JP2007208076A - Method of dry etching silicon carbide semiconductor substrate - Google Patents

Method of dry etching silicon carbide semiconductor substrate Download PDF

Info

Publication number
JP2007208076A
JP2007208076A JP2006026191A JP2006026191A JP2007208076A JP 2007208076 A JP2007208076 A JP 2007208076A JP 2006026191 A JP2006026191 A JP 2006026191A JP 2006026191 A JP2006026191 A JP 2006026191A JP 2007208076 A JP2007208076 A JP 2007208076A
Authority
JP
Japan
Prior art keywords
etching
semiconductor substrate
dry etching
silicon carbide
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006026191A
Other languages
Japanese (ja)
Other versions
JP4609335B2 (en
Inventor
Yasuyuki Kawada
泰之 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2006026191A priority Critical patent/JP4609335B2/en
Publication of JP2007208076A publication Critical patent/JP2007208076A/en
Application granted granted Critical
Publication of JP4609335B2 publication Critical patent/JP4609335B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of dry etching a silicon carbide semiconductor substrate which can easily form an etching mask having an etching resistance high to dry etching using a plasma generated by ionizing a gas containing fluoride, and can easily release the etching mask after the dry etching. <P>SOLUTION: In the method of dry etching a silicon carbide semiconductor substrate, an etching mask is selectively formed on the silicon carbide semiconductor substrate, a trench is formed in an exposed part of the semiconductor substrate using a plasma, and the etching mask is made of laminated layer films of silicon oxide and tin oxide. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高耐圧、大電流用炭化珪素(以下、SiC)半導体装置を製造する際の半導体基板へのトレンチ形成のためのドライエッチング方法に係る。   The present invention relates to a dry etching method for forming a trench in a semiconductor substrate when manufacturing a high breakdown voltage, high current silicon carbide (hereinafter, SiC) semiconductor device.

インバータや電力制御などに用いられるシリコン(以下Si)半導体パワーデバイスとしてはパワーMOSFETやIGBTなどが周知であり、広く用いられている。しかしながら、半導体材料としてのSiはパワーデバイスではその半導体特性の面からは、もはやその物性値的な限界に近いと思われる使われ方がされるようになってきた。そこで、半導体Siよりはその物性的限界の高い材料である半導体SiCが着目されるようになってきた。この半導体SiC(4H−SiCの結晶形態)材料はその絶縁破壊電界が半導体Siに比べ一桁高く、さらにバンドギャップは2.9倍、熱伝導率は3.2倍、真性半導体となる温度が3〜4倍とそれぞれSiより高く、特にパワーデバイス材料として用いる場合に、その物性的限界に優れた半導体特性の特長が大いに発揮される。従って、この半導体SiC材料を用いたパワーデバイスは高耐圧と低オン抵抗を併有するデバイスとして期待され、近年製品化へのアプローチが多く試みられるようになった。しかし、パワーデバイスとして製品化するための製造プロセスには、まだまだ解決すべき課題も多い。   As a silicon (hereinafter referred to as Si) semiconductor power device used for an inverter, power control, and the like, a power MOSFET, an IGBT, and the like are well known and widely used. However, Si as a semiconductor material has been used in power devices that are considered to be close to the limits of physical properties in terms of semiconductor characteristics. Thus, attention has been focused on semiconductor SiC, which is a material having a higher physical limit than semiconductor Si. This semiconductor SiC (4H-SiC crystal form) material has an electrical breakdown field that is an order of magnitude higher than that of semiconductor Si, and further has a band gap of 2.9 times, a thermal conductivity of 3.2 times, and an intrinsic semiconductor temperature. When used as a power device material, which is 3 to 4 times higher than Si, the characteristics of semiconductor characteristics excellent in physical properties are greatly exhibited. Accordingly, a power device using this semiconductor SiC material is expected as a device having both a high breakdown voltage and a low on-resistance, and in recent years, many approaches to commercialization have been attempted. However, there are still many problems to be solved in the manufacturing process for commercialization as a power device.

一方、近年、半導体Siを用いたパワーMOSFETやIGBTのオン抵抗を低減するためにトレンチゲートが採用されている。トレンチ型MOSFETの製造方法においては、このトレンチ形状を精密に形成することが欠かせないので、そのエッチング工程は非常に重要である。トレンチゲート構造を形成する際には、トレンチの深さは耐圧等によって異なるが数百Vの耐圧で数μm必要である。このような所望の深さの制御と精密な形状のトレンチを得るためのエッチングプロセス技術は半導体Si基板では可能になっている。   On the other hand, in recent years, trench gates have been adopted to reduce the on-resistance of power MOSFETs and IGBTs using semiconductor Si. In the trench MOSFET manufacturing method, it is indispensable to precisely form the trench shape, and the etching process is very important. When the trench gate structure is formed, the depth of the trench varies depending on the withstand voltage or the like, but requires several μm with a withstand voltage of several hundred volts. Such a desired depth control and an etching process technique for obtaining a precise-shaped trench are possible in a semiconductor Si substrate.

