkyl sulfonic acid esters, haloalkyl sulfonic acid esters, aryl sulfonic acid esters, and imino sulfonates; (4) sulfonimide compounds; and (5) diazomethane compounds. Can be mentioned.
Examples of onium salts include diazonium salts, ammonium salts, iminium salts, phosphonium salts, iodonium salts, sulfonium salts, arsonium salts, and selenonium salts. Of these, diazonium salts, iodonium salts, sulfonium salts, and iminium salts are preferable from the viewpoint of photosensitivity at the start of photopolymerization, material stability of the compound, and the like. Examples thereof include compounds described in paragraph numbers [0058] to [0059] of JP-A-2002-29162.

感光性酸発生剤の使用割合は、含有層(添加層)形成用組成物の全固形分100質量部に対して、好ましくは0.01〜10質量部、さらに好ましくは0.1〜5質量部である。
その他、具体的な化合物や使用法として、例えば特開2005―43876号記載の内容などを用いることができる。
The use ratio of the photosensitive acid generator is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, with respect to 100 parts by mass of the total solid content of the composition for forming the containing layer (addition layer). Part.
In addition, as specific compounds and methods of use, for example, the contents described in JP-A-2005-43876 can be used.

1−(8)透光性粒子
本発明の光拡散層には、防眩性(表面散乱性)や内部散乱性を付与するため、各種の透光性粒子を用いることが好ましい。
1- (8) Translucent Particles It is preferable to use various translucent particles in the light diffusion layer of the present invention in order to impart antiglare properties (surface scattering properties) and internal scattering properties.

本発明の光拡散層中の透光性粒子は、ポリメチルメタクリレート粒子(屈折率1.49)、架橋ポリ(アクリル−スチレン)共重合体粒子(屈折率1.54)、メラミン樹脂粒子(屈折率1.57)、ポリカーボネート粒子(屈折率1.57)、ポリスチレン粒子(屈折率1.60)、架橋ポリスチレン粒子(屈折率1.61)、ポリ塩化ビニル粒子(屈折率1.60)、ベンゾグアナミン−メラミンホルムアルデヒド粒子(屈折率1.68)、シリカ粒子(屈折率1.44)、アルミナ粒子(屈折率1.63)、ジルコニア粒子、チタニア粒子、または中空や細孔を有する粒子等が用いられる。   The translucent particles in the light diffusion layer of the present invention are polymethyl methacrylate particles (refractive index 1.49), crosslinked poly (acryl-styrene) copolymer particles (refractive index 1.54), melamine resin particles (refractive index). 1.57), polycarbonate particles (refractive index 1.57), polystyrene particles (refractive index 1.60), crosslinked polystyrene particles (refractive index 1.61), polyvinyl chloride particles (refractive index 1.60), benzoguanamine -Melamine formaldehyde particles (refractive index 1.68), silica particles (refractive index 1.44), alumina particles (refractive index 1.63), zirconia particles, titania particles, particles having hollow or pores, etc. are used. .

なかでも架橋ポリ((メタ)アクリレート)粒子、架橋ポリ(アクリル−スチレン)粒子が好ましく用いられ、これらの粒子の中から選ばれた各透光性粒子の屈折率にあわせてバインダーの屈折率を調整することにより、本発明の光学フィルムの光拡散層に好適な内部ヘイズ、表面ヘイズ、中心線平均粗さ、散乱強度を達成することができる。
さらに、3官能以上の(メタ)アクリレートモノマーを主成分としたバインダー(硬化後の屈折率が1.50〜1.53)とアクリル含率50〜100質量パーセントである架橋ポリ(メタ)アクリレート重合体からなる透光性粒子を組み合わせて用いることが好ましく、特に3官能以上の(メタ)アクリレートモノマーを主成分としたバインダーと架橋ポリ((メタ)アクリレート)粒子(屈折率が1.49)との組合せが好ましい。
Of these, crosslinked poly ((meth) acrylate) particles and crosslinked poly (acryl-styrene) particles are preferably used, and the refractive index of the binder is adjusted according to the refractive index of each light-transmitting particle selected from these particles. By adjusting, it is possible to achieve internal haze, surface haze, centerline average roughness, and scattering intensity suitable for the light diffusion layer of the optical film of the present invention.
Further, a binder (having a refractive index after curing of 1.50 to 1.53) composed mainly of a trifunctional or higher functional (meth) acrylate monomer and a crosslinked poly (meth) acrylate weight having an acrylic content of 50 to 100 mass percent. It is preferable to use a combination of translucent particles made of a combination, and in particular, a binder mainly composed of a tri- or higher functional (meth) acrylate monomer and crosslinked poly ((meth) acrylate) particles (refractive index of 1.49) The combination of is preferable.

本発明におけるバインダー(透光性樹脂)と透光性粒子との屈折率は、1.45〜1.70であることが好ましく、より好ましくは1.48〜1.65である。屈折率を前記範囲とするには、バインダー及び透光性粒子の種類及び量割合を適宜選択すればよい。どのように選択するかは、予め実験的に容易に知ることができる。
また、本発明においては、透光性粒子と、該透光性粒子を除く光拡散層の屈折率との差(「透光性粒子の屈折率」−「該透光性粒子を除く光拡散層の屈折率」)は、絶対値として、好ましくは0.05未満であり、より好ましくは0.001〜0.030、更に好ましくは0.005〜0.020である。光拡散層中の透光性粒子と該透光性粒子を除く光拡散層の屈折率との差が0.05未満にすると、透光性粒子による光の屈折角度が小さくなり、散乱光が広角まで広がらず、コントラストの低下を引き起こしにくい。前記の屈折率差にするには、バインダーの屈折率を調節することが好ましい。バインダーの屈折率はバインダー種の選択以外に、後述の無機粒子を1〜90質量%使用することで調節することもできる。
The refractive index of the binder (translucent resin) and translucent particles in the present invention is preferably 1.45 to 1.70, more preferably 1.48 to 1.65. In order to set the refractive index within the above range, the type and amount ratio of the binder and the light-transmitting particles may be appropriately selected. How to select can be easily known experimentally in advance.
In the present invention, the difference between the translucent particles and the refractive index of the light diffusion layer excluding the translucent particles (“refractive index of the translucent particles” − “light diffusion excluding the translucent particles” The refractive index of the layer ") is preferably less than 0.05 as an absolute value, more preferably 0.001 to 0.030, still more preferably 0.005 to 0.020. When the difference between the refractive index of the light-transmitting particles in the light-diffusing layer and the light-diffusing layer excluding the light-transmitting particles is less than 0.05, the refraction angle of light by the light-transmitting particles is reduced, and the scattered light is It does not spread to a wide angle and hardly causes a decrease in contrast. In order to obtain the difference in refractive index, it is preferable to adjust the refractive index of the binder. The refractive index of the binder can be adjusted by using 1 to 90% by mass of inorganic particles described later in addition to the selection of the binder type.

ここで、該透光性粒子を除く光拡散層の屈折率は、アッベ屈折計で直接測定するか、分光反射スペクトルや分光エリプソメトリーを測定するなどして定量評価できる。前記透光性粒子の屈折率は、屈折率の異なる2種類の溶媒の混合比を変化させて屈折率を変化させた溶媒中に透光性粒子を等量分散して濁度を測定し、濁度が極小になった時の溶媒の屈折率をアッベ屈折計で測定することで測定される。   Here, the refractive index of the light diffusion layer excluding the translucent particles can be quantitatively evaluated by directly measuring with an Abbe refractometer or by measuring a spectral reflection spectrum or a spectral ellipsometry. The refractive index of the translucent particles is measured by measuring the turbidity by dispersing an equal amount of the translucent particles in the solvent in which the refractive index is changed by changing the mixing ratio of two types of solvents having different refractive indexes. It is measured by measuring the refractive index of the solvent when the turbidity is minimized with an Abbe refractometer.

上記のような透光性粒子の場合には、バインダー中で透光性粒子が沈降し易いので、沈降防止のためにシリカ等の無機フィラーを添加してもよい。なお、無機フィラーは添加量が増す程、透光性粒子の沈降防止に有効であるが、塗膜の透明性に悪影響を与える。従って、好ましくは、粒径0.5μm以下の無機フィラーを、バインダーに対して塗膜の透明性を損なわない程度に、バインダー形成成分100質量部に対して0.1質量部%未満程度含有させるとよい。   In the case of the above translucent particles, the translucent particles easily settle in the binder, and therefore an inorganic filler such as silica may be added to prevent sedimentation. As the amount of the inorganic filler added increases, it is more effective in preventing the translucent particles from settling, but adversely affects the transparency of the coating film. Accordingly, preferably, an inorganic filler having a particle size of 0.5 μm or less is contained in an amount of less than about 0.1 parts by mass with respect to 100 parts by mass of the binder-forming component so as not to impair the transparency of the coating film with respect to the binder. Good.

透光性粒子の平均粒径は、3〜12μmが好ましく、より好ましくは4.0〜10.0μm、更に好ましくは5〜8μmである。光の散乱角度分布が広角にまで広がらず、ディスプレイの文字ボケ、コントラスト低下を引き起こしにくい点で、平均粒径は3μm以上が好ましい。一方、添加する層の膜厚を厚くする必要がなく、カールやコスト上昇といった問題が生じにくい点で、12μm以下が好ましい。更に上記範囲内にすることは、塗工時の塗布量を抑えられ、乾燥が速く、乾燥ムラ等の面状欠陥を生じにくい点でも好ましい。   The average particle diameter of the translucent particles is preferably 3 to 12 μm, more preferably 4.0 to 10.0 μm, and still more preferably 5 to 8 μm. The average particle diameter is preferably 3 μm or more from the viewpoint that the light scattering angle distribution does not spread to a wide angle and is difficult to cause blurring of characters and a decrease in contrast. On the other hand, it is not necessary to increase the thickness of the layer to be added, and 12 μm or less is preferable because it is difficult to cause problems such as curling and cost increase. Furthermore, it is preferable that the amount falls within the above range from the viewpoint that the coating amount during coating can be suppressed, drying is quick, and surface defects such as drying unevenness are unlikely to occur.

透光性粒子の平均粒径の測定方法は、粒子の平均粒径を測る測定方法であれば、任意の測定方法が適用できるが、好ましくは透過型電子顕微鏡(倍率50万〜200万倍)で粒子の観察を行い、粒子100個を観察し、その平均値をもって平均粒子径とできる。   The measuring method of the average particle diameter of the translucent particles can be any measuring method as long as it is a measuring method for measuring the average particle diameter of the particles, but preferably a transmission electron microscope (magnification of 500,000 to 2,000,000 times) The particles are observed by observing 100 particles, and the average value can be obtained as the average particle diameter.

本発明において、透光性粒子の形状は、特に限定されないが、真球状粒子の他に、異形粒子(例えば、非真球状粒子)といった形状の異なる透光性粒子を併用して用いてもよい。特に非真球状粒子の短軸を光拡散層の法線方向にそろえると、真球粒子に比べ、粒子径が小さなものが使用できるようになる。   In the present invention, the shape of the translucent particles is not particularly limited, but in addition to true spherical particles, translucent particles having different shapes such as irregularly shaped particles (for example, non-spherical particles) may be used in combination. . In particular, when the minor axes of non-spherical particles are aligned in the normal direction of the light diffusion layer, particles having a smaller particle diameter than the true spherical particles can be used.

前記透光性粒子は、光拡散層全固形分中に5〜40質量%含有されるように配合されることが好ましい。より好ましくは5〜25質量%、更に好ましくは7〜20質量%である。添加効果の点で5質量%以上が好ましく、画像ボケや表面の白濁やギラツキ等の問題が生じにくい点で、40質量%以下が好ましい。   The translucent particles are preferably blended so as to be contained in an amount of 5 to 40% by mass in the total solid content of the light diffusion layer. More preferably, it is 5-25 mass%, More preferably, it is 7-20 mass%. 5 mass% or more is preferable at the point of the addition effect, and 40 mass% or less is preferable at the point which image blurring, surface cloudiness, glare, etc. do not produce easily.

また、透光性粒子の塗布量は、好ましくは30〜2500mg/m、より好ましくは100〜2400mg/m、更に好ましくは600〜2300mg/mである。 Moreover, the application amount of the translucent particles is preferably 30 to 2500 mg / m 2 , more preferably 100 to 2400 mg / m 2 , and still more preferably 600 to 2300 mg / m 2 .

本発明に係る樹脂粒子の圧縮強度は4〜10kgf/mmが好ましく、4〜8kgf/mmがより好ましく、4〜6kgf/mmがさらに好ましい。この範囲であると膜硬度増加への寄与もあり、かつ脆性悪化による粒子破壊も起こりにくい。
圧縮強度は粒子径(粒径)が10%変形するときの圧縮強度をいう。粒径が10%変形するときの圧縮強度とは、粒子圧縮強度(S10強度)であり、島津製作所製微小圧縮試験機MCTW201を用いて樹脂粒子単体を1gfの荷重まで圧縮試験を行ない、粒子径が10%変形したときの荷重と圧縮前の粒子径とを次式に導入して得られる値である。
S10強度(kgf/mm)=2.8×荷重(kgf)/{(π×粒子径(mm)×粒子径(mm))
Compressive strength of the resin particles according to the present invention is preferably 4~10kgf / mm 2, more preferably 4~8kgf / mm 2, more preferably 4~6kgf / mm 2. Within this range, there is also a contribution to increasing the film hardness, and particle breakage due to deterioration in brittleness is unlikely to occur.
The compressive strength refers to the compressive strength when the particle size (particle size) is deformed by 10%. The compressive strength when the particle size is deformed by 10% is the particle compressive strength (S10 strength). The resin particle is subjected to a compression test up to a load of 1 gf using a Shimadzu micro compression tester MCTW201. Is a value obtained by introducing the load when 10% is deformed and the particle size before compression into the following equation.
S10 strength (kgf / mm 2 ) = 2.8 × load (kgf) / {(π × particle diameter (mm) × particle diameter (mm))

<透光性粒子調製、分級法> <Translucent particle preparation, classification method>

本発明に係る透光性粒子の製造法は、懸濁重合法、乳化重合法、ソープフリー乳化重合法、分散重合法、シード重合法等を挙げることができ、いずれの方法で製造されてもよい。これらの製造法は、例えば「高分子合成の実験法」(大津隆行、木下雅悦共著、化学同人社)130頁及び146頁から147頁の記載、「合成高分子」1巻、p.246〜290、同3巻、p.1〜108等に記載の方法、及び特許第2543503号明細書、同第3508304号明細書、同第2746275号明細書、同第3521560号明細書、同第3580320号明細書、特開平10−1561号公報、特開平7−2908号公報、特開平5−297506号公報、特開2002−145919号公報等に記載の方法を参考にすることができる。   Examples of the method for producing translucent particles according to the present invention include suspension polymerization, emulsion polymerization, soap-free emulsion polymerization, dispersion polymerization, seed polymerization, and the like. Good. These production methods are described in, for example, “Experimental Methods for Polymer Synthesis” (Takayuki Otsu and Masaaki Kinoshita, Chemical Dojinsha), pages 130 and 146 to 147, “Synthetic Polymers”, Vol. 246-290, 3rd volume, p. 1 to 108, etc., and Japanese Patent Nos. 2543503, 3508304, 2746275, 3521560, 3580320, and Japanese Patent Laid-Open No. 10-1561. Reference can be made to methods described in JP-A No. 7-2908, JP-A No. 5-297506, JP-A No. 2002-145919, and the like.

透光性粒子の粒度分布はヘイズ値と拡散性の制御、塗布面状の均質性から単分散性粒子が好ましい。粒子径の均一さを表すCV値は15%以下が好ましく、より好ましくは13%以下、更に好ましくは10%以下である。さらに、平均粒子径よりも20%以上粒子径が大きな粒子を粗大粒子と規定した場合、この粗大粒子の割合は全粒子数の1%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.01%以下である。このような粒度分布を持つ粒子は、調製または合成反応後に、分級することも有力な手段であり、分級の回数を上げることやその程度を強くすることで、望ましい分布の粒子を得ることができる。
分級には風力分級法、遠心分級法、沈降分級法、濾過分級法、静電分級法等の方法を用いることが好ましい。
The particle size distribution of the translucent particles is preferably monodisperse particles in terms of haze value and control of diffusibility, and uniformity of the coated surface. The CV value representing the uniformity of the particle diameter is preferably 15% or less, more preferably 13% or less, and still more preferably 10% or less. Further, when a particle having a particle size of 20% or more than the average particle size is defined as a coarse particle, the proportion of the coarse particle is preferably 1% or less, more preferably 0.1% or less of the total number of particles. More preferably, it is 0.01% or less. Particles having such a particle size distribution are also effective means of classification after preparation or synthesis reaction, and particles having a desired distribution can be obtained by increasing the number of classifications or increasing the degree of classification. .
It is preferable to use a method such as an air classification method, a centrifugal classification method, a sedimentation classification method, a filtration classification method, or an electrostatic classification method for classification.

1−(9)無機粒子
本発明のフィルムの機能層には硬度などの物理特性、反射率、散乱性などの光学特性などの向上のため、各種無機粒子を用いることができる。
無機粒子としては、珪素、ジルコニウム、チタン、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも一つ金属の酸化物、具体例としては、ZrO、TiO、Al、In、ZnO、SnO、Sb、ITO等が挙げられる。その他BaSO、CaCO、タルクおよびカオリンなどが含まれる。
1- (9) Inorganic Particles Various inorganic particles can be used in the functional layer of the film of the present invention in order to improve physical properties such as hardness, optical properties such as reflectance, and scattering properties.
As the inorganic particles, an oxide of at least one metal selected from silicon, zirconium, titanium, aluminum, indium, zinc, tin, and antimony, specific examples include ZrO 2 , TiO 2 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , ITO and the like can be mentioned. In addition, BaSO 4 , CaCO 3 , talc and kaolin are included.

本発明に使用する無機粒子の粒径は、分散媒体中でなるべく微細化されていることが好ましく、好ましい質量平均径は1〜200nmである。より好ましくは5〜150nmであり、さらに好ましくは10〜100nm、特に好ましくは10〜80nmである。無機粒子を100nm以下に微細化することで透明性を損なわないフィルムを形成できる。無機粒子の粒子径は、光散乱法や電子顕微鏡写真により測定できる。   The particle diameter of the inorganic particles used in the present invention is preferably as fine as possible in the dispersion medium, and the preferred mass average diameter is 1 to 200 nm. More preferably, it is 5-150 nm, More preferably, it is 10-100 nm, Most preferably, it is 10-80 nm. A film that does not impair the transparency can be formed by refining the inorganic particles to 100 nm or less. The particle diameter of the inorganic particles can be measured by a light scattering method or an electron micrograph.

無機粒子の比表面積は、10〜400m/gであることが好ましく、20〜200m/gであることがさらに好ましく、30〜150m/gであることが最も好ましい。 The specific surface area of the inorganic particles is preferably from 10 to 400 m 2 / g, more preferably from 20 to 200 m 2 / g, and most preferably from 30 to 150 m 2 / g.

本発明に使用する無機粒子は分散媒体中に分散物として使用する層の塗布液に添加することが好ましい。
無機粒子の分散媒体は、沸点が60〜170℃の液体を用いることが好ましい。分散媒体の例には、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が含まれる。トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンおよびブタノールが特に好ましい。
特に好ましい分散媒体は、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンである。
The inorganic particles used in the present invention are preferably added to a coating solution for a layer used as a dispersion in a dispersion medium.
As the dispersion medium for the inorganic particles, a liquid having a boiling point of 60 to 170 ° C. is preferably used. Examples of dispersion media include water, alcohol (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketone (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), ester (eg, methyl acetate, ethyl acetate, Propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate), aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene chloride, chloroform, carbon tetrachloride), aromatic Hydrocarbon (eg, benzene, toluene, xylene), amide (eg, dimethylformamide, dimethylacetamide, n-methylpyrrolidone), ether (eg, diethyl ether, dioxane, tetrahydrofuran), ether alcohol (eg, 1-methyl) Carboxymethyl-2-propanol) are included. Toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and butanol are particularly preferred.
Particularly preferred dispersion media are methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.

無機粒子は、分散機を用いて分散することが好ましい。分散機の例には、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライターおよびコロイドミルが含まれる。サンドグラインダーミルおよび高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例には、ボールミル、三本ロールミル、ニーダーおよびエクストルーダーが含まれる。   The inorganic particles are preferably dispersed using a disperser. Examples of dispersers include sand grinder mills (eg, pinned bead mills), high speed impeller mills, pebble mills, roller mills, attritors and colloid mills. A sand grinder mill and a high-speed impeller mill are particularly preferred. Further, preliminary dispersion processing may be performed. Examples of the disperser used for the preliminary dispersion treatment include a ball mill, a three-roll mill, a kneader, and an extruder.

<高屈折率粒子>
本発明のフィルムに必要に応じて設けられる機能層を高屈折率化する目的に対しては、屈折率の高い無機粒子をモノマーと開始剤、有機置換されたケイ素化合物中に分散した組成物の硬化物が好ましく用いられる。
この場合の無機粒子としては、屈折率の観点から、特にZrO、TiOが好ましく用いられる。光拡散層、ハードコート層の高屈折率化に対してはZrOが、高屈折率層、中屈折率層用の粒子としてはTiOの微粒子が最も好ましい。
<High refractive index particles>
For the purpose of increasing the refractive index of the functional layer provided as necessary in the film of the present invention, a composition in which inorganic particles having a high refractive index are dispersed in a monomer, an initiator, and an organically substituted silicon compound is used. A cured product is preferably used.
In this case, ZrO 2 and TiO 2 are particularly preferably used from the viewpoint of refractive index. ZrO 2 is most preferable for increasing the refractive index of the light diffusion layer and the hard coat layer, and TiO 2 fine particles are most preferable as the particles for the high refractive index layer and the medium refractive index layer.

上記TiOの粒子としては、コバルト、アルミニウム、ジルコニウムから選ばれる少なくとも1つの元素を含有するTiOを主成分とする無機粒子が特に好ましい。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。
本発明におけるTiOを主成分とする粒子は、屈折率が1.90〜2.80であることが好ましく、2.10〜2.80であることがさらに好ましく、2.20〜2.80であることが最も好ましい。
TiOを主成分とする粒子の一次粒子の質量平均径は1〜200nmであることが好ましく、より好ましくは1〜150nm、さらに好ましくは1〜100nm、特に好ましくは1〜80nmである。
As the TiO 2 particles, inorganic particles mainly containing TiO 2 containing at least one element selected from cobalt, aluminum, and zirconium are particularly preferable. The main component means a component having the largest content (mass%) among the components constituting the particles.
The particles mainly composed of TiO 2 in the present invention preferably have a refractive index of 1.90 to 2.80, more preferably 2.10 to 2.80, and 2.20 to 2.80. Most preferably.
The mass average diameter of primary particles of TiO 2 as a main component is preferably 1 to 200 nm, more preferably 1 to 150 nm, still more preferably 1 to 100 nm, and particularly preferably 1 to 80 nm.

TiOを主成分とする粒子の結晶構造は、ルチル、ルチル/アナターゼの混晶、アナターゼ、アモルファス構造が主成分であることが好ましく、特にルチル構造が主成分であることが好ましい。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。 The crystal structure of the particles containing TiO 2 as the main component is preferably a rutile, rutile / anatase mixed crystal, anatase, or amorphous structure, and particularly preferably a rutile structure. The main component means a component having the largest content (mass%) among the components constituting the particles.

TiOを主成分とする粒子に、Co(コバルト)、Al(アルミニウム)及びZr(ジルコニウム)から選ばれる少なくとも1つの元素を含有することで、TiOが有する光触媒活性を抑えることができ、本発明のフィルムの耐候性を改良することができる。
特に、好ましい元素はCo(コバルト)である。また、2種類以上を併用することも好ましい。
本発明のTiOを主成分とする無機粒子は、表面処理により特開2001−166104号公報記載のごとく、コア/シェル構造を有していても良い。
By containing at least one element selected from Co (cobalt), Al (aluminum), and Zr (zirconium) in particles containing TiO 2 as a main component, the photocatalytic activity of TiO 2 can be suppressed. The weather resistance of the inventive film can be improved.
A particularly preferable element is Co (cobalt). It is also preferable to use two or more types in combination.
The inorganic particles mainly composed of TiO 2 of the present invention may have a core / shell structure by surface treatment as described in JP-A No. 2001-166104.

層中のモノマーや無機粒子の添加量は、バインダーに対し、1〜45質量%であることが好ましく、1〜30質量%であると更に好ましい。無機粒子は層内で二種類以上用いても良い。   The addition amount of the monomer and inorganic particles in the layer is preferably 1 to 45% by mass and more preferably 1 to 30% by mass with respect to the binder. Two or more kinds of inorganic particles may be used in the layer.

<低屈折率粒子>
低屈折率層は無機粒子を含有することが好ましい。該無機粒子は、低屈折率であることが望ましく、フッ化マグネシウムやシリカの微粒子が挙げられる。特に、屈折率、分散安定性、コストの点でシリカ微粒子が好ましい。
シリカ微粒子の平均粒径は、低屈折率層の厚みの30%以上150%以下が好ましく、より好ましくは35%以上80%以下、更に好ましくは40%以上60%以下である。即ち、低屈折率層の厚みが100nmであれば、シリカ微粒子の粒径は30nm以上150nm以下が好ましく、より好ましくは35nm以上80nm以下、更に好ましくは、40nm以上60nm以下である。
ここで、無機粒子の平均粒径はコールターカウンターにより測定される。
<Low refractive index particles>
The low refractive index layer preferably contains inorganic particles. The inorganic particles desirably have a low refractive index, and examples thereof include magnesium fluoride and silica fine particles. In particular, silica fine particles are preferable in terms of refractive index, dispersion stability, and cost.
The average particle diameter of the silica fine particles is preferably 30% to 150% of the thickness of the low refractive index layer, more preferably 35% to 80%, and still more preferably 40% to 60%. That is, when the thickness of the low refractive index layer is 100 nm, the particle diameter of the silica fine particles is preferably 30 nm to 150 nm, more preferably 35 nm to 80 nm, and still more preferably 40 nm to 60 nm.
Here, the average particle diameter of the inorganic particles is measured by a Coulter counter.

シリカ微粒子の粒径が小さすぎると、耐擦傷性の改良効果が少なくなり、大きすぎると低屈折率層表面に微細な凹凸ができ、黒の締まりといった外観、積分反射率が悪化する。シリカ微粒子は、結晶質でも、アモルファスのいずれでも良く、また単分散粒子でも、所定の粒径を満たすならば凝集粒子でも構わない。形状は、球径が最も好ましいが、不定形であっても問題無い。   If the particle size of the silica fine particles is too small, the effect of improving the scratch resistance is reduced. If it is too large, fine irregularities are formed on the surface of the low refractive index layer, and the appearance such as black tightening and the integrated reflectance are deteriorated. The silica fine particles may be either crystalline or amorphous, and may be monodispersed particles or aggregated particles as long as a predetermined particle size is satisfied. The shape is most preferably a spherical diameter, but there is no problem even if the shape is indefinite.

また、平均粒径が低屈折率層の厚みの25%未満であるシリカ微粒子(「小サイズ粒径のシリカ微粒子」と称す)の少なくとも1種を上記の粒径のシリカ微粒子(「大サイズ粒径のシリカ微粒子」と称す)と併用することが好ましい。
小サイズ粒径のシリカ微粒子は、大サイズ粒径のシリカ微粒子同士の隙間に存在することができるため、大サイズ粒径のシリカ微粒子の保持剤として寄与することができる。
小サイズ粒径のシリカ微粒子の平均粒径は、低屈折率層が100nmの場合、1nm以上20nm以下が好ましく、5nm以上15nm以下が更に好ましく、10nm以上15nm以下が特に好ましい。このようなシリカ微粒子を用いると、原料コストおよび保持剤効果の点で好ましい。
Further, at least one kind of silica fine particles having an average particle size of less than 25% of the thickness of the low refractive index layer (referred to as “small size particle size silica particles”) is used as silica fine particles having the above particle size (“large size particles”). It is preferably used in combination with “silica fine particles having a diameter”.
Since the fine silica particles having a small particle size can exist in the gaps between the fine silica particles having a large particle size, they can contribute as a retaining agent for the fine silica particles having a large particle size.
When the low refractive index layer is 100 nm, the average particle size of the silica fine particles having a small size is preferably from 1 nm to 20 nm, more preferably from 5 nm to 15 nm, and particularly preferably from 10 nm to 15 nm. Use of such silica fine particles is preferable in terms of raw material costs and a retaining agent effect.

低屈折率粒子の塗設量は、1mg/m〜100mg/mが好ましく、より好ましくは5mg/m〜80mg/m、更に好ましくは10mg/m〜60mg/mである。少なすぎると、耐擦傷性の改良効果が減り、多すぎると、低屈折率層表面に微細な凹凸ができ、黒の締まりなどの外観や積分反射率が悪化する。 The coating amount of the low refractive index particles is preferably 1mg / m 2 ~100mg / m 2 , more preferably 5mg / m 2 ~80mg / m 2 , more preferably from 10mg / m 2 ~60mg / m 2 . If the amount is too small, the effect of improving the scratch resistance is reduced. If the amount is too large, fine irregularities are formed on the surface of the low refractive index layer, and the appearance such as black tightening and the integrated reflectance are deteriorated.

<中空シリカ粒子>
屈折率をより低下させる目的のためには、中空のシリカ微粒子を用いることが好ましい。
中空のシリカ微粒子は屈折率が1.15〜1.40が好ましく、更に好ましくは1.17〜1.35、最もに好ましくは1.17〜1.30である。ここでの屈折率は粒子全体として屈折率を表し、中空シリカ粒子を形成している外殻のシリカのみの屈折率を表すものではない。この時、粒子内の空腔の半径をa、粒子外殻の半径をbとすると、下記数式(VIII)で表される空隙率xは
(数式VIII)
x=(4πa/3)/(4πb/3)×100
好ましくは10〜60%、更に好ましくは20〜60%、最も好ましくは30〜60%である。中空のシリカ粒子をより低屈折率に、より空隙率を大きくしようとすると、外殻の厚みが薄くなり、粒子の強度としては弱くなるため、耐擦傷性の観点から1.15以上の屈折率の粒子が好ましい。
<Hollow silica particles>
For the purpose of further reducing the refractive index, it is preferable to use hollow silica fine particles.
The hollow silica fine particles preferably have a refractive index of 1.15 to 1.40, more preferably 1.17 to 1.35, and most preferably 1.17 to 1.30. The refractive index here represents the refractive index of the entire particle, and does not represent the refractive index of only the outer shell silica forming the hollow silica particles. At this time, assuming that the radius of the cavity in the particle is a and the radius of the outer shell of the particle is b, the porosity x expressed by the following formula (VIII) is (Formula VIII)
x = (4πa 3/3) / (4πb 3/3) × 100
Preferably it is 10-60%, More preferably, it is 20-60%, Most preferably, it is 30-60%. If hollow silica particles are made to have a lower refractive index and a higher porosity, the thickness of the outer shell becomes thinner and the strength of the particles becomes weaker. Are preferred.

中空シリカの製造方法は、例えば特開2001−233611や特開2002−79616に記載されている。特にシェルの内部に空洞を有している粒子で、そのシェルの細孔が閉塞されている粒子が特に好ましい。なお、これら中空シリカ粒子の屈折率は特開2002−79616に記載の方法で算出することができる。   A method for producing hollow silica is described in, for example, Japanese Patent Application Laid-Open Nos. 2001-233611 and 2002-79616. In particular, particles having cavities inside the shell and having fine pores in the shell are particularly preferred. The refractive index of these hollow silica particles can be calculated by the method described in JP-A-2002-79616.

中空シリカの塗設量は、1mg/m〜100mg/mが好ましく、より好ましくは5mg/m〜80mg/m、更に好ましくは10mg/m〜60mg/mである。少なすぎると、低屈折率化の効果や耐擦傷性の改良効果が減り、多すぎると、低屈折率層表面に微細な凹凸ができ、黒の締まりなどの外観や積分反射率が悪化する。
中空シリカの平均粒径は、低屈折率層の厚みの30%以上150%以下が好ましく、より好ましくは35%以上80%以下、更に好ましくは40%以上60%以下である。即ち、低屈折率層の厚みが100nmであれば、中空シリカの粒径は30nm以上150nm以下が好ましく、より好ましくは35nm以上100nm以下、更に好ましくは、40nm以上65nm以下である。
シリカ微粒子の粒径が小さすぎると、空腔部の割合が減り屈折率の低下が見込めず、大きすぎると低屈折率層表面に微細な凹凸ができ、黒の締まりといった外観、積分反射率が悪化する。シリカ微粒子は、結晶質でも、アモルファスのいずれでも良く、また単分散粒子が好ましい。形状は、球径が最も好ましいが、不定形であっても問題無い。
また、中空シリカは粒子平均粒子サイズの異なるものを2種以上併用して用いることができる。ここで、中空シリカの平均粒径は電子顕微鏡写真から求めることができる。
本発明において中空シリカの比表面積は、20〜300m/gが好ましく、更に好ましくは30〜120m/g、最も好ましくは40〜90m/gである。表面積は窒素を用いBET法で求めることが出来る。
The coating amount of the hollow silica is preferably from 1mg / m 2 ~100mg / m 2 , more preferably 5mg / m 2 ~80mg / m 2 , more preferably from 10mg / m 2 ~60mg / m 2 . If the amount is too small, the effect of lowering the refractive index and the effect of improving the scratch resistance will be reduced.
The average particle diameter of the hollow silica is preferably 30% to 150% of the thickness of the low refractive index layer, more preferably 35% to 80%, and still more preferably 40% to 60%. That is, if the thickness of the low refractive index layer is 100 nm, the particle size of the hollow silica is preferably 30 nm to 150 nm, more preferably 35 nm to 100 nm, and still more preferably 40 nm to 65 nm.
If the particle size of the silica particles is too small, the proportion of cavities will decrease and a decrease in refractive index cannot be expected. Getting worse. The silica fine particles may be either crystalline or amorphous, and monodisperse particles are preferred. The shape is most preferably a spherical diameter, but there is no problem even if the shape is indefinite.
Further, two or more kinds of hollow silica having different particle average particle sizes can be used in combination. Here, the average particle diameter of the hollow silica can be determined from an electron micrograph.
The specific surface area of the hollow silica in the present invention is preferably from 20 to 300 m 2 / g, more preferably 30~120m 2 / g, most preferably 40~90m 2 / g. The surface area can be obtained by the BET method using nitrogen.

本発明においては、中空シリカと併用して空腔のないシリカ粒子を用いることができる。空腔のないシリカの好ましい粒子サイズは、30nm以上150nm以下、更に好ましくは35nm以上100nm以下、最も好ましくは40nm以上80nm以下である。   In the present invention, silica particles having no voids can be used in combination with hollow silica. The preferred particle size of silica without voids is 30 nm to 150 nm, more preferably 35 nm to 100 nm, and most preferably 40 nm to 80 nm.

1−(10)導電性粒子
本発明のフィルムには導電性を付与するために、各種の導電性粒子を用いることができる。
導電性粒子は、金属の酸化物または窒化物から形成することが好ましい。金属の酸化物または窒化物の例には、酸化錫、酸化インジウム、酸化亜鉛および窒化チタンが含まれる。酸化錫および酸化インジウムが特に好ましい。導電性無機粒子は、これらの金属の酸化物または窒化物を主成分とし、さらに他の元素を含むことができる。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。他の元素の例には、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P、S、B、Nb、In、Vおよびハロゲン原子が含まれる。酸化錫および酸化インジウムの導電性を高めるために、Sb、P、B、Nb、In、Vおよびハロゲン原子を添加することが好ましい。Sbを含有する酸化錫(ATO)およびSnを含有する酸化インジウム(ITO)が特に好ましい。ATO中のSbの割合は、3〜20質量%であることが好ましい。ITO中のSnの割合は、5〜20質量%であることが好ましい。
1- (10) Conductive Particles Various conductive particles can be used for imparting conductivity to the film of the present invention.
The conductive particles are preferably formed from a metal oxide or nitride. Examples of metal oxides or nitrides include tin oxide, indium oxide, zinc oxide and titanium nitride. Tin oxide and indium oxide are particularly preferred. The conductive inorganic particles are mainly composed of oxides or nitrides of these metals, and can further contain other elements. The main component means a component having the largest content (mass%) among the components constituting the particles. Examples of other elements include Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P, S, B, Nb, In, V and halogen atoms are included. In order to increase the conductivity of tin oxide and indium oxide, it is preferable to add Sb, P, B, Nb, In, V and a halogen atom. Particularly preferred are tin oxide containing Sb (ATO) and indium oxide containing Sn (ITO). The ratio of Sb in ATO is preferably 3 to 20% by mass. The ratio of Sn in ITO is preferably 5 to 20% by mass.

帯電防止層に用いる導電性無機粒子の一次粒子の平均粒子径は、1〜150nmであることが好ましく、5〜100nmであることがさらに好ましく、5〜70nmであることが最も好ましい。形成される帯電防止層中の導電性無機粒子の平均粒子径は、1〜200nmであり、5〜150nmであることが好ましく、10〜100nmであることがさらに好ましく、10〜80nmであることが最も好ましい。導電性無機粒子の平均粒子径は、粒子の質量を重みとした平均径であり、光散乱法や電子顕微鏡写真により測定できる。
導電性無機粒子の比表面積は、10〜400m/gであることが好ましく、20〜200m/gであることがさらに好ましく、30〜150m/gであることが最も好ましい。
The average particle diameter of the primary particles of the conductive inorganic particles used for the antistatic layer is preferably 1 to 150 nm, more preferably 5 to 100 nm, and most preferably 5 to 70 nm. The average particle diameter of the conductive inorganic particles in the antistatic layer to be formed is 1 to 200 nm, preferably 5 to 150 nm, more preferably 10 to 100 nm, and more preferably 10 to 80 nm. Most preferred. The average particle diameter of the conductive inorganic particles is an average diameter weighted by the mass of the particles and can be measured by a light scattering method or an electron micrograph.
The specific surface area of the conductive inorganic particles is preferably from 10 to 400 m 2 / g, more preferably from 20 to 200 m 2 / g, and most preferably from 30 to 150 m 2 / g.