しかしながら、半導体SiCを用いたMOSFETやIGBTの場合は、ウエットエッチングを可能とする実用的なエッチング溶液すら未だ発見されず、通常は精密な形状のトレンチの形成プロセスとしてはドライエッチングが用いられる。しかし、現状の公知のドライエッチング技術では半導体SiCのエッチングレートが低い上にマスクとなる材料とのエッチング選択性も小さいため、特に深さの点が問題であり、深いトレンチを形成することが容易ではない。たとえば、数μm程度の深さのトレンチでさえ形成するのは容易とはいえないレベルである。通常、エッチングレートを稼ぐためには公知のICP(誘導結合プラズマ)方式などによる高密度プラズマを用いてドライエッチングが行なわれるが、それでも前述の深い(数μm)トレンチを形成するには長時間を要する。このため、エッチングマスクに用いられる材料が化学的および物理的にも、半導体SiCとのエッチング選択比が十分高くないと、半導体SiC基板に形成されるトレンチが目標とするエッチング深さに到達する前にマスクがエッチングされて無くなるという問題が起きる。たとえば、厚さが2μmのSiO膜をマスクとしてSiC基板をエッチングすると選択比は3程度であるので、SiCが6μm程度エッチングされたところでマスクのSiO膜が消失し、それ以上のトレンチ形成ができなくなる。マスクの膜厚を厚くすると、成膜に時間がかかる上に、厚くなったマスク材に対する良好な精度のパターニングが難しくなるという問題が新たに生じ、前記問題の解消とはとても言い難い。 However, in the case of MOSFETs and IGBTs using semiconductor SiC, even a practical etching solution that enables wet etching has not yet been found, and usually dry etching is used as a precise trench forming process. However, the current known dry etching technique has a low etching rate of semiconductor SiC and a low etching selectivity with a material serving as a mask. Therefore, the depth is a problem, and it is easy to form a deep trench. is not. For example, it is not easy to form even a trench having a depth of about several μm. Usually, in order to increase the etching rate, dry etching is performed using high-density plasma by a known ICP (inductively coupled plasma) method or the like, but it still takes a long time to form the above-mentioned deep (several μm) trench. Cost. For this reason, if the material used for the etching mask is chemically and physically low in etching selectivity with the semiconductor SiC, the trench formed in the semiconductor SiC substrate will reach the target etching depth. In other words, the mask is etched away. For example, when a SiC substrate is etched using a 2 μm thick SiO 2 film as a mask, the selectivity is about 3. Therefore, when the SiC is etched by about 6 μm, the SiO 2 film of the mask disappears and a trench is formed beyond that. become unable. When the thickness of the mask is increased, it takes a long time to form the film, and a new problem arises that it becomes difficult to perform patterning with good accuracy on the thickened mask material, and it is very difficult to say that the problem is solved.

また、GaN系半導体基板やSiC基板のドライエッチングにおけるエッチング選択比の高いマスク材料としてはTi膜とNiとAg、Sn、P、Bなどとの合金膜との積層膜が知られており、そのエッチング選択比は30以上であるという記述もある(特許文献1−実施例1)。
特開2005−322811号公報
As a mask material having a high etching selectivity in dry etching of a GaN-based semiconductor substrate or SiC substrate, a laminated film of a Ti film and an alloy film of Ni and Ag, Sn, P, B, etc. is known. There is also a description that the etching selectivity is 30 or more (Patent Document 1-Example 1).
JP 2005-322811 A

しかしながら、前述の特許文献1に記載のTi膜およびNi合金膜を用いたエッチングマスクは、真空蒸着やスパッタリング法により形成される金属膜であるため、トレンチエッチング中に前記金属マスク表面から金属粒子がエッチング面に飛散して、または溶解した金属のエッチング面への再付着によりマイクロマスクを形成し易く、エッチング面の全面を平滑面とし難いという問題がある。   However, since the etching mask using the Ti film and the Ni alloy film described in Patent Document 1 described above is a metal film formed by vacuum deposition or sputtering, metal particles are removed from the surface of the metal mask during trench etching. There is a problem that it is easy to form a micromask by scattering on the etched surface or reattaching the dissolved metal to the etched surface, and it is difficult to make the entire etched surface smooth.

本発明はそのような問題点に鑑みてなされたものであり、SiC半導体基板への、フッ化物を含むガスを電離させて生成したプラズマを用いるドライエッチングに対するエッチング耐性が高いエッチングマスクを容易に作成でき、ドライエッチング後に容易に前記エッチングマスクを剥離することができるSiC半導体基板のドライエッチング方法を提供することである。   The present invention has been made in view of such problems, and easily creates an etching mask having high etching resistance to dry etching using plasma generated by ionizing a gas containing fluoride to a SiC semiconductor substrate. Another object of the present invention is to provide a dry etching method for a SiC semiconductor substrate, which can easily peel off the etching mask after dry etching.

特許請求の範囲の請求項1記載の本発明によれば、炭化珪素半導体基板上に選択的なエッチングマスクを形成後、露出する前記半導体基板部分にプラズマを用いてトレンチを形成するドライエッチング方法において、前記エッチングマスクが酸化シリコンと酸化スズとの積層膜からなる炭化珪素半導体基板のドライエッチング方法とすることにより、前記本発明の目的は達成される。   According to the first aspect of the present invention, in the dry etching method, after forming a selective etching mask on a silicon carbide semiconductor substrate, a trench is formed using plasma in the exposed semiconductor substrate portion. The object of the present invention is achieved by employing a dry etching method for a silicon carbide semiconductor substrate in which the etching mask is a laminated film of silicon oxide and tin oxide.

特許請求の範囲の請求項2記載の本発明によれば、前記エッチングマスクは前記炭化珪素半導体基板上に0.1μm乃至0.5μmの厚さの酸化シリコンと0.5μm乃至1μmの厚さの酸化スズとがこの順に成膜された積層膜である請求項1記載の炭化珪素半導体基板のドライエッチング方法とすることが好ましい。   According to the second aspect of the present invention, the etching mask is formed on the silicon carbide semiconductor substrate with a silicon oxide thickness of 0.1 μm to 0.5 μm and a thickness of 0.5 μm to 1 μm. 2. The silicon carbide semiconductor substrate dry etching method according to claim 1, wherein the tin oxide is a laminated film formed in this order.

特許請求の範囲の請求項3記載の本発明によれば、前記ドライエッチングに用いられるプラズマはフッ化物を含むガスを電離して得られる誘導結合プラズマである請求項1または2記載の炭化珪素半導体基板のドライエッチング方法とすることがより好ましい。   3. The silicon carbide semiconductor according to claim 1, wherein the plasma used for the dry etching is inductively coupled plasma obtained by ionizing a gas containing fluoride. It is more preferable to use a dry etching method for the substrate.

本発明によれば、SiC半導体基板への、フッ化物を含むガスを電離させて生成したプラズマを用いるドライエッチングに対するエッチング耐性が高いエッチングマスクを容易に作成でき、ドライエッチング後に容易に前記エッチングマスクを剥離するSiC半導体基板のドライエッチング方法を提供することができる。 According to the present invention, it is possible to easily create an etching mask having high etching resistance against dry etching using plasma generated by ionizing a gas containing fluoride to a SiC semiconductor substrate, and the etching mask can be easily formed after dry etching. A dry etching method for a SiC semiconductor substrate to be peeled can be provided.

(実施の形態)
以下、本発明にかかる炭化珪素半導体基板のドライエッチング方法について、図面を参照して詳細に説明する。本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。
(Embodiment)
Hereinafter, a dry etching method for a silicon carbide semiconductor substrate according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to the description of the examples described below unless it exceeds the gist.

図1は本発明の炭化珪素半導体基板のドライエッチング方法にかかる炭化珪素半導体基板上にエッチングマスクを形成した段階の半導体基板の要部断面図である。図2は本発明にかかるエッチングマスクを形成する前にフォトレジストパターンを形成した段階の半導体基板の要部断面図である。図3は本発明の炭化珪素半導体基板のドライエッチング方法にかかる炭化珪素半導体基板上にエッチングマスクを形成した段階の半導体基板の要部断面図である。図4は本発明にかかるドライエッチングのエッチング時間とエッチング量との関係図である。   FIG. 1 is a cross-sectional view of a principal part of a semiconductor substrate at a stage where an etching mask is formed on the silicon carbide semiconductor substrate according to the dry etching method for a silicon carbide semiconductor substrate of the present invention. FIG. 2 is a fragmentary cross-sectional view of a semiconductor substrate at a stage where a photoresist pattern is formed before forming an etching mask according to the present invention. FIG. 3 is a fragmentary cross-sectional view of the semiconductor substrate at a stage where an etching mask is formed on the silicon carbide semiconductor substrate according to the silicon carbide semiconductor substrate dry etching method of the present invention. FIG. 4 is a relationship diagram between the etching time and the etching amount of dry etching according to the present invention.