導電性無機粒子を表面処理してもよい。表面処理は、無機化合物または有機化合物を用いて実施する。表面処理に用いる無機化合物の例には、アルミナおよびシリカが含まれる。シリカ処理が特に好ましい。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤およびチタネートカップリング剤が含まれる。シランカップリング剤が最も好ましい。二種類以上の表面処理を組み合わせて実施してもよい。
導電性無機粒子の形状は、米粒状、球形状、立方体状、紡錘形状あるいは不定形状であることが好ましい。
The conductive inorganic particles may be surface treated. The surface treatment is performed using an inorganic compound or an organic compound. Examples of inorganic compounds used for the surface treatment include alumina and silica. Silica treatment is particularly preferred. Examples of organic compounds used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Silane coupling agents are most preferred. Two or more kinds of surface treatments may be performed in combination.
The shape of the conductive inorganic particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape or an indefinite shape.

二種類以上の導電性粒子を本発明のフィルムの特定の機能層内あるいはフィルム中の異なる層に併用してもよい。
帯電防止層中の導電性無機粒子の割合は、20〜90質量%であることが好ましく、25〜85質量%であることが好ましく、30〜80質量%であることがさらに好ましい。
Two or more kinds of conductive particles may be used in combination in a specific functional layer of the film of the present invention or in different layers in the film.
The proportion of the conductive inorganic particles in the antistatic layer is preferably 20 to 90% by mass, preferably 25 to 85% by mass, and more preferably 30 to 80% by mass.

導電性無機粒子は、分散物の状態で帯電防止層の形成に使用することができる。   The conductive inorganic particles can be used for forming an antistatic layer in the form of a dispersion.

1−(11)表面処理剤
本発明で使用する無機粒子は、分散液中あるいは塗布液中で、分散安定化を図るために、あるいはバインダー成分との親和性、結合性を高めるために、プラズマ放電処理やコロナ放電処理のような物理的表面処理、界面活性剤やカップリング剤等による化学的表面処理がなされていても良い。
1- (11) Surface treatment agent The inorganic particles used in the present invention are plasma in order to stabilize dispersion in a dispersion or coating solution, or to increase affinity and binding properties with a binder component. A physical surface treatment such as a discharge treatment or a corona discharge treatment, or a chemical surface treatment with a surfactant or a coupling agent may be performed.

表面処理は、無機化合物または有機化合物の表面処理剤を用いて実施することができる。表面処理に用いる無機化合物の例には、コバルトを含有する無機化合物(CoO,Co,Coなど)、アルミニウムを含有する無機化合物(Al,Al(OH)など)、ジルコニウムを含有する無機化合物(ZrO,Zr(OH)など)、ケイ素を含有する無機化合物(SiOなど)、鉄を含有する無機化合物(Feなど)などが含まれる。
コバルトを含有する無機化合物、アルミニウムを含有する無機化合物、ジルコニウムを含有する無機化合物が特に好ましく、コバルトを含有する無機化合物、Al(OH)、Zr(OH)が最も好ましい。
表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤およびチタネートカップリング剤が含まれる。シランカップリング剤が最も好ましい。特にシランカップリング剤(オルガノシラン化合物)、その部分加水分解物、およびその縮合物の少なくとも一種で表面処理されていることが好ましい。
The surface treatment can be performed using a surface treatment agent of an inorganic compound or an organic compound. Examples of inorganic compounds used for the surface treatment include inorganic compounds containing cobalt (CoO 2 , Co 2 O 3 , Co 3 O 4, etc.) and inorganic compounds containing aluminum (Al 2 O 3 , Al (OH) 3 Etc.), inorganic compounds containing zirconium (ZrO 2 , Zr (OH) 4 etc.), inorganic compounds containing silicon (SiO 2 etc.), inorganic compounds containing iron (Fe 2 O 3 etc.), etc. .
An inorganic compound containing cobalt, an inorganic compound containing aluminum, and an inorganic compound containing zirconium are particularly preferable, and an inorganic compound containing cobalt, Al (OH) 3 , and Zr (OH) 4 are most preferable.
Examples of organic compounds used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Silane coupling agents are most preferred. In particular, the surface treatment is preferably performed with at least one of a silane coupling agent (organosilane compound), a partial hydrolyzate thereof, and a condensate thereof.

チタネートカップリング剤としては、例えば、テトラメトキシチタン、テトラエトキシチタン、のどのテトライソプロポキシチタンなどの金属アルコキシド、プレンアクト(KR−TTS、KR−46B、KR−55、KR−41Bなど;味の素(株)製)などが挙げられる。
表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、その他アニオン性基を有する有機化合物などが好ましく、特に好ましいのは、カルボキシル基、スルホン酸基、又は、リン酸基を有する有機化合物である。ステアリン酸、ラウリン酸、オレイン酸、リノール酸、リノレイン酸などが好ましく用いることができる。
表面処理に用いる有機化合物は、さらに、架橋又は重合性官能基を有することが好ましい。架橋、又は、重合性官能基としては、ラジカル種による付加反応・重合反応が可能なエチレン性不飽和基(例えば(メタ)アクリル基、アリル基、スチリル基、ビニルオキシ基等)、カチオン重合性基(エポキシ基、オキサタニル基、ビニルオキシ基等)、重縮合反応性基(加水分解性シリル基等、N−メチロール基)等が挙げられ、好ましくはエチレン性不飽和基を有する基である。
Examples of titanate coupling agents include metal alkoxides such as tetramethoxy titanium, tetraethoxy titanium, and throat tetraisopropoxy titanium, and preneact (KR-TTS, KR-46B, KR-55, KR-41B, etc .; Ajinomoto Co., Inc. ))).
Examples of the organic compound used for the surface treatment include polyols, alkanolamines, and other organic compounds having an anionic group, and particularly preferable are organic compounds having a carboxyl group, a sulfonic acid group, or a phosphoric acid group. is there. Stearic acid, lauric acid, oleic acid, linoleic acid, linolenic acid and the like can be preferably used.
The organic compound used for the surface treatment preferably further has a crosslinked or polymerizable functional group. Crosslinkable or polymerizable functional groups include ethylenically unsaturated groups (for example, (meth) acrylic groups, allyl groups, styryl groups, vinyloxy groups, etc.) that can undergo addition reactions and polymerization reactions with radical species, cationic polymerizable groups (Epoxy groups, oxatanyl groups, vinyloxy groups, etc.), polycondensation reactive groups (hydrolyzable silyl groups, etc., N-methylol groups) and the like can be mentioned, and groups having an ethylenically unsaturated group are preferred.

これらの表面処理は、2種類以上を併用することもでき、アルミニウムを含有する無機化合物とジルコニウムを含有する無機化合物を併用することが、特に好ましい。   Two or more kinds of these surface treatments can be used in combination, and it is particularly preferable to use an inorganic compound containing aluminum and an inorganic compound containing zirconium.

無機粒子がシリカである場合、カップリング剤の使用が特に好ましい。カップリング剤としては、アルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。なかでも、シランカップリング処理が特に有効である。
上記カップリング剤は、低屈折率層の無機粒子の表面処理剤として該層塗布液調製以前にあらかじめ表面処理を施すために用いられるが、該層塗布液調製時にさらに添加剤として添加して該層に含有させることが好ましい。
シリカ微粒子は、表面処理前に、媒体中に予め分散されていることが、表面処理の負荷軽減のために好ましい。
本発明に好ましく用いることのできる表面処理剤および表面処理用の触媒の具体的化合物は、例えば、WO2004/017105号に記載のオルガノシラン化合物および触媒を挙げることができる。
表面処理剤の無機粒子に対する使用量は、無機微粒子100質量部に対して10〜150質量部の範囲であることが好ましく、15〜120質量部の範囲であることがより好ましく、20〜100質量部であることが最も好ましい。また、表面処理剤は2種類以上を併用してもよい。
When the inorganic particles are silica, the use of a coupling agent is particularly preferred. As the coupling agent, an alkoxy metal compound (eg, titanium coupling agent, silane coupling agent) is preferably used. Of these, silane coupling treatment is particularly effective.
The above coupling agent is used as a surface treatment agent for the inorganic particles of the low refractive index layer in advance for surface treatment prior to the preparation of the layer coating solution, and is further added as an additive during the preparation of the layer coating solution. It is preferable to make it contain in a layer.
The silica fine particles are preferably dispersed in the medium in advance before the surface treatment in order to reduce the load of the surface treatment.
Specific examples of the surface treatment agent and the surface treatment catalyst that can be preferably used in the present invention include organosilane compounds and catalysts described in WO 2004/017105.
The amount of the surface treatment agent used relative to the inorganic particles is preferably in the range of 10 to 150 parts by mass, more preferably in the range of 15 to 120 parts by mass, with respect to 100 parts by mass of the inorganic fine particles. Most preferably. Two or more surface treatment agents may be used in combination.

1−(12)分散剤
本発明に使用する粒子の分散には各種の分散剤を使用することができる。
分散剤は、さらに架橋又は重合性官能基を含有することが好ましい。架橋又は重合性官能基としては、ラジカル種による付加反応・重合反応が可能なエチレン性不飽和基(例えば(メタ)アクリロイル基、アリル基、スチリル基、ビニルオキシ基等)、カチオン重合性基(エポキシ基、オキサタニル基、ビニルオキシ基等)、重縮合反応性基(加水分解性シリル基等、N−メチロール基)等が挙げられ、好ましくはエチレン性不飽和基を有する官能基である。
1- (12) Dispersant Various dispersants can be used for dispersing the particles used in the present invention.
The dispersant preferably further contains a crosslinkable or polymerizable functional group. Crosslinkable or polymerizable functional groups include ethylenically unsaturated groups (for example, (meth) acryloyl groups, allyl groups, styryl groups, vinyloxy groups, etc.) that can undergo addition reactions and polymerization reactions with radical species, and cationic polymerizable groups (epoxies). Groups, oxatanyl groups, vinyloxy groups, etc.), polycondensation reactive groups (hydrolyzable silyl groups, etc., N-methylol groups) and the like, and functional groups having an ethylenically unsaturated group are preferred.

無機粒子の分散、特にTiOを主成分とする無機粒子の分散にはアニオン性基を有する分散剤を用いることが好ましく、アニオン性基、及び架橋又は重合性官能基を有することがより好ましく、該架橋又は重合性官能基を側鎖に有する分散剤であることが特に好ましい。 It is preferable to use a dispersant having an anionic group for the dispersion of inorganic particles, particularly the dispersion of inorganic particles mainly composed of TiO 2 , more preferably an anionic group and a cross-linkable or polymerizable functional group, It is particularly preferable that the dispersant has the cross-linked or polymerizable functional group in the side chain.

アニオン性基としては、カルボキシル基、スルホン酸基(スルホ)、リン酸基(ホスホノ)、スルホンアミド基等の酸性プロトンを有する基、またはその塩が有効であり、特にカルボキシル基、スルホン酸基、リン酸基またはその塩が好ましく、カルボキシル基、リン酸基が特に好ましい。1分子当たりの分散剤に含有されるアニオン性基の数は、1分子中に複数種類が含有されていてもよいが、平均で2個以上であることが好ましく、より好ましくは5個以上、特に好ましくは10個以上である。また、分散剤に含有されるアニオン性基は、1分子中に複数種類が含有されていてもよい。   As the anionic group, a group having an acidic proton such as a carboxyl group, a sulfonic acid group (sulfo), a phosphoric acid group (phosphono), a sulfonamide group, or a salt thereof is effective, and in particular, a carboxyl group, a sulfonic acid group, A phosphoric acid group or a salt thereof is preferable, and a carboxyl group and a phosphoric acid group are particularly preferable. The number of anionic groups contained in the dispersing agent per molecule may be plural, but is preferably 2 or more on average, more preferably 5 or more, Particularly preferred is 10 or more. Moreover, the anionic group contained in a dispersing agent may contain multiple types in 1 molecule.

側鎖にアニオン性基を有する分散剤において、アニオン性基含有繰返し単位の組成は、全繰返し単位のうちの10−4〜100mol%の範囲であり、好ましくは1〜50mol%、特に好ましくは5〜20mol%である。 In the dispersant having an anionic group in the side chain, the composition of the anionic group-containing repeating unit is in the range of 10 −4 to 100 mol%, preferably 1 to 50 mol%, particularly preferably 5 in the total repeating units. ˜20 mol%.

分散剤は、さらに架橋又は重合性官能基を含有することが好ましい。架橋又は重合性官能基としては、ラジカル種による付加反応・重合反応が可能なエチレン性不飽和基(例えば(メタ)アクリロイル基、アリル基、スチリル基、ビニルオキシ基等)、カチオン重合性基(エポキシ基、オキサタニル基、ビニルオキシ基等)、重縮合反応性基(加水分解性シリル基等、N−メチロール基)等が挙げられ、好ましくはエチレン性不飽和基を有する官能基である。   The dispersant preferably further contains a crosslinkable or polymerizable functional group. Crosslinkable or polymerizable functional groups include ethylenically unsaturated groups (for example, (meth) acryloyl groups, allyl groups, styryl groups, vinyloxy groups, etc.) that can undergo addition reactions and polymerization reactions with radical species, and cationic polymerizable groups (epoxies). Groups, oxatanyl groups, vinyloxy groups, etc.), polycondensation reactive groups (hydrolyzable silyl groups, etc., N-methylol groups) and the like, and functional groups having an ethylenically unsaturated group are preferred.

1分子当たりの分散剤に含有される架橋又は重合性官能基の数は、平均で2個以上であることが好ましく、より好ましくは5個以上、特に好ましくは10個以上である。また、分散剤に含有される架橋又は重合性官能基は、1分子中に複数種類が含有されていてもよい。   The average number of cross-linkable or polymerizable functional groups contained in the dispersant per molecule is preferably 2 or more, more preferably 5 or more, and particularly preferably 10 or more. Moreover, the crosslinking or polymerizable functional group contained in the dispersant may contain a plurality of types in one molecule.

本発明に用いる好ましい分散剤において、側鎖にエチレン性不飽和基を有する繰返し単位の例としては、ポリ−1,2−ブタジエンおよびポリ−1,2−イソプレン構造あるいは、(メタ)アクリル酸のエステルまたはアミドの繰返し単位であって、それに特定の残基(−COORまたは−CONHRのR基)が結合しているものが利用できる。上記特定の残基(R基)の例としては、−(CH−CR21=CR2223、−(CHO)−CHCR21=CR2223、−(CHCHO)−CHCR21=CR2223、−(CH−NH−CO−O−CHCR21=CR2223、−(CH−O−CO−CR21=CR2223および−(CHCHO)−X(R21〜R23はそれぞれ、水素原子、ハロゲン原子、炭素原子数が1〜20のアルキル基、アリール基、アルコキシ基、アリールオキシ基であり、R21とR22またはR23は互いに結合して環を形成してもよく、nは1〜10の整数であり、そしてXはジシクロペンタジエニル残基である)を挙げることができる。エステル残基のRの具体例には、−CHCH=CH(特開昭64−17047号公報記載のアリル(メタ)アクリレートのポリマーに相当)、−CHCHO−CHCH=CH、−CHCHOCOCH=CH、−CHCHOCOC(CH)=CH、−CHC(CH)=CH、−CHCH=CH−C、−CHCHOCOCH=CH−C、−CHCH−NHCOO−CHCH=CHおよび−CHCHO−X(Xはジシクロペンタジエニル残基)が含まれる。アミド残基のRの具体例には、−CHCH=CH、−CHCH−Y(Yは1−シクロヘキセニル残基)および−CHCH−OCO−CH=CH、−CHCH−OCO−C(CH)=CHが含まれる。 In the preferred dispersant for use in the present invention, examples of the repeating unit having an ethylenically unsaturated group in the side chain include poly-1,2-butadiene and poly-1,2-isoprene structures or (meth) acrylic acid. An ester or amide repeating unit to which a specific residue (the R group of —COOR or —CONHR) is bonded can be used. Examples of the specific residue (R group), - (CH 2) n -CR 21 = CR 22 R 23, - (CH 2 O) n -CH 2 CR 21 = CR 22 R 23, - (CH 2 CH 2 O) n -CH 2 CR 21 = CR 22 R 23, - (CH 2) n -NH-CO-O-CH 2 CR 21 = CR 22 R 23, - (CH 2) n -O-CO —CR 21 ═CR 22 R 23 and — (CH 2 CH 2 O) 2 —X (R 21 to R 23 are each a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group, or an alkoxy group. R 21 and R 22 or R 23 may be bonded to each other to form a ring, n is an integer of 1 to 10, and X is a dicyclopentadienyl residue. There are). Specific examples of R of the ester residue include —CH 2 CH═CH 2 (corresponding to an allyl (meth) acrylate polymer described in JP-A No. 64-17047), —CH 2 CH 2 O—CH 2 CH. = CH 2, -CH 2 CH 2 OCOCH = CH 2, -CH 2 CH 2 OCOC (CH 3) = CH 2, -CH 2 C (CH 3) = CH 2, -CH 2 CH = CH-C 6 H 5 , —CH 2 CH 2 OCOCH═CH—C 6 H 5 , —CH 2 CH 2 —NHCOO—CH 2 CH═CH 2 and —CH 2 CH 2 O—X (X is a dicyclopentadienyl residue) Is included. Specific examples of R of the amide residue include —CH 2 CH═CH 2 , —CH 2 CH 2 —Y (Y is a 1-cyclohexenyl residue) and —CH 2 CH 2 —OCO—CH═CH 2 , -CH 2 CH 2 -OCO-C ( CH 3) = CH 2 are included.

上記のエチレン性不飽和基を有する分散剤においては、その不飽和結合基にフリーラジカル(重合開始ラジカルまたは重合性化合物の重合過程の生長ラジカル)が付加し、分子間で直接、または重合性化合物の重合連鎖を介して付加重合して、分子間に架橋が形成されて硬化する。あるいは、分子中の原子(例えば不飽和結合基に隣接する炭素原子上の水素原子)がフリーラジカルにより引き抜かれてポリマーラジカルが生成し、それが互いに結合することによって、分子間に架橋が形成されて硬化する。   In the dispersant having an ethylenically unsaturated group, a free radical (a polymerization initiation radical or a growth radical of a polymerization process of a polymerizable compound) is added to the unsaturated bond group, and the polymer compound is directly or between molecules. Addition polymerization is carried out through the polymerization chain, and a crosslink is formed between the molecules to cure. Alternatively, atoms in the molecule (for example, hydrogen atoms on carbon atoms adjacent to the unsaturated bond group) are extracted by free radicals to form polymer radicals that are bonded together to form a bridge between the molecules. Harden.

アニオン性基、及び架橋又は重合性官能基を有し、かつ該架橋又は重合性官能基を側鎖に有する分散剤の質量平均分子量(Mw)は、特に限定されないが1000以上であることが好ましい。分散剤のより好ましい質量平均分子量(Mw)は2000〜1000000であり、さらに好ましくは5000〜200000、特に好ましくは10000〜100000である。   The weight average molecular weight (Mw) of the dispersant having an anionic group and a crosslinkable or polymerizable functional group and having the crosslinkable or polymerizable functional group in the side chain is not particularly limited, but is preferably 1000 or more. . The more preferable mass average molecular weight (Mw) of the dispersant is 2000 to 1000000, more preferably 5000 to 200000, and particularly preferably 10000 to 100000.

架橋又は重合性官能基の含有単位は、アニオン性基含有繰返し単位以外の全ての繰返し単位を構成していてもよいが、好ましくは全架橋又は繰返し単位のうちの5〜50mol%であり、特に好ましくは5〜30mol%である。   The cross-linkable or polymerizable functional group-containing unit may constitute all repeating units other than the anionic group-containing repeating unit, preferably 5 to 50 mol% of the total cross-linking or repeating unit, particularly Preferably it is 5-30 mol%.

分散剤は、架橋又は重合性官能基、アニオン性基を有するモノマー以外の適当なモノマーとの共重合体であっても良い。共重合成分に関しては特に限定はされないが、分散安定性、他のモノマー成分との相溶性、形成皮膜の強度等種々の観点から選択される。好ましい例としては、メチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、スチレン等が挙げられる。   The dispersant may be a copolymer with an appropriate monomer other than a monomer having a crosslinking or polymerizable functional group or an anionic group. Although it does not specifically limit regarding a copolymerization component, It selects from various viewpoints, such as dispersion stability, compatibility with another monomer component, and the intensity | strength of a formed film. Preferable examples include methyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, cyclohexyl (meth) acrylate, styrene and the like.

分散剤の形態は特に制限はないが、ブロック共重合体またはランダム共重合体であることが好ましくコストおよび合成的な容易さからランダム共重合体であることが特に好ましい。   The form of the dispersant is not particularly limited, but is preferably a block copolymer or a random copolymer, and particularly preferably a random copolymer from the viewpoint of cost and ease of synthesis.

分散剤の無機粒子に対する使用量は、無機微粒子100質量部に対して1〜50質量部の範囲であることが好ましく、5〜30質量部の範囲であることがより好ましく、5〜20質量部であることが最も好ましい。また、分散剤は2種類以上を併用してもよい。   The amount of the dispersant used relative to the inorganic particles is preferably in the range of 1 to 50 parts by mass, more preferably in the range of 5 to 30 parts by mass, and 5 to 20 parts by mass with respect to 100 parts by mass of the inorganic fine particles. Most preferably. Two or more dispersants may be used in combination.

以下に本発明に好ましく用いられる分散剤の具体例を示すが、本発明に用いられる分散剤はこれらに限定されるものではない。なお特に記載の無い場合はランダム共重合体を表す。   Specific examples of the dispersant preferably used in the present invention are shown below, but the dispersant used in the present invention is not limited thereto. Unless otherwise specified, it represents a random copolymer.

Figure 2007264113
Figure 2007264113

Figure 2007264113
Figure 2007264113

Figure 2007264113
Figure 2007264113

Figure 2007264113
Figure 2007264113

Figure 2007264113
Figure 2007264113

Figure 2007264113
Figure 2007264113

1−(13)防汚剤
本発明のフィルム、特にフィルムの最上層には防汚性、耐水性、耐薬品性、滑り性等の特性を付与する目的で、公知のシリコーン系あるいはフッ素系の防汚剤、滑り剤等を適宜添加することが好ましい。
これらの添加剤を添加する場合には低屈折率層全固形分の0.01〜20質量%の範囲で添加されることが好ましく、より好ましくは0.05〜10質量%の範囲で添加される場合であり、特に好ましくは0.1〜5質量%の場合である。
1- (13) Antifouling agent For the purpose of imparting antifouling properties, water resistance, chemical resistance, slipping properties and the like to the film of the present invention, particularly the uppermost layer of the film, known silicone type or fluorine type It is preferable to add an antifouling agent, a slip agent and the like as appropriate.
When these additives are added, it is preferably added in the range of 0.01 to 20% by mass of the total solid content of the low refractive index layer, more preferably in the range of 0.05 to 10% by mass. Particularly preferred is 0.1 to 5% by mass.

シリコーン系化合物の好ましい例としてはジメチルシリルオキシ単位を繰り返し単位として複数個含む化合物鎖の末端および/または側鎖に置換基を有するものが挙げられる。ジメチルシリルオキシを繰り返し単位として含む化合物鎖中にはジメチルシリルオキシ以外の構造単位を含んでもよい。置換基は同一であっても異なっていても良く、複数個あることが好ましい。好ましい置換基の例としてはアクリロイル基、メタクリロイル基、ビニル基、アリール基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、フルオロアルキル基、ポリオキシアルキレン基、カルボキシル基、アミノ基などを含む基が挙げられる。分子量に特に制限はないが、10万以下であることが好ましく、5万以下であることがより好ましく、3000〜30000であることが特に好ましく、10000〜20000であることが最も好ましい。シリコーン系化合物のシリコーン原子含有量には特に制限はないが18.0質量%以上であることが好ましく、25.0〜37.8質量%であることが特に好ましく、30.0〜37.0質量%であることが最も好ましい。好ましいシリコーン系化合物の例 としては信越化学(株)製、X−22−174DX、X−22−2426、X−22−164B、X22−164C、X−22−170DX、X−22−176D、X−22−1821(以上商品名)やチッソ(株)製、FM−0725、FM−7725、FM−4421、FM−5521、FM6621、FM−1121やGelest製DMS−U22、RMS−033、RMS−083、UMS−182、DMS−H21、DMS−H31、HMS−301、FMS121、FMS123、FMS131、FMS141、FMS221(以上商品名)などが挙げられるがこれらに限定されるものではない。   Preferable examples of the silicone compound include those having a substituent at the terminal and / or side chain of a compound chain containing a plurality of dimethylsilyloxy units as repeating units. The compound chain containing dimethylsilyloxy as a repeating unit may contain a structural unit other than dimethylsilyloxy. The substituents may be the same or different, and a plurality of substituents are preferable. Examples of preferred substituents include acryloyl group, methacryloyl group, vinyl group, aryl group, cinnamoyl group, epoxy group, oxetanyl group, hydroxyl group, fluoroalkyl group, polyoxyalkylene group, carboxyl group, amino group and the like. It is done. Although there is no restriction | limiting in particular in molecular weight, It is preferable that it is 100,000 or less, It is more preferable that it is 50,000 or less, It is especially preferable that it is 3000-30000, It is most preferable that it is 10,000-20000. Although there is no restriction | limiting in particular in silicone atom content of a silicone type compound, it is preferable that it is 18.0 mass% or more, it is especially preferable that it is 25.0-37.8 mass%, and 30.0-37.0. Most preferably, it is mass%. Examples of preferable silicone-based compounds are X-22-174DX, X-22-2426, X-22-164B, X22-164C, X-22-170DX, X-22-176D, X, manufactured by Shin-Etsu Chemical Co., Ltd. -22-1821 (named above), Chisso Corporation, FM-0725, FM-7725, FM-4421, FM-5521, FM6621, FM-1121, Gelest DMS-U22, RMS-033, RMS- 083, UMS-182, DMS-H21, DMS-H31, HMS-301, FMS121, FMS123, FMS131, FMS141, FMS221 (and above are trade names) and the like, but are not limited thereto.

フッ素系化合物としては、フルオロアルキル基を有する化合物が好ましい。該フルオロアルキル基は炭素数1〜20であることが好ましく、より好ましくは1〜10であり、直鎖(例えば−CFCF,−CH(CFH,−CH(CFCF,−CHCH(CFH等)であっても、分岐構造(例えばCH(CF,CHCF(CF,CH(CH)CFCF,CH(CH)(CFCFH等)であっても、脂環式構造(好ましくは5員環または6員環、例えばパーフルオロシクロへキシル基、パーフルオロシクロペンチル基またはこれらで置換されたアルキル基等)であっても良く、エーテル結合を有していても良い(例えばCHOCHCFCF,CHCHOCHH,CHCHOCHCH17,CHCHOCFCFOCFCFH等)。該フルオロアルキル基は同一分子中に複数含まれていてもよい。 As the fluorine compound, a compound having a fluoroalkyl group is preferable. The fluoroalkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and a straight chain (for example, —CF 2 CF 3 , —CH 2 (CF 2 ) 4 H, —CH 2 (CF 2 ) 8 CF 3 , —CH 2 CH 2 (CF 2 ) 4 H, etc.), even branched structures (eg, CH (CF 3 ) 2 , CH 2 CF (CF 3 ) 2 , CH (CH 3 ) CF 2 CF 3 , CH (CH 3 ) (CF 2 ) 5 CF 2 H, etc.), alicyclic structures (preferably 5-membered or 6-membered rings such as perfluorocyclohexyl group, perfluorocyclopentyl, etc. Group or an alkyl group substituted with these, and may have an ether bond (for example, CH 2 OCH 2 CF 2 CF 3 , CH 2 CH 2 OCH 2 C 4 F 8 H, CH 2 CH 2 CH 2 CH 2 C 8 F 17 , CH 2 CH 2 OCF 2 CF 2 OCF 2 CF 2 H , etc.). A plurality of the fluoroalkyl groups may be contained in the same molecule.

フッ素系化合物は、さらに低屈折率層皮膜との結合形成あるいは相溶性に寄与する置換基を有していることが好ましい。該置換基は同一であっても異なっていても良く、複数個あることが好ましい。好ましい置換基の例としてはアクリロイル基、メタクリロイル基、ビニル基、アリール基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、ポリオキシアルキレン基、カルボキシル基、アミノ基などが挙げられる。フッ素系化合物はフッ素原子を含まない化合物とのポリマーであってもオリゴマーであってもよく、分子量に特に制限はない。フッ素系化合物のフッ素原子含有量には特に制限は無いが20質量%以上であることが好ましく、30〜70質量%であることが特に好ましく、40〜70質量%であることが最も好ましい。好ましいフッ素系化合物の例としてはダイキン化学工業(株)製、R−2020、M−2020、R−3833、M−3833(以上商品名)、大日本インキ(株)製、メガファックF−171、F−172、F−179A、ディフェンサMCF−300(以上商品名)などが挙げられるがこれらに限定されるものではない。   It is preferable that the fluorine-based compound further has a substituent that contributes to bond formation or compatibility with the low refractive index layer film. The substituents may be the same or different, and a plurality of substituents are preferable. Examples of preferred substituents include acryloyl group, methacryloyl group, vinyl group, aryl group, cinnamoyl group, epoxy group, oxetanyl group, hydroxyl group, polyoxyalkylene group, carboxyl group, amino group and the like. The fluorine-based compound may be a polymer or an oligomer with a compound not containing a fluorine atom, and the molecular weight is not particularly limited. Although there is no restriction | limiting in particular in fluorine atom content of a fluorine-type compound, It is preferable that it is 20 mass% or more, It is especially preferable that it is 30-70 mass%, It is most preferable that it is 40-70 mass%. Examples of preferred fluorine-based compounds include Daikin Chemical Industries, Ltd., R-2020, M-2020, R-3833, M-3833 (named above), Dainippon Ink Co., Ltd., Megafac F-171. , F-172, F-179A, and defender MCF-300 (named above), but are not limited thereto.

防塵性、帯電防止等の特性を付与する目的で、公知のカチオン系界面活性剤あるいはポリオキシアルキレン系化合物のような防塵剤、帯電防止剤等を適宜添加することもできる。これら防塵剤、帯電防止剤は前述したシリコーン系化合物やフッ素系化合物にその構造単位が機能の一部として含まれていてもよい。これらを添加剤として添加する場合には低屈折率層全固形分の0.01〜20質量%の範囲で添加されることが好ましく、より好ましくは0.05〜10質量%の範囲で添加される場合であり、特に好ましくは0.1〜5質量%の場合である。好ましい化合物の例としては大日本インキ(株)製、メガファックF−150(商品名)、東レダウコーニング(株)製、SH−3748(商品名)などが挙げられるが、これらに限定されるわけではない。   For the purpose of imparting properties such as dust resistance and antistatic properties, a known cationic surfactant or a dustproof agent such as a polyoxyalkylene compound, an antistatic agent, or the like can be appropriately added. These dustproofing agent and antistatic agent may contain the structural unit as a part of the function in the above-mentioned silicone compound or fluorine compound. When these are added as additives, it is preferably added in the range of 0.01 to 20% by mass of the total solid content of the low refractive index layer, more preferably in the range of 0.05 to 10% by mass. Particularly preferred is 0.1 to 5% by mass. Examples of preferred compounds include, but are not limited to, Dainippon Ink Co., Ltd., MegaFace F-150 (trade name), Toray Dow Corning Co., Ltd., SH-3748 (trade name), and the like. Do not mean.

1−(14)界面活性剤
本発明のフィルムには、特に塗布ムラ、乾燥ムラ、点欠陥等の面状均一性を確保するために、フッ素系、シリコーン系の何れかの界面活性剤、あるいはその両者を光拡散層形成用の塗布組成物中に含有することが好ましい。特にフッ素系の界面活性剤は、より少ない添加量において、塗布ムラ、乾燥ムラ、点欠陥等の面状故障を改良する効果が現れるため、好ましく用いることができる。面状均一性を高めつつ、高速塗布適性を持たせることにより生産性を高めることができる。
1- (14) Surfactant For the film of the present invention, in order to ensure surface uniformity such as coating unevenness, drying unevenness, point defect, etc., any one of fluorine-based and silicone-based surfactants, or Both of them are preferably contained in the coating composition for forming the light diffusion layer. In particular, a fluorine-based surfactant can be preferably used because an effect of improving surface defects such as coating unevenness, drying unevenness, and point defects appears at a smaller addition amount. Productivity can be improved by giving high-speed coating suitability while improving surface uniformity.

フッ素系の界面活性剤の好ましい例としては、フルオロ脂肪族基含有共重合体(「フッ素系ポリマー」と略記することもある)が挙げられ、該フッ素系ポリマーは、下記(i)のモノマーに相当する繰り返し単位を含む、あるいは(i)のモノマーに相当する繰り返し単位とさらに下記(ii)のモノマーに相当する繰り返し単位とを含む、アクリル樹脂、メタアクリル樹脂、及びこれらに共重合可能なビニル系モノマーとの共重合体が有用である。   Preferable examples of the fluorosurfactant include a fluoroaliphatic group-containing copolymer (sometimes abbreviated as “fluorine polymer”), and the fluoropolymer includes the following monomer (i): An acrylic resin, a methacrylic resin, and a vinyl copolymerizable therewith, including a corresponding repeating unit or a repeating unit corresponding to the monomer (i) and a repeating unit corresponding to the monomer (ii) below A copolymer with a monomer is useful.

(i)下記一般式イで表されるフルオロ脂肪族基含有モノマー
一般式イ
(I) Fluoroaliphatic group-containing monomer represented by the following general formula A

Figure 2007264113
Figure 2007264113

一般式イにおいてR11は水素原子またはメチル基を表し、Xは酸素原子、イオウ原子または−N(R12)−を表し、mは1以上6以下の整数、nは2〜4の整数を表す。R12は水素原子または炭素数1〜4のアルキル基、具体的にはメチル基、エチル基、プロピル基、ブチル基を表し、好ましくは水素原子またはメチル基である。Xは酸素原子が好ましい。 In the general formula A, R 11 represents a hydrogen atom or a methyl group, X represents an oxygen atom, a sulfur atom or —N (R 12 ) —, m is an integer of 1 to 6 and n is an integer of 2 to 4. To express. R 12 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, specifically a methyl group, an ethyl group, a propyl group or a butyl group, preferably a hydrogen atom or a methyl group. X is preferably an oxygen atom.

(ii)前記(i)と共重合可能な下記一般式ロで示されるモノマー
一般式ロ
(Ii) Monomer represented by the following general formula (b) copolymerizable with the above (i)

Figure 2007264113
Figure 2007264113

一般式ロにおいて、R13は水素原子またはメチル基を表し、Yは酸素原子、イオウ原子または−N(R15)−を表し、R15は水素原子または炭素数1〜4のアルキル基、具体的にはメチル基、エチル基、プロピル基、ブチル基を表し、好ましくは水素原子またはメチル基である。Yは酸素原子、−N(H)−、および−N(CH)−が好ましい。
14は置換基を有しても良い炭素数4以上20以下の直鎖、分岐または環状のアルキル基を表す。R14のアルキル基の置換基としては、水酸基、アルキルカルボニル基、アリールカルボニル基、カルボキシル基、アルキルエーテル基、アリールエーテル基、フッ素原子、塩素原子、臭素原子などのハロゲン原子、ニトロ基、シアノ基、アミノ基等があげられるがこの限りではない。炭素数4以上20以下の直鎖、分岐または環状のアルキル基としては、直鎖及び分岐してもよいブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基、エイコサニル基等、また、シクロヘキシル基、シクロヘプチル基等の単環シクロアルキル基及びビシクロヘプチル基、ビシクロデシル基、トリシクロウンデシル基、テトラシクロドデシル基、アダマンチル基、ノルボルニル基、テトラシクロデシル基、等の多環シクロアルキル基が好適に用いられる。
In the general formula (b), R 13 represents a hydrogen atom or a methyl group, Y represents an oxygen atom, a sulfur atom or —N (R 15 ) —, R 15 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, specifically Specifically, it represents a methyl group, an ethyl group, a propyl group, or a butyl group, preferably a hydrogen atom or a methyl group. Y is an oxygen atom, -N (H) -, and -N (CH 3) - are preferred.
R 14 represents a linear, branched or cyclic alkyl group having 4 to 20 carbon atoms which may have a substituent. Examples of the substituent for the alkyl group represented by R 14 include a hydroxyl group, an alkylcarbonyl group, an arylcarbonyl group, a carboxyl group, an alkyl ether group, an aryl ether group, a halogen atom such as a fluorine atom, a chlorine atom, and a bromine atom, a nitro group, and a cyano group. , Amino groups and the like, but not limited thereto. Examples of the linear, branched or cyclic alkyl group having 4 to 20 carbon atoms include a butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and undecyl group which may be linear or branched. , Dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, octadecyl group, eicosanyl group, etc., and monocyclic cycloalkyl groups such as cyclohexyl group, cycloheptyl group and bicycloheptyl group, bicyclodecyl group, tricycloundecyl group, A polycyclic cycloalkyl group such as a tetracyclododecyl group, an adamantyl group, a norbornyl group, a tetracyclodecyl group, or the like is preferably used.

本発明で用いられるフッ素系ポリマーに用いられるこれらの一般式イで示されるフルオロ脂肪族基含有モノマーの量は、該フッ素系ポリマーの各単量体に基づいて10モル%以上であり、好ましくは15〜70モル%であり、より好ましくは20〜60モル%の範囲である。   The amount of the fluoroaliphatic group-containing monomer represented by the general formula A used in the fluorine-based polymer used in the present invention is 10 mol% or more based on each monomer of the fluorine-based polymer, preferably It is 15-70 mol%, More preferably, it is the range of 20-60 mol%.

本発明で用いられるフッ素系ポリマーの好ましい質量平均分子量は、3000〜100,000が好ましく、5,000〜80,000がより好ましい。
更に、本発明で用いられるフッ素系ポリマーの好ましい添加量は、塗布液100質量部に対して0.001〜5質量部の範囲であり、さらに好ましくは0.005〜3質量部の範囲であり、より好ましくは0.01〜1質量部の範囲である。フッ素系ポリマーの添加量が0.001質量部以上であればフッ素系ポリマーを添加した効果が充分得られ、また5質量部以下であれば、塗膜の乾燥が十分に行われなくなったり、塗膜としての性能(例えば反射率、耐擦傷性)に悪影響を及ぼしたり、といった問題が生じない。
The preferred weight average molecular weight of the fluoropolymer used in the present invention is preferably 3000 to 100,000, more preferably 5,000 to 80,000.
Furthermore, the preferable addition amount of the fluoropolymer used in the present invention is in the range of 0.001 to 5 parts by mass, more preferably in the range of 0.005 to 3 parts by mass with respect to 100 parts by mass of the coating solution. More preferably, it is the range of 0.01-1 mass part. If the addition amount of the fluorine-based polymer is 0.001 part by mass or more, the effect of adding the fluorine-based polymer is sufficiently obtained, and if it is 5 parts by mass or less, the coating film cannot be sufficiently dried or the coating is not performed. There is no problem that the film performance (for example, reflectance, scratch resistance) is adversely affected.