図1に本発明にかかるSiC基板1をドライエッチングする際に用いるエッチングマスクの積層構造2、3を示す。SiC基板1上にSiO膜2を形成し、さらにその上にSnO膜3を形成する。SiO膜2およびSnO膜3はフォトリソグラフィにより所望のパターンを形成する。以下、そのプロセスについて図2、図3を参照して詳細に説明する。SiC基板1をよく洗浄した後にフォトレジストをスピンコート法により全面塗布する。その後、クリーンオーブンに85℃で30分投入し、フォトレジストをベークした。ベーク後、紫外線を用いた露光装置で所望のパターンを有するフォトマスクを用いて初期露光を行なった。初期露光後、115℃で15分のベークを行ない、その後、マスクを用いないで基板全体を全面露光した。全面露光後、現像を行ない、所望のパターン以外の不要なフォトレジストを除去し、図2のようなフォトレジストパターン4を形成した。このときのフォトレジスト4の膜厚は約2μmである。 FIG. 1 shows stacked structures 2 and 3 of etching masks used when dry etching the SiC substrate 1 according to the present invention. An SiO 2 film 2 is formed on the SiC substrate 1, and an SnO 2 film 3 is further formed thereon. The SiO 2 film 2 and the SnO 2 film 3 form a desired pattern by photolithography. Hereinafter, the process will be described in detail with reference to FIGS. After thoroughly cleaning SiC substrate 1, a photoresist is applied over the entire surface by spin coating. Thereafter, the photoresist was baked by putting it in a clean oven at 85 ° C. for 30 minutes. After baking, initial exposure was performed using a photomask having a desired pattern with an exposure apparatus using ultraviolet rays. After the initial exposure, baking was performed at 115 ° C. for 15 minutes, and then the entire substrate was exposed without using a mask. After the entire surface exposure, development was performed to remove unnecessary photoresist other than the desired pattern, and a photoresist pattern 4 as shown in FIG. 2 was formed. At this time, the film thickness of the photoresist 4 is about 2 μm.

フォトレジストパターン4を形成後、スパッタ法によりSiO膜2を室温で形成する。成膜圧力を1PaとしてAr+10%Oガス中でRFにてSiOターゲットをスパッタする成膜条件により、SiO膜2を0.5μmの厚さに形成した。続いて真空を切らずに、スパッタ法によりSnO膜3を室温で形成した。成膜圧力を1PaとしてAr+10%Oガス中でRFにてSnOターゲットをスパッタする成膜条件によりSnO膜3を0.5μmの厚さに形成した。このように形成されたSiO膜2とSnO膜3のうち、特には表面側のSnO膜3はトレンチエッチングの際にも、ほとんどエッチングされないので、溶解してトレンチエッチング予定面に再付着し平滑なトレンチエッチングを妨げる現象はほとんど起きない。トータル膜厚1μmのSiOおよびSnOの積層膜(以下SiO/SnOと記述)が載置されたSiC基板をフォトレジスト剥離液につけてフォトレジストを除去するいわゆるリフトオフ法でSiO/SnO積層膜のパターニングを行なった。パターニングされた線幅は本実施例では2μm幅である。図3はこのリフトオフ法によりパターニングされたSiC基板1上の積層マスク構造2、3の断面を示す。SiO膜は、SnO膜のエッチングが困難なため、SnO膜単独膜とするとパターニングができないことから設けられる膜である。SnO膜の下側にSiO膜を形成することにより、リフトオフ法によるSnO膜のパターニングを可能にするのである。従って、SiO膜の厚さは厚くする必要はなく、0.1μm以上あればよく、上限は積層膜の熱膨張係数の関係から0.5μm以下が好ましい。SnO膜は厚い方が深いトレンチエッチングを可能にするので、0.5μm以上が好ましい。また、積層膜の熱膨張係数の関係から厚すぎると、ウエハのそりの発生によるプロセス上に問題が生じるので、1μm以下の厚さが好ましい。 After forming the photoresist pattern 4, the SiO 2 film 2 is formed at room temperature by sputtering. The SiO 2 film 2 was formed to a thickness of 0.5 μm under the film forming conditions where the film forming pressure was 1 Pa and the SiO 2 target was sputtered by RF in Ar + 10% O 2 gas. Subsequently, the SnO 2 film 3 was formed at room temperature by sputtering without breaking the vacuum. The SnO 2 film 3 was formed to a thickness of 0.5 μm under the film forming conditions where the film forming pressure was 1 Pa and the SnO 2 target was sputtered by RF in Ar + 10% O 2 gas. Of the SiO 2 film 2 and SnO 2 film 3 formed in this way, the SnO 2 film 3 on the surface side, in particular, is hardly etched even during trench etching, so it melts and reattaches to the trench etching planned surface. However, a phenomenon that prevents smooth trench etching hardly occurs. SiO 2 / SnO so-called lift-off method for removing the photoresist with a SiC substrate SiO 2 and SnO 2 of the laminated film (hereinafter SiO 2 / SnO 2 and described) is placed in the total thickness 1μm on photoresist stripping solution Two laminated films were patterned. The patterned line width is 2 μm in this embodiment. FIG. 3 shows a cross section of the laminated mask structures 2 and 3 on the SiC substrate 1 patterned by the lift-off method. Since the SiO 2 film is difficult to etch the SnO 2 film, it is a film provided because patterning cannot be performed if the SnO 2 film is a single film. By forming the SiO 2 film on the lower side of the SnO 2 film is to allow patterning of the SnO 2 film by a lift-off method. Therefore, the thickness of the SiO 2 film does not need to be increased, and may be 0.1 μm or more, and the upper limit is preferably 0.5 μm or less in view of the thermal expansion coefficient of the laminated film. Since a thicker SnO 2 film enables deep trench etching, 0.5 μm or more is preferable. Further, if the thickness is too large due to the thermal expansion coefficient of the laminated film, a problem arises in the process due to the warpage of the wafer.

リフトオフ法を用いるのはSnO膜3についても、ドライエッチングでもウエットエッチングでも極めてエッチングが難しいため、リフトオフ法でのパターニングが適しているからである。次に、得られたSiO/SnO積層膜2、3をSiC基板1のドライエッチングのマスクとして用い、ICP−RIE装置(図示せず)でドライエッチングを行なった。このときの条件はICP電力200W、バイアス電力25WでSF+50%Oガスを用い1Paの圧力でトレンチエッチングを行なった。このICP−RIE装置によれば、誘導結合コイルによる大電力のプラズマ励起により形成される高密度プラズマをSiC基板のエッチングに利用できる。所定時間エッチングを行ない、所望の深さのトレンチを形成した後、前記ICP−RIE装置から取り出し、バッファードフッ酸にSiC基板をつけてマスク材のSiO膜部分を溶解させ、SiO/SnOマスクを除去した。SnO膜は溶解されないが、SiO膜の剥離と共に除去される。
図4に、ICP−RIE装置を用いて形成される高密度プラズマを用いてSiC基板をエッチングした場合のエッチング時間に対するSiO/SnO積層膜マスクのエッチング量とSiC基板のエッチング量とを示す。SiO/SnO積層膜のマスクに対するエッチングは、1nm/分程度のエッチング量のため、1時間エッチングしても0.06μm以下のエッチング量であり、実質的にマスクはほとんどエッチングされないことが分かる。若干エッチングされているのは物理的(スパッタ)要因によるものであり、化学的には極めてエッチング耐性が高いのがわかる。このときのSiC基板のエッチング量は50nm/分程度あり、マスクのエッチング量/SiCのエッチング量=1/50程度有り、極めて選択性が高いことが分かる。エッチングマスク材にNiやAlなどの金属または合金膜を使った場合、エッチング条件によっては金属粒子が飛散しマイクロマスクの発生原因になりエッチングに支障をきたす場合があるが、酸化物であるSnOはフッ素系ガスによるドライエッチングでも酸・アルカリによるウエットエッチングでもほとんどエッチングできない。このためマイクロマスクの発生がなく、ドライエッチングやウエットエッチングのマスクとして用いることに優れている。このようにマスクの最表面がSnOになっていることで、マスクがほとんどエッチングされずSiCを深くドライエッチングすることができる。
The lift-off method is used because the SnO 2 film 3 is also very difficult to be etched by either dry etching or wet etching, so that patterning by the lift-off method is suitable. Next, dry etching was performed with an ICP-RIE apparatus (not shown) using the obtained SiO 2 / SnO 2 laminated films 2 and 3 as a mask for dry etching of the SiC substrate 1. At this time, trench etching was performed at a pressure of 1 Pa using SF 6 + 50% O 2 gas with an ICP power of 200 W and a bias power of 25 W. According to this ICP-RIE apparatus, high-density plasma formed by high-power plasma excitation by an inductively coupled coil can be used for etching a SiC substrate. Etching is carried out for a predetermined time to form a trench having a desired depth, and then taken out from the ICP-RIE apparatus. An SiC substrate is attached to buffered hydrofluoric acid to dissolve the SiO 2 film portion of the mask material, and SiO 2 / SnO Two masks were removed. The SnO 2 film is not dissolved, but is removed together with the removal of the SiO 2 film.
FIG. 4 shows the etching amount of the SiO 2 / SnO 2 laminated film mask and the etching amount of the SiC substrate with respect to the etching time when the SiC substrate is etched using the high-density plasma formed using the ICP-RIE apparatus. . Since the etching of the SiO 2 / SnO 2 laminated film mask is about 1 nm / min, the etching amount is 0.06 μm or less even if it is etched for 1 hour, and the mask is hardly etched. . The slight etching is due to physical (sputtering) factors, and it can be seen that the etching resistance is extremely high chemically. At this time, the etching amount of the SiC substrate is about 50 nm / min, the etching amount of the mask / the etching amount of SiC = 1/50, and it can be seen that the selectivity is extremely high. When a metal or alloy film such as Ni or Al is used for the etching mask material, metal particles may be scattered depending on the etching conditions, which may cause micromasks and hinder etching, but SnO 2 is an oxide. Can hardly be etched by either dry etching with fluorine-based gas or wet etching with acid / alkali. For this reason, there is no generation of a micromask and it is excellent for use as a mask for dry etching or wet etching. Thus, since the outermost surface of the mask is SnO 2 , the mask is hardly etched and SiC can be deeply dry etched.