以下、一般式イで表されるフルオロ脂肪族基含有モノマーに相当する繰り返し単位から導かれるフッ素系ポリマーの具体的な構造の例を示すがこの限りではない。なお式中の数字は各モノマー成分のモル比率を示す。Mwは質量平均分子量を表す。   Examples of the specific structure of the fluorine-based polymer derived from the repeating unit corresponding to the fluoroaliphatic group-containing monomer represented by the general formula (i) are shown below, but not limited thereto. In addition, the number in a formula shows the molar ratio of each monomer component. Mw represents a mass average molecular weight.

Figure 2007264113
Figure 2007264113

Figure 2007264113
Figure 2007264113

1−(15)増粘剤 1- (15) Thickener

本発明のフィルムは、塗布液の粘度を調整するために増粘剤を用いてもよい。
ここでいう増粘剤とは、それを添加することにより液の粘度が増大するものを意味し、添加することにより塗布液の粘度が上昇する大きさとして好ましくは0.05〜50cP(0.05〜50mPa・s)であり、さらに好ましくは0.10〜20cP(0.10〜20mPa・s)であり、最も好ましくは0.10〜10cP(0.10〜10mPa・s)である。
The film of the present invention may use a thickener to adjust the viscosity of the coating solution.
The term “thickener” as used herein means that the viscosity of the liquid increases when it is added, and the amount by which the viscosity of the coating liquid increases when added is preferably 0.05 to 50 cP (0. 05 to 50 mPa · s), more preferably 0.10 to 20 cP (0.10 to 20 mPa · s), and most preferably 0.10 to 10 cP (0.10 to 10 mPa · s).

このような増粘剤としては以下のものが挙げられるが、これに限定されない。
ポリ−ε−カプロラクトン
ポリ−ε−カプロラクトン ジオール
ポリ−ε−カプロラクトン トリオール
ポリビニルアセテート
ポリ(エチレン アジペート)
ポリ(1,4−ブチレン アジペート)
ポリ(1,4−ブチレン グルタレート)
ポリ(1,4−ブチレン スクシネート)
ポリ(1,4−ブチレン テレフタレート)
ポリ(エチレンテレフタレート)
ポリ(2−メチル−1,3−プロピレンアジペート)
ポリ(2−メチル−1,3−プロピレン グルタレート)
ポリ(ネオペンチルグリコールアジペート)
ポリ(ネオペンチルグリコール セバケート)
ポリ(1,3−プロピレンアジペート)
ポリ(1,3−プロピレン グルタレート)
ポリビニルブチラール
ポリビニルホルマール
ポリビニルアセタール
ポリビニルプロパナール
ポリビニルヘキサナール
ポリビニルピロリドン
ポリアクリル酸エステル
ポリメタクリル酸エステル
セルロースアセテート
セルロースプロピオネート
セルロースアセテートブチレート
Examples of such thickeners include, but are not limited to:
Poly-ε-caprolactone poly-ε-caprolactone diol poly-ε-caprolactone triol polyvinyl acetate poly (ethylene adipate)
Poly (1,4-butylene adipate)
Poly (1,4-butylene glutarate)
Poly (1,4-butylene succinate)
Poly (1,4-butylene terephthalate)
polyethylene terephthalate)
Poly (2-methyl-1,3-propylene adipate)
Poly (2-methyl-1,3-propylene glutarate)
Poly (neopentyl glycol adipate)
Poly (neopentyl glycol sebacate)
Poly (1,3-propylene adipate)
Poly (1,3-propylene glutarate)
Polyvinyl butyral Polyvinyl formal Polyvinyl acetal Polyvinyl propanal Polyvinyl hexanal Polyvinyl pyrrolidone Polyacrylic acid ester Polymethacrylic acid ester Cellulose acetate Cellulose propionate Cellulose acetate butyrate

この他にも特開平8−325491号記載のスメクタイト、フッ素四珪素雲母、ベントナイト、シリカ、モンモリロナイト及びポリアクリル酸ソーダ、特開平10−219136エチルセルロース、ポリアクリル酸、有機粘土など、公知の粘度調整剤やチキソトロピー性付与剤を使用することが出来る。   Other known viscosity modifiers such as smectite, tetrasilica mica, bentonite, silica, montmorillonite and sodium polyacrylate, JP-A-10-219136, ethyl cellulose, polyacrylic acid, and organic clay described in JP-A-8-325491. Or a thixotropic agent can be used.

1−(16)塗布溶剤
本発明のフィルムの各層を形成するための塗布組成物に用いられる溶剤としては、各成分を溶解または分散可能であること、塗布工程、乾燥工程において均一な面状となり易いこと、液保存性が確保できること、適度な飽和蒸気圧を有すること、等の観点で選ばれる各種の溶剤が使用できる。
溶媒は2種類以上のものを混合して用いることができる。特に、乾燥負荷の観点から、常圧室温における沸点が100℃以下の溶剤を主成分とし、乾燥速度の調整のために沸点が100℃以上の溶剤を少量含有することが好ましい。
1- (16) Coating solvent As a solvent used in the coating composition for forming each layer of the film of the present invention, each component can be dissolved or dispersed, and a uniform surface is formed in the coating process and the drying process. Various solvents selected from the viewpoints of being easy, ensuring liquid storage stability, having an appropriate saturated vapor pressure, and the like can be used.
Two or more kinds of solvents can be mixed and used. In particular, from the viewpoint of drying load, it is preferable that a solvent having a boiling point of 100 ° C. or lower at normal pressure and room temperature as a main component and a small amount of solvent having a boiling point of 100 ° C. or higher for adjusting the drying speed.

沸点が100℃以下の溶剤としては、例えば、ヘキサン(沸点68.7℃)、ヘプタン(98.4℃)、シクロヘキサン(80.7℃)、ベンゼン(80.1℃)などの炭化水素類、ジクロロメタン(39.8℃)、クロロホルム(61.2℃)、四塩化炭素(76.8℃)、1,2−ジクロロエタン(83.5℃)、トリクロロエチレン(87.2℃)などのハロゲン化炭化水素類、ジエチルエーテル(34.6℃)、ジイソプロピルエーテル(68.5℃)、ジプロピルエーテル (90.5℃)、テトラヒドロフラン(66℃)などのエーテル類、ギ酸エチル(54.2℃)、酢酸メチル(57.8℃)、酢酸エチル(77.1℃)、酢酸イソプロピル(89℃)などのエステル類、アセトン(56.1℃)、2−ブタノン(メチルエチルケトンと同じ、79.6℃)などのケトン類、メタノール(64.5℃)、エタノール(78.3℃)、2−プロパノール(82.4℃)、1−プロパノール(97.2℃)などのアルコール類、アセトニトリル(81.6℃)、プロピオニトリル(97.4℃)などのシアノ化合物類、二硫化炭素(46.2℃)などがある。このうちケトン類、エステル類が好ましく、特に好ましくはケトン類である。ケトン類の中では2−ブタノンが特に好ましい。   Examples of the solvent having a boiling point of 100 ° C. or lower include hydrocarbons such as hexane (boiling point 68.7 ° C.), heptane (98.4 ° C.), cyclohexane (80.7 ° C.), benzene (80.1 ° C.), Halogenated carbonization such as dichloromethane (39.8 ° C), chloroform (61.2 ° C), carbon tetrachloride (76.8 ° C), 1,2-dichloroethane (83.5 ° C), trichloroethylene (87.2 ° C) Hydrogens, diethyl ether (34.6 ° C), diisopropyl ether (68.5 ° C), dipropyl ether (90.5 ° C), ethers such as tetrahydrofuran (66 ° C), ethyl formate (54.2 ° C), Esters such as methyl acetate (57.8 ° C.), ethyl acetate (77.1 ° C.), isopropyl acetate (89 ° C.), acetone (56.1 ° C.), 2-butanone (methyl ether) Ketones such as Luketone, 79.6 ° C, methanol (64.5 ° C), ethanol (78.3 ° C), 2-propanol (82.4 ° C), 1-propanol (97.2 ° C), etc. Alcohols, cyano compounds such as acetonitrile (81.6 ° C.), propionitrile (97.4 ° C.), carbon disulfide (46.2 ° C.), and the like. Of these, ketones and esters are preferable, and ketones are particularly preferable. Among the ketones, 2-butanone is particularly preferable.

沸点が100℃を以上の溶剤としては、例えば、オクタン(125.7℃)、トルエン(110.6℃)、キシレン(138℃)、テトラクロロエチレン(121.2℃)、クロロベンゼン(131.7℃)、ジオキサン(101.3℃)、ジブチルエーテル(142.4℃)、酢酸イソブチル(118℃)、シクロヘキサノン(155.7℃)、2−メチル−4−ペンタノン(MIBKと同じ、115.9℃)、1−ブタノール(117.7℃)、N,N−ジメチルホルムアミド(153℃)、N,N−ジメチルアセトアミド(166℃)、ジメチルスルホキシド(189℃)などがある。好ましくは、シクロヘキサノン、2−メチル−4−ペンタノンである。   Examples of the solvent having a boiling point of 100 ° C. or more include, for example, octane (125.7 ° C.), toluene (110.6 ° C.), xylene (138 ° C.), tetrachloroethylene (121.2 ° C.), and chlorobenzene (131.7 ° C.). , Dioxane (101.3 ° C), dibutyl ether (142.4 ° C), isobutyl acetate (118 ° C), cyclohexanone (155.7 ° C), 2-methyl-4-pentanone (same as MIBK, 115.9 ° C) 1-butanol (117.7 ° C.), N, N-dimethylformamide (153 ° C.), N, N-dimethylacetamide (166 ° C.), dimethyl sulfoxide (189 ° C.) and the like. Cyclohexanone and 2-methyl-4-pentanone are preferable.

1−(17)その他
本発明のフィルムには、前記の成分以外に、樹脂、カップリング剤、着色防止剤、着色剤(顔料、染料)、消泡剤、レベリング剤、難燃剤、紫外線吸収剤、赤外線吸収剤、接着付与剤、重合禁止剤、酸化防止剤、表面改質剤などを添加することもできる。
1- (17) Others In addition to the above-described components, the film of the present invention includes a resin, a coupling agent, a coloring inhibitor, a coloring agent (pigment, dye), an antifoaming agent, a leveling agent, a flame retardant, and an ultraviolet absorber. , Infrared absorbers, adhesion-imparting agents, polymerization inhibitors, antioxidants, surface modifiers, and the like can also be added.

1−(18)支持体
本発明のフィルムの支持体としては、透明樹脂フィルム、透明樹脂板、透明樹脂シートや透明ガラスなど、特に限定は無い。透明樹脂フィルムとしては、セルロースアシレートフィルム(例えば、セルローストリアセテートフィルム(屈折率1.48)、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートプロピオネートフィルム)、ポリエチレンテレフタレートフィルム、ポリエーテルスルホンフィルム、ポリアクリル系樹脂フィルム、ポリウレタン系樹脂フィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、(メタ)アクリルニトリルフィルム等が使用できる。
支持体の厚さは通常25μm〜1000μm程度のものを用いることができるが、好ましくは25μm〜250μmであり、30μm〜90μmであることがより好ましい。
支持体の巾は任意のものを使うことができるが、ハンドリング、得率、生産性の点から通常は100〜5000mmのものが用いられ、800〜3000mmであることが好ましく、1000〜2000mmであることがさらに好ましい。
支持体の表面は平滑であることが好ましく、平均粗さRaの値が1μm以下であることが好ましく、0.0001〜0.5μmであることが好ましく、0.001〜0.1μmであることがさらに好ましい。
1- (18) Support The support of the film of the present invention is not particularly limited, such as a transparent resin film, a transparent resin plate, a transparent resin sheet, and transparent glass. Transparent resin films include cellulose acylate films (for example, cellulose triacetate film (refractive index 1.48), cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film), polyethylene terephthalate film, polyethersulfone. Films, polyacrylic resin films, polyurethane resin films, polyester films, polycarbonate films, polysulfone films, polyether films, polymethylpentene films, polyetherketone films, (meth) acrylonitrile films, and the like can be used.
Although the thickness of a support body can use the thing of about 25 micrometers-1000 micrometers normally, Preferably it is 25 micrometers-250 micrometers, and it is more preferable that it is 30 micrometers-90 micrometers.
Any width of the support can be used, but from the viewpoint of handling, yield, and productivity, a width of 100 to 5000 mm is usually used, preferably 800 to 3000 mm, and preferably 1000 to 2000 mm. More preferably.
The surface of the support is preferably smooth, and the average roughness Ra is preferably 1 μm or less, preferably 0.0001 to 0.5 μm, and 0.001 to 0.1 μm. Is more preferable.

<セルロースアシレートフィルム>
支持体としては、上記各種フィルムの中でも、透明性が高く、光学的に複屈折が少なく、製造が容易であり、偏光板の保護フィルムとして一般に用いられているセルロースアシレートフィルムが好ましい。
セルロースアシレートフィルムについては力学特性、透明性、平面性などを改良する目的のため、種々の改良技術が知られており、公開技報2001−1745号に記載された技術は公知のものとして本発明のフィルムに用いることができる。
<Cellulose acylate film>
As the support, among the above-mentioned various films, a cellulose acylate film having high transparency, optically low birefringence, easy production and generally used as a protective film for a polarizing plate is preferable.
For the cellulose acylate film, various improvement techniques are known for the purpose of improving mechanical properties, transparency, flatness and the like. It can be used for the film of the invention.

本発明ではセルロースアシレートフィルムの中でもセルローストリアセテートフィルムが特に好ましく、セルロースアシレートフィルムに酢化度が59.0〜61.5%であるセルロースアセテートを使用することが好ましい。酢化度とは、セルロース単位質量当たりの結合酢酸量を意味する。酢化度は、ASTM:D−817−91(セルロースアセテート等の試験法)におけるアセチル化度の測定および計算に従う。
セルロースアシレートの粘度平均重合度(DP)は、250以上であることが好ましく、290以上であることがさらに好ましい。
また、本発明に使用するセルロースアシレートは、ゲルパーミエーションクロマトグラフィーによるMw/Mn(Mwは質量平均分子量、Mnは数平均分子量)の値が1.0に近いこと、換言すれば分子量分布が狭いことが好ましい。具体的なMw/Mnの値としては、1.0〜1.7であることが好ましく、1.3〜1.65であることがさらに好ましく、1.4〜1.6であることが最も好ましい。
In the present invention, among the cellulose acylate films, a cellulose triacetate film is particularly preferable, and it is preferable to use cellulose acetate having an acetylation degree of 59.0 to 61.5% for the cellulose acylate film. The degree of acetylation means the amount of bound acetic acid per unit mass of cellulose. The degree of acetylation follows the measurement and calculation of the degree of acetylation in ASTM: D-817-91 (test method for cellulose acetate and the like).
The viscosity average degree of polymerization (DP) of cellulose acylate is preferably 250 or more, and more preferably 290 or more.
In addition, the cellulose acylate used in the present invention has a Mw / Mn (Mw is mass average molecular weight, Mn is number average molecular weight) value by gel permeation chromatography close to 1.0, in other words, a molecular weight distribution. Narrow is preferred. The specific value of Mw / Mn is preferably 1.0 to 1.7, more preferably 1.3 to 1.65, and most preferably 1.4 to 1.6. preferable.

一般に、セルロースアシレートの2,3,6位の水酸基は全体の置換度の1/3づつに均等に分配されるわけではなく、6位水酸基の置換度が小さくなる傾向がある。本発明ではセルロースアシレートの6位水酸基の置換度が、2,3位に比べて多いほうが好ましい。
全体の置換度に対して6位の水酸基が32%以上アシル基で置換されていることが好ましく、更には33%以上、特に34%以上であることが好ましい。さらにセルロースアシレートの6位アシル基の置換度が0.88以上であることが好ましい。6位水酸基は、アセチル基以外に炭素数3以上のアシル基であるプロピオニル基、ブチロイル基、バレロイル基、ベンゾイル基、アクリロイル基などで置換されていてもよい。各位置の置換度の測定は、NMRによって求めることができる。
本発明ではセルロースアシレートとして、特開平11−5851号公報の段落[0043]〜[0044][実施例][合成例1]、段落[0048]〜[0049][合成例2]、段落[0051]〜[0052][合成例3]に記載の方法で得られたセルロースアセテートを用いることができる。
In general, the hydroxyl groups at 2, 3, and 6 positions of cellulose acylate are not evenly distributed by 1/3 of the total substitution degree, and the substitution degree of the 6-position hydroxyl group tends to be small. In the present invention, it is preferable that the substitution degree of the 6-position hydroxyl group of cellulose acylate is larger than that of the 2- and 3-positions.
The hydroxyl group at the 6-position with respect to the total degree of substitution is preferably substituted with an acyl group of 32% or more, more preferably 33% or more, and particularly preferably 34% or more. Furthermore, the substitution degree of the 6-position acyl group of cellulose acylate is preferably 0.88 or more. The 6-position hydroxyl group may be substituted with a propionyl group, butyroyl group, valeroyl group, benzoyl group, acryloyl group or the like, which is an acyl group having 3 or more carbon atoms, in addition to the acetyl group. The degree of substitution at each position can be determined by NMR.
In the present invention, as cellulose acylate, paragraphs [0043] to [0044] [Example] [Synthesis Example 1], paragraphs [0048] to [0049] [Synthesis Example 2], paragraph [ [0051] Cellulose acetate obtained by the method described in [0052] [Synthesis Example 3] can be used.

<ポリエチレンテレフタレートフィルム>
本発明では、ポリエチレンテレフタレートフィルムも、透明性、機械的強度、平面性、耐薬品性および耐湿性共に優れており、その上安価であり好ましく用いられる。
透明プラスチックフィルムとその上に設けられる光拡散層との密着強度をより向上させるため、透明プラスチックフィルムは易接着処理が施されたされたものであることが更に好ましい。
市販されている光学用易接着層付きPETフィルムとしては東洋紡績社製コスモシャインA4100、A4300等が挙げられる。
<Polyethylene terephthalate film>
In the present invention, the polyethylene terephthalate film is also preferably used because it is excellent in transparency, mechanical strength, flatness, chemical resistance and moisture resistance, and is inexpensive.
In order to further improve the adhesion strength between the transparent plastic film and the light diffusion layer provided thereon, the transparent plastic film is more preferably subjected to an easy adhesion treatment.
Examples of commercially available PET films with an easily adhesive layer for optics include Toyobo Co., Ltd. Cosmo Shine A4100 and A4300.

2.フィルムを構成する層
本発明のフィルムは、上記の各種化合物を混合、塗設することによって得ることができるものである。前記したように、本発明の光学フィルムは、透明支持体上に、光拡散層を有する光学フィルムである。当該光拡散層は、好ましくは透光性粒子とバインダーとを含有する。また、本発明の光学フィルムは、該光学フィルムの光拡散層に直接または他の層を介して低屈折率層を有することで反射防止フィルムとして用いるのに好適である。本発明の光学フィルムは、光拡散層、低屈折率層といった機能層の他にも、必要に応じてその他の機能層を有することができる。次に、本発明のフィルムを構成する層について記載する。
2. Layers constituting film The film of the present invention can be obtained by mixing and coating the above-mentioned various compounds. As described above, the optical film of the present invention is an optical film having a light diffusion layer on a transparent support. The light diffusion layer preferably contains translucent particles and a binder. Moreover, the optical film of the present invention is suitable for use as an antireflection film by having a low refractive index layer directly or via another layer in the light diffusion layer of the optical film. The optical film of the present invention can have other functional layers as required in addition to functional layers such as a light diffusion layer and a low refractive index layer. Next, it describes about the layer which comprises the film of this invention.

2−(1)ハードコート層
本発明のフィルムには、フィルムの物理的強度を付与するために、好ましくは透明支持体の一方の面にハードコート層が設けられる。「2−(2)光拡散層」および「3.フィルムの層構成」において後述するように、光拡散層にハードコート性を持たせて、光拡散層がハードコート層を兼ねるのも好ましい態様である。光拡散層とは別にハードコート層を有する場合には、ハードコート層の位置は透明支持体側でも、光拡散層の透明支持体側とは反対の側でもよい。ハードコート層は、二層以上の積層から構成されてもよい。
2- (1) Hard Coat Layer The film of the present invention is preferably provided with a hard coat layer on one surface of the transparent support in order to impart the physical strength of the film. As will be described later in “2- (2) Light Diffusion Layer” and “3. Layer Structure of Film”, it is preferable that the light diffusion layer also has a hard coat property, and the light diffusion layer also serves as the hard coat layer. It is. When a hard coat layer is provided separately from the light diffusion layer, the position of the hard coat layer may be on the transparent support side or on the opposite side of the light diffusion layer from the transparent support side. The hard coat layer may be composed of two or more layers.

また、本発明の光学フィルムは、光拡散層を少なくとも2層有し、透光性粒子が下層に存在することも好ましい。このためには、光拡散層の上に、ハードコート層を積層することが好ましい。このような構成にした場合、光拡散層の表面凹凸にスムージングをかけ滑らかな凹凸を形成することで、山の頻度を減らし凹凸の間隔広げる(Sm値を大きくする)、山の高さを低く(Ra値下げる)することができる。   Moreover, it is also preferable that the optical film of the present invention has at least two light diffusion layers, and the light-transmitting particles are present in the lower layer. For this purpose, it is preferable to laminate a hard coat layer on the light diffusion layer. In such a configuration, the surface unevenness of the light diffusion layer is smoothed to form smooth unevenness, thereby reducing the frequency of the peaks and increasing the interval between the unevenness (increasing the Sm value), and reducing the height of the peaks. (Ra value can be lowered).

ハードコート層の膜厚は、フィルムに充分な耐久性、耐衝撃性を付与する観点から、ハードコート層の厚さは、好ましくは0.5μm〜50μm程度とし、より好ましくは1μm〜20μm、さらに好ましくは2μm〜10μm、最も好ましくは3μm〜7μmである。
また、ハードコート層の強度は、鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
さらに、JIS K5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
From the viewpoint of imparting sufficient durability and impact resistance to the film, the thickness of the hard coat layer is preferably about 0.5 μm to 50 μm, more preferably 1 μm to 20 μm, and more preferably Preferably they are 2 micrometers-10 micrometers, Most preferably, they are 3 micrometers-7 micrometers.
Further, the strength of the hard coat layer is preferably H or more, more preferably 2H or more, and most preferably 3H or more in a pencil hardness test.
Furthermore, in the Taber test according to JIS K5400, the smaller the wear amount of the test piece before and after the test, the better.

ハードコート層は、電離放射線硬化性化合物の架橋反応、又は、重合反応により形成されることが好ましい。例えば、電離放射線硬化性の多官能モノマーや多官能オリゴマーを含む塗布組成物を透明支持体上に塗布し、多官能モノマーや多官能オリゴマーを架橋反応、又は、重合反応させることにより形成することができる。
電離放射線硬化性の多官能モノマーや多官能オリゴマーの官能基としては、光、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。
光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和の重合性官能基等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。
The hard coat layer is preferably formed by a crosslinking reaction or a polymerization reaction of an ionizing radiation curable compound. For example, it may be formed by coating a coating composition containing an ionizing radiation-curable polyfunctional monomer or polyfunctional oligomer on a transparent support and subjecting the polyfunctional monomer or polyfunctional oligomer to a crosslinking reaction or a polymerization reaction. it can.
The functional group of the ionizing radiation curable polyfunctional monomer or polyfunctional oligomer is preferably a light, electron beam, or radiation polymerizable group, and among them, a photopolymerizable functional group is preferable.
Examples of the photopolymerizable functional group include unsaturated polymerizable functional groups such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group. Among them, a (meth) acryloyl group is preferable.

ハードコート層のバインダーには、ハードコート層の屈折率を制御する目的で、高屈折率モノマーまたは無機粒子、或いは両者を加えることができる。無機粒子には屈折率を制御する効果に加えて、架橋反応による硬化収縮を抑える効果もある。本発明では、ハードコート層形成後において、前記多官能モノマーおよび/又は高屈折率モノマー等が重合して生成した重合体、その中に分散された無機粒子を含んでバインダーと称する。
また、ハードコート層の内部散乱により液晶パネルの模様や色ムラ、輝度ムラ、ギラツキなどを見難くしたり、散乱により視野角を拡大する機能を付与する場合は、内部ヘイズ値(全ヘイズ値から表面ヘイズ値を引いた値)は0%〜60%であることが好ましく、更に好ましくは10%〜40%であり、最も好ましくは20%〜30%である。
本発明のフィルムは、目的に応じて、表面ヘイズ及び内部ヘイズを自由に設定可能である。
For the purpose of controlling the refractive index of the hard coat layer, a high refractive index monomer, inorganic particles, or both can be added to the binder of the hard coat layer. In addition to the effect of controlling the refractive index, the inorganic particles also have the effect of suppressing cure shrinkage due to the crosslinking reaction. In the present invention, a polymer formed by polymerizing the polyfunctional monomer and / or the high refractive index monomer after the hard coat layer is formed, and the inorganic particles dispersed therein are referred to as a binder.
Also, when it is difficult to see the pattern, color unevenness, brightness unevenness, glare, etc. of the liquid crystal panel due to internal scattering of the hard coat layer, or to add the function of expanding the viewing angle by scattering, the internal haze value (from the total haze value) The value obtained by subtracting the surface haze value) is preferably 0% to 60%, more preferably 10% to 40%, and most preferably 20% to 30%.
The film of the present invention can freely set surface haze and internal haze according to the purpose.

2−(2)光拡散層
前記したように本発明の光学フィルムは、透明支持体上に、光拡散層を有する光学フィルムであり、前述のような特定の散乱強度を有する。散乱光プロファイルは、作成した光散乱フィルムについて、市販の自動変角光度計(GP−5型、(株)村上色彩技術研究所製)を用いて測定する。
測定の精度を上げるために、各フィルムは1cm以上離れた別の位置を3回測定し、平均化する。また、機器差、日間差を補正するため、光散乱フィルムとして、富士写真フイルム(株)製反射防止フィルム「CVフィルム CV02」、透明支持体として、富士写真フイルム(株)80μmの厚さのトリアセチルセルロースフィルム「TD80U」を測定し、比I(0°)/I0が 51.5%〜55.5%、I(6°)/I0が 1.51%〜1.59%かつI(30°)/I0が 0.0071%〜0.0084%になるように調節する。
2- (2) Light Diffusing Layer As described above, the optical film of the present invention is an optical film having a light diffusing layer on a transparent support, and has a specific scattering intensity as described above. A scattered light profile is measured about the created light-scattering film using a commercially available automatic variable angle photometer (GP-5 type, manufactured by Murakami Color Research Laboratory Co., Ltd.).
In order to increase the accuracy of the measurement, each film is measured three times at another position separated by 1 cm or more and averaged. In addition, in order to correct for instrumental differences and day-to-day differences, an antireflection film “CV film CV02” manufactured by Fuji Photo Film Co., Ltd. as a light scattering film, and a 80 μm-thick film of Fuji Photo Film Co., Ltd. as a transparent support. The acetylcellulose film “TD80U” was measured, and the ratio I (0 °) / I0 was 51.5% to 55.5%, I (6 °) / I0 was 1.51% to 1.59% and I (30 °) / I0 is adjusted to be 0.0071% to 0.0084%.

視野角特性、ギラツキ、文字ボケの改良には、ヘイズ値の調整も重要である。光拡散層の内部散乱により液晶パネルの模様や色ムラ、輝度ムラ、ギラツキなどを見難くしたり、散乱により視野角を拡大する機能を付与する場合は、内部ヘイズ値(全ヘイズ値から表面ヘイズ値を引いた値)は0%〜60%であることが好ましく、更に好ましくは10%〜40%であり、特に好ましくは15%〜35%、最も好ましくは20%〜30%である。内部散乱ヘイズを上昇させる方法としては、粒子濃度を上げる、もしくは膜厚を厚くする、さらには該粒子の屈折率を上げるなどの方法がある。内部散乱ヘイズとは別に、防眩性の観点から表面凹凸により表面ヘイズを設ける場合には、防眩性と黒しまりを両立させるためには、0.3%〜20%であることが好ましく、0.3%〜10%であることがより好ましく、0.3%〜1.5%であることが更に好ましい。
また、本発明のフィルムは、目的に応じて、表面ヘイズ及び内部ヘイズを自由に設定可能である。
Adjustment of the haze value is also important for improving the viewing angle characteristics, glare, and character blur. When it is difficult to see the pattern, color unevenness, brightness unevenness, glare, etc. of the liquid crystal panel due to the internal scattering of the light diffusion layer, or to add the function of expanding the viewing angle by the scattering, the internal haze value (from the total haze value to the surface haze value) The value obtained by subtracting the value is preferably 0% to 60%, more preferably 10% to 40%, particularly preferably 15% to 35%, and most preferably 20% to 30%. As a method for increasing the internal scattering haze, there are methods such as increasing the particle concentration, increasing the film thickness, and further increasing the refractive index of the particles. In addition to the internal scattering haze, when providing surface haze with surface irregularities from the viewpoint of antiglare properties, it is preferably 0.3% to 20% in order to achieve both antiglare properties and blackening, It is more preferably 0.3% to 10%, and still more preferably 0.3% to 1.5%.
Moreover, the film of this invention can set a surface haze and an internal haze freely according to the objective.

光拡散層の算術平均粗さ(Ra)は、防眩性と黒しまりを両立させるため、0.03〜0.30μmが好ましく、0.05〜0.12μmが更に好ましい。凹凸の平均間隔(Sm)は40〜200μmが好ましく、50〜170μmがより好ましく、60〜150μmが更に好ましい。   The arithmetic average roughness (Ra) of the light diffusion layer is preferably 0.03 to 0.30 μm and more preferably 0.05 to 0.12 μm in order to achieve both antiglare properties and blackening. 40-200 micrometers is preferable, as for the average space | interval (Sm) of an unevenness | corrugation, 50-170 micrometers is more preferable, and 60-150 micrometers is still more preferable.

光拡散層は、表面散乱による防眩性をフィルムに寄与するものであり、好ましくはフィルムの耐擦傷性を向上するためのハードコート性をフィルムに寄与する、すなわち、光拡散層がハードコート層を兼ねるのも好ましい態様である。
本発明の反射防止フィルムは、前記光学フィルムの光拡散層の上に低屈折率層が設けられることによって構成される。更に好ましくは、必要性に応じて設けられるハードコート層と、低屈折率層との間に中屈折率層、高屈折率層が設けられる。本発明における光拡散層の屈折率は、反射防止性のフィルムを得るための光学設計から、屈折率が1.48〜2.00の範囲にあることが好ましく、より好ましくは1.52〜1.90であり、更に好ましくは1.55〜1.80である。反射防止性、反射光の色味などの観点から上記範囲が好ましい。
The light diffusion layer contributes to the film with antiglare properties due to surface scattering, and preferably contributes to the film with a hard coat property for improving the scratch resistance of the film, that is, the light diffusion layer is a hard coat layer. It is also a preferred embodiment that serves as both.
The antireflection film of the present invention is constituted by providing a low refractive index layer on the light diffusion layer of the optical film. More preferably, an intermediate refractive index layer and a high refractive index layer are provided between a hard coat layer provided according to necessity and a low refractive index layer. The refractive index of the light diffusion layer in the present invention is preferably in the range of 1.48 to 2.00, more preferably 1.52 to 1, from the optical design for obtaining an antireflection film. .90, more preferably 1.55 to 1.80. The above range is preferable from the viewpoints of antireflection properties and the color of reflected light.

防眩性を形成する方法としては、特開平6−16851号記載のような表面に微細な凹凸を有するマット状の賦型フィルムをラミネートして形成する方法、特開2000−206317号記載のように電離放射線照射量の差による電離放射線硬化型樹脂の硬化収縮により形成する方法、特開2000−338310号記載のように乾燥にて透光性樹脂に対する良溶媒の質量比が減少することにより透光性微粒子および透光性樹脂とをゲル化させつつ固化させて塗膜表面に凹凸を形成する方法、特開2000−275404号記載のように外部からの圧力により表面凹凸を付与する方法などが知られており、これら公知の方法を利用することができる。
本発明の光拡散層は、光拡散層形成用組成物、好ましくは塗布組成物に、ハードコート性を付与することのできるバインダー形成成分、防眩性を付与するための透光性粒子、および溶媒を含有し、光拡散層を形成した際に、透光性粒子自体により形成される凸形状、あるいは三次元の立体構造を有する粒子の凝集部が複数存在し、表面の凹凸が形成されるものであることが好ましい。
As a method of forming the antiglare property, a method of laminating and forming a mat-shaped shaping film having fine irregularities on the surface as described in JP-A-6-16851, as described in JP-A-2000-206317 A method of forming by curing shrinkage of an ionizing radiation curable resin due to a difference in the amount of ionizing radiation applied, and by reducing the mass ratio of a good solvent to a light transmitting resin by drying as described in JP-A No. 2000-338310. A method of solidifying the light-sensitive fine particles and the translucent resin while gelling to form unevenness on the coating film surface, a method of imparting surface unevenness by external pressure as described in JP-A-2000-275404, etc. These known methods can be used.
The light diffusing layer of the present invention comprises a light diffusing layer forming composition, preferably a binder forming component capable of imparting hard coat properties to the coating composition, translucent particles for imparting antiglare properties, and When a light diffusing layer is formed containing a solvent, there are a plurality of convex portions formed by the translucent particles themselves or agglomerated portions of particles having a three-dimensional structure, and surface irregularities are formed. It is preferable.

上記透光性粒子としては、1−(8)透光性粒子の項に記載したものを用いることができる。
上記透光性粒子(マット粒子)の具体例としては、例えばアクリル粒子、架橋アクリル粒子、ポリスチレン粒子、架橋スチレン粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子等の樹脂粒子が好ましく挙げられる。なかでも架橋スチレン粒子、架橋ポリ(アクリルースチレン)共重合体粒子、架橋アクリル粒子が好ましい。
As the translucent particles, those described in the section 1- (8) Translucent particles can be used.
Specific examples of the translucent particles (mat particles) include resin particles such as acrylic particles, crosslinked acrylic particles, polystyrene particles, crosslinked styrene particles, melamine resin particles, and benzoguanamine resin particles. Of these, crosslinked styrene particles, crosslinked poly (acryl-styrene) copolymer particles, and crosslinked acrylic particles are preferred.

光拡散層の平均膜厚は、2〜30μmが好ましく、4〜20μmがより好ましく、6〜16μmが更に好ましくい。薄すぎるとハードコート性が不足し、厚すぎるとカールや脆性が悪化して加工適性が低下する場合があるので、前記範囲内とするのが好ましい。また、光拡散層の表面形状を制御するためには、平均膜厚は透光性粒子粒子径の0.5倍〜5倍が好ましい。   The average film thickness of the light diffusion layer is preferably 2 to 30 μm, more preferably 4 to 20 μm, and still more preferably 6 to 16 μm. If it is too thin, the hard coat property will be insufficient, and if it is too thick, curling and brittleness may be deteriorated and the workability may be lowered. In order to control the surface shape of the light diffusion layer, the average film thickness is preferably 0.5 to 5 times the translucent particle diameter.

上記透光性粒子(マット粒子とも言う。)は、形成された光拡散層中のマット粒子量が好ましくは30〜2500mg/m、より好ましくは100〜2300mg/m、更に好ましくは600〜2300mg/mとなるように光拡散層に含有される。30〜2500mg/mであれば、内部散乱が高くならないため、黒表示での黒輝度の上昇や、白表示での白輝度の低下が生じず、好ましい。 (Also referred to as matte particles.) The light-transmitting particles, matting particles of a light diffusing layer formed is preferably 30~2500mg / m 2, more preferably 100~2300mg / m 2, more preferably 600 to It is contained in the light diffusion layer so as to be 2300 mg / m 2 . If it is 30-2500 mg / m < 2 >, since internal scattering does not become high, the raise of the black luminance in black display or the fall of the white luminance in white display does not arise, and it is preferable.

また、1−(4)オルガノシラン化合物の項で示したように、光拡散層はオルガノシラン化合物を含有することが好ましい。   Moreover, as shown in the section of 1- (4) organosilane compound, the light diffusion layer preferably contains an organosilane compound.

光拡散層の強度は、鉛筆硬度試験で、2H以上であることが好ましく、3H以上であることが更に好ましく、4H以上であることが最も好ましい。   The strength of the light diffusion layer is preferably 2H or more, more preferably 3H or more, and most preferably 4H or more in the pencil hardness test.

2−(3)高屈折率層、中屈折率層
本発明のフィルムには、高屈折率層、中屈折率層を設け、反射防止性を高めることができる。
以下の本明細書では、この高屈折率層と中屈折率層を高屈折率層と総称して呼ぶことがある。なお、本発明において、高屈折率層、中屈折率層、低屈折率層の「高」、「中」、「低」とは層相互の相対的な屈折率の大小関係を表す。また、透明支持体との関係で言えば屈性率は、透明支持体>低屈折率層、高屈折率層>透明支持体の関係を満たすことが好ましい。
また、本明細書では高屈折率層、中屈折率層、低屈折率層を総称して反射防止層と総称して呼ぶことがある。
2- (3) High Refractive Index Layer, Medium Refractive Index Layer The film of the present invention can be provided with a high refractive index layer and a medium refractive index layer to enhance antireflection properties.
In the following specification, the high refractive index layer and the medium refractive index layer may be collectively referred to as a high refractive index layer. In the present invention, “high”, “medium”, and “low” in the high refractive index layer, the medium refractive index layer, and the low refractive index layer represent the relative refractive index relationship between the layers. In terms of the relationship with the transparent support, the refractive index preferably satisfies the relationship of transparent support> low refractive index layer, high refractive index layer> transparent support.
In the present specification, the high refractive index layer, the middle refractive index layer, and the low refractive index layer may be collectively referred to as an antireflection layer.

高屈折率層の上に低屈折率層を構築して、反射防止フィルムを作製するためには、高屈折率層の屈折率は1.55〜2.40であることが好ましく、より好ましくは1.60〜2.20、更に好ましくは、1.65〜2.10、最も好ましくは1.80〜2.00である。   In order to construct an antireflection film by constructing a low refractive index layer on a high refractive index layer, the refractive index of the high refractive index layer is preferably 1.55 to 2.40, more preferably 1.60 to 2.20, more preferably 1.65 to 2.10, and most preferably 1.80 to 2.00.