この条件で4時間のエッチングを行なったが、マスクは表面のSnOが0.25μm程度エッチングされたがSiCは約12μmエッチングでき、深いトレンチが形成できることが確認できた。確認はしていないがマスクはこのエッチング時間ではまだ半分残っているので20μm以上のエッチングが可能と考えられる。このトレンチ形成技術を用いることにより、SiC基板を用いたMOSFETやIGBTなどのパワーデバイスの耐圧を飛躍的に向上できる。 Although etching was performed for 4 hours under these conditions, it was confirmed that SnO 2 on the surface of the mask was etched by about 0.25 μm, but SiC could be etched by about 12 μm and a deep trench could be formed. Although it has not been confirmed, half of the mask still remains in this etching time, so it is considered that etching of 20 μm or more is possible. By using this trench formation technique, the breakdown voltage of power devices such as MOSFETs and IGBTs using a SiC substrate can be dramatically improved.

本発明の炭化珪素半導体基板のドライエッチング方法にかかる炭化珪素半導体基板上にエッチングマスクを形成した段階の半導体基板の要部断面図である。It is principal part sectional drawing of the semiconductor substrate of the stage which formed the etching mask on the silicon carbide semiconductor substrate concerning the dry etching method of the silicon carbide semiconductor substrate of this invention. 本発明にかかるエッチングマスクを形成する前にフォトレジストパターンを形成した段階の半導体基板の要部断面図である。It is principal part sectional drawing of the semiconductor substrate of the stage in which the photoresist pattern was formed before forming the etching mask concerning this invention. 本発明の炭化珪素半導体基板のドライエッチング方法にかかる炭化珪素半導体基板上にエッチングマスクを形成した段階の半導体基板の要部断面図である。It is principal part sectional drawing of the semiconductor substrate of the stage which formed the etching mask on the silicon carbide semiconductor substrate concerning the dry etching method of the silicon carbide semiconductor substrate of this invention. 本発明にかかるドライエッチングのエッチング時間とエッチング量との関係図である。It is a relationship diagram of the etching time and etching amount of dry etching concerning the present invention.

符号の説明Explanation of symbols

1 炭化珪素(SiC)基板
2 SiO膜(マスク)
3 SnO膜(マスク)
4 フォトレジスト膜。
1 Silicon carbide (SiC) substrate 2 SiO 2 film (mask)
3 SnO 2 film (mask)
4 Photoresist film.

Claims (3)

炭化珪素半導体基板上に選択的なエッチングマスクを形成後、露出する前記半導体基板部分にプラズマを用いてトレンチを形成するドライエッチング方法において、前記エッチングマスクが酸化スズと酸化シリコンの積層膜からなることを特徴とする炭化珪素半導体基板のドライエッチング方法。 In a dry etching method in which a trench is formed using plasma in the exposed semiconductor substrate portion after a selective etching mask is formed on the silicon carbide semiconductor substrate, the etching mask is made of a laminated film of tin oxide and silicon oxide. A method for dry etching a silicon carbide semiconductor substrate. 前記エッチングマスクは前記炭化珪素半導体基板上に0.1μm乃至0.5μmの厚さの酸化シリコンと0.5μm乃至1μmの厚さの酸化スズとがこの順に成膜された積層膜であることを特徴とする請求項1記載の炭化珪素半導体基板のドライエッチング方法。 The etching mask is a laminated film in which silicon oxide having a thickness of 0.1 μm to 0.5 μm and tin oxide having a thickness of 0.5 μm to 1 μm are formed in this order on the silicon carbide semiconductor substrate. The method for dry etching a silicon carbide semiconductor substrate according to claim 1, wherein the silicon carbide semiconductor substrate is dry-etched. 前記ドライエッチングに用いられるプラズマはフッ化物を含むガスを電離して得られる誘導結合プラズマであることを特徴とする請求項1または2記載の炭化珪素半導体基板のドライエッチング方法。 3. The method for dry etching a silicon carbide semiconductor substrate according to claim 1, wherein the plasma used for the dry etching is inductively coupled plasma obtained by ionizing a gas containing fluoride.
JP2006026191A 2006-02-02 2006-02-02 Dry etching method for silicon carbide semiconductor substrate Expired - Fee Related JP4609335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006026191A JP4609335B2 (en) 2006-02-02 2006-02-02 Dry etching method for silicon carbide semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006026191A JP4609335B2 (en) 2006-02-02 2006-02-02 Dry etching method for silicon carbide semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2007208076A true JP2007208076A (en) 2007-08-16
JP4609335B2 JP4609335B2 (en) 2011-01-12

Family

ID=38487258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006026191A Expired - Fee Related JP4609335B2 (en) 2006-02-02 2006-02-02 Dry etching method for silicon carbide semiconductor substrate

Country Status (1)

Country Link
JP (1) JP4609335B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130272930A1 (en) * 2009-02-17 2013-10-17 Mcalister Technologies, Llc Induction for thermochemical processes, and associated systems and methods
US8771636B2 (en) 2008-01-07 2014-07-08 Mcalister Technologies, Llc Chemical processes and reactors for efficiently producing hydrogen fuels and structural materials, and associated systems and methods
US8821602B2 (en) 2011-08-12 2014-09-02 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US8911703B2 (en) 2011-08-12 2014-12-16 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US8926719B2 (en) 2013-03-14 2015-01-06 Mcalister Technologies, Llc Method and apparatus for generating hydrogen from metal
US8926908B2 (en) 2010-02-13 2015-01-06 Mcalister Technologies, Llc Reactor vessels with pressure and heat transfer features for producing hydrogen-based fuels and structural elements, and associated systems and methods
US9188086B2 (en) 2008-01-07 2015-11-17 Mcalister Technologies, Llc Coupled thermochemical reactors and engines, and associated systems and methods
US9206045B2 (en) 2010-02-13 2015-12-08 Mcalister Technologies, Llc Reactor vessels with transmissive surfaces for producing hydrogen-based fuels and structural elements, and associated systems and methods
US9302681B2 (en) 2011-08-12 2016-04-05 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials, and associated systems and methods
US9309473B2 (en) 2011-08-12 2016-04-12 Mcalister Technologies, Llc Systems and methods for extracting and processing gases from submerged sources
US9522379B2 (en) 2011-08-12 2016-12-20 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
CN107546106A (en) * 2016-06-28 2018-01-05 朗姆研究公司 SnO 2 thin film sept in semiconductor devices manufacture
US11088019B2 (en) 2017-02-13 2021-08-10 Lam Research Corporation Method to create air gaps
US11322351B2 (en) 2017-02-17 2022-05-03 Lam Research Corporation Tin oxide films in semiconductor device manufacturing
US11355353B2 (en) 2018-01-30 2022-06-07 Lam Research Corporation Tin oxide mandrels in patterning
US11551938B2 (en) 2019-06-27 2023-01-10 Lam Research Corporation Alternating etch and passivation process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823152A (en) * 1994-07-08 1996-01-23 Mitsubishi Materials Corp Patterning method
JPH09129622A (en) * 1995-10-02 1997-05-16 Motorola Inc Method of etching silicon carbide
WO2005093795A1 (en) * 2004-03-18 2005-10-06 Cree, Inc. Lithographic methods to reduce stacking fault nucleation sites and structures having reduced stacking fault nucleation sites
JP2005302795A (en) * 2004-04-07 2005-10-27 Mitsui Chemicals Inc Dry etching method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823152A (en) * 1994-07-08 1996-01-23 Mitsubishi Materials Corp Patterning method
JPH09129622A (en) * 1995-10-02 1997-05-16 Motorola Inc Method of etching silicon carbide
WO2005093795A1 (en) * 2004-03-18 2005-10-06 Cree, Inc. Lithographic methods to reduce stacking fault nucleation sites and structures having reduced stacking fault nucleation sites
JP2005302795A (en) * 2004-04-07 2005-10-27 Mitsui Chemicals Inc Dry etching method