支持体から近い順に中屈折率層、高屈折率層、低屈折率層を塗設し、反射防止フィルムを作成する場合、高屈折率層の屈折率は、1.65〜2.40であることが好ましく、1.70〜2.20であることがさらに好ましい。中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整する。中屈折率層の屈折率は、1.55〜1.80であることが好ましい。   When an antireflective film is prepared by coating a medium refractive index layer, a high refractive index layer, and a low refractive index layer in order from the support, the refractive index of the high refractive index layer is 1.65 to 2.40. Preferably, it is 1.70-2.20. The refractive index of the middle refractive index layer is adjusted to be a value between the refractive index of the low refractive index layer and the refractive index of the high refractive index layer. The refractive index of the middle refractive index layer is preferably 1.55-1.80.

高屈折率層および中屈折率層に用いる無機粒子としては、1−(9)に前述したように、TiOを主成分とする無機粒子が好ましく、無機粒子は分散物の状態で高屈折率層および中屈折率層の形成に使用する。
無機粒子の分散において、分散剤の存在下で分散媒体中に分散する。
As the inorganic particles used in the high refractive index layer and the medium refractive index layer, as described above in 1- (9), inorganic particles containing TiO 2 as a main component are preferable, and the inorganic particles are in a dispersion state and have a high refractive index. Used to form layers and medium refractive index layers.
In the dispersion of the inorganic particles, the inorganic particles are dispersed in a dispersion medium in the presence of a dispersant.

本発明に用いる高屈折率層および中屈折率層は、分散媒体中に無機粒子を分散した分散液に、好ましくは、さらにマトリックス形成に必要なバインダー前駆体(例えば、前述の電離放射線硬化性の多官能モノマーや多官能オリゴマーなど)、光重合開始剤等を加えて高屈折率層および中屈折率層形成用の塗布組成物とし、透明支持体上に高屈折率層および中屈折率層形成用の塗布組成物を塗布して、電離放射線硬化性化合物(例えば、多官能モノマーや多官能オリゴマーなど)の架橋反応又は重合反応により硬化させて形成することが好ましい。   The high refractive index layer and medium refractive index layer used in the present invention are preferably used in a dispersion liquid in which inorganic particles are dispersed in a dispersion medium, preferably a binder precursor necessary for matrix formation (for example, the ionizing radiation curable composition described above). Polyfunctional monomer, polyfunctional oligomer, etc.), photopolymerization initiator, etc. are added to form a coating composition for forming a high refractive index layer and a medium refractive index layer, and a high refractive index layer and a medium refractive index layer are formed on a transparent support. It is preferable that the coating composition is applied and cured by a crosslinking reaction or a polymerization reaction of an ionizing radiation curable compound (for example, a polyfunctional monomer or a polyfunctional oligomer).

さらに、高屈折率層および中屈折率層のバインダー成分を層の塗布と同時または塗布後に、分散剤と架橋反応又は重合反応させることが好ましい。
このようにして作製した高屈折率層および中屈折率層のバインダーは、例えば、上記の好ましい分散剤と電離放射線硬化性の多官能モノマーや多官能オリゴマーとが、架橋又は重合反応し、バインダーに分散剤のアニオン性基が取りこまれた形となる。さらに高屈折率層および中屈折率層のバインダーは、アニオン性基が無機粒子の分散状態を維持する機能を有し、架橋又は重合構造がバインダーに皮膜形成能を付与して、無機粒子を含有する高屈折率層および中屈折率層の物理強度、耐薬品性、耐候性を改良する。
Furthermore, it is preferable to cause the binder component of the high refractive index layer and the medium refractive index layer to undergo a crosslinking reaction or a polymerization reaction with the dispersant at the same time as or after the coating of the layer.
The binder of the high refractive index layer and the medium refractive index layer produced in this way is, for example, the above-mentioned preferred dispersant and ionizing radiation curable polyfunctional monomer or polyfunctional oligomer are crosslinked or polymerized to form a binder. The anionic group of the dispersant is incorporated. Furthermore, the binder of the high refractive index layer and the medium refractive index layer has a function in which the anionic group maintains the dispersion state of the inorganic particles, and the crosslinked or polymerized structure imparts a film forming ability to the binder and contains inorganic particles. To improve the physical strength, chemical resistance and weather resistance of the high refractive index layer and medium refractive index layer.

高屈折率層のバインダー形成成分は、該層の塗布組成物の固形分量100質量部中、5〜80質量部となるよう添加することが好ましい。   The binder forming component of the high refractive index layer is preferably added so as to be 5 to 80 parts by mass in 100 parts by mass of the solid content of the coating composition of the layer.

高屈折率層における無機粒子の含有量は、高屈折率層の質量に対し10〜90質量%であることが好ましく、より好ましくは15〜80質量%、特に好ましくは15〜75質量%である。無機粒子は高屈折率層内で二種類以上を併用してもよい。
高屈折率層の上に低屈折率層を有する場合、高屈折率層の屈折率は透明支持体の屈折率より高いことが好ましい。
高屈折率層に、芳香環を含む電離放射線硬化性化合物、フッ素以外のハロゲン化元素(例えば、Br,I,Cl等)を含む電離放射線硬化性化合物、S,N,P等の原子を含む電離放射線硬化性化合物などの架橋又は重合反応で得られるバインダーも好ましく用いることができる。
The content of the inorganic particles in the high refractive index layer is preferably 10 to 90% by mass, more preferably 15 to 80% by mass, and particularly preferably 15 to 75% by mass with respect to the mass of the high refractive index layer. . Two or more inorganic particles may be used in combination in the high refractive index layer.
When the low refractive index layer is provided on the high refractive index layer, the refractive index of the high refractive index layer is preferably higher than the refractive index of the transparent support.
The high refractive index layer contains an ionizing radiation curable compound containing an aromatic ring, an ionizing radiation curable compound containing a halogenated element other than fluorine (for example, Br, I, Cl, etc.), and atoms such as S, N, P, etc. A binder obtained by a crosslinking or polymerization reaction such as an ionizing radiation curable compound can also be preferably used.

高屈折率層の膜厚は用途により適切に設計することができる。高屈折率層は後述する干渉ムラ防止層として用いることもでき、この場合、30〜200nmが好ましく、より好ましくは50〜170nm、特に好ましくは60〜150nmである。   The film thickness of the high refractive index layer can be appropriately designed depending on the application. The high refractive index layer can also be used as an interference unevenness preventing layer described later. In this case, the thickness is preferably 30 to 200 nm, more preferably 50 to 170 nm, and particularly preferably 60 to 150 nm.

高屈折率層のヘイズは、低いほど好ましい。5%以下であることが好ましく、さらに好ましくは3%以下、特に好ましくは1%以下である。
高屈折率層は、前記透明支持体上に光拡散層を塗設し、その上に直接、又は、他の層を介して構築することが好ましい。
The haze of the high refractive index layer is preferably as low as possible. It is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less.
The high refractive index layer is preferably constructed by coating a light diffusion layer on the transparent support and directly or through another layer thereon.

2−(4)低屈折率層
前述のように本発明の反射防止フィルムは、該光学フィルムの光拡散層の上に低屈折率層を有する反射防止フィルムである。本発明のフィルムの反射率を低減することができる。
2- (4) Low Refractive Index Layer As described above, the antireflective film of the present invention is an antireflective film having a low refractive index layer on the light diffusion layer of the optical film. The reflectance of the film of the present invention can be reduced.

低屈折率層の屈折率は、1.20〜1.46であることが好ましく、1.25〜1.46であることがより好ましく、1.30〜1.46であることが特に好ましい。
低屈折率層の厚さは、50〜200nmであることが好ましく、70〜100nmであることがさらに好ましい。低屈折率層のヘイズは、3%以下であることが好ましく、2%以下であることがさらに好ましく、1%以下であることが最も好ましい。具体的な低屈折率層の強度は、500g荷重の鉛筆硬度試験でH以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
また、反射防止フィルムの防汚性能を改良するために、表面の水に対する接触角が90度以上であることが好ましい。更に好ましくは95度以上であり、特に好ましくは100度以上である。
The refractive index of the low refractive index layer is preferably 1.20 to 1.46, more preferably 1.25 to 1.46, and particularly preferably 1.30 to 1.46.
The thickness of the low refractive index layer is preferably 50 to 200 nm, and more preferably 70 to 100 nm. The haze of the low refractive index layer is preferably 3% or less, more preferably 2% or less, and most preferably 1% or less. The specific strength of the low refractive index layer is preferably H or higher, more preferably 2H or higher, and most preferably 3H or higher in a pencil hardness test under a 500 g load.
Moreover, in order to improve the antifouling performance of the antireflection film, it is preferable that the contact angle of water with respect to the surface is 90 degrees or more. More preferably, it is 95 degrees or more, and particularly preferably 100 degrees or more.

低屈折率層には、本発明の微粒子を分散・固定するためにバインダーが用いられる。バインダー形成成分としては、前記1−(1)で述べたバインダーを用いることが出来るが、バインダー自身の屈折率の低い、1−(3)に前記した含フッ素ポリマー、あるいは含フッ素ゾルゲル素材などを用いることが好ましい。含フッ素ポリマーあるいは含フッ素ゾルゲルとしては、熱または電離放射線により架橋し、形成される低屈折率層表面の動摩擦係数0.03〜0.30となる素材が好ましい。   In the low refractive index layer, a binder is used for dispersing and fixing the fine particles of the present invention. As the binder forming component, the binder described in 1- (1) above can be used, but the refractive index of the binder itself is low, the fluorine-containing polymer described in 1- (3), or the fluorine-containing sol-gel material. It is preferable to use it. As the fluorine-containing polymer or fluorine-containing sol-gel, a material that crosslinks by heat or ionizing radiation and has a dynamic friction coefficient of 0.03 to 0.30 on the surface of the formed low refractive index layer is preferable.

低屈折率層形成用組成物は、1−(3)に前記した含フッ素ポリマー、1−(9)に前記した無機粒子、1−(4)に前記したオルガノシラン化合物を含有してなるのが好ましい。   The composition for forming a low refractive index layer comprises 1- (3) the fluorine-containing polymer described above, 1- (9) the inorganic particles described above, and 1- (4) the organosilane compound described above. Is preferred.

2−(5)帯電防止層、導電性層
本発明においては、帯電防止層を設けることがフィルム表面での静電気防止の点で好ましい。帯電防止層を形成する方法は、例えば、導電性微粒子と反応性硬化樹脂を含む導電性塗工液を塗工する方法、或いは透明膜を形成する金属や金属酸化物等を蒸着やスパッタリングして導電性薄膜を形成する方法等の従来公知の方法を挙げることができる。導電性層は、支持体に直接又は支持体との接着を強固にするプライマー層を介して形成することができる。また、帯電防止層を反射防止膜の一部として使用することもできる。この場合、最表層から近い層で使用する場合には、膜の厚さが薄くても十分に帯電防止性を得ることができる
2- (5) Antistatic Layer, Conductive Layer In the present invention, it is preferable to provide an antistatic layer in terms of preventing static electricity on the film surface. The antistatic layer can be formed by, for example, applying a conductive coating solution containing conductive fine particles and a reactive curable resin, or depositing or sputtering a metal or metal oxide that forms a transparent film. Conventionally known methods such as a method of forming a conductive thin film can be listed. The conductive layer can be formed directly on the support or via a primer layer that strengthens adhesion to the support. Further, the antistatic layer can be used as a part of the antireflection film. In this case, when used in a layer close to the outermost layer, sufficient antistatic properties can be obtained even if the film is thin.

帯電防止層の厚さは、0.01〜10μmが好ましく、0.03〜7μmであることがより好ましく、0.05〜5μmであることがさらに好ましい。帯電防止層の表面抵抗は、10〜1012Ω/sqであることが好ましく、10〜10Ω/sqであることがさらに好ましく、10〜10Ω/sqであることが最も好ましい。帯電防止層の表面抵抗は、四探針法により測定することができる。 The thickness of the antistatic layer is preferably from 0.01 to 10 μm, more preferably from 0.03 to 7 μm, and even more preferably from 0.05 to 5 μm. The surface resistance of the antistatic layer is preferably from 10 5 ~10 12 Ω / sq, more preferably from 10 5 ~10 9 Ω / sq, most be 10 5 ~10 8 Ω / sq preferable. The surface resistance of the antistatic layer can be measured by a four probe method.

帯電防止層は、実質的に透明であることが好ましい。具体的には、帯電防止層のヘイズが、10%以下であることが好ましく、5%以下であることがより好ましく、3%以下であることがさらに好ましく、1%以下であることが最も好ましい。波長550nmの光の透過率が、50%以上であることが好ましく、60%以上であることがより好ましく、65%以上であることがさらに好ましく、70%以上であることが最も好ましい。
本発明に用いられる帯電防止層は、強度が優れていることが好ましく、具体的な帯電防止層の強度は、1kg荷重の鉛筆硬度で、H以上であることが好ましく、2H以上であることがより好ましく、3H以上であることがさらに好ましく、4H以上であることが最も好ましい。
The antistatic layer is preferably substantially transparent. Specifically, the haze of the antistatic layer is preferably 10% or less, more preferably 5% or less, further preferably 3% or less, and most preferably 1% or less. . The transmittance of light having a wavelength of 550 nm is preferably 50% or more, more preferably 60% or more, further preferably 65% or more, and most preferably 70% or more.
The antistatic layer used in the present invention preferably has excellent strength, and the specific antistatic layer has a pencil hardness of 1 kg, preferably H or higher, and preferably 2H or higher. More preferably, it is more preferably 3H or more, and most preferably 4H or more.

2−(6)防汚層
本発明の最表面には防汚層を設けることができる。防汚層は反射防止層の表面エネルギーを下げ、親水性あるいは親油性の汚れを付きにくくするものである。
防汚層には含フッ素ポリマーや防汚剤を用いて形成することができる。
防汚層の厚さは2〜100nmであることが好ましく、5〜30nmであることがさらに好ましい。
2- (6) Antifouling layer An antifouling layer can be provided on the outermost surface of the present invention. The antifouling layer lowers the surface energy of the antireflection layer and makes it difficult to attach hydrophilic or lipophilic stains.
The antifouling layer can be formed using a fluorine-containing polymer or an antifouling agent.
The thickness of the antifouling layer is preferably 2 to 100 nm, and more preferably 5 to 30 nm.

2−(7)干渉ムラ(虹ムラ)防止層
透明支持体とハードコート層、または透明支持体と光拡散層に実質的な屈折率差(屈折率差が0.03以上)がある場合、透明支持体/ハードコート層の、または透明支持体/光拡散層の、界面で反射光が生じる。この反射光は反射防止層表面での反射光と干渉し、ハードコート層や光拡散層の微妙な膜厚ムラに起因した干渉ムラを生じることがある。この様な干渉ムラを防止するために、例えば透明支持体とハードコート層や光拡散層の間に中間の屈折率nを有し、膜厚dが下記式を満たす様な干渉ムラ防止層を設けることもできる。
2- (7) Interference unevenness (rainbow unevenness) prevention layer When there is a substantial refractive index difference (refractive index difference of 0.03 or more) between the transparent support and the hard coat layer, or between the transparent support and the light diffusion layer, Reflected light is generated at the interface of the transparent support / hard coat layer or the transparent support / light diffusion layer. This reflected light interferes with the reflected light on the surface of the antireflection layer, and may cause interference unevenness due to fine film thickness unevenness of the hard coat layer and the light diffusion layer. In order to prevent such interference unevenness, for example, an interference unevenness prevention in which an intermediate refractive index n P is provided between the transparent support and the hard coat layer or the light diffusion layer, and the film thickness d P satisfies the following formula: Layers can also be provided.

数式(III)
=(2N−1)×λ/(4n
但し、λは可視光の波長で450〜650nmの範囲の何れかの値、Nは自然数。
Formula (III)
d P = (2N−1) × λ / (4n P )
Where λ is the wavelength of visible light and any value in the range of 450 to 650 nm, and N is a natural number.

また、反射防止フィルムを画像表示等に貼合する場合、透明支持体の反射防止層を積層していない側に粘着剤層(または接着剤層)を積層する場合がある。この様な態様で、透明支持体と粘着剤層(または接着剤層)の間に実質的な屈折率差(0.03以上)がある場合、透明支持体/粘着剤層(または接着剤層)の反射光が生じ、この反射光が、反射防止層表面の反射光などと干渉し、上記と同様に支持体やハードコート層、光干渉層の膜厚ムラに起因した干渉ムラを生じることがある。この様な干渉ムラを防止する目的で透明支持体の反射防止層を積層していない側に上記と同様の干渉ムラ防止層を設けることもできる。   Moreover, when bonding an antireflection film to an image display etc., an adhesive layer (or adhesive layer) may be laminated | stacked on the side which has not laminated | stacked the antireflection layer of a transparent support body. In such an embodiment, when there is a substantial refractive index difference (0.03 or more) between the transparent support and the pressure-sensitive adhesive layer (or adhesive layer), the transparent support / pressure-sensitive adhesive layer (or adhesive layer) ) Reflected light, and this reflected light interferes with the reflected light on the surface of the antireflection layer and causes interference unevenness due to uneven film thickness of the support, hard coat layer, and light interference layer in the same manner as described above. There is. For the purpose of preventing such interference unevenness, an interference unevenness preventing layer similar to the above can be provided on the side of the transparent support on which the antireflection layer is not laminated.

尚、この様な干渉ムラ防止層に関しては特開2004−345333号公報に詳しく記載されており、本発明ではここで紹介されている干渉ムラ防止層を用いることもできる。   Such an interference non-uniformity prevention layer is described in detail in Japanese Patent Application Laid-Open No. 2004-345333, and the interference non-uniformity prevention layer introduced here can also be used in the present invention.

2−(8)易接着層
本発明のフィルムには易接着層を塗設することもできる。易接着層とは、例えば、偏光板用保護フィルムとその隣接層、あるいはハードコート層と支持体、光拡散層と支持体とを接着し易くする機能を付与する層のことをいう。
易接着処理としては、ポリエステル、アクリル酸エステル、ポリウレタン、ポリエチレンイミン、シランカップリング剤等からなる易接着剤により透明プラスチックフィルム上に易接着層を設ける処理が挙げられる。
本技術にて好ましく用いられる易接着層の例としては、−COOM(Mは水素原子またはカチオンを表す)基を有する高分子化合物を含有する層を含むものであり、さらに好ましい態様はフィルム基材側に−COOM基を有する高分子化合物を含有する層を設け、それに隣接させて偏光膜側に親水性高分子化合物を主たる成分として含む層を設けたものである。ここでいう−COOM基を有する高分子化合物としては例えば−COOM基を有するスチレン−マレイン酸共重合体や−COOM基を有する酢酸ビニル−マレイン酸共重合体、酢酸ビニル−マレイン酸−無水マレイン酸共重合体などであり、特に−COOM基を有する酢酸ビニル−マレイン酸共重合体を用いると好ましい。このような高分子化合物を単独でまたは2種以上併用して用い、好ましい質量平均分子量としては500〜500,000程度のものであるとよい。−COOM基を有する高分子化合物の特に好ましい例は特開平6−094915号、特開平7−333436号各公報記載のものが好ましく用いられる。
2- (8) Easy-Adhesion Layer An easy-adhesion layer can be applied to the film of the present invention. The easy adhesion layer refers to, for example, a layer imparting a function of facilitating adhesion between the protective film for polarizing plate and the adjacent layer, or the hard coat layer and the support, and the light diffusion layer and the support.
Examples of the easy adhesion treatment include a treatment of providing an easy adhesion layer on a transparent plastic film with an easy adhesive composed of polyester, acrylic acid ester, polyurethane, polyethyleneimine, silane coupling agent and the like.
Examples of the easy-adhesion layer preferably used in the present technology include a layer containing a polymer compound having a -COOM (M represents a hydrogen atom or a cation) group, and a more preferable embodiment is a film substrate. A layer containing a polymer compound having a —COOM group is provided on the side, and a layer containing a hydrophilic polymer compound as a main component is provided on the polarizing film side adjacent to the layer. Examples of the polymer compound having -COOM group herein include styrene-maleic acid copolymer having -COOM group, vinyl acetate-maleic acid copolymer having -COOM group, and vinyl acetate-maleic acid-maleic anhydride. For example, it is preferable to use a vinyl acetate-maleic acid copolymer having a —COOM group. These polymer compounds are used alone or in combination of two or more, and the preferred mass average molecular weight is preferably about 500 to 500,000. Particularly preferred examples of the polymer compound having a —COOM group include those described in JP-A-6-094915 and JP-A-7-333436.

また親水性高分子化合物として好ましくは、親水性セルロース誘導体(例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシセルロース等)、ポリビニルアルコール誘導体(例えば、ポリビニルアルコール、酢酸ビニルービニルアルコール共重合体、ポリビニルアセタール、ポリビニルホルマール、ポリビニルベンザール等)、天然高分子化合物(例えば、ゼラチン、カゼイン、アラビアゴム等)、親水性ポリエステル誘導体(例えば、部分的にスルホン化されたポリエチレンテレフタレート等)、親水性ポリビニル誘導体(例えば、ポリ−N−ビニルピロリドン、ポリアクリルアミド、ポリビニルインダゾール、ポリビニルピラゾール等)が挙げられ、単独或いは2種以上併用して用いられる。
易接着層の厚みとしては0.05〜1.0μmの範囲が好ましい。0.05μmより薄いと十分な接着性が得られ難く、また、1.0μmより厚いと接着性の効果は飽和する。
The hydrophilic polymer compound is preferably a hydrophilic cellulose derivative (eg, methyl cellulose, carboxymethyl cellulose, hydroxy cellulose, etc.), a polyvinyl alcohol derivative (eg, polyvinyl alcohol, vinyl acetate-vinyl alcohol copolymer, polyvinyl acetal, polyvinyl formal). , Polyvinyl benzal, etc.), natural polymer compounds (eg, gelatin, casein, gum arabic, etc.), hydrophilic polyester derivatives (eg, partially sulfonated polyethylene terephthalate), hydrophilic polyvinyl derivatives (eg, poly -N-vinylpyrrolidone, polyacrylamide, polyvinylindazole, polyvinylpyrazole and the like), and may be used alone or in combination of two or more.
The thickness of the easy adhesion layer is preferably in the range of 0.05 to 1.0 μm. If it is thinner than 0.05 μm, it is difficult to obtain sufficient adhesiveness, and if it is thicker than 1.0 μm, the effect of adhesiveness is saturated.

2−(9)カール防止層
本発明のフィルムには、カール防止加工を施すこともできる。カール防止加工とは、これを施した面を内側にして丸まろうとする機能を付与するものである。この加工を施すことによって、透明樹脂フィルムに何らかの表面加工をして、透明樹脂フィルムの二つのそれぞれの面に異なる程度・種類の表面加工を施した際に、内側にカールしようとするのを防止する働きをするものである。カール防止加工は、この内側にカールしようとする面とは透明樹脂フィルムの反対側の面に施される。カール防止加工としては、カール防止層を設ける加工が挙げられる。
カール防止層は基材の光拡散層、反射防止層を有する側と反対側に設ける態様或いは、例えば透明樹脂フィルムの片面に易接着層を塗設する場合もあり、また逆面にカール防止加工を塗設するような態様が挙げられる。
2- (9) Anti-curl Layer The film of the present invention can be subjected to anti-curl processing. The anti-curl processing is to impart a function of rounding with the surface to which the curl is applied. By applying this processing, the surface of the transparent resin film is prevented from curling inward when it is subjected to some degree or type of surface processing on each of the two surfaces of the transparent resin film. It works to do. The curl prevention process is performed on the surface opposite to the surface to be curled on the inner side of the transparent resin film. An example of the anti-curl process is a process of providing an anti-curl layer.
The anti-curl layer is provided on the side opposite to the side having the light diffusion layer or anti-reflection layer of the substrate, or an easy-adhesion layer may be coated on one side of the transparent resin film, for example. The mode which coats is mentioned.

カール防止加工の具体的方法としては、溶剤塗布によるもの、溶剤とセルローストリアセテート、セルロースジアセテート、セルロースアセテートプロピオネート等の透明樹脂層を塗設するもの等が挙げられる。溶剤による方法とは、具体的には偏光板用保護フィルムとして用いるセルロースアシレートフィルムを溶解させる溶剤または膨潤させる溶剤を含む組成物を塗布することによって行われる。これらのカールを防止する機能を有する層の塗布液は従ってケトン系、エステル系の有機溶剤を含有するものが好ましい。好ましいケトン系の有機溶媒の例としてはアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、乳酸エチル、アセチルアセトン、ジアセトンアルコール、イソホロン、エチル−n−ブチルケトン、ジイソプロピルケトン、ジエチルケトン、ジ−n−プロピルケトン、メチルシクロヘキサノン、メチル−n−ブチルケトン、メチル−n−プロピルケトン、メチル−n−ヘキシルケトン、メチル−n−へプチルケトン等であり、好ましいエステル系の有機溶剤の例としては酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル等が挙げられる。しかしながら、用いる溶剤としては溶解させる溶剤および/または膨潤させる溶剤の混合物の他、さらに溶解させない溶剤を含む場合もあり、これらを透明樹脂フィルムのカール度合や樹脂の種類によって適宜の割合で混合した組成物および塗布量を用いて行う。この他にも、透明ハード加工や帯電防止加工を施してもカール防止機能を発揮する。   Specific examples of the anti-curl processing include solvent coating, and a method of applying a solvent and a transparent resin layer such as cellulose triacetate, cellulose diacetate, and cellulose acetate propionate. The method using a solvent is specifically performed by applying a composition containing a solvent for dissolving or swelling a cellulose acylate film used as a protective film for a polarizing plate. Accordingly, the coating solution for the layer having a function of preventing curling preferably contains a ketone-based or ester-based organic solvent. Examples of preferred ketone-based organic solvents include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl lactate, acetyl acetone, diacetone alcohol, isophorone, ethyl-n-butyl ketone, diisopropyl ketone, diethyl ketone, di-n-propyl ketone, Examples thereof include methylcyclohexanone, methyl-n-butyl ketone, methyl-n-propyl ketone, methyl-n-hexyl ketone, methyl-n-heptyl ketone, etc. Examples of preferable ester organic solvents include methyl acetate, ethyl acetate, acetic acid Examples include butyl, methyl lactate, and ethyl lactate. However, as a solvent to be used, in addition to a solvent mixture to be dissolved and / or a solvent to be swollen, it may further contain a solvent that does not dissolve, and a composition in which these are mixed at an appropriate ratio depending on the degree of curl of the transparent resin film and the type of resin. This is done using the product and the coating amount. In addition, the anti-curl function is exhibited even if transparent hard processing or antistatic processing is applied.

2−(10)水吸収層
本発明のフィルムには水吸収剤を使用することができる。水吸収剤は、アルカリ土類金属を中心に、水吸収機能を有する化合物から選択することができる。例えば、BaO、SrO、CaO、およびMgOなどが挙げられる。さらに、Ti、Mg、Ba、Caの様な金属元素から選択することもできる。これらの吸収剤粒子の粒子サイズは、好ましくは100nm以下であり、50nm以下で使用されるのがさらに好ましい。
これらの水吸収剤を含む層は真空下蒸着法等を使って作成してもよいし、ナノ粒子を各種方法で作成して用いてもよい。層の厚みは1〜100nmが好ましく、1〜10nmがより好ましい。水吸収剤を含む層は、支持体と機能層の間、機能層の最上層、機能層の間に添加されていてもよい。
2- (10) Water Absorbing Layer A water absorbent can be used in the film of the present invention. The water absorbent can be selected from compounds having a water absorption function, mainly alkaline earth metals. Examples thereof include BaO, SrO, CaO, and MgO. Further, it can be selected from metal elements such as Ti, Mg, Ba, and Ca. The particle size of these absorbent particles is preferably 100 nm or less, and more preferably 50 nm or less.
The layer containing these water absorbents may be prepared by using a vacuum deposition method or the like, or nanoparticles may be prepared by various methods. The thickness of the layer is preferably 1 to 100 nm, and more preferably 1 to 10 nm. The layer containing a water absorbent may be added between the support and the functional layer, between the uppermost layer of the functional layer and the functional layer.

2−(11)プライマー層・無機薄膜層
本発明のフィルムでは、支持体と積層体との間に、公知のプライマー層または無機薄膜層を設置することでガスバリアー性を高めたりすることができる。
プライマー層としては、例えばアクリル樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂等を用いることが可能であるが、本発明においてはこのプライマー層として有機無機ハイブリッド層を、無機薄膜層として無機蒸着層またはゾルーゲル法による緻密な無機コーティング薄膜が好ましい。無機蒸着層としては、シリカ、ジルコニア、アルミナ等の蒸着層が好ましい。無機蒸着層は真空蒸着法、スパッタリング法等により形成することができる。
2- (11) Primer Layer / Inorganic Thin Film Layer In the film of the present invention, gas barrier properties can be enhanced by installing a known primer layer or inorganic thin film layer between the support and the laminate. .
As the primer layer, for example, an acrylic resin, an epoxy resin, a urethane resin, a silicone resin or the like can be used. In the present invention, an organic-inorganic hybrid layer is used as the primer layer, an inorganic vapor deposition layer or a sol-gel is used as the inorganic thin film layer. A dense inorganic coating thin film by the method is preferred. As an inorganic vapor deposition layer, vapor deposition layers, such as a silica, a zirconia, an alumina, are preferable. The inorganic vapor deposition layer can be formed by a vacuum vapor deposition method, a sputtering method, or the like.

3.フィルムの層構成
本発明のフィルムについては、上記のような層を用い、公知の層構成を使用することができる。たとえば、代表的な例としては以下のようなものがある。
a.支持体/光拡散層(本発明の光学フィルムにおける必須層のみの構成)
b.支持体/光拡散層/低屈折率層(図1)(本発明の反射防止フィルムにおける必須層のみの構成)
c.支持体/光拡散層/高屈折率層/低屈折率層(図2)
d.支持体/光拡散層/中屈折率層/高屈折率層/低屈折率層(図3)
3. Layer structure of film About the film of this invention, a well-known layer structure can be used using the above layers. For example, the following are typical examples.
a. Support / light diffusion layer (configuration of only essential layers in the optical film of the present invention)
b. Support / Light Diffusing Layer / Low Refractive Index Layer (FIG. 1) (Configuration of Essential Layer in Antireflection Film of the Present Invention)
c. Support / light diffusion layer / high refractive index layer / low refractive index layer (FIG. 2)
d. Support / Light Diffusing Layer / Medium Refractive Index Layer / High Refractive Index Layer / Low Refractive Index Layer (FIG. 3)

b(図1)のように、支持体上に光拡散層を塗布した上に、低屈折率層を積層すると、反射防止フィルムとして好適に用いることができる。低屈折率層は光拡散層の上に低屈折率層4を光の波長の1/4前後の膜厚で形成することにより、薄膜干渉の原理により表面反射を低減することができる。
また、c(図2)のように支持体上に光拡散層を塗布した上に、高屈折率層、低屈折率層を積層しても反射防止フィルムとして好適に用いることができる。さらに、d(図3)のように支持体、光拡散層、中屈折率層、高屈折率層、そして低屈折率層の順序の層構成を設置することにより、反射率を1%以下とすることができる。
As shown in b (FIG. 1), a light diffusing layer is applied on a support, and a low refractive index layer is laminated, so that it can be suitably used as an antireflection film. By forming the low refractive index layer 4 with a film thickness of about ¼ of the wavelength of light on the light diffusion layer, the low refractive index layer can reduce surface reflection by the principle of thin film interference.
Moreover, even if a high-refractive-index layer and a low-refractive-index layer are laminated | stacked after apply | coating a light-diffusion layer on a support body like c (FIG. 2), it can use suitably as an antireflection film. Further, by installing a layer structure in the order of a support, a light diffusion layer, a medium refractive index layer, a high refractive index layer, and a low refractive index layer as shown in d (FIG. 3), the reflectance is 1% or less. can do.

上記a〜dの構成において、光拡散層(2)は防眩性を有するものであり、1層でも2層以上でもよい。防眩性は図1〜図4に示されるようなマット粒子の分散によるものでも、図5に示されるような、更にエンボス加工などの方法による表面の賦形によって形成されてもよい。マット粒子の分散によって形成される光拡散層は、バインダーとバインダー中に分散された透光性粒子を含有してなる。図4に示すように、ハードコート層(6)の上に光拡散層(2)を設けてもよく、逆に光拡散層(2)の上にハードコート層(6)を設けることで、ハードコート層に光拡散層の表面凹凸を調節する機能を持たせてもよい。防眩性を有する光拡散層は、好ましくは防眩性とハードコート性を兼ね備えている。複数層、例えば2層〜4層で構成されていてもよい。   In the structures a to d described above, the light diffusion layer (2) has antiglare properties, and may be one layer or two or more layers. The antiglare property may be formed by dispersion of matte particles as shown in FIGS. 1 to 4 or may be formed by surface shaping by a method such as embossing as shown in FIG. The light diffusion layer formed by the dispersion of the matte particles contains a binder and translucent particles dispersed in the binder. As shown in FIG. 4, the light diffusion layer (2) may be provided on the hard coat layer (6), and conversely, by providing the hard coat layer (6) on the light diffusion layer (2), The hard coat layer may have a function of adjusting the surface unevenness of the light diffusion layer. The light diffusion layer having antiglare properties preferably has both antiglare properties and hard coat properties. You may be comprised by multiple layers, for example, 2 layers-4 layers.

また透明支持体とそれよりも表面側の層の間あるいは最表面に設けても良い層として、干渉ムラ(虹ムラ)防止層、帯電防止層(ディスプレイ側からの表面抵抗値を下げる等の要求がある場合、表面等へのゴミつきが問題となる場合)、別のハードコート層(1層のハードコート層ないし光拡散層だけで硬度が不足する場合、例えば図4に示す態様)、ガスバリアー層、水吸収層(防湿層)、密着改良層、防汚層(汚染防止層)、等が挙げられる。
本発明における反射防止フィルムを構成する各層の屈折率は以下の関係を満たすことが好ましい。
光拡散層の屈折率>透明支持体の屈折率>低屈折率層の屈折率
In addition, interference unevenness (rainbow unevenness) prevention layer, antistatic layer (reduction of surface resistance value from the display side, etc.) may be provided between the transparent support and the surface side layer or the outermost layer. If there is a dust on the surface, there is a problem), another hard coat layer (when only one hard coat layer or light diffusion layer is insufficient in hardness, for example, the embodiment shown in FIG. 4), gas Examples thereof include a barrier layer, a water absorbing layer (moisture-proof layer), an adhesion improving layer, an antifouling layer (contamination preventing layer), and the like.
The refractive index of each layer constituting the antireflection film in the present invention preferably satisfies the following relationship.
Refractive index of light diffusion layer> Refractive index of transparent support> Refractive index of low refractive index layer

4.製造方法
本発明のフィルムは以下の方法で形成することができるが、この方法に制限されない。
4−(1)塗布液の調整
4). Manufacturing Method The film of the present invention can be formed by the following method, but is not limited to this method.
4- (1) Adjustment of coating solution

<調製>
まず、各層を形成するための成分を含有した塗布液が調製される。その際、溶剤の揮発量を最小限に抑制することにより、塗布液中の含水率の上昇を抑制できる。塗布液中の含水率は5%以下が好ましく、2%以下がより好ましい。溶剤の揮発量の抑制は、各素材をタンクに投入後の攪拌時の密閉性を向上すること、移液作業時の塗布液の空気接触面積を最小化すること等で達成される。また、塗布中、或いはその前後に塗布液中の含水率を低減する手段を設けてもよい。
<Preparation>
First, a coating solution containing components for forming each layer is prepared. In that case, the raise of the moisture content in a coating liquid can be suppressed by suppressing the volatilization amount of a solvent to the minimum. The moisture content in the coating solution is preferably 5% or less, more preferably 2% or less. The suppression of the volatilization amount of the solvent is achieved by improving the sealing property at the time of stirring after putting each material into the tank, minimizing the air contact area of the coating liquid at the time of liquid transfer operation, and the like. Moreover, you may provide the means to reduce the moisture content in a coating liquid during application | coating, or before and behind that.

<塗布液物性>
低屈折率層・中屈折率層・高屈折率層・防汚層などの好ましくは200nm以下の乾燥膜厚となる塗布液については、液物性により塗布可能な上限の速度が大きく影響を受けるため、塗布する瞬間の液物性、特に粘度及び表面張力を制御する必要がある。
粘度については2.0[mPa・sec]以下であることが好ましく、更に好ましくは1.5[mPa・sec]以下、最も好ましくは1.0[mPa・sec]以下である。塗布液によってはせん断速度により粘度が変化するものもあるため、上記の値は塗布される瞬間のせん断速度における粘度を示している。塗布液にチキソトロピー剤を添加して、高せん断のかかる塗布時は粘度が低く、塗布液にせん断が殆どかからない乾燥時は粘度が高くなると乾燥時のムラが発生しにくくなり、好ましい。
また、液物性ではないが、透明支持体に塗り付けられる塗布液の量も塗布可能な上限の速度に影響を与える。透明支持体に塗り付けられる塗布液の量は2.0〜5.0[cm3/m]であることが好ましい。透明支持体に塗り付けられる塗布液の量を増やすと塗布可能な上限の速度が上がるため好ましいが、透明支持体に塗り付けられる塗布液の量を増やしすぎると乾燥にかかる負荷が大きくなるため、液処方・工程条件によって最適な透明支持体に塗り付けられる塗布液の量を決めることが好ましい。
表面張力については、15〜36[mN/m]の範囲にあることが好ましい。レベリング剤を添加するなどして表面張力を低下させることは乾燥時のムラが抑止されるため好ましい。一方、表面張力が下がりすぎると塗布可能な上限の速度が低下してしまうため、17[mN/m]から32[mN/m]の範囲がより好まく、19[mN/m]から26[mN/m]の範囲が更に好ましい。
透光性粒子を含む光拡散層においては、粒子の沈降防止の観点で塗布液を4cp(4mPa・s)以上の粘度に調製することが好ましく、6cp(6mPa・s)以上の粘度に調製することが更に好ましい。
<Physical properties of coating solution>
For coating liquids having a dry film thickness of preferably 200 nm or less, such as a low refractive index layer, medium refractive index layer, high refractive index layer, and antifouling layer, the upper limit speed that can be applied is greatly affected by the liquid properties. It is necessary to control the liquid properties at the moment of application, particularly the viscosity and surface tension.
The viscosity is preferably 2.0 [mPa · sec] or less, more preferably 1.5 [mPa · sec] or less, and most preferably 1.0 [mPa · sec] or less. Since there are some coating solutions whose viscosity changes depending on the shear rate, the above value indicates the viscosity at the shear rate at the moment of coating. When a thixotropic agent is added to the coating solution and the coating solution is subjected to high shear, the viscosity is low, and when the coating solution is hardly sheared, if the viscosity is high, unevenness during drying is less likely to occur.
Moreover, although it is not a liquid physical property, the quantity of the coating liquid apply | coated to a transparent support body also affects the upper limit speed | rate which can be apply | coated. The amount of the coating solution applied to the transparent support is preferably 2.0 to 5.0 [cm 3 / m 2 ]. Increasing the amount of the coating liquid applied to the transparent support is preferable because the upper limit of the application rate can be increased, but if the amount of the coating liquid applied to the transparent support is increased too much, the load on drying increases. It is preferable to determine the optimal amount of coating liquid to be applied to the transparent support depending on the liquid formulation and process conditions.
The surface tension is preferably in the range of 15 to 36 [mN / m]. It is preferable to reduce the surface tension by adding a leveling agent or the like because unevenness during drying is suppressed. On the other hand, if the surface tension is too low, the upper limit speed at which coating can be performed is reduced. Therefore, a range of 17 [mN / m] to 32 [mN / m] is more preferable, and 19 [mN / m] to 26 [mN / m]. mN / m] is more preferable.
In the light diffusion layer containing translucent particles, it is preferable to adjust the coating liquid to a viscosity of 4 cp (4 mPa · s) or more, and to a viscosity of 6 cp (6 mPa · s) or more from the viewpoint of preventing sedimentation of the particles. More preferably.

<濾過>
塗布に用いる塗布液は、塗布前に濾過することが好ましい。濾過のフィルタは、塗布液中の成分が除去されない範囲でできるだけ孔径の小さいものを使うことが好ましい。通常、濾過には絶対濾過精度が0.1〜50μmのフィルタが用いられ、さらには絶対濾過精度が0.1〜40μmであるフィルタを用いることが好ましく用いられる。フィルタの厚さは、0.1〜10mmが好ましく、更には0.2〜2mmが好ましい。その場合、濾過圧力は1.5MPa以下、より好ましくは1.0MPa以下、更には0.2MPa以下で濾過することが好ましい。
濾過フィルタ部材は、塗布液に影響を及ぼさなければ特に限定されない。
また、濾過した塗布液を、塗布直前に超音波分散して、脱泡、分散物の分散保持を補助することも好ましい。
<Filtration>
The coating solution used for coating is preferably filtered before coating. As the filter for filtration, it is preferable to use a filter having a pore diameter as small as possible within the range in which the components in the coating solution are not removed. Usually, a filter having an absolute filtration accuracy of 0.1 to 50 μm is used for filtration, and a filter having an absolute filtration accuracy of 0.1 to 40 μm is preferably used. The thickness of the filter is preferably 0.1 to 10 mm, and more preferably 0.2 to 2 mm. In that case, the filtration pressure is preferably 1.5 MPa or less, more preferably 1.0 MPa or less, and further preferably 0.2 MPa or less.
The filtration filter member is not particularly limited as long as it does not affect the coating solution.
It is also preferable to ultrasonically disperse the filtered coating solution immediately before coating to assist defoaming and dispersion holding of the dispersion.

4−(2)塗布前の処理
本発明で使用する支持体は、他の層を塗布する前に表面処理を施すことが好ましい。具体的方法としては、コロナ放電処理、グロー放電処理、火炎処理、酸処理、アルカリ処理または紫外線照射処理が挙げられる。また、特開平7−333433号公報に記載のように、下塗り層を設けることも好ましく利用される。
4- (2) Treatment before coating The support used in the present invention is preferably subjected to a surface treatment before coating other layers. Specific examples include corona discharge treatment, glow discharge treatment, flame treatment, acid treatment, alkali treatment, and ultraviolet irradiation treatment. In addition, as described in JP-A-7-333433, it is preferable to provide an undercoat layer.

さらに、塗布が行われる前工程としての除塵工程に用いられる除塵方法として、特開昭59−150571号公報に記載のフィルム表面に不織布や、ブレード等を押しつける方法、特開平10−309553号公報に記載の清浄度の高い空気を高速で吹き付けて付着物をフィルム表面から剥離させ、近接した吸い込み口で吸引する方法、特開平7−333613号公報に記載される超音波振動する圧縮空気を吹き付けて付着物を剥離させ、吸引する方法(伸興社製、ニューウルトラクリーナー等)等の乾式除塵法が挙げられる。
また、洗浄槽中にフィルムを導入し、超音波振動子により付着物を剥離させる方法、特公昭49−13020号公報に記載されているフィルムに洗浄液を供給したあと、高速空気の吹き付け、吸い込みを行う方法、特開2001−38306号に記載のように、ウェブを液体でぬらしたロールで連続的に擦った後、擦った面に液体を噴射して洗浄する方法等の湿式除塵法を用いることができる。このような除塵方法の内、超音波除塵による方法もしくは湿式除塵による方法が、除塵効果の点で特に好ましい。
また、このような除塵工程を行う前に、フィルム支持体上の静電気を除電しておくことは、除塵効率を上げ、ゴミの付着を抑える点で特に好ましい。このような除電方法としては、コロナ放電式のイオナイザ、UV、軟X線等の光照射式のイオナイザ等を用いることができる。除塵、塗布前後のフィルム支持体の帯電圧は、1000V以下が望ましく、好ましくは300V以下、特に好ましくは、100V以下である。
Furthermore, as a dust removing method used in the dust removing step as a pre-process for application, a method of pressing a nonwoven fabric, a blade or the like on the film surface described in JP-A-59-150571, JP-A-10-309553 A method of blowing the air with high cleanliness described at a high speed to peel off the deposits from the film surface and sucking it with a suction port close to it, blowing compressed air that is ultrasonically vibrated as described in JP-A-7-333613 Examples thereof include a dry dust removing method such as a method for peeling and sucking adhered substances (manufactured by Shinkosha, New Ultra Cleaner, etc.).
In addition, a method of introducing a film into a cleaning tank and peeling off deposits with an ultrasonic vibrator, supplying a cleaning liquid to the film described in Japanese Patent Publication No. 49-13020, and then blowing and sucking high-speed air As described in JP-A-2001-38306, a wet dust removal method such as a method in which a web is continuously rubbed with a roll wetted with liquid and then the liquid is sprayed onto the rubbed surface for cleaning. Can do. Among such dust removal methods, a method using ultrasonic dust removal or a method using wet dust removal is particularly preferable in terms of dust removal effect.
In addition, it is particularly preferable to remove static electricity on the film support before performing such a dust removal step from the viewpoint of increasing dust removal efficiency and suppressing adhesion of dust. As such a static elimination method, a corona discharge ionizer, a light irradiation ionizer such as UV or soft X-ray, or the like can be used. The charged voltage of the film support before and after dust removal and coating is desirably 1000 V or less, preferably 300 V or less, and particularly preferably 100 V or less.

支持体としてセルロースアシレートフィルムを用いる場合には、フィルムの平面性を保持する観点から、これら処理においてセルロースアシレートフィルムの温度をTg以下、具体的には150℃以下とすることが好ましい。
本発明のフィルムを偏光板の保護フィルムとして使用する場合のようにセルロースアシレートフィルムを偏光膜と接着させる場合には、偏光膜との接着性の観点から、酸処理またはアルカリ処理、すなわちセルロースアシレートに対するケン化処理を実施することが特に好ましい。
接着性などの観点から、セルロースアシレートフィルムの表面エネルギーは、55mN/m以上であることが好ましく、60mN/m以上75mN/m以下であることが更に好ましく、上記表面処理により調整することができる。
When a cellulose acylate film is used as the support, it is preferable that the temperature of the cellulose acylate film in these treatments is Tg or less, specifically 150 ° C. or less, from the viewpoint of maintaining the flatness of the film.
When the cellulose acylate film is adhered to the polarizing film as in the case of using the film of the present invention as a protective film for a polarizing plate, from the viewpoint of adhesiveness to the polarizing film, acid treatment or alkali treatment, that is, cellulose acylate. It is particularly preferred to carry out a saponification treatment on the rate.
From the viewpoint of adhesiveness and the like, the surface energy of the cellulose acylate film is preferably 55 mN / m or more, more preferably 60 mN / m or more and 75 mN / m or less, and it can be adjusted by the surface treatment. .

4−(3)塗布
本発明のフィルムの各層は以下の塗布方法により形成することができるが、この方法に制限されない。
ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やエクストルージョンコート法(ダイコート法)(米国特許2681294号、WO2005/123274号明細書参照)、マイクログラビアコート法等の公知の方法が用いられ、その中でもマイクログラビアコート法、ダイコート法が好ましい。
4- (3) Coating Each layer of the film of the present invention can be formed by the following coating method, but is not limited to this method.
Dip coating method, air knife coating method, curtain coating method, roller coating method, wire bar coating method, gravure coating method and extrusion coating method (die coating method) (see US Pat. No. 2,681,294, WO 2005/123274), micro Known methods such as a gravure coating method are used, and among them, a micro gravure coating method and a die coating method are preferable.

本発明で用いられるマイクログラビアコート法とは、直径が約10〜100mm、好ましくは約20〜50mmで全周にグラビアパターンが刻印されたグラビアロールを支持体の下方に、かつ支持体の搬送方向に対してグラビアロールを逆回転させると共に、該グラビアロールの表面からドクターブレードによって余剰の塗布液を掻き落として、定量の塗布液を前記支持体の上面が自由状態にある位置におけるその支持体の下面に塗布液を転写させて塗工することを特徴とするコート法である。ロール形態の透明支持体を連続的に巻き出し、該巻き出された支持体の一方の側に、少なくとも光拡散層乃至フッ素含有オレフィン系重合体を含む低屈折率層の内の少なくとも一層をマイクログラビアコート法によって塗工することができる。   The micro gravure coating method used in the present invention is a gravure roll having a diameter of about 10 to 100 mm, preferably about 20 to 50 mm and engraved with a gravure pattern on the entire circumference, below the support and in the transport direction of the support. The gravure roll is rotated in reverse with respect to the gravure roll, the excess coating liquid is scraped off from the surface of the gravure roll by a doctor blade, and a fixed amount of the coating liquid is removed from the support in a position where the upper surface of the support is in a free state. The coating method is characterized in that the coating liquid is transferred onto the lower surface for coating. A roll-shaped transparent support is continuously unwound, and at least one layer of at least one of a light diffusion layer or a low-refractive index layer containing a fluorine-containing olefin polymer is formed on one side of the unwound support. It can be applied by a gravure coating method.

マイクログラビアコート法による塗工条件としては、グラビアロールに刻印されたグラビアパターンの線数は50〜800本/インチが好ましく、100〜300本/インチがより好ましく、グラビアパターンの深度は1〜600μmが好ましく、5〜200μmがより好ましく、グラビアロールの回転数は3〜800rpmであることが好ましく、5〜200rpmであることがより好ましく、支持体の搬送速度は0.5〜100m/分であることが好ましく、1〜50m/分がより好ましい。   As coating conditions by the micro gravure coating method, the number of gravure patterns imprinted on the gravure roll is preferably 50 to 800 lines / inch, more preferably 100 to 300 lines / inch, and the depth of the gravure pattern is 1 to 600 μm. Is preferable, 5 to 200 μm is more preferable, the rotation speed of the gravure roll is preferably 3 to 800 rpm, more preferably 5 to 200 rpm, and the conveyance speed of the support is 0.5 to 100 m / min. It is preferably 1 to 50 m / min.

本発明のフィルムを高い生産性で供給するために、エクストルージョン法(ダイコート法)が好ましく用いられる。
ダイコート法は前計量方式であるために安定した膜厚の確保が容易である。低塗布量の塗布液に対して、該塗布方式は高速で膜厚安定性良く塗布が可能である。他の塗布方式でも塗布は可能であるが、ディップコート法は液受け槽中の塗布液振動が不可避であり、段状のムラが発生しやすい。リバースロールコート法では、塗布に関連するロールの偏芯やたわみにより段状のムラが発生しやすい。また、これらの塗布方式は後計量方式であるため、安定した膜厚の確保が困難である。前記ダイコート法を用い、25m/分以上で塗布することが生産性の面から好ましい。
In order to supply the film of the present invention with high productivity, an extrusion method (die coating method) is preferably used.
Since the die coating method is a pre-measuring method, it is easy to secure a stable film thickness. With respect to a coating solution of a low coating amount, the coating method can be applied at high speed with good film thickness stability. Although application is possible by other application methods, the dip coating method inevitably causes vibration of the application liquid in the liquid receiving tank, and stepped unevenness is likely to occur. In the reverse roll coating method, stepped unevenness is likely to occur due to eccentricity and deflection of the roll related to coating. Moreover, since these coating methods are post-measuring methods, it is difficult to ensure a stable film thickness. From the viewpoint of productivity, it is preferable to apply the die coating method at 25 m / min or more.

特に光拡散層の上にハードコート層を塗設する場合に特開2002−86050号公報、特開2003−260400号公報に記載の塗布方法により塗布することで、一回の塗布で光拡散層とハードコート層を同時に塗設できるため、好ましい。   In particular, when a hard coat layer is applied on the light diffusing layer, the light diffusing layer can be applied by a single application by applying the coating method described in JP-A-2002-86050 and JP-A-2003-260400. And a hard coat layer can be coated at the same time.

4−(4)<乾燥>
本発明のフィルムは、支持体上に直接又は他の層を介して塗布された後、溶剤を乾燥するために加熱されたゾーンにウェブで搬送されることが好ましい。
溶剤を乾燥する方法としては、各種の知見を利用することができる。具体的な知見としては特開2001−286817号、同2001−314798号、同2003−126768号、同2003−315505号、同2004−34002号などが挙げられる。
乾燥ゾーンの温度は25℃〜140℃が好ましく、乾燥ゾーンの前半は比較的低温であり、後半は比較的高温であることが好ましい。但し、各層の塗布組成物に含有される溶剤以外の成分の揮発が始まる温度以下であることが好ましい。例えば、紫外線硬化樹脂と併用される市販の光ラジカル発生剤のなかには120℃の温風中で数分以内にその数10%前後が揮発してしまうものもあり、また、単官能、2官能のアクリレートモノマー等は100℃の温風中で揮発が進行するものもある。そのような場合には、前記のように各層の塗布組成物に含有される溶剤以外の成分の揮発が始まる温度以下であることが好ましい。
4- (4) <Drying>
The film of the present invention is preferably applied on a support directly or via another layer and then conveyed by a web to a heated zone to dry the solvent.
Various knowledges can be used as a method for drying the solvent. Specific examples include JP-A Nos. 2001-286817, 2001-314798, 2003-126768, 2003-315505, and 2004-34002.
The temperature of the drying zone is preferably 25 ° C. to 140 ° C., the first half of the drying zone is preferably a relatively low temperature, and the latter half is preferably a relatively high temperature. However, it is preferably below the temperature at which components other than the solvent contained in the coating composition of each layer start to volatilize. For example, some of the commercially available photo radical generators used in combination with ultraviolet curable resins volatilize around several tens of percent within a few minutes in warm air at 120 ° C. Some acrylate monomers and the like undergo volatilization in warm air at 100 ° C. In such a case, it is preferable that it is below the temperature at which components other than the solvent contained in the coating composition of each layer start to volatilize as described above.

また、各層の塗布組成物を支持体上に塗布した後の乾燥風は、前記塗布組成物の固形分濃度が1〜50%の間は塗膜表面の風速が0.1〜2m/秒の範囲にあることが、乾燥ムラを防止するために好ましい。
また、各層の塗布組成物を支持体上に塗布した後、乾燥ゾーン内で支持体の塗布面とは反対の面に接触する搬送ロールと支持体との温度差が0℃〜20℃以内とすると、搬送ロール上での伝熱ムラによる乾燥ムラが防止でき、好ましい。
Moreover, the dry wind after apply | coating the coating composition of each layer on a support body has the wind speed of the coating-film surface of 0.1-2 m / sec while the solid content concentration of the said coating composition is 1-50%. It is preferable to be in the range in order to prevent drying unevenness.
Moreover, after apply | coating the coating composition of each layer on a support body, the temperature difference of the conveyance roll which contacts the surface opposite to the coating surface of a support body in a drying zone, and a support body is 0 to 20 degreeC or less. Then, the drying nonuniformity by the heat transfer nonuniformity on a conveyance roll can be prevented, and it is preferable.

4−(5)硬化
本発明のフィルムは溶剤の乾燥の後に、ウェブで電離放射線および/または熱により各塗膜を硬化させるゾーンを通過させ、塗膜を硬化することができる。
4- (5) Curing After drying the solvent, the film of the present invention can be passed through a zone in which each coating film is cured by ionizing radiation and / or heat on the web to cure the coating film.

本発明における電離放射線種は特に制限されるものではなく、皮膜を形成する硬化性組成物の種類に応じて、紫外線、電子線、近紫外線、可視光、近赤外線、赤外線、X線などから適宜選択することができが、紫外線、電子線が好ましく、特に取り扱いが簡便で高エネルギーが容易に得られるという点で紫外線が好ましい。
紫外線反応性化合物を光重合させる紫外線の光源としては、紫外線を発生する光源であれば何れも使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。また、ArFエキシマレーザ、KrFエキシマレーザ、エキシマランプまたはシンクロトロン放射光等も用いることができる。このうち、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプを好ましく利用できる。
The ionizing radiation species in the present invention is not particularly limited, and is appropriately selected from ultraviolet rays, electron beams, near ultraviolet rays, visible light, near infrared rays, infrared rays, X-rays and the like according to the type of curable composition forming the film. Although it can be selected, ultraviolet rays and electron beams are preferred, and ultraviolet rays are particularly preferred because they are easy to handle and high energy can be easily obtained.
As the ultraviolet light source for photopolymerizing the ultraviolet reactive compound, any light source that generates ultraviolet light can be used. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. An ArF excimer laser, a KrF excimer laser, an excimer lamp, synchrotron radiation, or the like can also be used. Among these, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, and a metal halide lamp can be preferably used.

また、電子線も同様に使用できる。電子線としては、コックロフトワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される50〜1000keV、好ましくは100〜300keVのエネルギーを有する電子線を挙げることができる。   Moreover, an electron beam can be used similarly. As an electron beam, 50 to 1000 keV, preferably 100 to 100, emitted from various electron beam accelerators such as a cockroft Walton type, a bandegraph type, a resonance transformation type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type. An electron beam having an energy of 300 keV can be given.

照射条件はそれぞれのランプによって異なるが、照射光量は10mJ/cm以上が好ましく、更に好ましくは、50mJ/cm〜10000mJ/cmであり、特に好ましくは、50mJ/cm〜2000mJ/cmである。その際、ウェブの幅方向の照射量分布は中央の最大照射量に対して両端まで含めて50〜100%の分布が好ましく、80〜100%の分布がより好ましい。 Irradiation conditions vary depending on each lamp, but the amount of irradiation light is preferably 10 mJ / cm 2 or more, more preferably 50 mJ / cm 2 to 10000 mJ / cm 2 , and particularly preferably 50 mJ / cm 2 to 2000 mJ / cm 2. It is. At that time, the irradiation distribution in the width direction of the web is preferably 50 to 100%, more preferably 80 to 100%, including both ends with respect to the central maximum irradiation.

本発明では、支持体上に積層された少なくとも一層を、電離放射線を照射しかつ電離放射線照射開始から0.5秒以上の間、膜面温度60℃以上に加熱した状態で、酸素濃度10体積%以下の雰囲気で電離放射線を照射する工程によって硬化することが好ましい。
また電離放射線照射と同時および/または連続して酸素濃度3体積%以下の雰囲気で加熱されることも好ましい。
特に最外層であり、かつ膜厚が薄い低屈折率層がこの方法で硬化されることが好ましい。硬化反応が熱で加速され、物理強度、耐薬品性に優れた皮膜を形成することができる。
In the present invention, at least one layer laminated on the support is irradiated with ionizing radiation and heated to a film surface temperature of 60 ° C. or more for 0.5 seconds or more from the start of irradiation with ionizing radiation, with an oxygen concentration of 10 volumes. It is preferable to cure by the step of irradiating ionizing radiation in an atmosphere of less than or equal to%.
It is also preferable to heat in an atmosphere having an oxygen concentration of 3% by volume or less simultaneously and / or continuously with ionizing radiation irradiation.
In particular, it is preferable that the low refractive index layer which is the outermost layer and has a small film thickness is cured by this method. The curing reaction is accelerated by heat, and a film having excellent physical strength and chemical resistance can be formed.

電離放射線を照射する時間については硬化反応の完了、必要な不活性ガス量などの観点から0.7秒以上60秒以下が好ましく、0.7秒以上10秒以下がより好ましい。   The time for irradiating with ionizing radiation is preferably 0.7 seconds or longer and 60 seconds or shorter, more preferably 0.7 seconds or longer and 10 seconds or shorter from the viewpoints of completion of the curing reaction, a necessary amount of inert gas, and the like.

酸素濃度は10体積%以下の雰囲気で電離放射線硬化性化合物の架橋反応、又は、重合反応により形成することが好ましく、更に好ましくは酸素濃度が4体積%以下、特に好ましくは酸素濃度が2体積%以下、最も好ましくは1体積%以下である。   The oxygen concentration is preferably formed by a crosslinking reaction or polymerization reaction of an ionizing radiation curable compound in an atmosphere of 10% by volume or less, more preferably an oxygen concentration of 4% by volume or less, and particularly preferably an oxygen concentration of 2% by volume. Hereinafter, it is most preferably 1% by volume or less.

酸素濃度を10体積%以下にする手法としては、大気(窒素濃度約79体積%、酸素濃度約21体積%)を別の気体で置換することが好ましく、特に好ましくは窒素で置換(窒素パージ)することである。   As a method of reducing the oxygen concentration to 10% by volume or less, it is preferable to replace the atmosphere (nitrogen concentration of about 79% by volume, oxygen concentration of about 21% by volume) with another gas, particularly preferably replacement with nitrogen (nitrogen purge). It is to be.

不活性ガスを電離放射線照射室に供給し、かつ照射室のウェッブ入口側にやや吹き出す条件にすることで、ウェッブ搬送にともなう導搬エアーを排除し反応室の酸素濃度を有効に下げられるとともに、酸素による硬化阻害の大きい極表面の実質の酸素濃度を効率よく低減することができる。照射室のウェッブ入口側での不活性ガスの流れの方向は、照射室の給気、排気のバランスを調整することなどで制御できる。
不活性ガスをウェッブ表面に直接吹き付けることも、導搬エアーを除去する方法として好ましく用いられる。
By supplying inert gas to the ionizing radiation irradiation chamber and making it slightly blown out to the web entrance side of the irradiation chamber, it is possible to effectively reduce the oxygen concentration in the reaction chamber by eliminating the carry air accompanying the web transfer, It is possible to efficiently reduce the substantial oxygen concentration on the pole surface where the inhibition of curing by oxygen is large. The direction of the inert gas flow on the web entrance side of the irradiation chamber can be controlled by adjusting the balance between the supply and exhaust of the irradiation chamber.
Direct blowing of an inert gas onto the web surface is also preferably used as a method for removing the carried air.

また前記反応室の前に前室を設け、事前にウェッブ表面の酸素を排除することで、より硬化を効率よく進めることができる。また電離放射線反応室または前室のウェッブ入口側を構成する側面は、不活性ガスを効率的に使用するために、ウェッブ表面とのギャップは0.2〜15mmが好ましく、より好ましくは、0.2〜10mmとするのがよく、0.2〜5mmとするのがもっとも好ましい。しかし、ウェッブを連続製造するには、ウェッブを接合して繋げていく必要があり、接合には接合テープなどで貼る方法が広く用いられている。このため、電離放射線反応室または前室の入口面とウェッブのギャップをあまり狭くすると、接合テープなど接合部材が引っかかる問題が生じる。このためギャップを狭くするためには、電離放射線反応室または前室の入口面の少なくとも一部を可動とし、接合部が入るときは接合厚み分ギャップを広げるのが好ましい。この実現のためには、電離放射線反応室または前室の入口面を進行方向前後に可動にしておき、接合部が通過する際に前後に動いてギャップを広げるやり方や、電離放射線反応室または前室の入口面をウェッブ面に対し、垂直方向に可動にし、接合部が通過する際に上下に動いてギャップを広げるやり方を取ることができる。   Further, by providing a front chamber in front of the reaction chamber and excluding oxygen on the web surface in advance, the curing can proceed more efficiently. Further, the side surface constituting the web entrance side of the ionizing radiation reaction chamber or the front chamber is preferably 0.2 to 15 mm in gap with the web surface in order to use the inert gas efficiently, more preferably, 0.1%. The thickness is preferably 2 to 10 mm, and most preferably 0.2 to 5 mm. However, in order to continuously manufacture the web, it is necessary to join and connect the webs, and a method of sticking with a joining tape or the like is widely used for joining. For this reason, if the gap between the entrance surface of the ionizing radiation reaction chamber or the front chamber and the web is too narrow, there arises a problem that the joining member such as the joining tape is caught. For this reason, in order to narrow the gap, it is preferable to make at least a part of the entrance surface of the ionizing radiation reaction chamber or the front chamber movable, and to widen the gap by the junction thickness when the junction enters. In order to realize this, the entrance surface of the ionizing radiation reaction chamber or the front chamber is made movable in the forward and backward direction, and when the joint passes, the gap is moved back and forth to widen the gap, It is possible to move the chamber entrance surface vertically with respect to the web surface and move up and down to widen the gap as the joint passes.

硬化の際、フィルム面が60℃以上170℃以下で加熱されることが好ましい。60℃以下では加熱の硬化は少なく、170℃以上では基材の変形などの問題が生じる。更にこの好ましい温度は60℃〜100℃である。フィルム面とは硬化しようとする層の膜面温度を指す。またフィルムが前記温度になる時間は、UV照射開始から0.1秒以上、300秒以下が好ましく、更に10秒以下が好ましい。フィルム面の温度を上記の温度範囲に保つ時間が短すぎると、皮膜を形成する硬化性組成物の反応を促進できず、逆に長すぎてもフィルムの光学性能が低下し、また設備が大きくなるなどの製造上の問題も生じることもある。   In curing, the film surface is preferably heated at 60 ° C. or higher and 170 ° C. or lower. Below 60 ° C., there is little curing by heating, and at 170 ° C. or higher, problems such as deformation of the substrate occur. Furthermore, this preferable temperature is 60 degreeC-100 degreeC. The film surface refers to the film surface temperature of the layer to be cured. The time for the film to reach the temperature is preferably 0.1 second or more and 300 seconds or less from the start of UV irradiation, and more preferably 10 seconds or less. If the time for maintaining the temperature of the film surface in the above temperature range is too short, the reaction of the curable composition that forms the film cannot be accelerated, and conversely, if it is too long, the optical performance of the film deteriorates and the equipment is large. Manufacturing problems such as

加熱する方法に特に限定はないが、ロールを加熱してフィルムに接触させる方法、加熱した窒素を吹き付ける方法、遠赤外線あるいは赤外線の照射などが好ましい。特許2523574号に記載の回転金属ロールに温水や蒸気・オイルなどの媒体を流して加熱する方法も利用できる。加熱の手段としては誘電加熱ロールなどを使用しても良い。   There is no particular limitation on the heating method, but a method of heating a roll to contact the film, a method of spraying heated nitrogen, irradiation with far infrared rays or infrared rays is preferable. A method of heating a rotating metal roll described in Japanese Patent No. 2523574 by flowing a medium such as hot water, steam or oil can also be used. As a heating means, a dielectric heating roll or the like may be used.

紫外線照射は、構成する複数の層それぞれに対して1層設ける毎に照射してもよいし、積層後照射してもよい。あるいはこれらを組み合わせて照射してもよい。生産性の点から、多層を積層後、紫外線を照射することが好ましい。   The ultraviolet irradiation may be performed every time one layer is provided for each of a plurality of constituent layers, or may be performed after lamination. Or you may irradiate combining these. From the viewpoint of productivity, it is preferable to irradiate ultraviolet rays after laminating multiple layers.

本発明では、支持体上に積層された少なくとも一層を複数回の電離放射線により硬化することができる。この場合、少なくとも2回の電離放射線が酸素濃度3体積%を超えることのない連続した反応室で行われることが好ましい。複数回の電離放射線照射を同一の低酸素濃度の反応室で行うことにより、硬化に必要な反応時間を有効に確保することができる。
特に高生産性のため製造速度をあげた場合には、硬化反応に必要な電離放射線のエネルギーを確保するために複数回の電離放射線照射が好ましい。
In the present invention, at least one layer laminated on the support can be cured by multiple times of ionizing radiation. In this case, it is preferable that at least two ionizing radiations are performed in a continuous reaction chamber in which the oxygen concentration does not exceed 3% by volume. By performing multiple times of ionizing radiation irradiation in the same low oxygen concentration reaction chamber, the reaction time required for curing can be effectively ensured.
In particular, when the production rate is increased for high productivity, irradiation with ionizing radiation multiple times is preferable in order to ensure the energy of ionizing radiation necessary for the curing reaction.

また、硬化率(100−残存官能基含率)が100%未満のある値となった場合、その上に層を設けて電離放射線および/または熱により硬化した際に下層の硬化率が上層を設ける前よりも高くなると、下層と上層との間の密着性が改良され、好ましい。   Further, when the curing rate (100-residual functional group content) is a certain value of less than 100%, the lower layer has a curing rate of the upper layer when a layer is provided thereon and cured by ionizing radiation and / or heat. When the height is higher than before, the adhesion between the lower layer and the upper layer is improved, which is preferable.

4−(6)ハンドリング
本発明のフィルムを連続的に製造するために、ロール状の支持体フィルムを連続的に送り出す工程、塗布液を塗布・乾燥する工程、塗膜を硬化する工程、硬化した層を有する支持体フィルムを巻き取る工程が行われることが好ましい。
ロール状のフィルム支持体からフィルム支持体がクリーン室に連続的に送り出され、クリーン室内で、フィルム支持体に帯電している静電気を静電除電装置により除電し、引き続きフィルム支持体上に付着している異物を、除塵装置により除去する。引き続きクリーン室内に設置されている塗布部で塗布液がフィルム支持体上に塗布され、塗布されたフィルム支持体は乾燥室に送られて乾燥される。
乾燥した塗布層を有するフィルム支持体は乾燥室から硬化室へ送り出され、塗布層に含有されるモノマーが重合して硬化する。さらに、硬化した層を有するフィルム支持体は硬化部へ送られ硬化を完結させ、硬化が完結した層を有するフィルム支持体は巻き取られてロール状となる。
4- (6) Handling In order to continuously produce the film of the present invention, a process of continuously feeding a roll-shaped support film, a process of applying / drying a coating liquid, a process of curing a coating film, and curing It is preferable that the process of winding up the support film which has a layer is performed.
The film support is continuously sent out from the roll-shaped film support to the clean room. In the clean room, the static electricity charged on the film support is removed by an electrostatic charge-off device, and then the film support adheres on the film support. Remove the foreign material that has been removed with a dust remover. Subsequently, the coating liquid is applied onto the film support in the application section installed in the clean room, and the applied film support is sent to the drying chamber and dried.
The film support having the dried coating layer is fed from the drying chamber to the curing chamber, and the monomer contained in the coating layer is polymerized and cured. Further, the film support having the cured layer is sent to the curing unit to complete the curing, and the film support having the layer having been completely cured is wound up into a roll shape.

上記工程は、各層の形成毎に行ってもよいし、塗布部−乾燥室−硬化部を複数設けて、各層の形成を連続的に行うことも可能である。特に光拡散層の上にハードコート層を順次塗設する場合に、塗布部−乾燥室−硬化部を複数設けた方法をおこなうことが好ましい。
本発明のフィルムを作成するためには、前記したように塗布液の精密濾過操作と同時に、塗布部における塗布工程および乾燥室で行われる乾燥工程が高い清浄度の空気雰囲気下で行われ、かつ塗布が行われる前に、フィルム上のゴミ、ほこりが充分に除かれていることが好ましい。塗布工程および乾燥工程の空気清浄度は、米国連邦規格209Eにおける空気清浄度の規格に基づき、クラス10(0.5μm以上の粒子が353個/(立方メートル)以下)以上であることが望ましく、更に好ましくはクラス1(0.5μm以上の粒子が35.5個/(立方メートル)以下)以上であることが望ましい。また、空気清浄度は、塗布−乾燥工程以外の送り出し、巻き取り部等においても高いことがより好ましい。
The above steps may be performed every time each layer is formed, or a plurality of coating parts-drying chambers-curing parts may be provided to continuously form each layer. In particular, when a hard coat layer is sequentially coated on the light diffusing layer, it is preferable to perform a method in which a plurality of coating portions-drying chambers-curing portions are provided.
In order to create the film of the present invention, as described above, the coating step in the coating unit and the drying step performed in the drying chamber are performed in a highly clean air atmosphere simultaneously with the microfiltration operation of the coating solution, and It is preferable that dust and dust on the film are sufficiently removed before application. The air cleanliness of the coating process and the drying process is desirably class 10 (353 particles / 0.5 m or more / (cubic meter) or less) based on the standard of air cleanliness in the US Federal Standard 209E. Preferably it is class 1 (35.5 particles / (cubic meter) or less) having a particle size of 0.5 μm or more. Moreover, it is more preferable that the degree of air cleanliness is high also in the feeding and winding parts other than the coating-drying process.

4−(7)鹸化処理
本発明のフィルムを偏光膜の2枚の表面保護フィルムの内の少なくとも一方として用いて偏光板を作成する際には、偏光膜と貼り合わせる側の表面を親水化することで、接着面における接着性を改良することが好ましい。
4- (7) Saponification treatment When producing a polarizing plate using the film of the present invention as at least one of two surface protective films of a polarizing film, the surface on the side to be bonded to the polarizing film is hydrophilized. Thus, it is preferable to improve the adhesion on the bonding surface.

a.アルカリ液に浸漬する法
アルカリ液の中にフィルムを適切な条件で浸漬して、フィルム全表面のアルカリと反応性を有する全ての面を鹸化処理する手法であり、特別な設備を必要としないため、コストの観点で好ましい。アルカリ液は、水酸化ナトリウム水溶液であることが好ましい。好ましい濃度は0.5〜3mol/Lであり、特に好ましくは1〜2mol/Lである。好ましいアルカリ液の液温は30〜75℃、特に好ましくは40〜60℃である。
前記の鹸化条件の組合せは比較的穏和な条件同士の組合せであることが好ましいが、フィルムの素材や構成、目標とする接触角によって設定することができる。
アルカリ液に浸漬した後は、フィルムの中にアルカリ成分が残留しないように、水で十分に水洗したり、希薄な酸に浸漬してアルカリ成分を中和することが好ましい。
a. Method of immersing in alkaline solution This is a method of saponifying all surfaces that are reactive with alkali on the entire surface of the film by immersing the film in an alkaline solution under appropriate conditions, and no special equipment is required. From the viewpoint of cost. The alkaline liquid is preferably a sodium hydroxide aqueous solution. A preferred concentration is 0.5 to 3 mol / L, particularly preferably 1 to 2 mol / L. The liquid temperature of a preferable alkali liquid is 30-75 degreeC, Most preferably, it is 40-60 degreeC.
The combination of the saponification conditions is preferably a combination of relatively mild conditions, but can be set according to the material and composition of the film and the target contact angle.
After being immersed in the alkaline solution, it is preferable to sufficiently wash with water or neutralize the alkaline component by immersing in a dilute acid so that the alkaline component does not remain in the film.

鹸化処理することにより、塗布層を有する表面と反対の表面が親水化される。偏光板用保護フィルムは、透明支持体の親水化された表面を偏光膜と接着させて使用する。
親水化された表面は、ポリビニルアルコールを主成分とする接着層との接着性を改良するのに有効である。
鹸化処理は、塗布層を有する側とは反対側の透明支持体の表面の水に対する接触角が低いほど、偏光膜との接着性の観点では好ましいが、一方、浸漬法では同時に塗布層を有する表面から内部までアルカリによるダメージを受ける為、必要最小限の反応条件とすることが重要となる。アルカリによる各層の受けるダメージの指標として、反対側の表面の透明支持体の水に対する接触角を用いた場合、特に透明支持体がトリアセチルセルロースであれば、好ましくは10度〜50度、より好ましくは30度〜50度、さらに好ましくは40度〜50度となる。50度以上では、偏光膜との接着性に問題が生じる為、好ましくない。一方、10度未満では、フィルムが受けるダメージが大きすぎる為、物理強度を損ない、好ましくない。
By saponification treatment, the surface opposite to the surface having the coating layer is hydrophilized. The protective film for polarizing plate is used by adhering the hydrophilic surface of the transparent support to the polarizing film.
The hydrophilized surface is effective for improving the adhesiveness with the adhesive layer mainly composed of polyvinyl alcohol.
In the saponification treatment, the lower the contact angle with respect to the surface of the transparent support opposite to the side having the coating layer, the better from the viewpoint of adhesion to the polarizing film, while the dipping method simultaneously has the coating layer. Since it is damaged by alkali from the surface to the inside, it is important to set the minimum reaction conditions. When the contact angle to water of the transparent support on the opposite surface is used as an index of damage to each layer due to alkali, particularly when the transparent support is triacetylcellulose, preferably 10 to 50 degrees, more preferably Is 30 to 50 degrees, more preferably 40 to 50 degrees. If it is 50 degrees or more, there is a problem in the adhesion to the polarizing film, which is not preferable. On the other hand, if it is less than 10 degrees, the film suffers too much damage, which impairs physical strength and is not preferable.

b.アルカリ液を塗布する方法
上述の浸漬法における各膜へのダメージを回避する手段として、適切な条件でアルカリ液を塗布層を有する表面と反対側の表面のみに塗布、加熱、水洗、乾燥するアルカリ液塗布法が好ましく用いられる。なお、この場合の塗布とは、鹸化を行う面に対してのみアルカリ液などを接触させることを意味し、塗布以外にも噴霧、液を含んだベルト等に接触させる、などによって行われることも含む。これらの方法を採ることにより、別途、アルカリ液を塗布する設備、工程が必要となるため、コストの観点ではaの浸漬法に劣る。一方で、鹸化処理を施す面にのみアルカリ液が接触するため、反対側の面にはアルカリ液に弱い素材を用いた層を有することができる。例えば、蒸着膜やゾル−ゲル膜では、アルカリ液によって、腐食、溶解、剥離など様々な影響が起こるため、浸漬法では設けることが望ましくないが、この塗布法では液と接触しないため問題なく使用することが可能である。
b. Method of applying alkaline solution As a means of avoiding damage to each film in the above-mentioned immersion method, an alkali solution is applied, heated, washed with water, and dried only on the surface opposite to the surface having the coating layer under appropriate conditions. A liquid coating method is preferably used. The application in this case means that an alkaline solution or the like is brought into contact only with the surface to be saponified, and in addition to the application, it may be carried out by spraying or contacting a belt containing the solution. Including. By adopting these methods, a separate facility and process for applying an alkaline solution are required, which is inferior to the dipping method of a from the viewpoint of cost. On the other hand, since the alkali solution contacts only the surface to be saponified, the opposite surface can have a layer using a material that is weak against the alkali solution. For example, vapor deposition films and sol-gel films have various effects such as corrosion, dissolution, and peeling due to alkali solution, so it is not desirable to use the immersion method. Is possible.

前記a、bのどちらの鹸化方法においても、ロール状の支持体から巻き出して各層を形成後に行うことができるため、フィルム製造工程の後に加えて一連の操作で行っても良い。さらに、同様に巻き出した支持体からなる偏光板との張り合わせ工程もあわせて連続で行うことにより、枚葉で同様の操作をするよりもより効率良く偏光板を作成することができる。   In both of the saponification methods a and b, since each layer can be formed after being unwound from a roll-shaped support, it may be performed by a series of operations in addition to the film manufacturing process. Furthermore, the polarizing plate can be produced more efficiently than the same operation with a single wafer by continuously performing the pasting step with the polarizing plate made of the unwound support.

c.ラミネートフィルムで保護して鹸化する方法
前記bと同様に、塗布層がアルカリ液に対する耐性が不足している場合に、最終層まで形成した後に該最終層を形成した面にラミネートフィルムを貼り合せてからアルカリ液に浸漬することで最終層を形成した面とは反対側のトリアセチルセルロース面だけを親水化し、然る後にラミネートフィルムを剥離することができる。この方法でも、塗布層へのダメージなしに偏光板保護フィルムとして必要なだけの親水化処理をトリアセチルセルロースフィルムの最終層を形成した面とは反対の面だけに施すことができる。前記bの方法と比較して、ラミネートフィルムが廃棄物として発生する半面、特別なアルカリ液を塗布する装置が不要である利点がある。
c. Method of saponification by protecting with a laminate film As in the case of b above, when the coating layer is insufficient in resistance to an alkaline solution, the laminate film is bonded to the surface on which the final layer is formed after forming the final layer. Then, only the triacetyl cellulose surface opposite to the surface on which the final layer is formed is hydrophilized by dipping in an alkaline solution, and then the laminate film can be peeled off. Even in this method, the hydrophilic treatment necessary for the polarizing plate protective film can be applied only to the surface opposite to the surface on which the final layer of the triacetyl cellulose film is formed without damaging the coating layer. Compared with the method b, there is an advantage that a laminating film is generated as waste, but a device for applying a special alkaline solution is unnecessary.

d.中途層まで形成後にアルカリ液に浸漬する方法
下層層まではアルカリ液に対する耐性があるが、上層のアルカリ液に対する耐性不足である場合には、下層まで形成後にアルカリ液に浸漬して両面を親水化処理し、然る後に上層を形成することもできる。製造工程が煩雑になるが、たとえば光拡散層と低屈折率層とからなる反射防止フィルムにおいて、親水基を有する場合には光拡散層と低屈折率層との層間密着性が向上する利点がある。
d. Method of immersing in alkaline solution after forming up to middle layer Although resistant to alkaline solution up to lower layer, but insufficient resistance to alkaline solution of upper layer, dip into alkaline solution after forming up to lower layer to make both sides hydrophilic The upper layer can also be formed after processing. Although the manufacturing process is complicated, for example, in an antireflection film composed of a light diffusion layer and a low refractive index layer, when it has a hydrophilic group, there is an advantage that the interlayer adhesion between the light diffusion layer and the low refractive index layer is improved. is there.

e.予め鹸化済のトリアセチルセルロースフィルムに塗布層を形成する方法
トリアセチルセルロースフィルムを予めアルカリ液に浸漬するなどして鹸化し、何れか一方の面に直接または他の層を介して塗布層を形成してもよい。アルカリ液に浸漬して鹸化する場合には、鹸化により親水化されたトリアセチルセルロース面との層間密着性が悪化することがある。そのような場合には、鹸化後、塗布層を形成する面だけにコロナ放電、グロー放電等の処理をすることで親水化面を除去してから塗布層を形成することで対処できる。また、塗布層が親水性基を有する場合には層間密着が良好なこともある。
e. Method of forming a coating layer on a pre-saponified triacetyl cellulose film Saponification of the triacetyl cellulose film by immersing it in an alkaline solution in advance, and forming a coating layer directly on one side or via another layer May be. In the case of saponification by dipping in an alkaline solution, the interlayer adhesion with the triacetyl cellulose surface hydrophilized by saponification may deteriorate. In such a case, after saponification, only the surface on which the coating layer is to be formed is treated by corona discharge, glow discharge or the like to remove the hydrophilic surface and then form the coating layer. Further, when the coating layer has a hydrophilic group, the interlayer adhesion may be good.

4−(8)偏光膜の作製
本発明のフィルムは、偏光膜およびその片側ないし両側に配置された保護フィルムとして使用し、偏光板として使用することができる。
一方の保護フィルムとして、本発明のフィルムを用い、他方の保護フィルムは、通常のセルロースアセテートフィルムを用いてもよいが、上述の溶液製膜法で製造され、且つ10〜100%の延伸倍率でロールフィルム形態における巾方向に延伸したセルロースアセテートフィルムを用いることが好ましい。
4- (8) Production of Polarizing Film The film of the present invention can be used as a polarizing film and a protective film disposed on one side or both sides thereof, and can be used as a polarizing plate.
As one protective film, the film of the present invention may be used, and the other protective film may be a normal cellulose acetate film, but is produced by the above-mentioned solution casting method and at a stretch ratio of 10 to 100%. It is preferable to use a cellulose acetate film stretched in the width direction in the form of a roll film.

偏光膜には、ヨウ素系偏光膜、二色性染料を用いる染料系偏光膜やポリエン系偏光膜がある。ヨウ素系偏光膜および染料系偏光膜は、一般にポリビニルアルコール系フィルムを用いて製造する。
反射防止フィルムの透明支持体やセルロースアセテートフィルムの遅相軸と偏光膜の透過軸とは、実質的に平行になるように配置することが好ましい。
Examples of the polarizing film include an iodine polarizing film, a dye polarizing film using a dichroic dye, and a polyene polarizing film. The iodine polarizing film and the dye polarizing film are generally produced using a polyvinyl alcohol film.
It is preferable to arrange so that the slow axis of the transparent support of the antireflection film or the cellulose acetate film and the transmission axis of the polarizing film are substantially parallel.

偏光板の生産性には保護フィルムの透湿性が重要である。偏光膜と保護フィルムは水系接着剤で貼り合わせられることが好ましく、この接着剤溶剤は保護フィルム中を拡散することで、乾燥される。保護フィルムの透湿性が高ければ、高いほど乾燥は早くなり、生産性は向上するが、高くなりすぎると、液晶表示装置の使用環境(高湿下)により、水分が偏光膜中に入ることで偏光能が低下する。
保護フィルムの透湿性は、透明支持体やポリマーフィルム(および重合性液晶化合物)の厚み、自由体積、親疎水性、等により決定される。
本発明のフィルムを偏光板の保護フィルムとして用いる場合、透湿性は100〜1000g/m・24hrsであることが好ましく、300〜700g/m・24hrsであることが更に好ましい。
透明支持体の厚みは、製膜の場合、リップ流量とラインスピード、あるいは、延伸、圧縮により調整することができる。使用する主素材により透湿性が異なるので、厚み調整により好ましい範囲にすることが可能である。
透明支持体の自由体積は、製膜の場合、乾燥温度と時間により調整することができる。
この場合もまた、使用する主素材により透湿性が異なるので、自由体積調整により好ましい範囲にすることが可能である。
透明支持体の親疎水性は、添加剤により調整することが出来る。上記自由体積中に親水的添加剤を添加することで透湿性は高くなり、逆に疎水性添加剤を添加することで透湿性を低くすることができる。
上記透湿性を独立に制御することにより、偏光板を安価に高い生産性で製造することが可能となる。
The moisture permeability of the protective film is important for the productivity of the polarizing plate. The polarizing film and the protective film are preferably bonded with a water-based adhesive, and the adhesive solvent is dried by diffusing in the protective film. The higher the moisture permeability of the protective film, the faster the drying and the higher the productivity. However, if the protective film is too high, moisture will enter the polarizing film depending on the usage environment (high humidity) of the liquid crystal display device. Polarization ability decreases.
The moisture permeability of the protective film is determined by the thickness, free volume, hydrophilicity / hydrophobicity, etc. of the transparent support or polymer film (and polymerizable liquid crystal compound).
When using the film of the present invention as a protective film of a polarizing plate, the moisture permeability is preferably from 100~1000g / m 2 · 24hrs, and more preferably a 300~700g / m 2 · 24hrs.
In the case of film formation, the thickness of the transparent support can be adjusted by lip flow rate and line speed, or stretching and compression. Since the moisture permeability varies depending on the main material to be used, it is possible to make a preferable range by adjusting the thickness.
In the case of film formation, the free volume of the transparent support can be adjusted by the drying temperature and time.
Also in this case, moisture permeability varies depending on the main material to be used, so that a preferable range can be obtained by adjusting the free volume.
The hydrophilicity / hydrophobicity of the transparent support can be adjusted by an additive. The moisture permeability can be increased by adding a hydrophilic additive to the free volume, and conversely, the moisture permeability can be lowered by adding a hydrophobic additive.
By independently controlling the moisture permeability, the polarizing plate can be produced at low cost with high productivity.

偏光膜としては公知の偏光膜や、偏光膜の吸収軸が長手方向に平行でも垂直でもない長尺の偏光膜から切り出された偏光膜を用いてもよい。偏光膜の吸収軸が長手方向に平行でも垂直でもない長尺の偏光膜は以下の方法により作成される。
即ち、連続的に供給されるポリマーフィルムの両端を保持手段により保持しつつ張力を付与して延伸した偏光膜で、少なくともフィルム幅方向に1.1〜20.0倍に延伸し、フィルム両端の保持装置の長手方向進行速度差が3%以内であり、フィルム両端を保持する工程の出口におけるフィルムの進行方向と、フィルムの実質延伸方向のなす角が、20〜70゜傾斜するようにフィルム進行方向を、フィルム両端を保持させた状態で屈曲させてなる延伸方法によって製造することができる。特に45°傾斜させたものが生産性の観点から好ましく用いられる。
As the polarizing film, a known polarizing film or a polarizing film cut out from a long polarizing film whose absorption axis is neither parallel nor perpendicular to the longitudinal direction may be used. A long polarizing film whose absorption axis is neither parallel nor perpendicular to the longitudinal direction is produced by the following method.
That is, a polarizing film stretched by applying tension while holding both ends of a continuously supplied polymer film by a holding means, stretched at least 1.1 to 20.0 times in the film width direction, The progress of the film is such that the difference between the moving speeds in the longitudinal direction of the holding device is within 3%, and the angle formed by the film moving direction at the exit of the step of holding both ends of the film and the substantial stretching direction of the film is inclined by 20 to 70 °. The film can be produced by a stretching method in which the direction is bent while holding both ends of the film. In particular, those inclined by 45 ° are preferably used from the viewpoint of productivity.

ポリマーフィルムの延伸方法については、特開2002−86554号公報の段落0020〜0030に詳しい記載がある。
偏光板における2枚の保護フィルムのうち、前記光学フィルム、前記反射防止フィルム以外の保護フィルムが、光学異方層を含んでなる光学補償層を有する光学補償フィルムであることも好ましい。光学補償フィルム(位相差フィルム)は、液晶表示画面の視野角特性を改良することができる。
光学補償フィルムとしては、公知のものを用いることができるが、視野角を広げるという点では、特開2001−100042号公報に記載されている光学補償フィルムが好ましい。
The method for stretching the polymer film is described in detail in paragraphs 0020 to 0030 of JP-A-2002-86554.
Of the two protective films in the polarizing plate, the protective film other than the optical film and the antireflection film is preferably an optical compensation film having an optical compensation layer comprising an optically anisotropic layer. The optical compensation film (retardation film) can improve the viewing angle characteristics of the liquid crystal display screen.
A known film can be used as the optical compensation film, but the optical compensation film described in JP-A-2001-100042 is preferable in terms of widening the viewing angle.

5.本発明の使用形態
本発明のフィルム、偏光板は、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や陰極管表示装置(CRT)のような画像表示装置に用いられる。本発明に従う光学フィルタは、プラズマディスプレイパネル(PDP)または陰極管表示装置(CRT)など公知のディスプレイ上に用いることが出来る。このとき、光学フィルムにおいては光拡散層が、反射防止フィルムにおいては、低屈折率層が視認側に配置されることが好ましい。光学フィルム、反射防止フィルムを有する偏光板においても同様である。
5). Form of use of the present invention The film and polarizing plate of the present invention are used in an image display device such as a liquid crystal display device (LCD), a plasma display panel (PDP), an electroluminescence display (ELD) or a cathode ray tube display device (CRT). It is done. The optical filter according to the present invention can be used on a known display such as a plasma display panel (PDP) or a cathode ray tube display (CRT). At this time, it is preferable that the light diffusion layer is disposed on the viewing side in the optical film, and the low refractive index layer is disposed on the viewing side in the antireflection film. The same applies to a polarizing plate having an optical film and an antireflection film.

5−(1)液晶表示装置
本発明のフィルム、偏光板は、液晶表示装置等の画像表示装置に有利に用いることができ、ディスプレイの最表層に用いることが好ましい。
液晶表示装置は、液晶セルおよびその両側に配置された二枚の偏光板を有し、液晶セルは、二枚の電極基板の間に液晶を担持している。さらに、光学異方性層が、液晶セルと一方の偏光板との間に一枚配置されるか、あるいは液晶セルと双方の偏光板との間に二枚配置されることもある。
5- (1) Liquid Crystal Display Device The film and polarizing plate of the present invention can be advantageously used for an image display device such as a liquid crystal display device, and is preferably used for the outermost layer of the display.
The liquid crystal display device has a liquid crystal cell and two polarizing plates arranged on both sides thereof, and the liquid crystal cell carries a liquid crystal between two electrode substrates. Furthermore, one optically anisotropic layer may be disposed between the liquid crystal cell and one polarizing plate, or two optically anisotropic layers may be disposed between the liquid crystal cell and both polarizing plates.

液晶セルは、TNモード、VAモード、OCBモード、IPSモードまたはECBモードであることが好ましい。   The liquid crystal cell is preferably in TN mode, VA mode, OCB mode, IPS mode or ECB mode.

<TNモード>
TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、さらに60〜120゜にねじれ配向している。
TNモードの液晶セルは、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。
<TN mode>
In the TN mode liquid crystal cell, rod-like liquid crystal molecules are substantially horizontally aligned when no voltage is applied, and are twisted and aligned at 60 to 120 °.
The TN mode liquid crystal cell is most frequently used as a color TFT liquid crystal display device, and is described in many documents.

<VAモード>
VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。
VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of Tech. Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード)の液晶セル(日本液晶討論会の予稿集58〜59(1998)記載)および(4)SURVAIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。
<VA mode>
In a VA mode liquid crystal cell, rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied.
The VA mode liquid crystal cell includes (1) a narrowly defined VA mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied, and substantially horizontally when a voltage is applied (Japanese Patent Laid-Open No. Hei 2-). 176625) (2) Liquid crystal cell (SID97, Digest of Tech. Papers (Proceedings) 28 (1997) 845 in which the VA mode is converted into a multi-domain (for MVA mode) in order to enlarge the viewing angle. ), (3) A liquid crystal cell in a mode (n-ASM mode) in which rod-like liquid crystalline molecules are substantially vertically aligned when no voltage is applied and twisted multi-domain alignment is applied when a voltage is applied (Preliminary collections 58-59 of the Japan Liquid Crystal Society) (1998)) and (4) SURVAVAL mode liquid crystal cells (announced at LCD International 98).

<OCBモード>
OCBモードの液晶セルは、棒状液晶性分子を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルであり、米国特許第4583825号、同5410422号の各明細書に開示されている。棒状液晶性分子が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため、この液晶モードは、OCB(Optically Compensatory Bend)液晶モードと呼ばれる。ベンド配向モードの液晶表示装置は、応答速度が速いとの利点がある。
<OCB mode>
The OCB mode liquid crystal cell is a bend alignment mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned in substantially opposite directions (symmetrically) at the upper and lower portions of the liquid crystal cell. US Pat. No. 4,583,825, No. 5,410,422. Since the rod-like liquid crystal molecules are symmetrically aligned at the upper and lower portions of the liquid crystal cell, the bend alignment mode liquid crystal cell has a self-optical compensation function. Therefore, this liquid crystal mode is called an OCB (Optically Compensatory Bend) liquid crystal mode. The bend alignment mode liquid crystal display device has an advantage of high response speed.

<IPSモード>
IPSモードの液晶セルは、ネマチック液晶に横電界をかけてスイッチングする方式であり、詳しくはProc.IDRC(Asia Display ’95),p.577−580及び同p.707−710に記載されている。
<IPS mode>
The IPS mode liquid crystal cell is a type in which a nematic liquid crystal is switched by applying a lateral electric field. IDRC (Asia Display '95), p. 577-580 and p. 707-710.

<ECBモード>
ECBモードの液晶セルは、電圧無印加時に棒状液晶性分子が実質的に水平配向している。ECBモードは、最も単純な構造を有する液晶表示モードの一つであって、例えば特開平5−203946号公報に詳細が記載されている。
<ECB mode>
In the ECB mode liquid crystal cell, rod-like liquid crystalline molecules are substantially horizontally aligned when no voltage is applied. The ECB mode is one of the liquid crystal display modes having the simplest structure, and is described in detail in, for example, Japanese Patent Application Laid-Open No. 5-203946.

5−(2)液晶表示装置以外のディスプレイ
<PDP>
プラズマディスプレイパネル(PDP)は、一般に、ガス、ガラス基板、電極、電極リード材料、厚膜印刷材料、蛍光体により構成される。ガラス基板は、前面ガラス基板と後面ガラス基板の二枚である。二枚のガラス基板には電極と絶縁層を形成する。後面ガラス基板には、さらに蛍光体層を形成する。二枚のガラス基板を組み立てて、その間にガスを封入する。
プラズマディスプレイパネル(PDP)は、既に市販されている。プラズマディスプレイパネルについては、特開平5−205643号、同9−306366号の各公報に記載がある。
5- (2) Display other than liquid crystal display device <PDP>
A plasma display panel (PDP) is generally composed of a gas, a glass substrate, an electrode, an electrode lead material, a thick film printing material, and a phosphor. Two glass substrates are a front glass substrate and a rear glass substrate. An electrode and an insulating layer are formed on the two glass substrates. A phosphor layer is further formed on the rear glass substrate. Two glass substrates are assembled and gas is sealed between them.
Plasma display panels (PDP) are already commercially available. The plasma display panel is described in JP-A-5-205643 and JP-A-9-306366.

前面板をプラズマディスプレイパネルの前面に配置することがある。前面板はプラズマディスプレイパネルを保護するために充分な強度を備えていることが好ましい。前面板は、プラズマディスプレイパネルと隙間を置いて使用することもできるし、プラズマディスプレイ本体に直貼りして使用することもできる。
プラズマディスプレイパネルのような画像表示装置では、本発明のフィルムを用いた光学フィルタをディスプレイ表面に直接貼り付けることができる。また、ディスプレイの前に前面板が設けられている場合は、前面板の表側(外側)または裏側(ディスプレイ側)に本発明のフィルムを用いた光学フィルタを貼り付けることもできる。
The front plate may be disposed on the front surface of the plasma display panel. The front plate preferably has sufficient strength to protect the plasma display panel. The front plate can be used with a gap from the plasma display panel, or can be used by directly pasting the front plate to the plasma display body.
In an image display device such as a plasma display panel, an optical filter using the film of the present invention can be directly attached to the display surface. When a front plate is provided in front of the display, an optical filter using the film of the present invention can be attached to the front side (outside) or back side (display side) of the front plate.

<タッチパネル>
本発明のフィルムは、特開平5−127822号公報、特開2002−48913号公報等に記載されるタッチパネルなどに応用することができる。
<Touch panel>
The film of the present invention can be applied to touch panels described in JP-A-5-127822 and JP-A-2002-48913.

<有機EL素子>
本発明のフィルムは、有機EL素子等の基板(基材フィルム)や保護フィルムとして用いることができる。
本発明のフィルムを有機EL素子等に用いる場合には、特開平11−335661号、特開平11−335368号、特開2001−192651号、特開2001−192652号、特開2001−192653号、特開2001−335776号、特開2001−247859号、特開2001−181616号、特開2001−181617号、特開2002−181816号、特開2002−181617号、特開2002−056976号等の各公報記載の内容を応用することができる。また、特開2001−148291号、特開2001−221916号、特開2001−231443号の各公報記載の内容と併せて用いることが好ましい。
<Organic EL device>
The film of the present invention can be used as a substrate (base film) such as an organic EL element or a protective film.
When the film of the present invention is used for an organic EL device or the like, JP-A-11-335661, JP-A-11-335368, JP-A-2001-192651, JP-A-2001-192652, JP-A-2001-192653, JP-A-2001-335776, JP-A-2001-247859, JP-A-2001-181616, JP-A-2001-181617, JP-A-2002-181816, JP-A-2002-181617, JP-A-2002-056776, etc. The contents described in each publication can be applied. Moreover, it is preferable to use together with the content of each gazette of Unexamined-Japanese-Patent No. 2001-148291, Unexamined-Japanese-Patent No. 2001-221916, and Unexamined-Japanese-Patent No. 2001-231443.

6.各種特性値
以下に本発明に関する各種測定法と、好ましい特性値を示す。
6−(1)反射率
鏡面反射率及び色味の測定は、分光光度計”V−5502[日本分光(株)製]にアダプター”ARV−474”を装着して、380〜780nmの波長領域において、入射角5°における出射角−5゜の鏡面反射率を測定し、450〜650nmの平均反射率を算出し、反射防止性を評価することができる。
6). Various characteristic values Various measurement methods related to the present invention and preferable characteristic values are shown below.
6- (1) Reflectance Specular reflectance and color are measured by attaching an adapter “ARV-474” to a spectrophotometer “V-5502 [manufactured by JASCO Corporation], and a wavelength region of 380 to 780 nm. , The specular reflectance at an exit angle of −5 ° at an incident angle of 5 ° is measured, the average reflectance at 450 to 650 nm is calculated, and the antireflection property can be evaluated.

6−(2)色味
本発明の反射防止能付き偏光板は、CIE標準光源D65の、波長380nmから780nmの領域における入射角5゜の入射光に対して、正反射光の色味、すなわちCIE1976L色空間のL、a、b値を求めることで色味を評価することができる。
、a、b値は、それぞれ3≦L≦20、−7≦a≦7、且つ、−10≦b≦10の範囲内であることが好ましい。この範囲とすることで、従来の偏光板で問題となっていた赤紫色から青紫色の反射光の色味が低減され、さらに3≦L≦10、0≦a≦5、且つ、−7≦b≦0の範囲内とすることで大幅に低減され、液晶表示装置に適用した場合、室内の蛍光灯のような、輝度の高い外光が僅かに映り込んだ場合の色味がニュートラルで、気にならない。詳しくはa≦7であれば赤味が強くなりすぎることがなく、a≧−7であればシアン味が強くなりすぎることがなく好ましい。またb≧−7であれば青味が強くなりすぎることがなく、b≦0であれば黄味が強くなりすぎることがなく好ましい。
6- (2) color antireflection performance polarizing plate of the present invention, the CIE standard illuminant D 65, with respect to the incident angle of 5 ° incident light at 780nm region from the wavelength 380 nm, of the specularly reflected light color, That is, the color tone can be evaluated by obtaining the L * , a * , and b * values of the CIE 1976 L * a * b * color space.
The L * , a * , and b * values are preferably in the ranges of 3 ≦ L * ≦ 20, −7 ≦ a * ≦ 7, and −10 ≦ b * ≦ 10, respectively. By setting it within this range, the color of reflected light from red purple to blue purple, which has been a problem with conventional polarizing plates, is reduced, and further 3 ≦ L * ≦ 10, 0 ≦ a * ≦ 5, and − 7 ≦ b * ≦ 0 is greatly reduced, and when applied to a liquid crystal display device, when applied to a liquid crystal display device, such as indoor fluorescent lamps, a slight brightness of bright external light is reflected. Neutral, don't mind. Specifically, if a * ≦ 7, the reddish color will not be too strong, and if a * ≧ −7, the cyan color will not be too strong. If b * ≧ −7, the bluish color does not become too strong, and if b * ≦ 0, the yellowish color does not become too strong.

更には、反射光の色味均一性は、反射光の380nm〜680nmの反射スペクトルにより求めたL色度図上でのaより、下記の数式(21)に従って色味の変化率として得ることができる。 Furthermore, the color uniformity of the reflected light is determined according to the following formula (21) from a * b * on the L * a * b * chromaticity diagram obtained from the reflection spectrum of the reflected light from 380 nm to 680 nm. It can be obtained as the rate of change in taste.

Figure 2007264113
Figure 2007264113

ここで、a max及びa minは、それぞれa値の最大値及び最小値;b max及びb minは、それぞれb値の最大値及び最小値;a av及びb avは、それぞれa値及びb値の平均値である。色の変化率は、それぞれ30%以下であることが好ましく、20%以下であることがより好ましく、8%以下であることが最も好ましい。 Here, a * max and a * min are the maximum value and minimum value of the a * value, respectively; b * max and b * min are the maximum value and minimum value of the b * value, respectively; a * av and b * av Are average values of a * value and b * value, respectively. The color change rate is preferably 30% or less, more preferably 20% or less, and most preferably 8% or less.

また、本発明のフィルムは、耐候性試験前後の色味の変化であるΔEが15以下であることが好ましく、10以下であることがより好ましく、5以下であることが最も好ましい。この範囲において、低反射と反射光の色味の低減を両立することができるため、例えば画像表示装置の最表面に適用した場合、室内の蛍光灯のような、輝度の高い外光が僅かに映り込んだ場合の色味が、ニュートラルで、表示画像の品位が良好となり、好ましい。 The film of the present invention preferably has a Delta] E w is 15 or less is the change in color before and after the weather resistance test, more preferably 10 or less, and most preferably 5 or less. In this range, it is possible to achieve both low reflection and reduction of the color of the reflected light. For example, when applied to the outermost surface of an image display device, there is a slight amount of high-brightness external light such as an indoor fluorescent lamp. The color tone when it is reflected is neutral, and the quality of the displayed image is good, which is preferable.

上記の色味の変化ΔEは、下記の数式(22)に従って求めることができる。 The color change ΔE w can be obtained according to the following formula (22).

数式(22):ΔE=[(ΔL+(Δa+(Δb1/2 Formula (22): ΔE w = [(ΔL w ) 2 + (Δa w ) 2 + (Δb w ) 2 ] 1/2

ここで、ΔL,Δa,Δbは、耐候性試験前後のL値,a値,b値それぞれの変化量である。 Here, ΔL w , Δa w , and Δb w are change amounts of the L * value, the a * value, and the b * value before and after the weather resistance test.

6−(3)透過画像鮮明度
透過画像鮮明度は、JIS−K7105に従い、スガ試験機(株)製の写像性測定器(ICM−2D型)にて、スリット幅が0.5mmの光学櫛を用いて測定できる。
6- (3) Transmission Image Sharpness The transmission image definition was measured according to JIS-K7105 using an optical comb having a slit width of 0.5 mm using a image clarity measuring instrument (ICM-2D type) manufactured by Suga Test Instruments Co., Ltd. Can be measured.

本発明のフィルムの透過画像鮮明度は60%以上が好ましい。透過画像鮮明度は、一般にフィルムを透過して映す画像の呆け具合を示す指標であり、この値が大きい程、フィルムを通して見る画像が鮮明で良好であることを示す。透過画像鮮明度は好ましくは70%以上であり、更に好ましくは80%以上である。   The transmission image definition of the film of the present invention is preferably 60% or more. The transmitted image clarity is generally an index indicating the degree of blurring of an image reflected through a film, and the larger this value, the clearer and better the image viewed through the film. The transmitted image definition is preferably 70% or more, and more preferably 80% or more.

6−(4)表面粗さ
中心線平均粗さ(算術平均粗さとも呼ぶ)(Ra)、凹凸の平均間隔(Sm)の測定は、JIS−B0601に準じて行うことができる。
6- (4) Surface Roughness Centerline average roughness (also called arithmetic average roughness) (Ra) and uneven spacing average (Sm) can be measured according to JIS-B0601.

6−(5)ヘイズ
本発明のフィルムのヘイズはJIS−K7105に規定されたヘイズ値のことであり、JIS−K7361−1で規定された測定法に基づき、日本電色工業(株)製の濁度計「NDH−1001DP」を用いて測定したヘイズ=(拡散光/全透過光)×100(%)として自動計測される値を用いた。
本発明の光学フィルムの内部ヘイズは好ましくは0〜60%であり、より好ましくは10〜40%であり、さらに好ましくは15〜35%、最も好ましくは20%〜30%である。
また、表面ヘイズは、好ましくは0.3〜20%であり、より好ましくは0.3〜10%、さらに好ましくは0.3%〜1.5%である。
6- (5) Haze The haze of the film of the present invention is the haze value defined in JIS-K7105. Based on the measurement method defined in JIS-K7361-1, manufactured by Nippon Denshoku Industries Co., Ltd. A value automatically measured as haze = (diffused light / total transmitted light) × 100 (%) measured using a turbidimeter “NDH-1001DP” was used.
The internal haze of the optical film of the present invention is preferably 0 to 60%, more preferably 10 to 40%, further preferably 15 to 35%, and most preferably 20% to 30%.
The surface haze is preferably 0.3 to 20%, more preferably 0.3 to 10%, and further preferably 0.3% to 1.5%.

6−(6)硬度
<鉛筆硬度>
本発明のフィルムの強度は、JIS―K5400に従う鉛筆硬度試験で評価することが出来る。
鉛筆硬度はH以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
6- (6) Hardness <Pencil hardness>
The strength of the film of the present invention can be evaluated by a pencil hardness test according to JIS-K5400.
The pencil hardness is preferably H or higher, more preferably 2H or higher, and most preferably 3H or higher.

<表面弾性率>
本発明における表面弾性率は微小表面硬度計((株)フィッシャー・インスツルメンツ製:フィッシャースコープH100VP−HCU)を用いて求めた値である。具体的には、ダイヤモンド製の四角錐圧子(先端対面角度;136°)を使用し、押し込み深さが1μmを超えない範囲で、適当な試験荷重下での押し込み深さを測定し、除荷重時の荷重と変位の変化から求められる弾性率である。
また、前述の微小表面硬度計を用いて表面硬度をユニバーサル硬度として求めることもできる。ユニバーサル硬度は四角錐圧子の試験荷重下での押し込み深さを測定し、試験荷重をその試験荷重で生じた圧痕の幾何学的形状から計算される圧痕の表面積で割った値である。上記の表面弾性率とユニバーサル硬度の間には、正の相関を有することが知られている。
<Surface elastic modulus>
The surface elastic modulus in the present invention is a value determined using a micro surface hardness tester (manufactured by Fisher Instruments: Fisherscope H100VP-HCU). Specifically, using a diamond pyramid indenter (tip-to-face angle: 136 °), the indentation depth is measured under an appropriate test load within a range where the indentation depth does not exceed 1 μm. This is the elastic modulus obtained from the change in load and displacement over time.
Further, the surface hardness can be obtained as a universal hardness by using the above-mentioned micro surface hardness tester. The universal hardness is a value obtained by measuring the indentation depth of a quadrangular pyramid indenter under a test load and dividing the test load by the surface area of the indent calculated from the geometric shape of the indent generated by the test load. It is known that there is a positive correlation between the surface elastic modulus and the universal hardness.

本明細書においてユニバーサル硬度とはガラス板上に硬化形成した約20〜30μm厚の該架橋性ポリマー膜についてフィッシャーインストルメンツ(株)製の微小硬度計H100によって以下測定手順で求めたユニバーサル硬度(N/mm)によって表される。
架橋性ポリマーの他に必要な触媒や架橋剤、重合開始剤等を含んだ固形分濃度約25%の塗布液を硬化後の膜厚が約20〜30μmになるように適切なバーコーターを選択してTOSHINRIKO.CO.LTD製、(26mm×76mm×1.2mm)みがきスライドガラス板上に塗布する。架橋性ポリマーが熱硬化性の場合には膜が十分硬化される熱硬化条件をあらかじめ求めておき(一例として125℃10分)、架橋性ポリマーが電離放射線硬化性の場合にも同様に膜が十分硬化される硬化条件をあらかじめ求めておく(一例として酸素濃度12ppm、UV照射量750mJ/cm)。それぞれの膜に対して荷重を0から4mNまで連続的に増加させ、基材のガラス板硬度の影響がでない1/10膜厚を最大として円錐ダイヤモンド圧子を押し込んだ際の各荷重Fに対する窪み面積A(mm)から求めたF/AのN=6測定平均値からユニバーサル硬度を算出する。
また、特開2004−354828記載のナノインデンテーションによって表面硬度をもとめることができ、この場合の硬度としては2GPa〜4GPa、ナノインデンテーション弾性率は10GPa〜30GPaであることが好ましい。
In this specification, the universal hardness is a universal hardness (N) determined by the following measurement procedure using a microhardness meter H100 manufactured by Fischer Instruments Co., Ltd. with respect to the crosslinkable polymer film having a thickness of about 20 to 30 μm cured and formed on a glass plate. / Mm 2 ).
Appropriate bar coater is selected so that the film thickness after curing of a coating solution with a solid content of about 25% containing the necessary catalyst, crosslinking agent, polymerization initiator, etc. in addition to the crosslinkable polymer is about 20-30 μm. TOSHINRIKO. CO. Made of LTD (26 mm × 76 mm × 1.2 mm) coated on a polished glass slide plate. In the case where the crosslinkable polymer is thermosetting, a thermosetting condition for sufficiently curing the film is obtained in advance (for example, 125 ° C. for 10 minutes), and when the crosslinkable polymer is ionizing radiation curable, the film is similarly formed. The curing conditions for sufficient curing are obtained in advance (as an example, the oxygen concentration is 12 ppm, the UV irradiation amount is 750 mJ / cm 2 ). Recess area for each film F when the load is continuously increased from 0 to 4 mN for each film, and the conical diamond indenter is pushed in with the maximum 1/10 film thickness not affected by the glass plate hardness of the substrate. Universal hardness is calculated from N = 6 measurement average value of F / A determined from A (mm 2 ).
The surface hardness can be determined by nanoindentation described in JP-A No. 2004-354828. In this case, the hardness is preferably 2 GPa to 4 GPa, and the nanoindentation elastic modulus is preferably 10 GPa to 30 GPa.

6−(7)防汚性試験
<マジック拭き取り性>
フィルムをガラス面上に粘着剤で固定し、25℃60RH%の条件下で黒マジック「マッキー極細(商品名:ZEBRA製)」のペン先(細)にて直径5mmの円形を3周書き込み、5秒後に10枚重ねに折り束ねたベンコット(商品名、旭化成(株))でベンコットの束がへこむ程度の荷重で20往復拭き取る。マジック後が拭き取りで消えなくなるまで前記の書き込みと拭き取りを前記条件で繰り返し、拭き取りできた回数により防汚性を評価することが出来る。
消えなくなるまでの回数は5回以上であることが好ましく、10回以上であることが更に好ましい。
6- (7) Antifouling test <Magic wiping property>
The film is fixed on the glass surface with an adhesive, and a circle with a diameter of 5 mm is written three times with a pen tip (thin) of black magic “Mckey extra fine (product name: made by ZEBRA)” at 25 ° C. and 60 RH%. After 5 seconds, wipe it back and forth 20 times with a load that dents the bundle of Bencot (Brand name, Asahi Kasei Co., Ltd.) folded into 10 sheets. The writing and wiping are repeated under the above conditions until after the magic does not disappear by wiping, and the antifouling property can be evaluated by the number of times of wiping.
The number of times until it no longer disappears is preferably 5 times or more, and more preferably 10 times or more.

黒マジックについてはマジックインキ No.700(M700―T1 黒)極細を用い試料の上に直径1cmの円を描いて塗りつぶし、24時間放置後にベンコット(旭化成(株)製)で擦り、マジックがふき取れるかによっても評価することができる。   For Black Magic, Magic Ink No. 700 (M700-T1 black) Using an ultra-fine sample, draw a circle with a diameter of 1 cm on the sample, paint it for 24 hours, rub it with Bencott (Asahi Kasei Co., Ltd.), and evaluate whether the magic can be wiped off. .

6−(8)表面張力
本発明で測定、評価する表面張力は、機能層を形成する塗布液の表面張力を温度25℃の環境下で表面張力計(協和界面科学製、KYOWA CBVP SURFACE TENSIOMETER A3)を用いて測定することができる。
6- (8) Surface Tension The surface tension measured and evaluated in the present invention is the surface tension meter (Kyowa Interface Science, KYOWA CBVP SURFACE TENSIOMETER A3) under the environment at a temperature of 25 ° C. ).

6−(9)接触角
接触角計[”CA−X”型接触角計、協和界面科学(株)製]を用い、乾燥状態(20℃/65%RH)で、液体として純水を使用して直径1.0mmの液滴を針先に作り、これをフィルムの表面に接触させてフィルム上に液滴を作った。フィルムと液体とが接する点における、液体表面に対する接線とフィルム表面がなす角で、液体を含む側の角度を接触角とする。
6- (9) Contact angle Using a contact angle meter [“CA-X” type contact angle meter, manufactured by Kyowa Interface Science Co., Ltd.], using pure water as a liquid in a dry state (20 ° C./65% RH) Then, a droplet having a diameter of 1.0 mm was formed on the needle tip, and this was brought into contact with the surface of the film to form a droplet on the film. The angle formed between the tangent to the liquid surface and the film surface at the point where the film and the liquid are in contact with each other is defined as the contact angle.

6−(10)表面自由エネルギー
表面エネルギーは、「ぬれの基礎と応用」,リアライズ社,1989.12.10発行に記載のように接触角法、湿潤熱法、および吸着法により求めることができる。本発明のフィルムの場合、接触角法を用いることが好ましい。
具体的には、表面エネルギーが既知である2種の溶液をフィルムに滴下し、液滴の表面とフィルム表面との交点において、液滴に引いた接線とフィルム表面のなす角で、液滴を含む方の角を接触角と定義し、計算によりフィルムの表面エネルギーを算出できる。
6- (10) Surface free energy The surface energy can be determined by the contact angle method, the wet heat method, and the adsorption method as described in “Basics and Applications of Wetting”, Realize, Inc., 1989.12.10. . In the case of the film of the present invention, it is preferable to use a contact angle method.
Specifically, two types of solutions having known surface energies are dropped on the film, and at the intersection between the droplet surface and the film surface, the droplet is formed at the angle formed by the tangent line drawn on the droplet and the film surface. The included angle is defined as the contact angle, and the surface energy of the film can be calculated by calculation.

本発明のフィルムの表面自由エネルギー(γs:単位、mN/m)とはD.K.Owens:J.Appl.Polym.Sci.,13,1741(1969)を参考に、反射防止フィルム上で実験的に求めた純水HOとヨウ化メチレンCHのそれぞれの接触角θH2O、θCH2I2から以下の連立方程式a,bより求めたγsとγsの和で表される値γs(=γs+γs)で定義する反射防止フィルムの表面張力を表す。このγsが小さく、低表面自由エネルギーであるほど表面のはじき性が高く、一般に防汚性に優れる。
a. 1+cosθH2O
2√γs(√γH2O /γH2O )+2√γs(√γH2O /γH2O
b. 1+cosθCH2I2
2√γs(√γCH2I2 /γCH2I2 )+2√γs(√γCH2I2 /γCH2I2
γH2O =21.8、γH2O =51.0、γH2O =72.8、
γCH2I2 =49.5、γCH2I2 =1.3、γCH2I2 =50.8
で、接触角の測定はフィルムを25℃60%の条件下で1時間以上調湿した後に、協和界面科学(株)製、自動接触角計CA−V150型を用いて2μlの液滴をフィルム上に滴下してから30秒後に接触角を求めた。
The surface free energy (γs v : unit, mN / m) of the film of the present invention is D.I. K. Owens: J.M. Appl. Polym. Sci. , 13, 1741 (1969), the following simultaneous equations a from the contact angles θ H2O and θ CH2I2 of pure water H 2 O and methylene iodide CH 2 I 2 obtained experimentally on the antireflection film. represents the surface tension of the antireflection film to be defined by the value represented by the sum of the gamma] s d and gamma] s h determined from the b γs v (= γs d + γs h). The gamma] s v is small, the more high repellency of the surface with a low surface free energy, generally excellent antifouling property.
a. 1 + cos θ H2O =
2√γs d (√γ H2O d / γ H2O v) + 2√γs h (√γ H2O h / γ H2O v)
b. 1 + cos θ CH2I2 =
2√γs d (√γ CH2I2 d / γ CH2I2 v) + 2√γs h (√γ CH2I2 h / γ CH2I2 v)
γ H 2 O d = 21.8, γ H 2 O h = 51.0, γ H 2 O v = 72.8,
γ CH2I2 d = 49.5, γCH2I2 h = 1.3, γCH2I2 v = 50.8
In the contact angle measurement, after the film was conditioned for 1 hour or more at 25 ° C. and 60%, 2 μl of the droplet was formed into a film using an automatic contact angle meter CA-V150 manufactured by Kyowa Interface Science Co., Ltd. The contact angle was determined 30 seconds after dropping.

本発明のフィルムの表面自由エネルギーは25mN/m以下であることが好ましく、20mN/m以下であることが特に好ましい。   The surface free energy of the film of the present invention is preferably 25 mN / m or less, and particularly preferably 20 mN / m or less.

6−(11)カール
カールの測定は、JIS−K7619−1988の「写真フィルムのカールの測定法」中の方法Aのカール測定用型板を用いて行われる。
測定条件は25℃、相対湿度60%、調湿時間10時間である。
本発明におけるフィルムは、カールを以下の数式(23)で表したときの値が、マイナス15〜プラス15の範囲に入っていることが好ましく、マイナス12〜プラス12の範囲がより好ましく、さらに好ましくはマイナス10〜プラス10である。このときのカールの試料内測定方向は、ウェッブ形態での塗布の場合、基材の搬送方向について測ったものである。
数式(23): カール=1/R Rは曲率半径(m)
これは、フィルムの製造、加工、市場での取り扱いで、ひび割れ、膜はがれを起こさないための重要な特性である。カール値が前記範囲にあり、カールが小さいことが好ましい。
ここで、カールがプラスとはフィルムの塗設側が湾曲の内側になるカールを言い、マイナスとは塗設側が湾曲の外側になるカールをいう。
6- (11) Curl The curl is measured by using the curl measurement template of Method A in “Measuring Method of Curling of Photographic Film” of JIS-K7619-1988.
The measurement conditions are 25 ° C., relative humidity 60%, and humidity control time 10 hours.
The film according to the present invention preferably has a value when curl is expressed by the following formula (23) in the range of minus 15 to plus 15, more preferably in the range of minus 12 to plus 12. Is minus 10 to plus 10. In this case, the measurement direction of the curl in the sample is measured in the conveyance direction of the base material in the case of application in a web form.
Formula (23): Curl = 1 / R R is the radius of curvature (m)
This is an important characteristic for preventing cracks and film peeling during film production, processing, and market handling. It is preferable that the curl value is in the above range and the curl is small.
Here, “curl plus” means a curl in which the coating side of the film is inside the curve, and “minus” means a curl in which the coating side is outside the curve.

また、本発明におけるフィルムは、上記したカール測定法に基づいて、相対湿度のみを80%と10%に変更したときの各カール値の差の絶対値が、24〜0が好ましく、15〜0がさらに好ましく、8〜0が最も好ましい。これはさまざまな湿度下でフィルムを貼り付けたときのハンドリング性や剥がれ、ひび割れに関係する特性である。   In the film according to the present invention, the absolute value of the difference between the curl values when the relative humidity is changed to 80% and 10% based on the curl measurement method is preferably 24 to 0, and preferably 15 to 0. Is more preferable, and 8 to 0 is most preferable. This is a property related to handling, peeling and cracking when films are attached under various humidity.

6−(12)密着性評価
フィルムの層間、あるいは支持体と塗布層との密着性は以下の方法により評価することが出来る。
塗布層を有する側の表面にカッターナイフで碁盤目状に縦11本、横11本の切り込みを1mm間隔で入れて合計100個の正方形の升目を刻み、日東電工(株)製のポリエステル粘着テープ(NO.31B)を圧着し、24時間放置後引き剥がす試験を同じ場所で繰り返し3回行い、剥がれの有無を目視で観察する。
6- (12) Adhesion Evaluation The adhesion between the layers of the film or between the support and the coating layer can be evaluated by the following method.
Nitto Denko Co., Ltd. Polyester adhesive tape with 11 squares and 11 horizontal cuts at 1 mm intervals and a total of 100 squares on the surface of the coated layer. (NO.31B) is pressure-bonded, and the test for peeling off after leaving for 24 hours is repeated three times at the same place, and the presence or absence of peeling is visually observed.

100個の升目中、剥がれが10升以内であることが好ましく、2升以内であることが更に好ましい。   Of 100 squares, peeling is preferably within 10 mm, and more preferably within 2 mm.

6−(13)脆性試験(耐ひび割れ性)
耐ひび割れ性は、フィルムの塗布、加工、裁断、粘着剤の塗布、種々の物体への貼りつけ等のハンドリングで割れ欠陥を出さないための重要な特性である。
フィルム試料を35mm×140mmに切断し、温度25℃、相対湿度60%の条件で2時間放置した後、筒状に丸めたときにひび割れが発生し始める曲率直径を測定し、表面のひび割れを評価することができる。
6- (13) Brittleness test (crack resistance)
Crack resistance is an important characteristic for preventing crack defects by handling such as film application, processing, cutting, adhesive application, and application to various objects.
A film sample is cut into 35 mm x 140 mm, left to stand for 2 hours at a temperature of 25 ° C and a relative humidity of 60%, and then the curvature diameter at which cracks start to occur when rolled into a cylinder is measured to evaluate surface cracks. can do.

本発明のフィルムの耐ひび割れ性は、塗布層側を外側にして丸めたときに、ひび割れが発生する曲率直径が、50mm以下であることが好ましく、40mm以下がより好ましく、30mm以下が最も好ましい。エッジ部のひび割れについては、ひび割れがないか、ひび割れの長さが平均で1mm未満であることが好ましい。   The crack resistance of the film of the present invention is preferably 50 mm or less, more preferably 40 mm or less, and most preferably 30 mm or less, when the film is rolled with the coating layer side facing outward. About the crack of an edge part, it is preferable that there is no crack or the length of a crack is less than 1 mm on average.

6−(14)塵埃除去性
本発明のフィルムをモニターに張り付け、モニター表面に塵埃(布団、衣服の繊維屑)を振りかけ、クリーニングクロスで塵埃を拭き取り、塵埃除去性を評価することができる。
6回の拭取りで完全に取除けることが好ましく、3回以内の拭き取りで塵埃が完全に取り除けることが更に好ましい。
6- (14) Dust Removability The film of the present invention can be attached to a monitor, dust (futon, textile waste) can be sprinkled on the monitor surface, the dust can be wiped off with a cleaning cloth, and the dust removability can be evaluated.
It is preferable to remove completely by wiping 6 times, and it is more preferable to remove dust completely by wiping within 3 times.

6−(15)液晶表示装置の性能
以下に、本発明のフィルムを表示装置上に用いたときの特性の評価方法と好ましい状況について記載する。
液晶表示装置に設けられている視認側の偏光板を剥がし、代わりに本発明のフィルムあるいは偏光板を、塗布面が視認側に、且つ偏光板の透過軸が製品に貼られていた偏光板と一致するように粘着剤を介して貼り付ける。500luxの明室にて、液晶表示装置を黒表示にして、種々の視角から目視により以下の各種特性を評価することができる。
6- (15) Performance of liquid crystal display device Hereinafter, a method for evaluating characteristics and a preferable situation when the film of the present invention is used on a display device will be described.
The polarizing plate on the viewing side provided in the liquid crystal display device is peeled off. Instead, the film or polarizing plate of the present invention is applied to the polarizing plate on which the coated surface is on the viewing side and the transmission axis of the polarizing plate is attached to the product. Paste through adhesive to match. In a 500 lux bright room, the liquid crystal display device is displayed in black, and the following various characteristics can be evaluated visually from various viewing angles.

<画像のムラ、色味評価>
作成した液晶表示装置を用いて、黒表示(L1)時のムラ、スジや色味変化を複数の観察者により目視評価する。
10人が評価し、ムラ、スジ、左右色味変化、温湿度による色味変化、白ボケを認識できるものが3人以下であることが好ましく、1人も認識できないことがより好ましい。
また、外光の映り込みは蛍光灯を用いて行い、目視にて映り込みの変化を相対的に評価することができる。
<Evaluation of image unevenness and color>
Using the prepared liquid crystal display device, unevenness, streaks, and color change during black display (L1) are visually evaluated by a plurality of observers.
It is preferable that 10 or less people can recognize unevenness, streaks, left and right color change, color change due to temperature and humidity, and white blur, and more preferably no one can recognize it.
In addition, reflection of external light is performed using a fluorescent lamp, and a change in reflection can be relatively evaluated visually.

<黒表示の光漏れ>
液晶表示装置正面からの方位方向45゜、極角方向70゜における黒表示の光漏れ率を測定する。光漏れ率が0.4%以下であることが好ましく、0.1%以下であることがより好ましい。
<Light leakage of black display>
The light leakage rate of black display in the azimuth direction 45 ° and polar angle direction 70 ° from the front of the liquid crystal display device is measured. The light leakage rate is preferably 0.4% or less, and more preferably 0.1% or less.

<ギラツキ評価>
本発明では「ギラツキ」は防眩性で議論される電灯等の照明の映り込みのまぶしさの有無ではなく、フィルムが引き起こすレンズ効果による画素の拡大によって、人の目にはR、G、Bがぎらついて見えてしまうことを言う。評価はディスプレイに防眩性反射防止フィルムを貼り付け、液晶表示装置を目視にてギラツキを評価する。10人が評価し、ギラツキを認識できるものが3人以下であることが好ましく、1人も認識できないことがより好ましい。
<Evaluation of glare>
In the present invention, “glare” is not the presence or absence of glare of lighting such as an electric light, which is discussed in terms of antiglare properties, but R, G, B for the human eye due to the enlargement of pixels due to the lens effect caused by the film. Says that it is glaring and visible. The evaluation is performed by attaching an antiglare antireflection film to the display and visually evaluating the liquid crystal display device. It is preferable that 10 people can evaluate and recognize the glare is 3 or less, more preferably 1 person cannot recognize.

本発明を詳細に説明するために、以下に実施例を挙げて説明するが、本発明はこれらに限定されるものではない。なお、特別の断りの無い限り、「部」及び「%」は質量基準である。   In order to describe the present invention in detail, examples will be described below, but the present invention is not limited thereto. Unless otherwise specified, “part” and “%” are based on mass.

(ゾル液aの調製)
攪拌機、還流冷却器を備えた反応器、メチルエチルケトン120部、アクリロイルオキシプロピルトリメトキシシラン(KBM−5103、信越化学工業(株)製)100部、ジイソプロポキシアルミニウムエチルアセトアセテート3部を加え混合したのち、イオン交換水30部を加え、60℃で4時間反応させたのち、室温まで冷却し、ゾル液aを得た。質量平均分子量は1600であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100%であった。また、ガスクロマトグラフィー分析から、原料のアクリロイルオキシプロピルトリメトキシシランは全く残存していなかった。
(Preparation of sol solution a)
A stirrer, a reactor equipped with a reflux condenser, 120 parts of methyl ethyl ketone, 100 parts of acryloyloxypropyltrimethoxysilane (KBM-5103, manufactured by Shin-Etsu Chemical Co., Ltd.), 3 parts of diisopropoxyaluminum ethyl acetoacetate were added and mixed. Thereafter, 30 parts of ion-exchanged water was added and reacted at 60 ° C. for 4 hours, and then cooled to room temperature to obtain sol solution a. The mass average molecular weight was 1600, and among the components higher than the oligomer component, the component having a molecular weight of 1000 to 20000 was 100%. Further, from the gas chromatography analysis, the raw material acryloyloxypropyltrimethoxysilane did not remain at all.

(ゾル液bの調製)
反応後室温まで冷却した後、アセチルアセトン6部を添加したこと以外は上記ゾル組成物aと同様にしてゾル液bを得た。
(Preparation of sol liquid b)
After the reaction, the mixture was cooled to room temperature, and then a sol solution b was obtained in the same manner as the sol composition a except that 6 parts of acetylacetone was added.

(フルオロ樹脂含有ポリマー(FP−132)の合成)
攪拌機、還流冷却器を備えた反応器に、1H,1H,7H−ドデカフルオロヘプチルアクリレート39.93g、ジメチル2,2’−アゾビスイソブチレート1.1g、2−ブタノン30gを加え窒素雰囲気下で6時間78℃に加熱して反応を完結させた。質量平均分子量は1.5×104であった。
フルオロ樹脂含有共重合体(FP−132)
(Synthesis of fluororesin-containing polymer (FP-132))
To a reactor equipped with a stirrer and a reflux condenser, 39.93 g of 1H, 1H, 7H-dodecafluoroheptyl acrylate, 1.1 g of dimethyl 2,2′-azobisisobutyrate and 30 g of 2-butanone were added, and a nitrogen atmosphere was added. For 6 hours at 78 ° C. to complete the reaction. The weight average molecular weight was 1.5 × 10 4 .
Fluoro resin-containing copolymer (FP-132)

Figure 2007264113
Figure 2007264113

───────────────────────────────────
光拡散層用塗布液Aの組成
───────────────────────────────────
PET−30 46.0g
イルガキュア184 1.7g
MX−600(30%) 23.0g
FP−132 0.06g
KBM−5103 6.0g
MiBK(メチルイソブチルケトン) 14.0g
MEK(メチルエチルケトン) 10.0g
───────────────────────────────────
───────────────────────────────────
Composition of coating liquid A for light diffusion layer ───────────────────────────────────
PET-30 46.0g
Irgacure 184 1.7g
MX-600 (30%) 23.0 g
FP-132 0.06g
KBM-5103 6.0g
MiBK (methyl isobutyl ketone) 14.0 g
MEK (methyl ethyl ketone) 10.0 g
───────────────────────────────────

───────────────────────────────────
光拡散層用塗布液Bの組成
───────────────────────────────────
PET−30 50.3g
イルガキュア184 1.7g
MX−600(30%) 10.0g
FP−132 0.06g
KBM−5103 6.0g
MiBK 21.0g
MEK 10.0g
───────────────────────────────────

───────────────────────────────────
Composition of coating liquid B for light diffusion layer ───────────────────────────────────
PET-30 50.3g
Irgacure 184 1.7g
MX-600 (30%) 10.0 g
FP-132 0.06g
KBM-5103 6.0g
MiBK 21.0g
MEK 10.0g
───────────────────────────────────

───────────────────────────────────
光拡散層用塗布液Cの組成
───────────────────────────────────
PET−30 49.0g
イルガキュア184 1.7g
MX−800(30%) 15.3g
FP−132 0.06g
KBM−5103 6.0g
MiBK 18.0g
MEK 10.0g
───────────────────────────────────
───────────────────────────────────
Composition of coating solution C for light diffusion layer ───────────────────────────────────
PET-30 49.0g
Irgacure 184 1.7g
MX-800 (30%) 15.3 g
FP-132 0.06g
KBM-5103 6.0g
MiBK 18.0g
MEK 10.0g
───────────────────────────────────

───────────────────────────────────
光拡散層用塗布液Dの組成
───────────────────────────────────
PET−30 40.0g
イルガキュア184 1.7g
MX−600(30%) 48.0g
FP−132 0.06g
KBM−5103 6.0g
MEK 10.0g
───────────────────────────────────
───────────────────────────────────
Composition of coating liquid D for light diffusion layer ───────────────────────────────────
PET-30 40.0g
Irgacure 184 1.7g
MX-600 (30%) 48.0g
FP-132 0.06g
KBM-5103 6.0g
MEK 10.0g
───────────────────────────────────

───────────────────────────────────
光拡散層用塗布液Eの組成
───────────────────────────────────
デソライトZ7404 5.0g
DPHA 44.0g
イルガキュア184 1.7g
MX−800(30%) 15.3g
FP−132 0.06g
KBM−5103 6.0g
MiBK 18.0g
MEK 10.0g
───────────────────────────────────
───────────────────────────────────
Composition of coating liquid E for light diffusion layer ───────────────────────────────────
Desolite Z7404 5.0g
DPHA 44.0g
Irgacure 184 1.7g
MX-800 (30%) 15.3 g
FP-132 0.06g
KBM-5103 6.0g
MiBK 18.0g
MEK 10.0g
───────────────────────────────────

───────────────────────────────────
光拡散層用塗布液Fの組成
───────────────────────────────────
PET−30 40.0g
DPHA 6.0g
イルガキュア184 2.0g
MX−800(30%) 28.6g
FP−132 0.06g
KBM−5103 6.0g
MiBK 9.0g
MEK 10.0g
───────────────────────────────────
───────────────────────────────────
Composition of coating solution F for light diffusion layer ───────────────────────────────────
PET-30 40.0g
DPHA 6.0g
Irgacure 184 2.0g
MX-800 (30%) 28.6g
FP-132 0.06g
KBM-5103 6.0g
MiBK 9.0g
MEK 10.0g
───────────────────────────────────

───────────────────────────────────
光拡散層用塗布液Gの組成
───────────────────────────────────
PET−30 50.0g
イルガキュア184 2.0g
SX−350(30%) 2.7g
架橋アクリルースチレン粒子(30%) 12.3g
FP−132 0.06g
KBM−5103 10.0g
トルエン 38.5g
───────────────────────────────────
───────────────────────────────────
Composition of coating liquid G for light diffusion layer ───────────────────────────────────
PET-30 50.0g
Irgacure 184 2.0g
SX-350 (30%) 2.7 g
Cross-linked acrylic-styrene particles (30%) 12.3 g
FP-132 0.06g
KBM-5103 10.0g
Toluene 38.5g
───────────────────────────────────

───────────────────────────────────
光拡散層用塗布液Hの組成
───────────────────────────────────
PET−30 55.0g
イルガキュア184 1.7g
MXS−300(30%) 6.2g
FP−132 0.06g
KBM−5103 3.0g
MiBK 25.0g
MEK 10.0g
───────────────────────────────────
───────────────────────────────────
Composition of coating liquid H for light diffusion layer ───────────────────────────────────
PET-30 55.0g
Irgacure 184 1.7g
MXS-300 (30%) 6.2g
FP-132 0.06g
KBM-5103 3.0g
MiBK 25.0g
MEK 10.0g
───────────────────────────────────

───────────────────────────────────
光拡散層用塗布液Iの組成
───────────────────────────────────
PET−30 45.0g
イルガキュア184 1.7g
MX−600(30%) 28.6g
FP−132 0.06g
KBM−5103 6.0g
MiBK 9.0g
MEK 10.0g
───────────────────────────────────
───────────────────────────────────
Composition of coating liquid I for light diffusion layer ───────────────────────────────────
PET-30 45.0g
Irgacure 184 1.7g
MX-600 (30%) 28.6g
FP-132 0.06g
KBM-5103 6.0g
MiBK 9.0g
MEK 10.0g
───────────────────────────────────

───────────────────────────────────
ハードコート層用塗布液Jの組成
───────────────────────────────────
PET−30 47.5g
DPHA 2.5g
イルガキュア184 2.0g
FP−132 0.06g
MiBK 58.5g
MEK 5.0g
───────────────────────────────────
───────────────────────────────────
Composition of coating liquid J for hard coat layer ───────────────────────────────────
PET-30 47.5g
DPHA 2.5g
Irgacure 184 2.0g
FP-132 0.06g
MiBK 58.5g
MEK 5.0g
───────────────────────────────────

───────────────────────────────────
光拡散層用塗布液Kの組成
───────────────────────────────────
PET−30 40.0g
イルガキュア184 1.7g
MXS−300(30%) 48.0g
FP−132 0.06g
KBM−5103 6.0g
MEK 10.0g
───────────────────────────────────
───────────────────────────────────
Composition of coating liquid K for light diffusion layer ───────────────────────────────────
PET-30 40.0g
Irgacure 184 1.7g
MXS-300 (30%) 48.0g
FP-132 0.06g
KBM-5103 6.0g
MEK 10.0g
───────────────────────────────────

上記組成をそれぞれを孔径30μmのポリプロピレン製フィルターでろ過して光拡散層、ハードコート層の塗布液を調製した。   Each of the above compositions was filtered through a polypropylene filter having a pore diameter of 30 μm to prepare a coating solution for the light diffusion layer and the hard coat layer.

───────────────────────────────────
低屈折率層用塗布液E−1の組成
───────────────────────────────────
DPHA 3.3g
中空シリカ(18.2%) 40.0g
RMS−033 0.7g
イルガキュア907 0.2g
ゾル液a 6.2g
MEK 299.6g
───────────────────────────────────
───────────────────────────────────
Composition of coating solution E-1 for low refractive index layer ───────────────────────────────────
DPHA 3.3g
Hollow silica (18.2%) 40.0g
RMS-033 0.7g
Irgacure 907 0.2g
Sol liquid a 6.2g
MEK 299.6g
───────────────────────────────────

───────────────────────────────────
低屈折率層用塗布液E−2の調製
───────────────────────────────────
オプスターJN7228A(6%) 13.0g
MEK−ST(30%) 1.3g
MEK−ST−L(30%) 1.3g
ゾル液a 0.6g
MEK 5.0g
シクロヘキサノン 0.6g
───────────────────────────────────
───────────────────────────────────
Preparation of coating solution E-2 for low refractive index layer ───────────────────────────────────
OPSTAR JN7228A (6%) 13.0g
MEK-ST (30%) 1.3g
MEK-ST-L (30%) 1.3g
Sol liquid a 0.6g
MEK 5.0g
Cyclohexanone 0.6g
───────────────────────────────────

上記組成をそれぞれ攪拌後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液を調製した。   Each of the above compositions was stirred and then filtered through a polypropylene filter having a pore size of 1 μm to prepare a coating solution for a low refractive index layer.

それぞれ使用した化合物を以下に示す。
KBM−5103:
シランカップリング剤[信越化学工業(株)製]
The compounds used are shown below.
KBM-5103:
Silane coupling agent [Shin-Etsu Chemical Co., Ltd.]

PET−30:
ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物[日本化薬(株)製]
イルガキュア184:
重合開始剤[チバ・スペシャルティ・ケミカルズ(株)製]
SX−350:
平均粒径3.5μm架橋ポリスチレン粒子[屈折率1.61、綜研化学(株)製、30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用]
架橋アクリル−スチレン粒子:
平均粒径3.5μm[屈折率1.55綜研化学(株)製、30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用]
FP−132:
前記のとおり合成したフルオロ樹脂含有共重合体
PET-30:
A mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate [manufactured by Nippon Kayaku Co., Ltd.]
Irgacure 184:
Polymerization initiator [Ciba Specialty Chemicals Co., Ltd.]
SX-350:
Cross-linked polystyrene particles having an average particle size of 3.5 μm [refractive index of 1.61, manufactured by Soken Chemical Co., Ltd., 30% toluene dispersion, used after dispersion for 20 minutes at 10,000 rpm in a polytron disperser]
Cross-linked acrylic-styrene particles:
Average particle size 3.5 μm [refractive index 1.55, manufactured by Soken Chemical Co., Ltd., 30% toluene dispersion, used after dispersion for 20 minutes at 10,000 rpm in a polytron disperser]
FP-132:
Fluororesin-containing copolymer synthesized as described above

デソライトZ7404:
ZrO2微粒子含有ハードコート剤[屈折率1.62、固形分濃度:60質量%、酸化ジルコニウム微粒子含量:70質量%(対固形分)、酸化ジルコニウム微粒子の平均粒子径:約20nm、溶剤組成:MIBK/MEK=9/1、JSR(株)製]
DPHA:
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物[屈折率1.52、日本化薬(株)製]
MXS−300:
平均粒径3μmPMMA粒子[屈折率1.49、綜研化学(株)製、30%MIBK分散液、ポリトロン分散機にて10000rpmで20分分散後使用]
MX−600:
平均粒径6μmPMMA粒子[屈折率1.49、綜研化学(株)製、30%MIBK分散液、ポリトロン分散機にて10000rpmで20分分散後使用]
MX−800:
平均粒径8μmPMMA粒子[屈折率1.49、綜研化学(株)製、30%MIBK分散液、ポリトロン分散機にて10000rpmで20分分散後使用]
MX−1000:
平均粒径10μmPMMA粒子[屈折率1.49、綜研化学(株)製、30%MIBK分散液、ポリトロン分散機にて10000rpmで20分分散後使用]
MBX−5:
平均粒径5μmPMMA粒子[屈折率1.49、積水化成品工業(株)製、30%MIBK分散液、ポリトロン分散機にて10000rpmで20分分散後使用]
Desolite Z7404:
ZrO 2 fine particle-containing hard coat agent [refractive index 1.62, solid content concentration: 60% by mass, zirconium oxide fine particle content: 70% by mass (relative to solid content), average particle size of zirconium oxide fine particles: about 20 nm, solvent composition: MIBK / MEK = 9/1, manufactured by JSR Corporation]
DPHA:
Mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate [refractive index 1.52, manufactured by Nippon Kayaku Co., Ltd.]
MXS-300:
PMMA particles having an average particle size of 3 μm [refractive index: 1.49, manufactured by Soken Chemical Co., Ltd., 30% MIBK dispersion, used after dispersion at 10,000 rpm for 20 minutes in a Polytron disperser]
MX-600:
PMMA particles having an average particle size of 6 μm [refractive index: 1.49, manufactured by Soken Chemical Co., Ltd., 30% MIBK dispersion, used after dispersion at 10,000 rpm for 20 minutes in a Polytron disperser]
MX-800:
PMMA particles having an average particle size of 8 μm [refractive index: 1.49, manufactured by Soken Chemical Co., Ltd., 30% MIBK dispersion, used after dispersion for 20 minutes at 10,000 rpm in a Polytron disperser]
MX-1000:
PMMA particles having an average particle diameter of 10 μm [refractive index: 1.49, manufactured by Soken Chemical Co., Ltd., 30% MIBK dispersion, used after dispersion at 10,000 rpm for 20 minutes in a Polytron disperser]
MBX-5:
Average particle size 5 μm PMMA particles [refractive index 1.49, manufactured by Sekisui Plastics Co., Ltd., 30% MIBK dispersion, used after dispersion for 20 minutes at 10,000 rpm in a Polytron disperser]

オプスターJN7228A:熱架橋性含フッ素ポリマー[屈折率1.42、固形分濃度6%、JSR(株)製]
MEK−ST:
コロイダルシリカ分散物[平均粒径10〜20nm、固形分濃度30%、日産化学(株)製]
MEK−ST−L:
コロイダルシリカ分散物[MEK−STの粒子サイズ違い、平均粒径45nm、固形分濃度30%、日産化学(株)製]
中空シリカ:下記のように調製した中空シリカ微粒子分散液
OPSTAR JN7228A: Thermally crosslinkable fluorine-containing polymer [refractive index 1.42, solid content concentration 6%, manufactured by JSR Corporation]
MEK-ST:
Colloidal silica dispersion [average particle size 10-20 nm, solid content 30%, manufactured by Nissan Chemical Co., Ltd.]
MEK-ST-L:
Colloidal silica dispersion [MEK-ST particle size difference, average particle size 45 nm, solid content concentration 30%, manufactured by Nissan Chemical Co., Ltd.]
Hollow silica: Hollow silica fine particle dispersion prepared as follows

(中空シリカ微粒子分散液の調製)
中空シリカ微粒子ゾル(イソプロピルアルコールシリカゾル、触媒化成工業(株)製CS60−IPA、平均粒子径60nm、シェル厚み10nm、シリカ濃度20%、シリカ粒子の屈折率1.31)500部に、アクリロイルオキシプロピルトリメトキシシラン(信越化学(株)製、KBM−5103)30部、およびジイソプロポキシアルミニウムエチルアセテート1.5部加え混合した後に、イオン交換水を9部を加えた。60℃で8時間反応させた後に室温まで冷却し、アセチルアセトン1.8部を添加し、中空シリカ分散液を得た。得られた中空シリカ分散液の固形分濃度は18質量%、溶剤乾燥後の屈折率は1.31であった。
(Preparation of hollow silica fine particle dispersion)
Hollow silica fine particle sol (isopropyl alcohol silica sol, CS60-IPA manufactured by Catalytic Chemical Industry Co., Ltd., average particle diameter 60 nm, shell thickness 10 nm, silica concentration 20%, silica particle refractive index 1.31) in 500 parts, acryloyloxypropyl After 30 parts of trimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-5103) and 1.5 parts of diisopropoxyaluminum ethyl acetate were added and mixed, 9 parts of ion-exchanged water was added. After making it react at 60 degreeC for 8 hours, it cooled to room temperature and added 1.8 parts of acetylacetone, and obtained the hollow silica dispersion liquid. The resulting hollow silica dispersion had a solid content concentration of 18% by mass and a refractive index after solvent drying of 1.31.

X−22−164C:
反応性シリコーン(信越化学工業(株)製)
RMS−033:
反応性シリコーン(Gelest(株)製)
イルガキュア907:
光重合開始剤(チバ・スペシャルティ・ケミカルズ(株)製)
イルガキュア651:
光重合開始剤[チバ・スペシャルティ・ケミカルズ(株)製]
X-22-164C:
Reactive silicone (manufactured by Shin-Etsu Chemical Co., Ltd.)
RMS-033:
Reactive silicone (manufactured by Gelest Co., Ltd.)
Irgacure 907:
Photopolymerization initiator (Ciba Specialty Chemicals Co., Ltd.)
Irgacure 651
Photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd.]

[実施例1:光学フィルムの作成と評価]
(1)機能層の塗設:ハードコート層または光拡散層
80μmの厚さのトリアセチルセルロースフィルム(TD80U:富士写真フイルム(株)をロール形態で巻き出して、各々表1に記載の機能層(ハードコート層または光拡散層)用塗布液を線数135本/インチ、深度60μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、搬送速度10m/分の条件で塗布し、60℃で150秒乾燥の後、さらに窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量250mJ/cm2の紫外線を照射して塗布層を硬化させ、光拡散層の機能層を形成し、巻き取った。このようにして、光拡散層を含有する光学フィルム1〜6,8〜11を作製した。
光学フイルム7については80μmの厚さのトリアセチルセルロースフィルム(TD80U:富士写真フイルム(株)をロール形態で巻き出して、特開2003−260400記載の実施例1のギーサーを用いて、光拡散層をスロット23、ハードコート層をスロット24から供給し、搬送速度30m/分の条件で塗布し、60℃で150秒乾燥の後、さらに窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量250mJ/cm2の紫外線を照射して塗布層を硬化させ、機能層を形成し、巻き取った。
光拡散層、ハードコート用塗布液A〜D、F〜Kの粒子を除いた屈折率は1.52,光拡散層用塗布液Eの粒子を除いた膜の屈折率は1.54であった。
[Example 1: Preparation and evaluation of optical film]
(1) Coating of functional layer: hard coat layer or light diffusion layer Triacetyl cellulose film (TD80U: Fuji Photo Film Co., Ltd.) having a thickness of 80 μm is unrolled in the form of a roll, and each functional layer described in Table 1 The coating solution for (hard coat layer or light diffusing layer) is applied under conditions of a conveyance speed of 10 m / min using a micro gravure roll having a diameter of 135 lines / inch and a gravure pattern having a depth of 60 μm and a doctor blade. After drying at 60 ° C. for 150 seconds, using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) under a nitrogen purge, UV light with an illuminance of 400 mW / cm 2 and an irradiation amount of 250 mJ / cm 2 The coated layer was cured by irradiation to form a functional layer of the light diffusing layer and wound up. Rums 1-6 and 8-11 were prepared.
For the optical film 7, a triacetyl cellulose film (TD80U: Fuji Photo Film Co., Ltd.) having a thickness of 80 μm was unwound in a roll form, and the light diffusion layer was used by using the Giesser of Example 1 described in JP-A-2003-260400. Was supplied from slot 23 and the hard coat layer was supplied from slot 24, applied at a transfer speed of 30 m / min, dried at 60 ° C. for 150 seconds, and further air-cooled metal halide lamp (eye graphics with 160 W / cm under nitrogen purge). (Co., Ltd.) was used to irradiate ultraviolet rays having an illuminance of 400 mW / cm 2 and an irradiation amount of 250 mJ / cm 2 to cure the coating layer, and a functional layer was formed and wound up.
The refractive index excluding particles of the light diffusion layer and hard coat coating liquids A to D and F to K was 1.52, and the refractive index of the film excluding the particles of the light diffusion layer coating liquid E was 1.54. It was.

(光学フィルムの評価)
得られたこれらの光学フィルム試料について、以下の項目の評価を行った。結果を表1に示す。
(Evaluation of optical film)
About these obtained optical film samples, the following items were evaluated. The results are shown in Table 1.

(1)防眩性
得られたフィルムの塗設面の裏側全体を黒マジックインキで塗りつぶし、ルーバーなしのむき出し蛍光灯(8000cd/m2)を5度の角度から映し、−5度の方向から観察した場合の反射像のボケの程度を以下の基準で評価した。
◎: 蛍光灯の輪郭がまったくわからないほど、映り込まない。
○: 蛍光灯の輪郭がわずかに観察されるが、ほとんど映り込まない。
△: 蛍光灯はぼけているが、若干映り込む。
×: 蛍光灯の輪郭がハッキリ見えるか、眩しい。
(1) Anti-glare property The entire back side of the coated surface of the obtained film is painted with black magic ink, and a bare fluorescent lamp (8000 cd / m 2 ) without louver is projected from an angle of 5 degrees, from a direction of −5 degrees. The degree of blurring of the reflected image when observed was evaluated according to the following criteria.
A: Not reflected so much that the outline of the fluorescent lamp is completely unknown.
○: The outline of the fluorescent lamp is slightly observed, but hardly reflected.
Δ: Fluorescent light is blurred but slightly reflected.
X: The outline of the fluorescent light is clearly visible or dazzling.

(2)ヘイズ
以下の測定により、得られたフィルムの全ヘイズ(H)、内部ヘイズ(Hi)、表面ヘイズ(Hs)を測定した。
1.JIS−K7136に準じて得られたフィルムの全ヘイズ値(H)を測定する。
2.得られたフィルムの低屈折率層側の表面および裏面にシリコーンオイルを数滴添加し、厚さ1mmのガラス板(ミクロスライドガラス品番S 9111、MATSUNAMI製)を2枚用いて裏表より挟んで、完全に2枚のガラス板と得られたフィルムを光学的に密着し、表面ヘイズを除去した状態でヘイズを測定し、別途測定したガラス板2枚の間にシリコーンオイルのみを挟みこんで測定したヘイズを引いた値をフィルムの内部ヘイズ(Hi)として算出した。
3.上記1で測定した全ヘイズ(H)から上記2で算出した内部ヘイズ(Hi)を引いた値をフィルムの表面ヘイズ(Hs)として算出した。
なお、本明細書において単に「ヘイズ」「ヘイズ値」と言うときは、特に断らない限り、前記方法によって得られた全ヘイズ(H)を意味する。
(2) Haze The following measurements measured the total haze (H), internal haze (Hi), and surface haze (Hs) of the obtained film.
1. The total haze value (H) of the film obtained according to JIS-K7136 is measured.
2. A few drops of silicone oil were added to the surface and the back surface of the low refractive index layer side of the obtained film, and sandwiched from the front and back using two 1 mm thick glass plates (micro slide glass product number S 9111, manufactured by MATSANAMI), Two glass plates and the obtained film were optically adhered to each other, and the haze was measured in a state where surface haze was removed, and measurement was performed by sandwiching only silicone oil between two separately measured glass plates. The value obtained by subtracting haze was calculated as the internal haze (Hi) of the film.
3. The value obtained by subtracting the internal haze (Hi) calculated in 2 above from the total haze (H) measured in 1 above was calculated as the surface haze (Hs) of the film.
In the present specification, the term “haze” or “haze value” means the total haze (H) obtained by the above method unless otherwise specified.

(3)算術平均粗さ(Ra)、凹凸の平均間隔(Sm)
フィルム面をマイクロマップ機((株)RYOKA SYSTEM社製)を用いて測定した。
(3) Arithmetic average roughness (Ra), average interval of unevenness (Sm)
The film surface was measured using a micromap machine (manufactured by RYOKA SYSTEM).

(4)透過散乱性
得られたフィルムについて、(株)村上色彩技術研究所製の自動変角光度計(GP−5型)を用いて測定した。各フィルムは1cm以上離れた別の位置を3回測定し、平均化し、フィルム裏面の法線方向から0°、6°、30°の出射光強度をそれぞれI(0°)、I(6°)、I(30°)とした。また、富士写真フイルム(株)80μmの厚さのトリアセチルセルロースフィルムを同様に測定し、フィルム裏面の法線方向から0°の出射光強度をI0とし、I(0°)/I0、I(6°)/I0、I(30°)/I0を求めた。
(4) Transmission and scattering properties The obtained film was measured using an automatic variable angle photometer (GP-5 type) manufactured by Murakami Color Research Laboratory. Each film was measured three times at another position separated by 1 cm or more, averaged, and emitted light intensities of 0 °, 6 °, and 30 ° from the normal direction on the back side of the film were I (0 °) and I (6 °, respectively). ), I (30 °). In addition, Fuji Photo Film Co., Ltd. 80 μm thick triacetyl cellulose film was measured in the same manner, and the emitted light intensity at 0 ° from the normal direction on the back side of the film was I0, and I (0 °) / I0, I ( 6 °) / I0 and I (30 °) / I0.

Figure 2007264113
Figure 2007264113

(光学フィルムの鹸化処理)
製膜後、前記試料について、以下の処理を行った。1.5mol/Lの水酸化ナトリウム水溶液を調製し、55℃に保温した。0.01mol/Lの希硫酸水溶液を調製し、35℃に保温した。作製した反射防止フィルムを上記の水酸化ナトリウム水溶液に2分間浸漬した後、水に浸漬し水酸化ナトリウム水溶液を十分に洗い流した。次いで、上記の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。 最後に試料を120℃で十分に乾燥させた。
(Saponification of optical film)
After film formation, the sample was subjected to the following treatment. A 1.5 mol / L aqueous sodium hydroxide solution was prepared and kept at 55 ° C. A 0.01 mol / L dilute sulfuric acid aqueous solution was prepared and kept at 35 ° C. The prepared antireflection film was immersed in the aqueous sodium hydroxide solution for 2 minutes, and then immersed in water to sufficiently wash away the aqueous sodium hydroxide solution. Subsequently, after being immersed in the above-mentioned dilute sulfuric acid aqueous solution for 1 minute, it was immersed in water to sufficiently wash away the dilute sulfuric acid aqueous solution. Finally, the sample was thoroughly dried at 120 ° C.

1.5mol/L、55℃のNaOH水溶液中に2分間浸漬したあと中和、水洗した、80μmの厚さのトリアセチルセルロースフイルム(TD80U、富士写真フイルム(株)製)と、本発明試料(鹸化処理済み)に、ポリビニルアルコールにヨウ素を吸着させ、延伸して作製した偏光膜の両面を接着、保護して偏光板を作製した。このようにして作製した偏光板を、光拡散層を有する側が最表面となるようにシャープ社製ハイビジョン液晶テレビLC−20AX5の視認側の偏光板と貼り代えたものを作製した。得られた表示装置について、以下の項目の評価を行った。結果を表2に示す。   An 80 μm-thick triacetylcellulose film (TD80U, manufactured by Fuji Photo Film Co., Ltd.), which was immersed in a 1.5 mol / L, 55 ° C. NaOH aqueous solution for 2 minutes and then neutralized and washed with water, and a sample of the present invention ( A polarizing plate was prepared by adhering iodine to polyvinyl alcohol and adhering and protecting both sides of the polarizing film prepared by stretching. The polarizing plate thus produced was replaced with a polarizing plate on the viewing side of a high-vision liquid crystal television LC-20AX5 manufactured by Sharp Corporation so that the side having the light diffusion layer was the outermost surface. About the obtained display apparatus, the following items were evaluated. The results are shown in Table 2.

(6)コントラスト
作製した光学フィルムを、液晶テレビに実装し、測定機(“EZ−Contrast 160D”ELDIM社製)を用いて、白輝度と黒輝度よりコントラスト比を測定した。
(6) Contrast The produced optical film was mounted on a liquid crystal television, and the contrast ratio was measured from white luminance and black luminance using a measuring device (“EZ-Contrast 160D” manufactured by ELDIM).

(7)黒しまり性
視認側表面に光学フィルムを透明支持体側で貼った偏光板を配置した液晶表示装置について黒しまり感を官能評価した。評価法はディスプレイを複数台並列に並べて同時に相対比較する方法で行い、真正面から電源off時の黒味、電源on時の黒味(黒い画像)をそれぞれのフィルムで比較し、以下の基準で評価した。黒味の強いほど画面のしまり感も強いという基準で表した。
◎: 黒味が強く、画面が強くしまって見える。
○: 黒いがかすかにグレー味があり、画面がややしまって見える。
△: 黒いがグレー味があって、画面のしまり感が弱い。
×: かなりグレー味が強く、画面のしまり感がない。
(8)ギラツキ評価
作製した光学フィルムを、液晶テレビに実装し、ギラツキ(光学フィルムの表面突起のレンズ効果が原因の輝度バラツキ)の程度を、以下の基準で目視評価した。
全くギラツキが見られない :◎
ほとんどギラツキが見られない :○
不快なギラツキがある :×
(7) Blackening property The feeling of blackening was sensorially evaluated about the liquid crystal display device which has arrange | positioned the polarizing plate which stuck the optical film on the visual recognition side surface on the transparent support side. The evaluation method is a method in which multiple displays are arranged in parallel and compared at the same time. From the front, the blackness when the power is turned off and the blackness (black image) when the power is turned on are compared for each film, and evaluated according to the following criteria. did. It was expressed by the standard that the stronger the blackness, the stronger the tightness of the screen.
A: Strong blackness and the screen appears to be strong.
○: Black is faintly gray and the screen appears slightly distorted.
Δ: Black but grayish, and the screen is not tight.
×: The color is quite gray and the screen is not tight.
(8) Evaluation of Glare The produced optical film was mounted on a liquid crystal television, and the degree of glare (luminance variation caused by the lens effect of the surface protrusion of the optical film) was visually evaluated according to the following criteria.
No glare is seen: ◎
Almost no glare seen: ○
There is an unpleasant glare: ×

(9)文字ボケ評価
作製した光学フィルムを、液晶テレビに実装し、白地に10ポイントの大きさの明朝体で「薔薇」の文字を一行当たり25文字、10行連続して表示した状態で、防眩性のない偏光板を用いて同様の表示をしたときと比較した際の文字の輪郭のボケ(画像ボケ)の程度を以下の基準で評価した。
ほとんど文字ボケが見られない :◎
わずかに文字ボケがあるが問題ない :○
文字ボケがある :×
(10)映り込み
作製した光学フィルムを、液晶テレビに実装し、出し蛍光灯(8000cd/m2)を45度の角度から映し、−45度の方向から観察した場合の反射像のボケの程度を以下の基準で評価した。
◎: 蛍光灯の輪郭がまったくわからないほど、映り込まない。
○: 蛍光灯の輪郭がわずかに観察されるが、ほとんど映り込まない。
△: 蛍光灯はぼけているが、若干映り込むが、実害はない。
×: 蛍光灯の輪郭がハッキリ見えるか、眩しい。
(9) Character blur evaluation The produced optical film is mounted on a liquid crystal television, and the characters of “rose” are displayed on a white background with 25-point characters of “Rose” in a 10-point size Mincho style. The degree of blur of the outline of characters (image blur) when compared with the case where the same display was performed using a polarizing plate having no antiglare property was evaluated according to the following criteria.
Almost no character blur is seen: ◎
There is no problem with slightly blurred characters: ○
There is character blur: ×
(10) Reflection The degree of blurring of the reflected image when the produced optical film is mounted on a liquid crystal television, a fluorescent lamp (8000 cd / m 2 ) is projected from an angle of 45 degrees, and observed from a direction of −45 degrees. Was evaluated according to the following criteria.
A: Not reflected so much that the outline of the fluorescent lamp is completely unknown.
○: The outline of the fluorescent lamp is slightly observed, but hardly reflected.
Δ: The fluorescent lamp is blurred, but it is reflected slightly, but there is no actual harm.
X: The outline of the fluorescent light is clearly visible or dazzling.

(11)斜め方向視野角
作製した光学フィルムを、液晶テレビに実装し、測定機(“EZ−Contrast 160D”ELDIM社製)を用いて、液晶テレビの正面からの方位方向45°の極角方向でコントラスト比測定し、コントラスト比が20以下になる角度を測定した。
(11) Oblique direction viewing angle The produced optical film is mounted on a liquid crystal television, and using a measuring device ("EZ-Contrast 160D" ELDIM), the polar angle direction of 45 ° from the front of the liquid crystal television Then, the contrast ratio was measured, and the angle at which the contrast ratio was 20 or less was measured.

Figure 2007264113
Figure 2007264113

表2に示される結果より、以下のことが明らかである。
本発明の実施例試料1〜7は、白輝度高く、黒輝度が低く、黒しまりが良く、ギラツキ、文字ボケが問題なく、光学フィルムとしてはトータルで性能が向上している。また、斜め方向の視野角は69°以上のため、問題がない。
一方、比較例試料8〜11の内 I(0°)/I0が30%未満のものは白輝度が低く、I(6°)/I0が 0.70%未満のものはギラツキが悪く、I(30°)/I0が 0.007%より大きいと黒しまり、黒輝度、文字ボケで問題になるようになり、視認性として劣るディスプレイ装置であった。
From the results shown in Table 2, the following is clear.
Examples Samples 1 to 7 of the present invention have high white luminance, low black luminance, good blackness, no problem with glare and character blur, and the performance is improved as an optical film as a whole. Further, since the viewing angle in the oblique direction is 69 ° or more, there is no problem.
On the other hand, among Comparative Samples 8 to 11, those with I (0 °) / I0 of less than 30% have low white luminance, and those with I (6 °) / I0 of less than 0.70% have poor glare. When (30 °) / I0 is greater than 0.007%, blackening occurs, black luminance and character blur become a problem, and the display device has poor visibility.

[実施例2]
(低屈折率層の塗設)
上記のハードコート層及び/または光拡散層を塗設したトリアセチルセルロースフイルムを各々再び巻き出して、低屈折率層用塗布液E−1を線数200本/インチ、深度30μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、搬送速度20m/分の条件で塗布し、120℃で75秒乾燥の後、更に10分乾燥させてから窒素パージ下で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量240mJ/cm2の紫外線を照射し、厚さ100nmの低屈折率層を形成し、巻き取った。
実施例1同様に鹸化処理、偏光板加工をおこない、液晶テレビに貼り付けた。
実施例2の低屈折率層付きのものは実施例1に対して、映り込み、黒しまりが1ランク良化した。更に1000cd/mの外光が入射した場合でも、本発明1〜7に低屈折率層を塗設したものは比較例8〜11に低屈折率層を塗設したものに対し、コントラストが高く、ギラツキ、文字ボケのない表示品位の高い液晶表示装置が得られた。
[Example 2]
(Coating of low refractive index layer)
Each of the triacetylcellulose films coated with the hard coat layer and / or the light diffusion layer is unwound again to form a low refractive index layer coating solution E-1 having a number of lines of 200 lines / inch and a depth of 30 μm. Using a microgravure roll having a diameter of 50 mm and a doctor blade, the coating was carried out under the condition of a conveyance speed of 20 m / min, dried at 120 ° C. for 75 seconds, further dried for 10 minutes, and then air-cooled at 240 W / cm under a nitrogen purge. Using a metal halide lamp (manufactured by Eye Graphics Co., Ltd.), an ultraviolet ray having an illuminance of 400 mW / cm 2 and an irradiation amount of 240 mJ / cm 2 was irradiated to form a low refractive index layer having a thickness of 100 nm and wound up.
In the same manner as in Example 1, saponification treatment and polarizing plate processing were performed and attached to a liquid crystal television.
The example with the low refractive index layer of Example 2 was better than Example 1 and the black spots were improved by one rank. Further, even when external light of 1000 cd / m 2 is incident, the present inventions 1 to 7 coated with the low refractive index layer have a contrast higher than the comparative examples 8 to 11 coated with the low refractive index layer. A high-quality liquid crystal display device with high glare and no character blur was obtained.

[実施例3]
低屈折率層用塗布液E−1の代わりにE−2を使用したところ、マジック拭き取り性が更に向上した。また低屈折率層塗布液E−1、E−2にそれぞれ使用しているオルガノシランのゾル液aの代わりにゾル液bを使用したところ、塗布液の経時安定性が良くなり、連続塗布に対する適性が高くなった。
[Example 3]
When E-2 was used instead of the coating solution E-1 for the low refractive index layer, the magic wiping property was further improved. Further, when the sol solution b is used in place of the organosilane sol solution a used for the low refractive index layer coating solutions E-1 and E-2, the stability of the coating solution with the passage of time is improved. The aptitude increased.

[実施例4]
実施例2の本発明試料を、有機EL表示装置の表面のガラス板に粘着剤を介して貼り合わせたところ、ガラス表面での反射が抑えられ、視認性の高い表示装置が得られた。
[Example 4]
When the sample of the present invention of Example 2 was bonded to a glass plate on the surface of an organic EL display device via an adhesive, reflection on the glass surface was suppressed, and a display device with high visibility was obtained.

[実施例5]
実施例2の本発明試料を用いて、片面反射防止フィルム付き偏光板を作製し、偏光板の反射防止膜を有している側の反対面にλ/4板を張り合わせ、反射防止層側が最表面になるように、有機EL表示装置の表面のガラス板に貼り付けたところ、表面反射および、表面ガラスの内部からの反射がカットされ、極めて視認性の高い表示が得られた。
[Example 5]
Using the sample of the present invention of Example 2, a polarizing plate with a single-sided antireflection film was prepared, and a λ / 4 plate was bonded to the opposite side of the polarizing plate on the side having the antireflection film, with the antireflection layer side closest to the antireflection layer side. When attached to the glass plate on the surface of the organic EL display device so as to be on the surface, the surface reflection and the reflection from the inside of the surface glass were cut, and a display with extremely high visibility was obtained.

本発明のフィルムの好ましい実施形態を模式的に示す概略断面図である。It is a schematic sectional drawing which shows typically preferable embodiment of the film of this invention. 本発明のフィルムの好ましい実施形態を模式的に示す概略断面図である。It is a schematic sectional drawing which shows typically preferable embodiment of the film of this invention. 本発明のフィルムの好ましい実施形態を模式的に示す概略断面図である。It is a schematic sectional drawing which shows typically preferable embodiment of the film of this invention. 本発明のフィルムの好ましい実施形態を模式的に示す概略断面図である。It is a schematic sectional drawing which shows typically preferable embodiment of the film of this invention. 本発明のフィルムの好ましい実施形態を模式的に示す概略断面図である。It is a schematic sectional drawing which shows typically preferable embodiment of the film of this invention. 光散乱シートでの透過散乱光の強度の測定方法を説明するための概略図である。It is the schematic for demonstrating the measuring method of the intensity | strength of the transmission scattered light in a light-scattering sheet.

符号の説明Explanation of symbols

(1)支持体
(2)光拡散層
(3)中屈折率層
(4)高屈折率層
(5)低屈折率層
(6)ハードコート層
12 サンプル(光学フィルム)
20 光源
21 検出器
θ3 法線方向からの角度
(1) Support (2) Light diffusion layer (3) Medium refractive index layer (4) High refractive index layer (5) Low refractive index layer (6) Hard coat layer 12 samples (optical film)
20 Light source 21 Detector θ3 Angle from normal direction

Claims (12)

透明支持体上に光拡散層を有する光学フィルムであって、透過散乱光が該透明支持体の法線方向における出射光強度I0のとき、
フィルムの表面の法線方向における出射光強度I(0°)のI0に対する比I(0°)/I0が30%〜100%であり、
フィルム表面の法線方向からフィルムの長手方向に6°傾いた位置における出射光強度I(6°)のI0に対する比I(6°)/I0が0.70%〜5.0%であり、且つ、
フィルム表面の法線方向からフィルムの長手方向に30°傾いた位置における出射光強度I(30°)のI0に対する比I(30°)/I0が0.0001〜0.007%であることを特徴とする光学フィルム。
An optical film having a light diffusing layer on a transparent support, wherein transmitted scattered light has an emitted light intensity I0 in the normal direction of the transparent support,
The ratio I (0 °) / I0 of the emitted light intensity I (0 °) in the normal direction of the film surface to I0 is 30% to 100%,
The ratio I (6 °) / I0 of the emitted light intensity I (6 °) to I0 at a position inclined by 6 ° from the normal direction of the film surface to the longitudinal direction of the film is 0.70% to 5.0%, and,
The ratio I (30 °) / I0 of the emitted light intensity I (30 °) to I0 at a position inclined by 30 ° from the normal direction of the film surface to the longitudinal direction of the film is 0.0001 to 0.007%. A featured optical film.
前記フィルムの表面の法線方向における出射光強度I(0°)の前記I0に対する比I(0°)/I0が40%〜95%であり、
前記フィルム表面の法線方向からフィルムの長手方向に6°傾いた位置における出射光強度I(6°)のI0に対する比I(6°)/I0が1.0%〜4.5%であり、且つ、
前記フィルム表面の法線方向からフィルムの長手方向に30°傾いた位置における出射光強度I(30°)のI0に対する比I(30°)/I0が0.0005〜0.004%
であることを特徴とする請求項1に記載の光学フィルム。
The ratio I (0 °) / I0 of the emitted light intensity I (0 °) in the normal direction of the surface of the film to the I0 is 40% to 95%,
The ratio I (6 °) / I0 of the emitted light intensity I (6 °) to I0 at a position inclined by 6 ° from the normal direction of the film surface to the longitudinal direction of the film is 1.0% to 4.5%. ,and,
The ratio I (30 °) / I0 of the emitted light intensity I (30 °) to I0 at a position inclined by 30 ° from the normal direction of the film surface to the longitudinal direction of the film is 0.0005 to 0.004%.
The optical film according to claim 1, wherein:
前記光学フィルムの内部ヘイズが10〜40%であることを特徴とする請求項1又は2に記載の光学フィルム。   The optical film according to claim 1 or 2, wherein an internal haze of the optical film is 10 to 40%. 前記光拡散層の算術平均粗さ(Ra)が0.03〜0.30μmであり、かつ凹凸の平均間隔(Sm)が40〜200μmであることを特徴とする請求項1〜3のいずれかに記載の光学フィルム。   4. The arithmetic average roughness (Ra) of the light diffusion layer is 0.03 to 0.30 μm, and the average interval (Sm) of the unevenness is 40 to 200 μm. The optical film described in 1. 前記光学フィルムの表面ヘイズが0.3〜20%であることを特徴とする請求項1〜4のいずれかに記載の光学フィルム。   The optical film according to claim 1, wherein a surface haze of the optical film is 0.3 to 20%. 前記光拡散層が、電離放射線硬化性化合物、オルガノシラン化合物、および透光性粒子を含有していることを特徴とする請求項1〜5のいずれかに記載の光学フィルム。   The optical film according to claim 1, wherein the light diffusion layer contains an ionizing radiation curable compound, an organosilane compound, and translucent particles. 前記光拡散層に含有される透光性粒子の屈折率と該透光性粒子を除いた光拡散層の屈折率との差が絶対値として0.05未満であることを特徴とする請求項1〜6のいずれかに記載の光学フィルム。   The difference between the refractive index of the light transmissive particles contained in the light diffusing layer and the refractive index of the light diffusing layer excluding the light transmissive particles is less than 0.05 as an absolute value. The optical film in any one of 1-6. 前記光拡散層が、三次元の立体構造を有する透光性微粒子の凝集部を複数含有し、表面凹凸形状を有することを特徴とする請求項1〜7いずれかに記載の光学フィルム。   The optical film according to any one of claims 1 to 7, wherein the light diffusion layer contains a plurality of aggregated portions of translucent fine particles having a three-dimensional solid structure and has an uneven surface shape. 前記光拡散層が少なくとも2層であり、透光性微粒子が下層に存在することを特徴とする請求項1〜8のいずれかに記載の光学フィルム。   The optical film according to claim 1, wherein the light diffusion layer is at least two layers, and the light-transmitting fine particles are present in the lower layer. 透明支持体上に、直接または他の層を介して透明支持体より低屈折率である低屈折率層を有することを特徴とする請求項1〜9のいずれかに記載の光学フィルム。   10. The optical film according to claim 1, further comprising a low refractive index layer having a lower refractive index than that of the transparent support directly or via another layer on the transparent support. 2枚の保護フィルムの間に偏光膜を有する偏光板であって、該保護フィルムのうちの少なくとも1枚が請求項1〜10のいずれかに記載の光学フィルムであることを特徴とする偏光板。   A polarizing plate having a polarizing film between two protective films, wherein at least one of the protective films is the optical film according to claim 1. . 請求項1〜10のいずれかに記載の光学フィルム又は請求項11記載の偏光板を有する画像表示装置であって、前記光拡散層が視認側になるように配置されていることを特徴とする画像表示装置。   It is an image display apparatus which has the optical film in any one of Claims 1-10, or the polarizing plate of Claim 11, Comprising: It arrange | positions so that the said light-diffusion layer may become a visual recognition side, It is characterized by the above-mentioned. Image display device.
JP2006086304A 2006-03-27 2006-03-27 Optical film, polarizing plate, and image display device Pending JP2007264113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006086304A JP2007264113A (en) 2006-03-27 2006-03-27 Optical film, polarizing plate, and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006086304A JP2007264113A (en) 2006-03-27 2006-03-27 Optical film, polarizing plate, and image display device

Publications (1)

Publication Number Publication Date
JP2007264113A true JP2007264113A (en) 2007-10-11

Family

ID=38637192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006086304A Pending JP2007264113A (en) 2006-03-27 2006-03-27 Optical film, polarizing plate, and image display device

Country Status (1)

Country Link
JP (1) JP2007264113A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009258720A (en) * 2008-03-28 2009-11-05 Fujifilm Corp Transparent support, optical film, polarizing plate and image display device
JP2009258716A (en) * 2008-03-27 2009-11-05 Fujifilm Corp Antireflection film, polarizing plate and image display apparatus
JP2009271400A (en) * 2008-05-09 2009-11-19 Toppan Printing Co Ltd Antiglare film
WO2010005096A1 (en) * 2008-07-08 2010-01-14 住友化学株式会社 Light diffusing plate, planar light source device, and liquid crystal display device
JP2010009007A (en) * 2008-03-31 2010-01-14 Nitto Denko Corp Hard-coated antiglare film, polarizing plate and image display including the same and method for manufacturing hard-coated antiglare film
WO2010047300A1 (en) * 2008-10-21 2010-04-29 大日本印刷株式会社 Optical sheet
WO2010047298A1 (en) * 2008-10-21 2010-04-29 大日本印刷株式会社 Optical sheet
WO2010047301A1 (en) * 2008-10-21 2010-04-29 大日本印刷株式会社 Optical sheet
JP2010122709A (en) * 2008-10-21 2010-06-03 Dainippon Printing Co Ltd Optical sheet
JP2010122710A (en) * 2008-10-21 2010-06-03 Dainippon Printing Co Ltd Optical sheet
JP2010204479A (en) * 2009-03-04 2010-09-16 Nitto Denko Corp Glare-proof hard coat film and polarizing plate using the same, and image display device
JP2011197330A (en) * 2010-03-18 2011-10-06 Dainippon Printing Co Ltd Anti-glare film, method for manufacturing the same, polarizing plate, and image display device
JP2011209675A (en) * 2009-09-04 2011-10-20 Sumitomo Chemical Co Ltd Light-diffusing film, manufacturing method therefor, light-diffusing polarizing plate, and liquid-crystal display device
JP2011209676A (en) * 2009-09-04 2011-10-20 Sumitomo Chemical Co Ltd Light-diffusing film, method for manufacturing the same, light diffusing polarizing plate, and liquid crystal display device
JP2011215393A (en) * 2010-03-31 2011-10-27 Dainippon Printing Co Ltd Anti-glare film, manufacturing method thereof, polarizing plate, and image display device
JP2011227475A (en) * 2010-03-29 2011-11-10 Sumitomo Chemical Co Ltd Light diffusion film, light diffusible polarizer, and liquid crystal display device
JP2012103712A (en) * 2011-12-19 2012-05-31 Dainippon Printing Co Ltd Antidazzle film, method for manufacturing antidazzle film, polarizing plate and image display device
US8318301B2 (en) 2008-03-31 2012-11-27 Fujifilm Corporation Antireflection film, polarizing plate and image display device
WO2013002353A1 (en) * 2011-06-29 2013-01-03 日東電工株式会社 Antiglare film, polarizing plate, image display apparatus and process for manufacturing antiglare film
US8591046B2 (en) 2009-10-07 2013-11-26 Nitto Denko Corporation Hard-coated antiglare film, polarizing plate and image display including the same, and method for producing the same
JP2013238867A (en) * 2008-06-09 2013-11-28 Sony Corp Optical film and manufacturing method therefor, anti-glare film, polarizing element with optical layer, and display device
KR20140057240A (en) 2011-09-05 2014-05-12 다이니폰 인사츠 가부시키가이샤 Antiglare sheet for image display device, manufacturing method thereof, method of improving black tint and image sharpness of an image display device using said antiglare sheet and suited for use with both moving images and still images
CN103823259A (en) * 2008-11-11 2014-05-28 大日本印刷株式会社 Optical sheet
CN103890618A (en) * 2011-10-24 2014-06-25 三菱瓦斯化学株式会社 Light diffusion film, method of specifying surface shape of light diffusion film, and recording medium on which surface shape specification program is recorded
WO2014104637A1 (en) * 2012-12-26 2014-07-03 동우화인켐 주식회사 Antiglare film and polarizing plate comprising same
WO2015050203A1 (en) 2013-10-03 2015-04-09 富士フイルム株式会社 Half mirror for displaying projected image, method for producing same, and projected image display system
US9086520B2 (en) 2010-04-14 2015-07-21 Dai Nippon Printing Co., Ltd. Anti-glare sheet for liquid crystal display device
US9244205B2 (en) 2009-10-07 2016-01-26 Nitto Denko Corporation Hard-coated antiglare film, polarizing plate and image display including the same, method for producing the same, and method for evaluating the same
US9349993B2 (en) 2013-03-08 2016-05-24 Samsung Electronics Co., Ltd. Film for improving color display and method for manufacturing the same, and display apparatus including improved color display film
US9507057B2 (en) 2011-10-12 2016-11-29 Dai Nippon Printing Co., Ltd. Anti-glare sheet for image display device
WO2016203915A1 (en) * 2015-06-15 2016-12-22 Jxエネルギー株式会社 Transparent screen and image projection system provided with same
US9625624B2 (en) 2013-05-31 2017-04-18 Samsung Electronics Co., Ltd. Color improving film and method of manufacturing the same
CN111610583A (en) * 2019-02-26 2020-09-01 琳得科株式会社 Light diffusion film

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009258716A (en) * 2008-03-27 2009-11-05 Fujifilm Corp Antireflection film, polarizing plate and image display apparatus
JP2009258720A (en) * 2008-03-28 2009-11-05 Fujifilm Corp Transparent support, optical film, polarizing plate and image display device
JP2010009007A (en) * 2008-03-31 2010-01-14 Nitto Denko Corp Hard-coated antiglare film, polarizing plate and image display including the same and method for manufacturing hard-coated antiglare film
US8318301B2 (en) 2008-03-31 2012-11-27 Fujifilm Corporation Antireflection film, polarizing plate and image display device
US8215780B2 (en) 2008-03-31 2012-07-10 Nitto Denko Corporation Hard-coated antiglare film, and polarizing plate and image display including the same
JP2010231217A (en) * 2008-03-31 2010-10-14 Nitto Denko Corp Method for manufacturing hard-coated antidazzle film for image display device
JP4510124B2 (en) * 2008-03-31 2010-07-21 日東電工株式会社 Anti-glare hard coat film for image display device, polarizing plate and image display device using the same
JP2009271400A (en) * 2008-05-09 2009-11-19 Toppan Printing Co Ltd Antiglare film
JP2013238867A (en) * 2008-06-09 2013-11-28 Sony Corp Optical film and manufacturing method therefor, anti-glare film, polarizing element with optical layer, and display device
JP2010211171A (en) * 2008-07-08 2010-09-24 Sumitomo Chemical Co Ltd Light diffusing plate, surface light source device, and liquid crystal display device
WO2010005096A1 (en) * 2008-07-08 2010-01-14 住友化学株式会社 Light diffusing plate, planar light source device, and liquid crystal display device
US8422135B2 (en) 2008-10-21 2013-04-16 Dai Nippon Printing Co., Ltd. Optical sheet
WO2010047298A1 (en) * 2008-10-21 2010-04-29 大日本印刷株式会社 Optical sheet
JP2010122710A (en) * 2008-10-21 2010-06-03 Dainippon Printing Co Ltd Optical sheet
CN101910880A (en) * 2008-10-21 2010-12-08 大日本印刷株式会社 Optical sheet
CN101910877A (en) * 2008-10-21 2010-12-08 大日本印刷株式会社 Optical sheet
KR101779279B1 (en) 2008-10-21 2017-09-18 다이니폰 인사츠 가부시키가이샤 Optical sheet
CN101910877B (en) * 2008-10-21 2014-10-01 大日本印刷株式会社 Optical sheet
TWI460475B (en) * 2008-10-21 2014-11-11 Dainippon Printing Co Ltd Optical sheet
KR101778801B1 (en) 2008-10-21 2017-09-14 다이니폰 인사츠 가부시키가이샤 Optical sheet
WO2010047300A1 (en) * 2008-10-21 2010-04-29 大日本印刷株式会社 Optical sheet
JPWO2010047301A1 (en) * 2008-10-21 2012-03-22 大日本印刷株式会社 Optical sheet
KR101530215B1 (en) * 2008-10-21 2015-06-19 다이니폰 인사츠 가부시키가이샤 Optical sheet
JP2010122709A (en) * 2008-10-21 2010-06-03 Dainippon Printing Co Ltd Optical sheet
US8264640B2 (en) 2008-10-21 2012-09-11 Dai Nippon Printing Co., Ltd. Optical sheet
WO2010047301A1 (en) * 2008-10-21 2010-04-29 大日本印刷株式会社 Optical sheet
KR101205252B1 (en) 2008-10-21 2012-11-28 다이니폰 인사츠 가부시키가이샤 Optical sheet
JP5690592B2 (en) * 2008-10-21 2015-03-25 大日本印刷株式会社 Optical sheet
TWI468739B (en) * 2008-10-21 2015-01-11 大日本印刷股份有限公司 Optical sheet
TWI391713B (en) * 2008-10-21 2013-04-01 Dainippon Printing Co Ltd Optical sheet
JP2014115669A (en) * 2008-10-21 2014-06-26 Dainippon Printing Co Ltd Optical sheet
US8488079B2 (en) 2008-10-21 2013-07-16 Dai Nippon Printing Co., Ltd. Optical sheet for use as a display surface
TWI463186B (en) * 2008-11-11 2014-12-01 Dainippon Printing Co Ltd Optical sheet
CN103823259A (en) * 2008-11-11 2014-05-28 大日本印刷株式会社 Optical sheet
JP2010204479A (en) * 2009-03-04 2010-09-16 Nitto Denko Corp Glare-proof hard coat film and polarizing plate using the same, and image display device
JP2011209676A (en) * 2009-09-04 2011-10-20 Sumitomo Chemical Co Ltd Light-diffusing film, method for manufacturing the same, light diffusing polarizing plate, and liquid crystal display device
JP2011209675A (en) * 2009-09-04 2011-10-20 Sumitomo Chemical Co Ltd Light-diffusing film, manufacturing method therefor, light-diffusing polarizing plate, and liquid-crystal display device
US9244205B2 (en) 2009-10-07 2016-01-26 Nitto Denko Corporation Hard-coated antiglare film, polarizing plate and image display including the same, method for producing the same, and method for evaluating the same
US8591046B2 (en) 2009-10-07 2013-11-26 Nitto Denko Corporation Hard-coated antiglare film, polarizing plate and image display including the same, and method for producing the same
JP2011197330A (en) * 2010-03-18 2011-10-06 Dainippon Printing Co Ltd Anti-glare film, method for manufacturing the same, polarizing plate, and image display device
JP2011227475A (en) * 2010-03-29 2011-11-10 Sumitomo Chemical Co Ltd Light diffusion film, light diffusible polarizer, and liquid crystal display device
JP2011215393A (en) * 2010-03-31 2011-10-27 Dainippon Printing Co Ltd Anti-glare film, manufacturing method thereof, polarizing plate, and image display device
US9086520B2 (en) 2010-04-14 2015-07-21 Dai Nippon Printing Co., Ltd. Anti-glare sheet for liquid crystal display device
JP2013033240A (en) * 2011-06-29 2013-02-14 Nitto Denko Corp Antiglare film, polarizing plate, image display apparatus and process for manufacturing antiglare film
WO2013002353A1 (en) * 2011-06-29 2013-01-03 日東電工株式会社 Antiglare film, polarizing plate, image display apparatus and process for manufacturing antiglare film
JPWO2013035656A1 (en) * 2011-09-05 2015-03-23 大日本印刷株式会社 Anti-glare sheet for image display device and method for producing the same, and method for improving blackness and image cutout of image display device suitable for sharing moving image and still image using the same
KR20140057240A (en) 2011-09-05 2014-05-12 다이니폰 인사츠 가부시키가이샤 Antiglare sheet for image display device, manufacturing method thereof, method of improving black tint and image sharpness of an image display device using said antiglare sheet and suited for use with both moving images and still images
US9562994B2 (en) 2011-09-05 2017-02-07 Dai Nippon Printing Co., Ltd. Antiglare sheet for image display device, manufacturing method thereof, method of improving black tint and image sharpness of an image display device using said antiglare sheet and suited for use with both moving images and still images
US9507057B2 (en) 2011-10-12 2016-11-29 Dai Nippon Printing Co., Ltd. Anti-glare sheet for image display device
US9296162B2 (en) 2011-10-24 2016-03-29 Mitsubishi Gas Chemical Company, Inc. Light diffusion film, method of specifying surface shape of light diffusion film, and recording medium on which surface shape specification program is recorded
CN103890618A (en) * 2011-10-24 2014-06-25 三菱瓦斯化学株式会社 Light diffusion film, method of specifying surface shape of light diffusion film, and recording medium on which surface shape specification program is recorded
JP2012103712A (en) * 2011-12-19 2012-05-31 Dainippon Printing Co Ltd Antidazzle film, method for manufacturing antidazzle film, polarizing plate and image display device
WO2014104637A1 (en) * 2012-12-26 2014-07-03 동우화인켐 주식회사 Antiglare film and polarizing plate comprising same
US9349993B2 (en) 2013-03-08 2016-05-24 Samsung Electronics Co., Ltd. Film for improving color display and method for manufacturing the same, and display apparatus including improved color display film
US9625624B2 (en) 2013-05-31 2017-04-18 Samsung Electronics Co., Ltd. Color improving film and method of manufacturing the same
WO2015050203A1 (en) 2013-10-03 2015-04-09 富士フイルム株式会社 Half mirror for displaying projected image, method for producing same, and projected image display system
WO2016203915A1 (en) * 2015-06-15 2016-12-22 Jxエネルギー株式会社 Transparent screen and image projection system provided with same
JP6133522B1 (en) * 2015-06-15 2017-05-24 Jxtgエネルギー株式会社 Transparent screen and video projection system having the same
CN107850829A (en) * 2015-06-15 2018-03-27 Jxtg能源株式会社 Transparent screen and the image projecting system for possessing the transparent screen
US10495964B2 (en) 2015-06-15 2019-12-03 Jxtg Nippon Oil & Energy Corporation Transparent screen and video image projection system comprising same
CN111610583A (en) * 2019-02-26 2020-09-01 琳得科株式会社 Light diffusion film

Similar Documents

Publication Publication Date Title
JP2007264113A (en) Optical film, polarizing plate, and image display device
JP5102958B2 (en) Method for producing antireflection film
US7848021B2 (en) Optical film, antireflection film, polarizing plate and image display device
JP2007249191A (en) Optical film, antireflection film, polarizing plate and image display device
JP5114438B2 (en) Optical film, manufacturing method thereof, polarizing plate and image display device
JP4820716B2 (en) Antiglare film, antireflection film, polarizing plate and image display device
JP2007108724A (en) Antiglare antireflection film, polarizing plate using same and liquid crystal display device
JP4666983B2 (en) Method for producing optical functional film
JP4905775B2 (en) Antireflection film, polarizing plate, image display device, and production method of antireflection film
JP5450708B2 (en) Optical film, polarizing plate, and image display device
JP4990665B2 (en) Optical film, polarizing plate, and image display device
JP2008026883A (en) Optical film
JP2008268939A (en) Antiglare film, polarizing plate, and image display device
JP2008146021A (en) Optical film
JP2007102208A (en) Optical film, anti-reflection film, and polarizing plate and image display device using the optical film and the anti-reflection film
JP2007133162A (en) Antiglare film, its manufacturing method, polarizing plate and image display apparatus using the same
JP2007233375A (en) Antireflection film, polarizing plate using the same, and image display device
JP2007169330A (en) Transparent film, optical film, method for producing transparent film, polarizing plate, and image-displaying device
JP2007196164A (en) Method for manufacturing optical film, optical film, polarizing plate, and picture display device
JP4792305B2 (en) Antireflection film, polarizing plate, and image display device
JP2010079098A (en) Hard coat film, polarizing plate and image display apparatus
JP2007034213A (en) Antireflection film, and polarizing plate and display device using the same
JP4393232B2 (en) Method for producing antireflection film
JP2007256651A (en) Method for manufacturing optical film, the optical film, antireflection film, polarizing plate, and image display device
JP2009251190A (en) Optical film, polarizing plate and image display apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126