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9188086B2 (en) 2008-01-07 2015-11-17 Mcalister Technologies, Llc Coupled thermochemical reactors and engines, and associated systems and methods
US8771636B2 (en) 2008-01-07 2014-07-08 Mcalister Technologies, Llc Chemical processes and reactors for efficiently producing hydrogen fuels and structural materials, and associated systems and methods
US20130272930A1 (en) * 2009-02-17 2013-10-17 Mcalister Technologies, Llc Induction for thermochemical processes, and associated systems and methods
US9541284B2 (en) 2010-02-13 2017-01-10 Mcalister Technologies, Llc Chemical reactors with annularly positioned delivery and removal devices, and associated systems and methods
US8926908B2 (en) 2010-02-13 2015-01-06 Mcalister Technologies, Llc Reactor vessels with pressure and heat transfer features for producing hydrogen-based fuels and structural elements, and associated systems and methods
US9103548B2 (en) 2010-02-13 2015-08-11 Mcalister Technologies, Llc Reactors for conducting thermochemical processes with solar heat input, and associated systems and methods
US9206045B2 (en) 2010-02-13 2015-12-08 Mcalister Technologies, Llc Reactor vessels with transmissive surfaces for producing hydrogen-based fuels and structural elements, and associated systems and methods
US8911703B2 (en) 2011-08-12 2014-12-16 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US9302681B2 (en) 2011-08-12 2016-04-05 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials, and associated systems and methods
US9309473B2 (en) 2011-08-12 2016-04-12 Mcalister Technologies, Llc Systems and methods for extracting and processing gases from submerged sources
US9522379B2 (en) 2011-08-12 2016-12-20 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US8821602B2 (en) 2011-08-12 2014-09-02 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US9617983B2 (en) 2011-08-12 2017-04-11 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US8926719B2 (en) 2013-03-14 2015-01-06 Mcalister Technologies, Llc Method and apparatus for generating hydrogen from metal
CN107546106A (en) * 2016-06-28 2018-01-05 朗姆研究公司 SnO 2 thin film sept in semiconductor devices manufacture
US20180012759A1 (en) * 2016-06-28 2018-01-11 Lam Research Corporation Tin oxide thin film spacers in semiconductor device manufacturing
CN107546106B (en) * 2016-06-28 2020-12-25 朗姆研究公司 Tin oxide thin film spacer in semiconductor device fabrication
US11031245B2 (en) * 2016-06-28 2021-06-08 Lan Research Corporation Tin oxide thin film spacers in semiconductor device manufacturing
US11183383B2 (en) 2016-06-28 2021-11-23 Lam Research Corporation Tin oxide thin film spacers in semiconductor device manufacturing
US11784047B2 (en) 2016-06-28 2023-10-10 Lam Research Corporation Tin oxide thin film spacers in semiconductor device manufacturing
US11088019B2 (en) 2017-02-13 2021-08-10 Lam Research Corporation Method to create air gaps
US11637037B2 (en) 2017-02-13 2023-04-25 Lam Research Corporation Method to create air gaps
US11322351B2 (en) 2017-02-17 2022-05-03 Lam Research Corporation Tin oxide films in semiconductor device manufacturing
US11355353B2 (en) 2018-01-30 2022-06-07 Lam Research Corporation Tin oxide mandrels in patterning
US11551938B2 (en) 2019-06-27 2023-01-10 Lam Research Corporation Alternating etch and passivation process
US11848212B2 (en) 2019-06-27 2023-12-19 Lam Research Corporation Alternating etch and passivation process

Also Published As

Publication number Publication date
JP4609335B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4609335B2 (en) Dry etching method for silicon carbide semiconductor substrate
JP5061506B2 (en) Method for manufacturing silicon carbide semiconductor device
JP5135885B2 (en) Method for manufacturing silicon carbide semiconductor device
JP5296672B2 (en) Structure having stressor and method for manufacturing the same
JP5458652B2 (en) Method for manufacturing silicon carbide semiconductor device
WO2005117091A1 (en) Method for fabricating semiconductor devices having a substrate which includes group iii-nitride material
JP2007234912A (en) Semiconductor device, and its manufacturing method
JP2014199864A (en) Semiconductor device and method of manufacturing the same
JP5352954B2 (en) Electrode film / silicon carbide structure
KR101848244B1 (en) Semiconductor device including step index gate electrode and fabrication method thereof
JP4030982B2 (en) Semiconductor device and manufacturing method of semiconductor device
TW201005829A (en) Method for manufacturing semiconductor element
JP2010016102A (en) Method for manufacturing silicon carbide semiconductor device
KR101503535B1 (en) Method for manufacturing semiconductor device
JP2007184390A (en) Method of etching semiconductor substrate
JP2006332180A (en) Manufacturing method of silicon carbide semiconductor device
JP5303965B2 (en) Manufacturing method of semiconductor device
JP6591240B2 (en) Device manufacturing method
JP5857659B2 (en) Manufacturing method of semiconductor device
JP2007035679A (en) Etching mask and dry etching method
CN108615669A (en) Semiconductor structure and forming method thereof
JP2007135129A (en) Manufacturing method of piezoelectric vibrating piece and piezoelectric vibrating piece manufactured by method
JP2004079582A (en) Metal wiring etching method
CN105632907B (en) A kind of production method of semiconductor devices
KR100640974B1 (en) Method for fabricating semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees