JP2007165300A - Nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2007165300A
JP2007165300A JP2006310004A JP2006310004A JP2007165300A JP 2007165300 A JP2007165300 A JP 2007165300A JP 2006310004 A JP2006310004 A JP 2006310004A JP 2006310004 A JP2006310004 A JP 2006310004A JP 2007165300 A JP2007165300 A JP 2007165300A
Authority
JP
Japan
Prior art keywords
phase
negative electrode
alloy material
electrolyte secondary
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006310004A
Other languages
Japanese (ja)
Other versions
JP5072323B2 (en
Inventor
Yasuhiko Mifuji
靖彦 美藤
Teruaki Yamamoto
輝明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006310004A priority Critical patent/JP5072323B2/en
Publication of JP2007165300A publication Critical patent/JP2007165300A/en
Application granted granted Critical
Publication of JP5072323B2 publication Critical patent/JP5072323B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having an excellent cycle characteristic, and excelling in a capacity recovery rate after storage in an overdischarged state, by improving a negative electrode material. <P>SOLUTION: This nonaqueous electrolyte secondary battery includes a positive electrode capable of reversibly storing and releasing lithium, a negative electrode including an alloy material as an active material, and a nonaqueous electrolyte. The alloy material includes a phase (phase A) containing at least Si and a phase (phase B) containing an intermetallic compound composed of Si and at least one kind selected from the group consisting of Ti, Zr, Ni and Cu; and the alloy material contains 0.0006 to 1.0 wt.% of Fe in a metallic state. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非水電解質二次電池、特にその負極の改良に関するものである。さらに詳しくは、Siおよび遷移金属を含む合金材料の改良に関する。   The present invention relates to a nonaqueous electrolyte secondary battery, and particularly to an improvement of the negative electrode. More specifically, the present invention relates to an improvement in an alloy material containing Si and a transition metal.

非水電解質二次電池は、高電圧で高エネルギー密度を実現できることから、盛んに研究が行われている。研究がなされている非水電解質二次電池の正極には、遷移金属酸化物や遷移金属カルコゲン化合物であるLiMn24、LiCoO2、LiNiO2、V25、Cr25、MnO2、TiS2、MoS2等が用いられている。これらはリチウムイオンが出入り可能な層状もしくはトンネル状の結晶構造を有している。一方負極には、リチウムを可逆的に吸蔵および放出可能であり、サイクル寿命と安全性に優れた炭素材料が用いられている。黒鉛系の炭素材料を負極に用いたリチウムイオン電池が実用化されている。 Nonaqueous electrolyte secondary batteries have been actively researched because they can achieve high energy density at high voltage. The positive electrode of a non-aqueous electrolyte secondary battery that has been studied includes transition metal oxides and transition metal chalcogen compounds such as LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , V 2 O 5 , Cr 2 O 5 , and MnO 2. TiS 2 , MoS 2 or the like is used. These have a layered or tunnel-like crystal structure through which lithium ions can enter and exit. On the other hand, for the negative electrode, a carbon material capable of reversibly inserting and extracting lithium and having excellent cycle life and safety is used. A lithium ion battery using a graphite-based carbon material as a negative electrode has been put into practical use.

しかし、黒鉛材料は理論容量が372mAh/g、理論密度が2.2g/cm3といずれも比較的小さいことから、黒鉛材料以上の高容量を実現可能な金属材料を負極として利用することが期待されている。このような材料の中でも、特に、ケイ素(Si)は理論容量が4199mAh/g(理論密度2.33g/cm3)と高容量であり、盛んに研究開発が行われている。 However, since the graphite material has a theoretical capacity of 372 mAh / g and a theoretical density of 2.2 g / cm 3 , both of which are relatively small, it is expected that a metal material capable of realizing a higher capacity than the graphite material will be used as the negative electrode. Has been. Among these materials, silicon (Si) has a theoretical capacity of 4199 mAh / g (theoretical density 2.33 g / cm 3 ), and is actively researched and developed.

Siは、高容量な負極材料としての期待が大きいが、電池の充放電サイクル特性に重大な問題を有する。それは、充電反応および放電反応の際に、リチウムの挿入および脱離に伴ってSiの膨脹および収縮が繰り返され、負極内部の粒子間の接触抵抗が増大し、集電ネットワークが劣化することにより生じる問題である。集電ネットワークの劣化は、充放電サイクル寿命を短くする主要因となる。   Si is highly expected as a high-capacity negative electrode material, but has a serious problem in the charge / discharge cycle characteristics of the battery. It is caused by repeated expansion and contraction of Si accompanying the insertion and desorption of lithium during charging and discharging reactions, increasing the contact resistance between particles inside the negative electrode, and degrading the current collecting network. It is a problem. The deterioration of the current collection network is a main factor for shortening the charge / discharge cycle life.

上記の問題に対して、既に多くの提案がなされている。例えば、特許文献1や特許文献2では、負極材料としてリチウムの可逆的な吸蔵および放出が可能であり、組成が互いに異なる固相Aと固相Bとを含み、固相Aの少なくとも一部が固相Bによって被覆されており、固相Aが、ケイ素、スズ、亜鉛等を含み、固相Bが、2A族元素、遷移元素、2B族元素、3B族元素、4B族元素等を含む合金材料が提案されている。また、固相Aは、非晶質もしくは低結晶状態であることがより好ましいと提案されている。   Many proposals have already been made for the above problem. For example, Patent Document 1 and Patent Document 2 include reversible insertion and extraction of lithium as a negative electrode material, including solid phase A and solid phase B having different compositions, and at least a part of solid phase A is An alloy that is coated with a solid phase B, where the solid phase A contains silicon, tin, zinc, etc., and the solid phase B contains a group 2A element, transition element, group 2B element, group 3B element, group 4B element, etc. Materials have been proposed. Further, it has been proposed that the solid phase A is more preferably in an amorphous or low crystalline state.

さらに、特許文献3では、負極材料が少なくとも異なる2相からなり、一方がSiを主体としたA相、もう一方が遷移金属とSiとのケイ化物を含むB相であり、かつ、A相およびB相の少なくとも一方が、アモルファス状態あるいは低結晶状態から選ばれる少なくとも1種とすることで、サイクル寿命が向上することが提案されている。   Furthermore, in Patent Document 3, the negative electrode material is composed of at least two different phases, one is an A phase mainly composed of Si, the other is a B phase containing a silicide of a transition metal and Si, and the A phase and It has been proposed that at least one of the B phases is at least one selected from an amorphous state or a low crystalline state, thereby improving the cycle life.

さらに、特許文献4では、合金全体として鉄を0.002重量%以上含むことによって、さらにサイクル特性を改善できることが提案されている。
米国特許第6090505号明細書 特開2004−103340号公報 特開2004−335272号公報 特開2000−173616号公報
Further, Patent Document 4 proposes that the cycle characteristics can be further improved by including iron in an amount of 0.002% by weight or more as a whole alloy.
US Pat. No. 6,090,505 JP 2004-103340 A JP 2004-335272 A JP 2000-173616 A

これらの先行技術によれば、合金材料の膨張および収縮時の割れを大幅に抑制可能であり、サイクル特性劣化の主要因である集電ネットワークの劣化を抑制できる点で一定の効果を有する。しかし、電池の重要特性の一つである過放電状態での保存特性を詳細に検討した結果、上記の技術では、十分な特性を得られない場合があることが明らかになった。   According to these prior arts, cracks at the time of expansion and contraction of the alloy material can be greatly suppressed, and there is a certain effect in that deterioration of the current collecting network, which is a main factor of cycle characteristic deterioration, can be suppressed. However, as a result of detailed examination of the storage characteristics in an overdischarge state, which is one of the important characteristics of the battery, it has become clear that the above technique may not provide sufficient characteristics.

また、特許文献3では、一層のサイクル劣化を抑制することを目的として、合金材料を非晶質あるいは低結晶性の状態とするために、機械的に合金の合成を行う、所謂メカニカル合成法が提案されているが、含有するFe元素に着目した記載はない。さらに、特許文献4では、急冷法による合成方法が記載されており、得られる合金材料は結晶質と考えられる。しかも、合金に全体として含まれるFeの含有量の規定であって、Feがどのような化学状態で存在するのかについての記載はなく、サイクル特性向上につながるメカニズムも詳細には明らかにされていない。   Patent Document 3 discloses a so-called mechanical synthesis method in which an alloy is mechanically synthesized in order to make the alloy material amorphous or low crystalline for the purpose of suppressing further cycle deterioration. Although it has been proposed, there is no description focusing on the Fe element contained. Furthermore, Patent Document 4 describes a synthesis method by a rapid cooling method, and the obtained alloy material is considered to be crystalline. Moreover, it is a regulation of the content of Fe contained in the alloy as a whole, there is no description about the chemical state of Fe, and the mechanism for improving the cycle characteristics is not clarified in detail. .

本発明者らは、サイクル特性が良好であるだけでなく、過放電状態での保存特性の優れた負極材料を得るという観点から、Siを主体とするA相、および遷移金属とSiとの金属間化合物を有するB相を含む合金材料について、特にFeの含有状態や含有量について鋭意検討した。その結果、合金材料中のFe含有量とその化学状態とを適正化することが、サイクル特性と過放電状態での保存特性との両立に有効であるという知見を得るに至った。さらに、本発明者らは、Feの化学状態の計測法としては、飽和磁化率によって、金属Feの含有量を特定できることを見出した。   From the viewpoint of obtaining a negative electrode material not only having good cycle characteristics but also having excellent storage characteristics in an overdischarged state, the present inventors have proposed a phase consisting mainly of Si, and a metal of transition metal and Si. With regard to the alloy material containing the B phase having the intermetallic compound, the inventors have intensively studied the content and content of Fe. As a result, the inventors have come to know that optimizing the Fe content in the alloy material and its chemical state is effective in achieving both cycle characteristics and storage characteristics in an overdischarged state. Furthermore, the present inventors have found that the Fe content can be specified by the saturation magnetic susceptibility as a method for measuring the chemical state of Fe.

本発明は、以上の知見に基づく負極を備える非水電解質二次電池を提供する。すなわち、本発明の非水電解質二次電池は、リチウムを可逆的に吸蔵・放出可能な正極、活物質として合金材料を含む負極、および非水電解質を具備し、前記合金材料が、少なくともSiを含む相(A相)と、Ti、Zr、NiおよびCuからなる群より選ばれる少なくとも一種とSiとの金属間化合物を含む相(B相)と有し、前記合金材料が金属状態のFeを0.0006〜1.0重量%含有することを特徴とする。   The present invention provides a nonaqueous electrolyte secondary battery comprising a negative electrode based on the above knowledge. That is, the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode capable of reversibly inserting and extracting lithium, a negative electrode including an alloy material as an active material, and a non-aqueous electrolyte, and the alloy material includes at least Si. And a phase (B phase) containing an intermetallic compound of Si and at least one selected from the group consisting of Ti, Zr, Ni and Cu, and the alloy material contains Fe in a metallic state. It is characterized by containing 0.0006 to 1.0% by weight.

さらに、本発明は、Si、Fe、並びにTi、Zr、NiおよびCuからなる群より選ばれる少なくとも一種の遷移金属元素を含む原材料から、少なくともSiを含む相(A相)と、前記少なくとも一種の遷移金属元素とSiとの金属間化合物を含む相(B相)とを有し、金属状態のFeを含む合金材料を製造する工程を含み、前記工程中に、前記合金材料中のFe量に応じて変化する飽和磁化率を検出し、検出した飽和磁化率が所定値になったとき前記工程を終了させる、非水電解質二次電池用負極材料の製造方法を提供する。   Further, the present invention provides a raw material containing at least one transition metal element selected from the group consisting of Si, Fe, and Ti, Zr, Ni, and Cu, a phase containing at least Si (phase A), and the at least one kind A phase (B phase) including a transition metal element and an intermetallic compound of Si, and including a step of manufacturing an alloy material including Fe in a metal state, and in the step, the amount of Fe in the alloy material Provided is a method for producing a negative electrode material for a non-aqueous electrolyte secondary battery, wherein a saturation magnetic susceptibility that changes in response is detected, and the process is terminated when the detected saturation magnetic susceptibility reaches a predetermined value.

本発明によれば、高容量で、充放電サイクル特性に優れ、過放電状態での保存特性に優れた非水電解質二次電池を提供することができる。   According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having a high capacity, excellent charge / discharge cycle characteristics, and excellent storage characteristics in an overdischarged state.

本発明によると、金属状態にあるFe量を適切に制御することにより、過放電状態での保存時において、負極からの金属状態のFeの溶解による保存特性の劣化を抑制することができる。これは、過放電状態での保存時における負極活物質である合金材料の耐性が向上したことによると考えられる。   According to the present invention, by appropriately controlling the amount of Fe in a metal state, deterioration of storage characteristics due to dissolution of metal state Fe from the negative electrode can be suppressed during storage in an overdischarged state. This is considered to be due to the improved resistance of the alloy material, which is the negative electrode active material, during storage in the overdischarged state.

本発明の非水電解質二次電池は、合金材料を活物質として含む負極を備える。前記合金材料は、少なくともSiを含む相(A相)と、Ti、Zr、NiおよびCuからなる群より選ばれる少なくとも一種とSiとの金属間化合物を含む相(B相)とを有し、金属状態のFeを0.0006〜1.0重量%含有する。
ここで、合金材料に含有される金属Feが0.0006重量%未満ではサイクル特性が悪化し、1.0重量%を超えると過放電状態での保存特性が悪化する。
The nonaqueous electrolyte secondary battery of the present invention includes a negative electrode containing an alloy material as an active material. The alloy material has a phase containing at least Si (A phase) and a phase containing an intermetallic compound of Si and at least one selected from the group consisting of Ti, Zr, Ni, and Cu (B phase), It contains 0.0006 to 1.0% by weight of Fe in a metal state.
Here, if the metal Fe contained in the alloy material is less than 0.0006% by weight, the cycle characteristics deteriorate, and if it exceeds 1.0% by weight, the storage characteristics in the overdischarge state deteriorate.

本発明に係る負極活物質としての合金材料は、Siを主体とするA相と、Ti、Zr、NiおよびCuからなる群より選ばれる少なくとも一種とSiとの金属間化合物からなるB相とを含む。この合金材料は、膨張による影響が緩和されているだけでなく、その膨張および収縮に伴う負極の電子伝導性の低下を抑制する。よって、この合金材料を含む負極は、高容量でサイクル特性に優れた電池を与える。   The alloy material as the negative electrode active material according to the present invention includes an A phase mainly composed of Si, and a B phase composed of an intermetallic compound of at least one selected from the group consisting of Ti, Zr, Ni and Cu and Si. Including. This alloy material not only mitigates the influence of expansion, but also suppresses the decrease in electronic conductivity of the negative electrode that accompanies the expansion and contraction. Therefore, the negative electrode containing this alloy material provides a battery with high capacity and excellent cycle characteristics.

ここでA相は、Liの吸蔵および放出を担う相であり、電気化学的にLiと反応可能な相である。A相はSiを主体とする相であればよいが、好ましくはSi単体からなる相である。A相がSi単体からなる場合、単位重量もしくは単位体積あたりの合金材料が吸蔵および放出するLi量を非常に多量にすることができる。ただし、Si単体は半導体であるため、電子伝導性に乏しい。よって、微量の添加元素、例えばリン(P)、ホウ素(B)、水素(H)等、あるいは遷移金属元素等を5重量%程度までA相に含ませることが有効である。   Here, the A phase is a phase responsible for insertion and extraction of Li, and is a phase that can electrochemically react with Li. The A phase may be a phase mainly composed of Si, but is preferably a phase composed of Si alone. When the A phase is composed of Si alone, the amount of Li absorbed and released by the alloy material per unit weight or unit volume can be made extremely large. However, since Si simple substance is a semiconductor, it has poor electronic conductivity. Therefore, it is effective to add a trace amount of additive elements such as phosphorus (P), boron (B), hydrogen (H), etc., or transition metal elements to the A phase up to about 5% by weight.

一方B相は、遷移金属とSiとの金属間化合物からなる。Siを含む金属間化合物は、A相との親和性が高く、特に充電時の合金体積の膨張時においてもA相とB相との界面での割れ等が生じにくい。また、B相は、Si単体相に比較して電子伝導性が高く、硬度も高い。よって、B相は、A相の低い電子伝導性を補うとともに、膨張応力に対抗して合金粒子の形状を維持させるように働く。なおB相は、複数種存在していてもよく、組成の異なる2種以上の金属間化合物がB相として存在してもよい。例えば、遷移金属をMで表すと、MSi2とMSiとが合金粒子内に存在してもよい。また、それぞれ異なる遷移金属元素を含む金属間化合物、例えばM1Si2とM2Si2(M1≠M2)とが合金粒子内に存在してもよい。 On the other hand, the B phase is composed of an intermetallic compound of a transition metal and Si. The intermetallic compound containing Si has a high affinity with the A phase, and cracking at the interface between the A phase and the B phase is unlikely to occur even when the alloy volume expands during charging. In addition, the B phase has higher electron conductivity and higher hardness than the Si single phase. Therefore, the B phase works to supplement the low electronic conductivity of the A phase and to maintain the shape of the alloy particles against the expansion stress. A plurality of B phases may be present, and two or more intermetallic compounds having different compositions may be present as the B phase. For example, when the transition metal is represented by M, MSi 2 and MSi may exist in the alloy particles. Further, intermetallic compounds containing different transition metal elements, for example, M 1 Si 2 and M 2 Si 2 (M 1 ≠ M 2 ) may be present in the alloy particles.

A相および/またはB相は、それらの結晶性を特に限定するものではないが、非晶質または低結晶性であることが好ましい。その理由は、Liの吸蔵に伴う膨張による合金粒子の割れが発生しにくいためである。   The A phase and / or the B phase are not particularly limited in their crystallinity, but are preferably amorphous or low crystalline. The reason for this is that cracking of alloy particles due to expansion associated with the occlusion of Li hardly occurs.

A相および/またはB相を構成する合金材料が非晶質または低結晶性である場合には、結晶子(結晶粒)のサイズが100nm以下であることが好ましく、5nm以上100nm以下であることが更に好ましい。結晶子サイズが100nmより大きい場合、結晶子間の粒界が減少するため、粒子割れを抑制する効果が小さくなる。また、結晶子サイズが5nm未満の場合、結晶子間の粒界が多くなることで、合金中の電子伝導性が低下することがある。合金の電子伝導性が低下すると、負極の分極が上昇し、電池容量の低下を招く。   When the alloy material constituting the A phase and / or the B phase is amorphous or low crystalline, the crystallite (crystal grain) size is preferably 100 nm or less, and preferably 5 nm or more and 100 nm or less. Is more preferable. When the crystallite size is larger than 100 nm, the grain boundary between the crystallites is reduced, so that the effect of suppressing particle cracking is reduced. Moreover, when the crystallite size is less than 5 nm, the grain boundary between the crystallites increases, and the electron conductivity in the alloy may decrease. When the electronic conductivity of the alloy decreases, the polarization of the negative electrode increases, leading to a decrease in battery capacity.

合金材料を構成するA相およびB相の状態は、X線源としてCuKαを用い、回折角2θが10°〜80°の範囲でX線回折測定を行い、その際に得られる回折スペクトル中に、A相および/またはB相の結晶面に帰属されるピークが存在するかどうかで判定する。   The state of the A phase and the B phase constituting the alloy material uses CuKα as an X-ray source, and performs X-ray diffraction measurement within a diffraction angle 2θ of 10 ° to 80 °. , Whether or not there is a peak attributed to the crystal face of the A phase and / or the B phase.

例えば、SiからなるA相の場合、Siの結晶面を反映して、回折角2θ=28.4°に結晶面(111)に対応するピークが観測され、47.3°に結晶面(220)に対応するピークが観測され、56.1°に結晶面(311)に対応するピークが観測され、69.1°に結晶面(400)に対応するピークが観測され、76.4°に結晶面(331)に対応するピークが観測される。また、回折角2θ=28.4°に観測される結晶面(111)に対応するピークは、強度が最も強くなる場合が多い。ただし、相が微結晶の領域からなる場合には、鋭いピークは観測されず、比較的ブロードなピークが観測される。一方、合金材料が非晶質な領域からなる場合、X線回折測定で得られる合金粒子の回折スペクトルには、半価幅を認識できない程度のブロードなハローパターンが観測される。   For example, in the case of the A phase composed of Si, a peak corresponding to the crystal plane (111) is observed at a diffraction angle 2θ = 28.4 °, reflecting the crystal plane of Si, and a crystal plane (220 at 47.3 °). ), A peak corresponding to the crystal plane (311) is observed at 56.1 °, a peak corresponding to the crystal plane (400) is observed at 69.1 °, and a peak corresponding to 76.4 ° is observed. A peak corresponding to the crystal plane (331) is observed. In addition, the peak corresponding to the crystal plane (111) observed at the diffraction angle 2θ = 28.4 ° often has the strongest intensity. However, when the phase is composed of a microcrystalline region, a sharp peak is not observed and a relatively broad peak is observed. On the other hand, when the alloy material is made of an amorphous region, a broad halo pattern in which the half width cannot be recognized is observed in the diffraction spectrum of the alloy particles obtained by the X-ray diffraction measurement.

結晶子サイズは、X線回折測定により求めることができる。具体的には、X線回折測定で得られる合金粒子の回折スペクトルのうち、各相に帰属されるピークの半価幅を求め、その半価幅とScherrerの式から算出することができる。各相に帰属されるピークが複数存在する場合には、最も強度の大きなピークの半価幅を求め、これにScherrerの式を適用する。   The crystallite size can be determined by X-ray diffraction measurement. Specifically, the half-value width of a peak attributed to each phase in the diffraction spectrum of alloy particles obtained by X-ray diffraction measurement can be obtained and calculated from the half-value width and Scherrer's formula. When there are a plurality of peaks attributed to each phase, the half width of the peak with the highest intensity is obtained, and the Scherrer formula is applied thereto.

Scherrerの式によれば、結晶子サイズDの大きさは式(1)で与えられる。式(1)において、λ=X線波長(nm)(CuKαの場合1.5405nm)、β=上記ピークの半値幅(rad)、θ=上記ピーク角度2θの半分の値(rad)である。   According to Scherrer's equation, the crystallite size D is given by equation (1). In Equation (1), λ = X-ray wavelength (nm) (1.5405 nm in the case of CuKα), β = half-value width (rad) of the peak, and θ = half value (rad) of the peak angle 2θ.

D(nm)=0.9×λ/(β×cosθ) (1)         D (nm) = 0.9 × λ / (β × cos θ) (1)

通常は、回折角2θが10〜80°の範囲における最も強度の大きなピークに注目すればよいが、回折角2θが20〜35°の範囲における最も強度の大きなピークに注目することがより好ましい。   Usually, attention should be paid to the peak with the highest intensity in the range of the diffraction angle 2θ of 10 to 80 °, but it is more preferable to pay attention to the peak with the highest intensity in the range of the diffraction angle 2θ of 20 to 35 °.

線源としてCuKα線を用いて合金材料のX線回折測定を行う場合、得られる回折スペクトルの回折角2θ=10〜80°もしくは回折角2θ=20〜35°の範囲に観測される最も強度の強い回折ピークの半価幅は、0.09°以上であることが望ましい。この場合、結晶子サイズは100nm以下であると判定できる。   When X-ray diffraction measurement of an alloy material is performed using CuKα ray as a radiation source, the highest intensity observed in the diffraction angle 2θ = 10 to 80 ° or diffraction angle 2θ = 20 to 35 ° of the obtained diffraction spectrum. The half width of a strong diffraction peak is preferably 0.09 ° or more. In this case, it can be determined that the crystallite size is 100 nm or less.

その他、AFM(原子間力顕微鏡)、TEM(透過型電子顕微鏡)等を用い、合金粒子の断面を観察し、直接結晶子のサイズを測定することもできる。また、合金中のA相とB相との存在割合(相組成)は、EDX(エネルギー分散型X線分光法(EDS))等を用いて測定することができる。   In addition, the cross-section of the alloy particles can be observed using an AFM (Atomic Force Microscope), TEM (Transmission Electron Microscope), etc., and the crystallite size can be directly measured. The abundance ratio (phase composition) of the A phase and the B phase in the alloy can be measured using EDX (energy dispersive X-ray spectroscopy (EDS)) or the like.

また、合金材料において、A相とB相との合計重量に占めるA相の割合は、5重量%以上95重量%以下であることが好ましい。A相の割合が多い方が、効果的に高容量を達成することができるが、同時に充放電時の体積変化が増加する。したがって、電極内部での集電性を維持することが重要となる。サイクル特性を高いレベルで維持するという観点からは、A相とB相との合計重量に占めるA相の割合は、80重量%以下が望ましく、さらには50重量%以下であることが特に好ましい。   In the alloy material, the proportion of the A phase in the total weight of the A phase and the B phase is preferably 5% by weight or more and 95% by weight or less. Although the one where the ratio of A phase is large can achieve high capacity effectively, the volume change at the time of charging / discharging increases simultaneously. Therefore, it is important to maintain the current collecting property inside the electrode. From the viewpoint of maintaining the cycle characteristics at a high level, the ratio of the A phase to the total weight of the A phase and the B phase is preferably 80% by weight or less, and more preferably 50% by weight or less.

遷移金属元素は、Ti、Zr、NiおよびCuからなる群より選ばれる少なくとも一種であり、好ましくはTiおよびZrからなる群より選ばれる少なくとも一種である。これらの元素のケイ化物は、他の元素のケイ化物よりも高い電子伝導性と高い硬度を有する。この遷移金属元素がTiである場合には、B相はTiSi2を含むことが望ましい。 The transition metal element is at least one selected from the group consisting of Ti, Zr, Ni and Cu, and preferably at least one selected from the group consisting of Ti and Zr. These element silicides have higher electronic conductivity and higher hardness than silicides of other elements. When the transition metal element is Ti, the B phase preferably contains TiSi 2 .

上記のような合金材料においては、Liを吸蔵する際のA相の膨張に伴う合金の転移移動が、結晶子間の粒界でせき止められるため、粒子割れの発生が顕著に抑制されると考えられる。このように負極活物質である合金材料の粒子割れを抑制することで、充放電サイクルに伴う劣化の少ない非水電解質二次電池を得ることができる。   In the alloy materials as described above, the transition of the alloy accompanying the expansion of the A phase during occlusion of Li is blocked by the grain boundaries between the crystallites, so that the occurrence of particle cracking is remarkably suppressed. It is done. In this way, by suppressing particle cracking of the alloy material that is the negative electrode active material, it is possible to obtain a non-aqueous electrolyte secondary battery with little deterioration accompanying the charge / discharge cycle.

次に、本発明で重要な役割を果たす合金材料に含有されるFeについて説明する。   Next, Fe contained in the alloy material that plays an important role in the present invention will be described.

Feは、金属状態で合金材料中に0.0006〜1.0重量%含有されることが必須である。本発明者らの詳細な検討の結果、合金材料中の金属状態のFeが0.0006重量%より少ない場合には、サイクル特性が悪化することがわかった。充放電時の合金材料表面における被膜形成の抑制に対して、金属状態のFeが触媒的な役割を果たし、過剰な抵抗成分となる被膜形成を阻害する核として働くと推定される。この役割において金属状態のFeは、0.0006重量%以上が有効と考えられる。   It is essential that Fe is contained in the alloy material in a metallic state by 0.0006 to 1.0% by weight. As a result of detailed studies by the present inventors, it was found that when the Fe in the metal state in the alloy material is less than 0.0006% by weight, the cycle characteristics are deteriorated. It is presumed that Fe in a metal state plays a catalytic role in suppressing the formation of a film on the surface of the alloy material during charging and discharging, and acts as a nucleus that inhibits the formation of a film that becomes an excessive resistance component. In this role, it is considered that 0.0006% by weight or more of Fe in the metal state is effective.

また、金属状態のFeが1.0重量%より多い場合には、過放電状態で保存した後の容量回復率が低くなる。その理由は、次のように考えられる。すなわち、過放電状態での保存時に負極電位が上昇(電気化学的な酸化)するために、金属状態のFeの溶解現象が増加し、電池のインピ−ダンスの上昇をもたらし、保存特性を悪化させる。   Moreover, when there is more Fe in a metal state than 1.0 weight%, the capacity | capacitance recovery rate after preserve | saving in an overdischarge state becomes low. The reason is considered as follows. That is, since the negative electrode potential rises (electrochemical oxidation) during storage in an overdischarged state, the dissolution phenomenon of Fe in the metal state increases, leading to an increase in battery impedance and deteriorating storage characteristics. .

このように、サイクル特性の改良にFeは有効な元素であるが、金属状態で過剰に存在すると、上記のような過放電状態での保存特性を劣化させるという悪影響があることがわかった。   Thus, although Fe is an effective element for improving the cycle characteristics, it has been found that if it is excessively present in the metal state, there is an adverse effect of deteriorating the storage characteristics in the overdischarge state as described above.

特に、サイクル特性の高レベルでの維持には、A相やB相を非晶質あるいは低結晶性とすることが肝要であり、その実現のために、合金材料の製造にはメカニカル合成法を選ぶのが好ましい。メカニカル合成法においては、異なる金属元素を機械的な衝撃エネルギ−を用いて合金化反応を起こさせ、非晶質あるいは低結晶状態とすることが可能である。このようなメカニカル合成法は、従来の代表的な合金材料の製造法である急冷法などと比較して、原料元素同志の反応均質性は極めて高い。急冷法では、合金の溶融状態からの急速な冷却凝固のために、反応が不均質や非平衡な状態になりやすいと考えられる。したがって、メカニカル合成法は、非晶質あるいは低結晶状態を得やすい合成方法であるとともに、均質な合金化反応をしやすいという異なる特徴を持っている。   In particular, in order to maintain the cycle characteristics at a high level, it is important to make the A phase and the B phase amorphous or low crystalline. For this purpose, a mechanical synthesis method is used for the production of alloy materials. It is preferable to choose. In the mechanical synthesis method, different metal elements can be made into an amorphous or low crystalline state by causing an alloying reaction using mechanical impact energy. Such a mechanical synthesis method has extremely high reaction homogeneity between the raw material elements as compared with a rapid cooling method which is a conventional method for producing a typical alloy material. In the rapid cooling method, it is considered that the reaction tends to be inhomogeneous or non-equilibrium due to rapid cooling and solidification from the molten state of the alloy. Therefore, the mechanical synthesis method is a synthesis method in which an amorphous or low crystalline state can be easily obtained, and has a different feature that a homogeneous alloying reaction is easily performed.

また、合金材料に含有されるFeについては、その含有量が微量なため、X線回折測定やTEMでは検出されにくい。
そのため、Fe成分の存在状態を調べるために、飽和磁化率測定を行う。以下の実施例では、測定装置には試料振動型磁力計(MODEL 7407 東陽テクニカ社製)を用いた。
Further, Fe contained in the alloy material is difficult to be detected by X-ray diffraction measurement or TEM because its content is very small.
Therefore, saturation magnetic susceptibility measurement is performed in order to examine the existence state of the Fe component. In the following examples, a sample vibration type magnetometer (MODEL 7407, manufactured by Toyo Technica Co., Ltd.) was used as a measuring apparatus.

試料振動型磁力計は、試料を0.1〜0.2mm程度のわずかな振幅で80Hz程度の低周波で振動させ、試料の磁化による磁束の時間変化を、電磁石の磁極付近に置かれたサーチコイルに誘起された誘導起電力として検出する。誘導起電力は、磁化に比例するので、磁化を測定することができる。すなわち、次式からM(磁化)を計算して飽和磁化率とする。
B=μ0H+M
式中、Bは磁束密度、Hは磁界、μ0は真空の透磁率を表す。
こうして、試料が外部磁界によって発生した磁束密度(B)に対する磁界(H)をプロットする。
The sample vibration type magnetometer vibrates the sample at a low frequency of about 80 Hz with a slight amplitude of about 0.1 to 0.2 mm, and searches for the change in magnetic flux due to the magnetization of the sample near the magnetic pole of the electromagnet. It is detected as an induced electromotive force induced in the coil. Since the induced electromotive force is proportional to the magnetization, the magnetization can be measured. That is, M (magnetization) is calculated from the following equation to obtain a saturation magnetic susceptibility.
B = μ 0 H + M
In the formula, B represents the magnetic flux density, H represents the magnetic field, and μ 0 represents the vacuum permeability.
Thus, the magnetic field (H) against the magnetic flux density (B) generated by the external magnetic field in the sample is plotted.

一般に、試料が反磁性体の場合および強磁性体の場合には、B−H曲線はそれぞれ図2および図3に示されるようになる。試料が反磁性体と強磁性体の混合物の場合には、B−H曲線は図4に示されるようになる。図4において、B−H曲線の左側の直線部分の延長線がB軸と交わる点bを飽和磁化率として求める。   In general, when the sample is a diamagnetic material and a ferromagnetic material, the BH curves are as shown in FIGS. 2 and 3, respectively. When the sample is a mixture of a diamagnetic material and a ferromagnetic material, the BH curve is as shown in FIG. In FIG. 4, a point b where the extension of the straight line portion on the left side of the BH curve intersects the B axis is obtained as the saturation magnetic susceptibility.

あらかじめ、金属Feを含む標準試料の飽和磁化率を求めておくことにより、各試料の飽和磁化率から試料中の金属状態のFe量を求めることができる。
具体的には、この測定方法における金属Feの飽和磁化率は150emu/g(Fe)であったので、各試料の飽和磁化率をMemu/g(試料)とすると、各試料に含まれる金属Fe量はおよそ(M/150)×100重量%となる。
合金材料1g当たりの飽和磁化率が0.001〜1.7emu/gであることが望ましい。
By obtaining the saturation magnetic susceptibility of a standard sample containing metal Fe in advance, the amount of Fe in the metallic state in the sample can be obtained from the saturation magnetic susceptibility of each sample.
Specifically, since the saturation magnetic susceptibility of metal Fe in this measurement method was 150 emu / g (Fe), assuming that the saturation magnetic susceptibility of each sample is Memu / g (sample), the metal Fe contained in each sample The amount is approximately (M / 150) × 100% by weight.
It is desirable that the saturation magnetic susceptibility per 1 g of the alloy material is 0.001 to 1.7 emu / g.

本発明の非水電解質二次電池用負極材料の製造方法は、その合成中に、当該負極材料中のFe元素の量に応じて変化する飽和磁化率を検出し、検出した飽和磁化率が所定値になれば負極材料の合成を終了させることが望ましい。各相の結晶子の状態の制御を容易に行うことができる点で、Siを含む原材料と、遷移金属を含む原材料とを混合し、メカニカルアロイング処理を行うメカニカルアロイ法が特に好適である。   The method for producing a negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention detects a saturation magnetic susceptibility that changes according to the amount of Fe element in the negative electrode material during the synthesis, and the detected saturation magnetic susceptibility is predetermined. When the value is reached, it is desirable to finish the synthesis of the negative electrode material. A mechanical alloy method in which a raw material containing Si and a raw material containing a transition metal are mixed and subjected to mechanical alloying is particularly suitable because the state of the crystallites of each phase can be easily controlled.

合金材料の原材料および合金材料に含有するFeの原料としては、特に限定されないが、例えば単体、合金、固溶体、金属間化合物等を用いることができる。Fe原料の製造方法としては、具体的には、メカニカルアロイング法をあげることができるが、この他に、鋳造法やガスアトマイズ法、液体急冷法、イオンビームスパッタリング法、真空蒸着法、メッキ法、気相化学反応法のいずれであってもよい。   Although it does not specifically limit as a raw material of an alloy material and the raw material of Fe contained in an alloy material, For example, a simple substance, an alloy, a solid solution, an intermetallic compound etc. can be used. As a method for producing the Fe raw material, specifically, a mechanical alloying method can be given, but besides this, a casting method, a gas atomizing method, a liquid quenching method, an ion beam sputtering method, a vacuum deposition method, a plating method, Any of gas phase chemical reaction methods may be used.

上記の負極活物質の原料としては、必要な構成比率を実現できれば、その形態などは特に限定されない。例えば、負極活物質を構成する元素単体を、目的とする構成比率に混合したものや、目的とする構成比率を有する合金、固溶体、金属間化合物などを用いることができる。   The form of the negative electrode active material is not particularly limited as long as a necessary constituent ratio can be realized. For example, the element simple substance which comprises a negative electrode active material can be mixed with the target structural ratio, the alloy which has the target structural ratio, a solid solution, an intermetallic compound, etc. can be used.

また、メカニカルアロイング処理を行う前に、原材料の混合物を溶融し、溶融物を急冷して凝固させる工程を行っても良い。しかし、複合化の効果、すなわち異種の元素の混合による結晶子の微細化、を効率的にSiを含む原材料に与えるためには、最初から、Siを含む原材料と遷移金属元素を含む原材料とを混合し、メカニカルアロイング処理を行うメカニカルアロイ法が特に好ましい。   Moreover, before performing a mechanical alloying process, you may perform the process which fuse | melts the mixture of a raw material and quenches and solidifies a molten material. However, in order to efficiently provide the raw material containing Si with the effect of compounding, that is, the refinement of crystallites by mixing different kinds of elements, to the raw material containing Si and the raw material containing the transition metal element from the beginning. A mechanical alloy method in which mixing and mechanical alloying are performed is particularly preferable.

中でも、Siを含む原材料と、遷移金属元素から選ばれる少なくとも1種の元素を含む原材料とを混合し、さらには、合金材料に含有させるFeを含む原材料を混合し、メカニカルアロイ法を負極材料の作製工程の中で用いれば、状態の制御を容易に行うことができ、負極材料の好ましい作製方法といえる。また、メカニカルアロイング処理を行う工程の前に、溶融する工程や上記溶融した溶融物を急冷して凝固させ、凝固物を形成する工程があっても良い。   Among them, a raw material containing Si and a raw material containing at least one element selected from transition metal elements are mixed, and further, a raw material containing Fe to be contained in the alloy material is mixed, and a mechanical alloy method is used for the negative electrode material. When used in the manufacturing process, the state can be easily controlled, which can be said to be a preferable method for manufacturing a negative electrode material. Further, before the step of performing the mechanical alloying process, there may be a step of melting or a step of rapidly cooling and solidifying the molten material to form a solidified product.

上記のメカニカルアロイング処理による作製方法は、乾式雰囲気での合成法であるが、合成後の粒度分布は大小の幅が非常に大きい場合がある。そのため合成後に、粒度を整えるための粉砕処理や分級処理を行っても良い。
粉砕装置としては、一般的なものを使用すればよいが、アトライター、振動ミル、ボールミル、遊星ボールミル、ビーズミル、ジェットミルなどの装置を用いることができる。
The manufacturing method by the above mechanical alloying treatment is a synthesis method in a dry atmosphere, but the particle size distribution after synthesis may have a very large or small width. Therefore, after the synthesis, a pulverization process or a classification process for adjusting the particle size may be performed.
As a pulverizing apparatus, a general apparatus may be used, but apparatuses such as an attritor, a vibration mill, a ball mill, a planetary ball mill, a bead mill, and a jet mill can be used.

本発明に係る負極は、上記合金材料の他に、必要に応じて導電剤を含むことができる。導電剤としては、例えば鱗片状黒鉛のような天然黒鉛、人造黒鉛、膨張黒鉛等の黒鉛類;アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類;炭素繊維、カ−ボンナノチュ−ブ、金属繊維等の導電性繊維類:銅粉、ニッケル粉等の金属粉末類:ポリフェニレン誘導体等の有機導電性材料等が挙げられる。これらは単独で用いてもよく、複数を組み合わせて用いてもよい。これらのうちでは、密度、電解液に対する安定性、容量等の観点から、黒鉛類を用いることが好ましい。   The negative electrode according to the present invention can contain a conductive agent as necessary in addition to the alloy material. Examples of the conductive agent include natural graphite such as flake graphite, graphite such as artificial graphite and expanded graphite; carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black; carbon Examples thereof include conductive fibers such as fibers, carbon nanotubes, and metal fibers: metal powders such as copper powder and nickel powder: organic conductive materials such as polyphenylene derivatives. These may be used alone or in combination. Among these, it is preferable to use graphite from the viewpoints of density, stability with respect to the electrolytic solution, capacity, and the like.

負極に導電剤を含ませる場合、導電剤の量は特に限定されないが、合金材料100重量部に対して1〜50重量部が好ましく、1〜40重量部が特に好ましい。ただし、本発明に係る合金材料は、それ自身が電子伝導性を有するため、導電剤を用いなくても、十分に機能する負極を得ることが可能である。   When the conductive agent is included in the negative electrode, the amount of the conductive agent is not particularly limited, but is preferably 1 to 50 parts by weight, particularly preferably 1 to 40 parts by weight with respect to 100 parts by weight of the alloy material. However, since the alloy material according to the present invention itself has electronic conductivity, it is possible to obtain a sufficiently functioning negative electrode without using a conductive agent.

負極は、例えば合金材料と、必要に応じて導電剤と、結着剤と、分散媒とを混合して、負極合剤を調製し、これを成形するかまたは集電体に塗工し、乾燥すれば得ることができる。   The negative electrode is, for example, an alloy material, if necessary, a conductive agent, a binder, and a dispersion medium are mixed to prepare a negative electrode mixture, which is molded or applied to a current collector, It can be obtained by drying.

結着剤は、負極の使用電位範囲においてLiに対して電気化学的に不活性であり、他の物質にできるだけ影響を及ぼさない材料であることが好ましい。例えば、スチレン−ブタジエン共重合ゴム、ポリアクリル酸、ポリエチレン、ポリウレタン、ポリメタクリル酸メチル、ポリフッ化ビニリデン、ポリ4フッ化エチレン、カルボキシメチルセルロース、メチルセルロース等が適している。本発明で用いる負極は、充電時の体積変化が大きいため、体積変化に比較的柔軟に対応可能であるスチレン−ブタジエン共重合ゴムや、体積変化時にも強固な結着状態を維持しやすいポリアクリル酸等が好ましい。結着剤の添加量は、負極の構造維持の観点からは多いほど好ましいが、電池容量の向上および放電特性の向上の観点からは少ない方が好ましい。   The binder is preferably a material that is electrochemically inactive to Li in the working potential range of the negative electrode and does not affect other substances as much as possible. For example, styrene-butadiene copolymer rubber, polyacrylic acid, polyethylene, polyurethane, polymethyl methacrylate, polyvinylidene fluoride, polytetrafluoroethylene, carboxymethylcellulose, methylcellulose and the like are suitable. The negative electrode used in the present invention has a large volume change at the time of charging, and therefore, a styrene-butadiene copolymer rubber that can respond to the volume change relatively flexibly, and a polyacryl that easily maintains a strong binding state even when the volume changes. An acid or the like is preferable. The amount of the binder added is preferably as large as possible from the viewpoint of maintaining the structure of the negative electrode, but is preferably as small as possible from the viewpoint of improving battery capacity and improving discharge characteristics.

本発明の非水電解質二次電池は、上記の負極と、Liを電気化学的に吸蔵および放出可能な正極と、非水電解液とを具備する。   The non-aqueous electrolyte secondary battery of the present invention includes the above-described negative electrode, a positive electrode capable of electrochemically inserting and extracting Li, and a non-aqueous electrolyte.

非水電解液は、ゲル状電解質や固体電解質でもよいが、一般には非水溶媒とそれに溶解する溶質からなる電解液が用いられる。非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネート類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;γ−ブチロラクトン等のγ−ラクトン類;1,2−ジメトキシエタン、1,2−ジエトキシエタン、エトキシメトキシエタン等の鎖状エーテル類;テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類;ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンサルトン、アニソール、ジメチルスルホキシド、N−メチルピロリドン、ブチルジグライム、メチルテトラグライム等の非プロトン性有機溶媒等を挙げることができる。これらは複数を組み合わせて用いることが好ましい。   The nonaqueous electrolytic solution may be a gel electrolyte or a solid electrolyte, but in general, an electrolytic solution composed of a nonaqueous solvent and a solute dissolved therein is used. Non-aqueous solvents include, for example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate; methyl formate, methyl acetate Aliphatic carboxylic acid esters such as methyl propionate and ethyl propionate; γ-lactones such as γ-butyrolactone; chain ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane, and ethoxymethoxyethane Cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran; dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile Propyl nitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate Examples thereof include aprotic organic solvents such as derivatives, tetrahydrofuran derivatives, ethyl ether, 1,3-propane sultone, anisole, dimethyl sulfoxide, N-methylpyrrolidone, butyl diglyme, and methyl tetraglyme. These are preferably used in combination.

非水溶媒に溶解させる溶質としては、例えばLiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiCF3CO2、Li(CF3SO22、LiAsF6、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、テトラクロロホウ素酸リチウム、テトラフェニルホウ素酸リチウム、イミド類等を挙げることができる。これらは単独で用いてもよく、複数を組み合わせて用いてもよい。これらの溶質の非水溶媒に対する溶解量は、特に限定されないが、0.2〜2.0mol/Lが好ましく、0.5〜1.5mol/Lがより好ましい。 Examples of the solute dissolved in the non-aqueous solvent include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiAsF 6 , Examples thereof include LiB 10 Cl 10 , lower aliphatic lithium carboxylate, LiCl, LiBr, LiI, lithium tetrachloroborate, lithium tetraphenylborate, and imides. These may be used alone or in combination. The amount of these solutes dissolved in the non-aqueous solvent is not particularly limited, but is preferably 0.2 to 2.0 mol / L, and more preferably 0.5 to 1.5 mol / L.

正極は、非水電解質二次電池の正極として提案されているものであれば、特に限定なく用いることができる。正極は、一般に正極活物質と、導電剤と、結着剤とを含む。正極活物質としては、非水電解質二次電池の正極活物質として提案されているものであれば、特に限定なく用いることができるが、リチウム含有遷移金属化合物が好ましい。リチウム含有遷移金属化合物の代表的な例としては、LixCoO2、LixNiO2、LixMnO2、LixCoyNi1-y2、LixCoy1-yz、LixNi1-yyz、LixMn24、LixMn2-yy4、LiCo1-xMgx2、LiNi1-yCoy2、LiNi1-y-zCoyMnz2等が挙げられるが、これらに限定されない。なお、これらのリチウム含有遷移金属化合物において、Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、SbおよびBからなる群より選択される少なくとも一種であり、x=0〜1.2、y=0〜0.9、z=2.0〜2.3である。x値は、電池の充放電により増減する。また、遷移金属カルコゲン化物、バナジウム酸化物およびそのリチウム化合物、ニオブ酸化物およびそのリチウム化合物、有機導電性物質を用いた共役系ポリマー、シェブレル相化合物等を正極活物質として用いることも可能である。複数の活物質を組み合わせて用いることも可能である。 If a positive electrode is proposed as a positive electrode of a nonaqueous electrolyte secondary battery, it can be used without limitation. The positive electrode generally includes a positive electrode active material, a conductive agent, and a binder. Any positive electrode active material can be used without particular limitation as long as it is proposed as a positive electrode active material for a non-aqueous electrolyte secondary battery, but a lithium-containing transition metal compound is preferred. Representative examples of the lithium-containing transition metal compound include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1-y O z , Li x Ni 1-y M y O z, Li x Mn 2 O 4, Li x Mn 2-y M y O 4, LiCo 1-x Mg x O 2, LiNi 1-y Co y O 2, LiNi 1- Examples thereof include, but are not limited to, yz Co y Mn z O 2 . In these lithium-containing transition metal compounds, M is selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb and B. It is at least one type, and x = 0 to 1.2, y = 0 to 0.9, and z = 2.0 to 2.3. The x value increases or decreases as the battery is charged and discharged. Further, transition metal chalcogenides, vanadium oxides and lithium compounds thereof, niobium oxides and lithium compounds thereof, conjugated polymers using organic conductive substances, chevrel phase compounds, and the like can also be used as the positive electrode active material. It is also possible to use a combination of a plurality of active materials.

正極と負極との間に介在させるセパレータとしては、大きなイオン透過度、所定の機械的強度、および電子絶縁性を有する微多孔性薄膜が用いられる。非水溶媒に対する耐性と疎水性に優れていることから、ポリプロピレン、ポリエチレン、ポリフェニレンスルフイド、ポリエチレンテレフタレート、ポリアミド、ポリイミド等の材質からなる微多孔性薄膜が好ましく用いられる。これらの材質は単独で用いてもよく、複数を組み合わせて用いてもよい。製造コストの観点からは、安価なポリプロピレン等を用いることが有利である。また、電池に耐リフロー性を付与する場合には、熱変形温度が230℃以上のポリエチレンテレフタレート、ポリアミド、ポリイミド等を用いることが好ましい。また、ガラス繊維等からなるシート、不織布、織布等も用いられる。セパレータの厚みは、一般的には10〜300μmであり、セパレータの空孔率は、電子伝導性、イオン透過性、素材等に応じて決定されるが、一般的には30〜80%であることが望ましい。   As the separator interposed between the positive electrode and the negative electrode, a microporous thin film having high ion permeability, predetermined mechanical strength, and electronic insulation is used. A microporous thin film made of a material such as polypropylene, polyethylene, polyphenylene sulfide, polyethylene terephthalate, polyamide, or polyimide is preferably used because of its excellent resistance to non-aqueous solvents and hydrophobicity. These materials may be used alone or in combination. From the viewpoint of manufacturing cost, it is advantageous to use inexpensive polypropylene or the like. In addition, when imparting reflow resistance to the battery, it is preferable to use polyethylene terephthalate, polyamide, polyimide or the like having a heat distortion temperature of 230 ° C. or higher. Further, a sheet made of glass fiber or the like, a nonwoven fabric, a woven fabric, or the like is also used. The thickness of the separator is generally 10 to 300 μm, and the porosity of the separator is determined according to electron conductivity, ion permeability, material, etc., but is generally 30 to 80%. It is desirable.

本発明は、円筒型、扁平型、コイン型、角形等の様々な形状の非水電解質二次電池に適用可能であり、電池の形状は特に限定されない。本発明は、金属製の電池缶やラミネートフィルム製のケースに、電極、電解液等の発電要素を収容した電池を含め、様々な封止形態の電池に適用可能であり、電池の封止形態は特に限定されない。   The present invention can be applied to non-aqueous electrolyte secondary batteries having various shapes such as a cylindrical shape, a flat shape, a coin shape, and a square shape, and the shape of the battery is not particularly limited. INDUSTRIAL APPLICABILITY The present invention can be applied to batteries of various sealing forms, including batteries that contain power generation elements such as electrodes and electrolytes in metal battery cans and laminated film cases. Is not particularly limited.

本発明による非水電解質二次電池の実施形態は、例えば負極缶と正極缶とをガスケットを介して組み合わせたコイン型非水電解液電池である。この電池の好ましい製造方法を説明する。まず、リチウムイオンを吸蔵・放出可能な正極活物質を含む正極合剤よりなる正極ペレットを正極缶内に接して配し、Siを含有する合金材料を含む負極合剤よりなる負極ペレットを負極缶内に接して配する。次に、セパレータを前記正極ペレット上にのせ、リチウムイオン導電性の非水電解液を負極ペレット、正極ペレットおよびセパレータに含浸させる。その後、前記負極缶と前記正極缶とをそれらの周縁部にガスケットを介して組み合わせ、正極缶の開口端部をガスケットを介して負極缶側にかしめて封止する。   An embodiment of a nonaqueous electrolyte secondary battery according to the present invention is a coin-type nonaqueous electrolyte battery in which a negative electrode can and a positive electrode can are combined through a gasket, for example. A preferred method for producing this battery will be described. First, a positive electrode pellet made of a positive electrode mixture containing a positive electrode active material capable of occluding and releasing lithium ions is arranged in contact with the positive electrode can, and a negative electrode pellet made of a negative electrode mixture containing an Si-containing alloy material is made into the negative electrode can Arrange it inside. Next, the separator is placed on the positive electrode pellet, and the negative electrode pellet, the positive electrode pellet and the separator are impregnated with a lithium ion conductive non-aqueous electrolyte. Thereafter, the negative electrode can and the positive electrode can are combined with a peripheral edge portion of the positive electrode can via a gasket, and the opening end of the positive electrode can is caulked and sealed to the negative electrode can side via the gasket.

次に、本発明を実施例および比較例に基づいて具体的に説明する。下記の実施例は、本発明の好ましい形態を例示するものであり、本発明が下記の実施例に限られるものではない。   Next, the present invention will be specifically described based on examples and comparative examples. The following examples illustrate preferred embodiments of the present invention, and the present invention is not limited to the following examples.

《実施例1》
本実施例では、B相を構成する遷移金属の種類、および金属状態でないFeが含有した場合について検討した。
以下の要領で負極および正極を作製し、コイン型電池を組み立てた。その電池のサイクル寿命、放電容量、および過放電状態での保存特性について評価した。
Example 1
In this example, the type of transition metal constituting the B phase and the case where Fe that is not in a metal state contained were studied.
A negative electrode and a positive electrode were produced in the following manner, and a coin-type battery was assembled. The battery was evaluated for cycle life, discharge capacity, and storage characteristics in an overdischarged state.

(1)合金材料の製造
遷移金属元素Mの原料としては、金属Ti、金属Zr、金属Ni、金属Cuを用いた。これらはいずれも、純度99.9%であり、粒径100〜150μmの粉体であった。Siの原料としては、Si粉末(純度99.9%、平均粒径3μm)を用いた。
(1) Manufacture of alloy material As a raw material of the transition metal element M, metal Ti, metal Zr, metal Ni, and metal Cu were used. All of these were powders having a purity of 99.9% and a particle size of 100 to 150 μm. Si powder (purity 99.9%, average particle size 3 μm) was used as a raw material for Si.

B相がMSi2を構成すると仮定した場合に、生成する合金材料中のA相とB相の合計重量に占めるA相の割合が20%となるように、それぞれ遷移金属とSiを混合した。
Fe元素の原料には金属Fe粉末を用いた。その純度は99.9%、平均粒径は100μmであった。
上記の遷移金属およびSiの混合物に、Feをその含有量が0.001重量%となるように混合した。
Assuming that the B phase constitutes MSi 2 , the transition metal and Si were mixed so that the proportion of the A phase in the total weight of the A phase and the B phase in the alloy material to be produced was 20%.
Metal Fe powder was used as a raw material for Fe element. Its purity was 99.9% and the average particle size was 100 μm.
Fe was mixed with the above transition metal and Si mixture so that the content thereof was 0.001 wt%.

各混合物を3.5kg秤量し、振動ミル装置(中央化工機(株)製、型番FV−20)に投入し、さらにステンレス鋼製ボール(直径2cm)をミル装置内容量の70体積%を占めるように投入した。容器内部を真空に引いた後、アルゴンガス(純度99.999%、日本酸素(株)製)を導入して、1気圧になるようにした。これらの条件でメカニカルアロイング操作を行った。ミル装置の作動条件は、振幅8mm、回転数1200rpmとした。これらの条件でメカニカルアロイング操作を80時間行った。   3.5 kg of each mixture is weighed and put into a vibration mill apparatus (manufactured by Chuo Kako Co., Ltd., model number FV-20), and a stainless steel ball (diameter 2 cm) occupies 70% by volume of the mill apparatus capacity. I put it in. After evacuating the inside of the container, argon gas (purity 99.999%, manufactured by Nippon Oxygen Co., Ltd.) was introduced so that the pressure became 1 atm. Mechanical alloying operation was performed under these conditions. The operating conditions of the mill device were an amplitude of 8 mm and a rotation speed of 1200 rpm. Under these conditions, mechanical alloying operation was performed for 80 hours.

上記操作によって得られたTi−Si合金を回収し、線源としてCuKα線を用い、X線回折測定で分析したところ、微結晶を示すスペクトルが得られた。また、X線回折測定で得られた回折スペクトルにおいて、回折角2θ=10°〜80°の範囲に観測される最も強度の強い回折ピークの半価幅と、Scherrerの式に基づいて算出した合金の結晶粒(結晶子)の粒径は10nmであった。   When the Ti—Si alloy obtained by the above operation was collected and analyzed by X-ray diffraction measurement using CuKα ray as a radiation source, a spectrum showing fine crystals was obtained. Further, in the diffraction spectrum obtained by X-ray diffraction measurement, the half-value width of the strongest diffraction peak observed in the diffraction angle range of 2θ = 10 ° to 80 ° and the alloy calculated based on the Scherrer equation The grain size of the crystal grains (crystallites) was 10 nm.

X線回折測定の結果から、Ti−Si合金におけるSi単体相(A相)とTiSi2相(B相)とが存在していると推定された。これらの2相が主に存在すると仮定し、Si単体相とTiSi2相との割合を計算すると、Si:TiSi2=20:80(重量比)であることが判明した。 From the result of the X-ray diffraction measurement, it was estimated that the Si single phase (A phase) and the TiSi 2 phase (B phase) exist in the Ti—Si alloy. Assuming that these two phases are mainly present and calculating the ratio of the Si simple phase and the TiSi 2 phase, it was found that Si: TiSi 2 = 20: 80 (weight ratio).

他の3種類の合金についても、X線回折測定を行い、結晶子サイズ、およびA相とB相との重量比を求めたところ、上記と同様の結果が得られた。   The other three types of alloys were also subjected to X-ray diffraction measurement, and the crystallite size and the weight ratio between the A phase and the B phase were obtained. The same results as above were obtained.

Ti−Si合金の断面を透過電子顕微鏡(TEM)で観察したところ、非晶質領域と、粒径10nm程度の結晶粒(結晶子)からなるSi単体相と、粒径15〜20nm程度の結晶粒結晶子を有するTiSi2相とが、それぞれ存在していることが判明した。他の3種類の合金についても同様の測定を行ったところ、上記と同様の結果が得られた。 When a cross section of the Ti—Si alloy was observed with a transmission electron microscope (TEM), an Si region composed of an amorphous region, crystal grains (crystallites) with a particle size of about 10 nm, and crystals with a particle size of about 15 to 20 nm. It has been found that a TiSi 2 phase having grain crystallites exists. When the same measurement was performed on the other three types of alloys, the same results as described above were obtained.

また、合金材料中の金属Feの量を特定するため、飽和磁化率の測定により合金材料中の金属状態のFe量を求めた。本実施例ではそれぞれの合金材料中には、0.001重量%の金属状態のFeが含有されていることがわかった。   Further, in order to specify the amount of metallic Fe in the alloy material, the amount of Fe in the metallic state in the alloy material was determined by measuring the saturation magnetic susceptibility. In the present Example, it turned out that 0.001 weight% Fe of a metal state contains in each alloy material.

(2)負極の作製
上記のようにして得られた合金と黒鉛と結着剤とを用いて、以下の要領で負極を作製した。
(2) Production of negative electrode Using the alloy obtained as described above, graphite and binder, a negative electrode was produced in the following manner.

合金と、黒鉛(日本黒鉛工業(株)製、SP−5030)と、結着剤のポリアクリル酸(和光純薬工業(株)製、平均分子量15万)とを、重量比70.5:21.5:7の割合で混合し、負極合剤を得た。この負極合剤を、直径4mm、厚さ0.3mmのペレットに成形し、その後、ペレットを200℃で12時間乾燥した。乾燥後のペレットの厚さは300μm、空孔率は26.6%、密度は1.721g/cm3であった。 Alloy, graphite (manufactured by Nippon Graphite Industry Co., Ltd., SP-5030) and binder polyacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd., average molecular weight 150,000) in a weight ratio of 70.5: The mixture was mixed at a ratio of 21.5: 7 to obtain a negative electrode mixture. This negative electrode mixture was formed into pellets having a diameter of 4 mm and a thickness of 0.3 mm, and then the pellets were dried at 200 ° C. for 12 hours. The pellet thickness after drying was 300 μm, the porosity was 26.6%, and the density was 1.721 g / cm 3 .

(3)正極の作製
二酸化マンガンと水酸化リチウムとをモル比で2:1の割合で混合し、その混合物を空気中において400℃で12時間焼成し、マンガン酸リチウムを得た。
(3) Preparation of positive electrode Manganese dioxide and lithium hydroxide were mixed at a molar ratio of 2: 1, and the mixture was fired in air at 400 ° C. for 12 hours to obtain lithium manganate.

得られたマンガン酸リチウムと、導電剤のカーボンブラックと、結着剤のポリテトラフルオロエチレンとを、重量比88:6:6の割合で混合し、正極合剤を得た。結着剤は水性ディスパージョンの状態で使用した。この正極合剤を、直径4mm、厚さ1.0mmのペレットに成形し、その後、ペレットを250℃で12時間乾燥した。   The obtained lithium manganate, carbon black as a conductive agent, and polytetrafluoroethylene as a binder were mixed in a weight ratio of 88: 6: 6 to obtain a positive electrode mixture. The binder was used in the form of an aqueous dispersion. This positive electrode mixture was formed into pellets having a diameter of 4 mm and a thickness of 1.0 mm, and then the pellets were dried at 250 ° C. for 12 hours.

(4)コイン型電池の作製
上記の負極合剤ペレットおよび正極合剤ペレットを用いて、図1に示すような外径6.8mm、厚み2.1mmの寸法を有するコイン型の非水電解質二次電池を組み立てた。
(4) Production of coin-type battery Using the above-mentioned negative electrode mixture pellet and positive electrode mixture pellet, a coin-type non-aqueous electrolyte 2 having an outer diameter of 6.8 mm and a thickness of 2.1 mm as shown in FIG. The next battery was assembled.

正極缶2は、正極端子を兼ねており、耐食性に優れたステンレス鋼からなる。正極缶2の中央には上記の正極合剤ペレット1が配置されている。負極缶6は、負極端子を兼ねており、正極缶2と同じステンレス鋼からなる。負極缶6の中央には負極合剤ペレット4が配置されている、ガスケット5は、正極缶2と負極缶6を絶縁しており、ポリプロピレン製である。正極缶2および負極缶6とガスケット5との接する面には、ピッチが塗布されている。   The positive electrode can 2 also serves as a positive electrode terminal and is made of stainless steel having excellent corrosion resistance. The positive electrode mixture pellet 1 is disposed in the center of the positive electrode can 2. The negative electrode can 6 also serves as a negative electrode terminal and is made of the same stainless steel as the positive electrode can 2. A negative electrode mixture pellet 4 is disposed at the center of the negative electrode can 6. A gasket 5 insulates the positive electrode can 2 and the negative electrode can 6 and is made of polypropylene. A pitch is applied to the surface where the positive electrode can 2 and the negative electrode can 6 and the gasket 5 are in contact with each other.

ポリエチレン製の不織布からなるセパレータ3を上記正極合剤ペレット1と負極合剤ペレット4との間に挿入される。電解液には、プロピレンカーボネートとエチレンカーボネートと1,2−ジメトキシエタンとを体積比1:1:1の混合で混合した溶媒に、1モル/lのLiN(CF3SO22を溶解したものを用いた。 A separator 3 made of a non-woven fabric made of polyethylene is inserted between the positive electrode mixture pellet 1 and the negative electrode mixture pellet 4. In the electrolytic solution, 1 mol / l LiN (CF 3 SO 2 ) 2 was dissolved in a solvent in which propylene carbonate, ethylene carbonate, and 1,2-dimethoxyethane were mixed at a volume ratio of 1: 1: 1. A thing was used.

《比較例1》
上記と同様の、原料の遷移金属、Si、およびFeの混合物を溶解槽に入れ、不活性雰囲気下において、1400℃にて溶解し、その溶融物をロール急冷法で急冷して凝固物を得た。その凝固物を不活性雰囲気下において500℃で20時間熱処理を行い、この熱処理品をボールミルで粉砕し、篩で分級することにより、45μm以下の粒子にした。こうして負極材料を得た。
<< Comparative Example 1 >>
The same raw material transition metal, Si, and Fe mixture as described above is put in a dissolution tank, dissolved in an inert atmosphere at 1400 ° C., and the melt is rapidly cooled by a roll quenching method to obtain a solidified product. It was. The coagulated product was heat-treated at 500 ° C. for 20 hours under an inert atmosphere, and the heat-treated product was pulverized with a ball mill and classified with a sieve to obtain particles of 45 μm or less. In this way, a negative electrode material was obtained.

これらの負極材料について、X線回折とTEM観察により、結晶子サイズが100nm程度の結晶質の、Si単体相とMSi2相(M=Ti、Zr、Ni、またはCu)とからなることが確認された。 About these negative electrode materials, it is confirmed by X-ray diffraction and TEM observation that the crystallite size is composed of crystalline Si single phase and MSi 2 phase (M = Ti, Zr, Ni, or Cu). It was done.

また、合金材料の金属Fe量を特定するため、飽和磁化率をそれぞれ求めたところ、金属状態のFeは検出されなかった。一方、ICP発光分析によって、投入した原料と同量のFe量が検出された。したがって、急冷法で合成した合金には、金属状態でないFeが混入されていることがわかった。さらに、X線回折測定とTEM観察の結果、Si相およびMSi2相の結晶子サイズは100nm程度と、結晶性の高い状態であった。 Further, when the saturation magnetic susceptibility was respectively determined in order to specify the amount of metallic Fe in the alloy material, metallic Fe was not detected. On the other hand, the same amount of Fe as that of the charged raw material was detected by ICP emission analysis. Therefore, it was found that Fe that was not in a metal state was mixed in the alloy synthesized by the rapid cooling method. Furthermore, as a result of X-ray diffraction measurement and TEM observation, the crystallite size of the Si phase and the MSi 2 phase was about 100 nm, indicating a high crystallinity state.

(5)電池の評価
20℃に設定した恒温槽の中で、実施例1および比較例1の電池について定電流充放電を、充電電流2C(1Cは1時間率電流)、放電電流0.2Cで、電池電圧2.0V〜3.3Vの範囲で200サイクル繰り返した。
(5) Battery Evaluation In a thermostat set at 20 ° C., the batteries of Example 1 and Comparative Example 1 were charged with a constant current of charge current 2C (1C is 1 hour rate current), discharge current 0.2C. Then, 200 cycles were repeated in the battery voltage range of 2.0V to 3.3V.

その際、2サイクル目の放電容量を初回放電容量として求めた。また、2サイクル目の放電容量に対する200サイクル目の放電容量の割合を百分率(%)で求め、容量維持率とした。容量維持率が100(%)に近いほどサイクル寿命が優れていることを示す。   At that time, the discharge capacity at the second cycle was determined as the initial discharge capacity. In addition, the ratio of the discharge capacity at the 200th cycle to the discharge capacity at the second cycle was obtained as a percentage (%), and was used as the capacity maintenance rate. The closer the capacity retention rate is to 100 (%), the better the cycle life.

また、上記の充放電サイクル条件で5サイクル行った後、放電電流0.2Cで、電池電圧0Vまで放電し、60℃に設定した恒温槽の中で、電池の端子を短絡した状態で100日間保存した。その後、2℃の恒温槽の中で、充電電流0.2C、放電電流0.2Cで電池電圧2.0V〜3.3Vの範囲で充放電を100サイクル繰り返し、放電容量を測定した。この保存後の容量の保存前の容量に対する百分率を容量回復率とする。   In addition, after 5 cycles under the above charge / discharge cycle conditions, the battery was discharged at a discharge current of 0.2 C to a battery voltage of 0 V, and the battery terminals were short-circuited in a thermostat set at 60 ° C. for 100 days. saved. Thereafter, charging and discharging were repeated 100 cycles in a range of battery voltage 2.0V to 3.3V with a charging current of 0.2C and a discharging current of 0.2C in a 2 ° C thermostat, and the discharge capacity was measured. The percentage of the capacity after storage with respect to the capacity before storage is defined as a capacity recovery rate.

初回放電容量、容量維持率、および容量回復率を表1に示す。表1において、試料No.1−1〜1−4が実施例1であり、試料No.11−1〜11−4が比較例1である。   Table 1 shows the initial discharge capacity, capacity maintenance rate, and capacity recovery rate. In Table 1, Sample No. 1-1 to 1-4 are Example 1, and sample Nos. 11-1 to 11-4 is Comparative Example 1.

Figure 2007165300
Figure 2007165300

表1から明らかなように、実施例1の電池は、いずれも比較例1の電池に比べて200サイクル目の容量維持率が高く、かつ過放電状態で保存後の容量回復率は同等レベルであった。   As is clear from Table 1, the batteries of Example 1 all have a higher capacity retention rate at the 200th cycle than the battery of Comparative Example 1, and the capacity recovery rate after storage in the overdischarged state is at the same level. there were.

金属状態のFeがサイクル特性を向上させるメカニズムの詳細は不明であるが、Feは、充電時の合金材料表面の皮膜形成を抑制する触媒的な働きを有し、サイクル時の過剰なインピ−ダンス上昇を抑制すると推定される。
また、本実施例における金属状態のFe量では、過放電状態で保存後の容量回復率に悪影響は全くないことがわかった。
Although the details of the mechanism by which Fe in the metal state improves the cycle characteristics are unclear, Fe has a catalytic function that suppresses the formation of a film on the surface of the alloy material during charging, and excessive impedance during cycling. It is estimated that the rise is suppressed.
It was also found that the amount of Fe in the metallic state in this example had no adverse effect on the capacity recovery rate after storage in the overdischarged state.

《実施例2》
本実施例では、遷移金属の種類および結晶性を変えた場合の、金属状態のFeを含有させることによる効果を検討した。
Example 2
In this example, the effect of including Fe in the metal state when the type and crystallinity of the transition metal were changed was examined.

実施例1と同様にして、Si相およびMSi2相(M=Ti、Zr、Ni、またはCu)からなり、Fe含量0.001重量%の合金材料(試料No.2−1〜2−4)を作製した。これらのA相およびB相の結晶子サイズは、それぞれ約10nmおよび15nmであった。結晶性の高い合金材料、すなわち結晶子サイズの大きい合金材料は、メカニカルアロイ法の合成時間を短くすることにより得た。具体的には、合成時間を40時間とした。得られた合金材料(試料No.2−5)の結晶子サイズは、Si相(A相)およびTiSi2相(B相)のいずれも100nmであった。 In the same manner as in Example 1, an alloy material (sample No. 2-1 to 2-4) composed of Si phase and MSi 2 phase (M = Ti, Zr, Ni, or Cu) and Fe content of 0.001 wt%. ) Was produced. The crystallite sizes of these A and B phases were about 10 nm and 15 nm, respectively. An alloy material having high crystallinity, that is, an alloy material having a large crystallite size was obtained by shortening the synthesis time of the mechanical alloy method. Specifically, the synthesis time was 40 hours. The crystallite size of the obtained alloy material (Sample No. 2-5) was 100 nm for both the Si phase (A phase) and the TiSi 2 phase (B phase).

《比較例2》
原料にFeを混合しない他は実施例2と同様にして、Si相(A相)とTiSi2相(B相)を有する、低結晶性の合金材料(試料No.12−1〜12−4)、および高結晶性の合金材料(試料No.12−5)を作製した。
<< Comparative Example 2 >>
A low crystalline alloy material (sample Nos. 12-1 to 12-4) having a Si phase (A phase) and a TiSi 2 phase (B phase) in the same manner as in Example 2 except that Fe is not mixed in the raw material. ) And a highly crystalline alloy material (Sample No. 12-5).

実施例2および比較例2の合金材料を用いて負極を製造し、実施例1と同様にして電池を組み立て、評価した。その結果を表2および表3に示す。   Negative electrodes were produced using the alloy materials of Example 2 and Comparative Example 2, and batteries were assembled and evaluated in the same manner as in Example 1. The results are shown in Tables 2 and 3.

Figure 2007165300
Figure 2007165300

Figure 2007165300
Figure 2007165300

実施例2の電池は、いずれも比較例2の電池に比べて200サイクル目の容量維持率が高く、かつ過放電状態での保存後の回復率は同等レベルであった。また、表3から明らかなように、結晶性の高い合金においても、金属状態のFeを含むことがサイクル特性の改良に有効であることがわかった。
また、本実施例における、金属状態のFe量では、保存後の容量回復率に悪影響は全くないことがわかった。
The batteries of Example 2 all had a higher capacity retention rate at the 200th cycle than the battery of Comparative Example 2, and the recovery rate after storage in the overdischarged state was at the same level. Further, as is apparent from Table 3, it was found that even in an alloy having high crystallinity, it is effective to improve the cycle characteristics to contain Fe in a metal state.
It was also found that the amount of Fe in the metal state in this example had no adverse effect on the capacity recovery rate after storage.

《実施例3》
合金材料に含有される金属Feの量と合金材料の飽和磁化率について検討した。
原料に加えるFeの量を変化させた以外、実施例1と同様にして、A相(Si相)とB相との重量比が20:80で、Feを0.0003〜2.0重量%の範囲で含む、各種合金材料を製造した。得られた合金材料粒子を分級し、最大粒径8μm、平均粒径5μmとした。
Example 3
The amount of metallic Fe contained in the alloy material and the saturation magnetic susceptibility of the alloy material were investigated.
Except for changing the amount of Fe added to the raw material, the weight ratio of the A phase (Si phase) to the B phase was 20:80 and Fe was 0.0003 to 2.0% by weight in the same manner as in Example 1. Various alloy materials were produced, including in the range. The obtained alloy material particles were classified into a maximum particle size of 8 μm and an average particle size of 5 μm.

上記合金材料のX線回折測定で得られる強度の最も大きなピークの半価幅とScherrerの式から、実施例1と同様に、A相の結晶子サイズを算出した。
例えば、Ti−Si合金材料では、10nm程度の結晶粒(結晶子)からなるSi単体相と、15nm〜20nm程度の結晶粒(結晶子)を有するTiSi2相とが存在することがわかった。他の3種類の合金材料についても同様であった。
In the same manner as in Example 1, the crystallite size of the A phase was calculated from the half-value width of the peak with the largest intensity obtained by X-ray diffraction measurement of the alloy material and the Scherrer equation.
For example, in a Ti—Si alloy material, it has been found that there is a Si single phase composed of crystal grains (crystallites) of about 10 nm and a TiSi 2 phase having crystal grains (crystallites) of about 15 nm to 20 nm. The same was true for the other three types of alloy materials.

また、金属状態のFe量は、実施例1と同様に、飽和磁化率から求めた。各合金材料を用いて、実施例1と同様にして、負極を作製し、電池を組み立てた。電池の評価結果を表4に示す。   Further, the amount of Fe in the metal state was determined from the saturation magnetic susceptibility, as in Example 1. Using each alloy material, a negative electrode was produced in the same manner as in Example 1, and a battery was assembled. Table 4 shows the evaluation results of the battery.

Figure 2007165300
Figure 2007165300

表4から明らかなように、合金材料中に含まれる金属状態のFe量が0.0006〜1.0重量%の範囲で、容量維持率、および保存後の容量回復率が優れていることがわかった。   As is clear from Table 4, the capacity retention rate and the capacity recovery rate after storage are excellent when the amount of Fe in the metal state contained in the alloy material is in the range of 0.0006 to 1.0% by weight. all right.

すなわち、合金材料中の金属状態のFeが0.0006重量%より少ない場合には、サイクル特性が悪化した。充放電時の合金材料表面における被膜形成の抑制に対して、金属状態のFeが触媒的な役割を果たし、過剰な抵抗成分となる被膜形成を阻害する核として働くと推定される。この役割において金属状態のFeは、0.0006重量%以上が有効と考えられる。また、金属状態のFeが1.0重量%より多い場合には、過放電状態で保存後の容量回復率が悪化した。これは、過放電時には、負極電位が上昇(電気化学的な酸化)するために、その電位での長時間の保存によって、金属状態のFeの溶解現象が増加し、電池のインピ−ダンスの上昇をもたらし、保存特性を悪化させると考えられる。   That is, when the Fe in the metal state in the alloy material is less than 0.0006% by weight, the cycle characteristics deteriorated. It is presumed that Fe in a metal state plays a catalytic role in suppressing the formation of a film on the surface of the alloy material during charging and discharging, and acts as a nucleus that inhibits the formation of a film that becomes an excessive resistance component. In this role, it is considered that 0.0006% by weight or more of Fe in the metal state is effective. Further, when the amount of Fe in the metal state was more than 1.0% by weight, the capacity recovery rate after storage was deteriorated in the overdischarged state. This is because the negative electrode potential rises (electrochemical oxidation) during overdischarge, so that the dissolution of Fe in the metallic state increases due to long-term storage at that potential, resulting in an increase in battery impedance. It is considered that the storage characteristics are deteriorated.

《実施例4》
本実施例では、Siを含む相の量について検討した。
A相とB相との重量比が1:99〜98:2となるようにした他は実施例1と同様にして、表5に示すように、Ti−Si合金、Zr−Si合金、Ni−Si合金、およびCu−Si合金を合成した。加えたFe量は0.001重量%とした。得られた合金材料を分級し、最大粒径8μm、平均粒径5μmとした。
Example 4
In this example, the amount of the phase containing Si was examined.
As shown in Table 5, except that the weight ratio of the A phase to the B phase was 1:99 to 98: 2, as shown in Table 5, Ti—Si alloy, Zr—Si alloy, Ni -Si alloy and Cu-Si alloy were synthesized. The amount of added Fe was 0.001% by weight. The obtained alloy material was classified into a maximum particle size of 8 μm and an average particle size of 5 μm.

実施例1と同様にして、合金材料のX線回折測定で得られる、強度の最も大きなピークの半価幅とScherrerの式からA相およびB相の結晶子サイズを算出した。すべて、10nm程度の結晶粒(結晶子)からなるSi単体相と、15nm〜20nm程度の結晶粒(結晶子)を有するMSi2相とが存在することがわかった。
また、金属状態のFe量を測定した結果、すべて0.001重量%であった。
In the same manner as in Example 1, the crystallite sizes of the A phase and the B phase were calculated from the half-value width of the peak with the highest intensity obtained by X-ray diffraction measurement of the alloy material and the Scherrer equation. It was found that there was a Si single phase composed of crystal grains (crystallites) of about 10 nm and an MSi 2 phase having crystal grains (crystallites) of about 15 nm to 20 nm.
Moreover, as a result of measuring the amount of Fe in a metal state, all were 0.001% by weight.

上記の合金材料を用い、実施例1と同様にして負極を作製し、電池を組み立てた。各電池の特性を表5に示す。   Using the above alloy material, a negative electrode was produced in the same manner as in Example 1, and a battery was assembled. Table 5 shows the characteristics of each battery.

Figure 2007165300
Figure 2007165300

表5に示されるとおり、Si相の割合が5〜95重量%の範囲で、容量維持率、および容量回復率が高いことがわかった。
Si相の割合が5重量%よりも低い場合には、充放電サイクルの進行に伴い容量の劣化が大きかった。その理由は、容量に寄与するSi量が少なすぎるために、充放電サイクル中のSi相への電流密度が過剰に高い状態となったことによると思われる。また、過放電状態での保存時には、金属状態のFe含量が同等であっても、Si相の量が少ないために、溶解するFeの悪影響を相対的に受けやすい状態となる。そのため、容量回復率が低くなったと思われる。
As shown in Table 5, it was found that the capacity retention rate and the capacity recovery rate were high when the Si phase ratio was in the range of 5 to 95% by weight.
When the proportion of the Si phase was lower than 5% by weight, the capacity was greatly deteriorated as the charge / discharge cycle progressed. The reason seems to be that the current density to the Si phase during the charge / discharge cycle is excessively high because the amount of Si contributing to the capacity is too small. In addition, during storage in an overdischarged state, even if the Fe content in the metal state is the same, the amount of Si phase is small, so that it is relatively susceptible to the adverse effects of dissolved Fe. Therefore, the capacity recovery rate seems to have been lowered.

一方、Si相の割合が95重量%よりも高い場合には、容量が大きくはなるが、合金材料中に電子導電性の低いSi相が相対的に増加する。そのため、合金材料全体の電子伝導性が低くなり、充放電サイクル中の集電性確保には不利な状況となる。このように、電池のインピ−ダンスが本質的に大きいので、過放電時のインピ−ダンス増大に対する余裕が少なく、容量回復率が悪化すると考えられる。   On the other hand, when the proportion of the Si phase is higher than 95% by weight, the capacity is increased, but the Si phase having a low electronic conductivity is relatively increased in the alloy material. Therefore, the electron conductivity of the whole alloy material becomes low, and it becomes a disadvantageous situation for securing current collection during the charge / discharge cycle. Thus, since the impedance of the battery is essentially large, there is little room for an increase in impedance during overdischarge, and the capacity recovery rate is thought to deteriorate.

《実施例5》
本実施例では、本発明による合金材料の製造方法について説明する。
本発明の合成方法では、合金材料に含有される金属状態のFe量に対応して変化する飽和磁化率を検出し、その飽和磁化率が所定の範囲値に入る時点で合成を終了することを特徴としている。
Example 5
In this example, a method for producing an alloy material according to the present invention will be described.
In the synthesis method of the present invention, the saturation magnetic susceptibility that changes corresponding to the amount of Fe in the metallic state contained in the alloy material is detected, and the synthesis is terminated when the saturation magnetic susceptibility falls within a predetermined range value. It is a feature.

遷移金属元素Mの原料としては、金属Ti(純度99.9%、粒径100〜150μm)を用いた。Siの原料としては、Si粉末(純度99.9%、平均粒径3μm)を用いた。B相がTiSi2を構成すると仮定した場合に、生成する合金材料中のA相とB相の合計重量に占めるA相の割合が20%となるように、TiとSiを混合した。
さらに、Fe元素の原料としては金属Fe粉末を用いた。その純度は99.9%、平均粒径は100μmであった。
As a raw material of the transition metal element M, metal Ti (purity 99.9%, particle size 100 to 150 μm) was used. Si powder (purity 99.9%, average particle size 3 μm) was used as a raw material for Si. Assuming that the B phase constitutes TiSi 2 , Ti and Si were mixed so that the proportion of the A phase in the total weight of the A phase and the B phase in the alloy material to be produced was 20%.
Furthermore, metal Fe powder was used as a raw material for the Fe element. Its purity was 99.9% and the average particle size was 100 μm.

上記のSiとTiの混合物とFeとを、Feの含有量が2.0重量%となるように混合した。
実施例1と同様に、この原料混合物を3.5kg秤量し、振動ミル装置(中央化工機(株)製、型番FV−20)に投入し、さらにステンレス鋼製ボール(直径2cm)をミル装置内容量の70体積%を占めるように投入した。容器内部を真空に引いた後、Ar(純度99.999%、日本酸素(株)製)を導入して、1気圧になるようにした。これらの条件でメカニカルアロイング操作を行った。ミル装置の作動条件は、振幅8mm、回転数1200rpmとした。
The mixture of Si and Ti and Fe were mixed so that the Fe content was 2.0% by weight.
As in Example 1, 3.5 kg of this raw material mixture was weighed and placed in a vibration mill device (manufactured by Chuo Kako Co., Ltd., model number FV-20), and a stainless steel ball (diameter 2 cm) was further milled. It charged so that it might occupy 70 volume% of internal volume. After evacuating the inside of the container, Ar (purity 99.999%, manufactured by Nippon Oxygen Co., Ltd.) was introduced so that the pressure became 1 atm. Mechanical alloying operation was performed under these conditions. The operating conditions of the mill device were an amplitude of 8 mm and a rotation speed of 1200 rpm.

これらの条件でメカニカルアロイング操作を80時間行った。合成開始から10時間毎にサンプルを抜き取り、飽和磁化率を求めた。その結果を表6に示した。   Under these conditions, mechanical alloying operation was performed for 80 hours. Samples were withdrawn every 10 hours from the start of synthesis to determine the saturation magnetic susceptibility. The results are shown in Table 6.

Figure 2007165300
Figure 2007165300

合成開始から30時間で飽和磁化率が1.7emu/gに達した。実施例3の結果に基づくと、この値は、過放電状態で保存した後の容量回復率が良好となる範囲に入る。さらに、合成時間の増加とともに、飽和磁化率は減少し、50時間で0.001emu/gとなった。実施例3の結果に基づくと、飽和磁化率がこれ以下の場合には、サイクル特性が悪化する。これらを考慮すると、適正な合成時間は、30時間〜50時間である。   In 30 hours from the start of synthesis, the saturation magnetic susceptibility reached 1.7 emu / g. Based on the results of Example 3, this value falls within the range where the capacity recovery rate after storage in the overdischarged state is good. Furthermore, the saturation magnetic susceptibility decreased as the synthesis time increased and reached 0.001 emu / g in 50 hours. Based on the result of Example 3, when the saturation magnetic susceptibility is lower than this, the cycle characteristics deteriorate. Considering these, the proper synthesis time is 30 to 50 hours.

このように、合成途上の飽和磁化率を検出することによって、サイクル特性と過放電状態での保存特性に優れた材料の合成が可能となる。   As described above, by detecting the saturation magnetic susceptibility during synthesis, it is possible to synthesize a material excellent in cycle characteristics and storage characteristics in an overdischarged state.

本発明は、特に、携帯電話、デジタルカメラ等の各種電子機器の主電源およびメモリーバックアップ用電源として最適な非水電解質二次電池を提供する。本発明による非水電解質二次電池は、さらに、高い電気容量が要求されるとともに、充放電を行う場合にも優れたサイクル特性が要求される用途に対しても適用可能であり、そのような用途においても、過放電状態で保存後の容量回復率に優れている。   In particular, the present invention provides a non-aqueous electrolyte secondary battery that is optimal as a main power source and a memory backup power source for various electronic devices such as mobile phones and digital cameras. The non-aqueous electrolyte secondary battery according to the present invention is further applicable to applications that require high electric capacity and excellent cycle characteristics even when charging and discharging. Also in use, the capacity recovery rate after storage in an overdischarged state is excellent.

は本発明の非水電解質二次電池の一例であるコイン型電池の縦断面図である。FIG. 2 is a longitudinal sectional view of a coin-type battery that is an example of the nonaqueous electrolyte secondary battery of the present invention. 反磁性体材料のH−B曲線の例を示す図である。It is a figure which shows the example of the HB curve of a diamagnetic material. 強磁性体材料のH−B曲線の例を示す図である。It is a figure which shows the example of the HB curve of a ferromagnetic material. 強磁性体材料のH−B曲線の例を示す図である。It is a figure which shows the example of the HB curve of a ferromagnetic material.

Claims (6)

リチウムを可逆的に吸蔵・放出可能な正極、活物質として合金材料を含む負極、および非水電解質を具備する非水電解質二次電池であって、前記合金材料が、少なくともSiを含む相(A相)と、Ti、Zr、NiおよびCuからなる群より選ばれる少なくとも一種とSiとの金属間化合物を含む相(B相)とを有し、前記合金材料中に金属状態のFeを0.0006〜1.0重量%含有することを特徴とする非水電解質二次電池。   A nonaqueous electrolyte secondary battery comprising a positive electrode capable of reversibly inserting and extracting lithium, a negative electrode including an alloy material as an active material, and a nonaqueous electrolyte, wherein the alloy material includes a phase containing at least Si (A Phase) and a phase (B phase) containing an intermetallic compound of Si and at least one selected from the group consisting of Ti, Zr, Ni and Cu. A non-aqueous electrolyte secondary battery comprising 0006 to 1.0% by weight. 前記A相およびB相の少なくとも一方が、非晶質または低結晶性である請求項1に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein at least one of the A phase and the B phase is amorphous or low crystalline. 前記合金材料における前記A相およびB相の合計量中に占めるA相の割合が、5〜95重量%である請求項1に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein a ratio of the A phase in the total amount of the A phase and the B phase in the alloy material is 5 to 95% by weight. 前記合金材料1g当たりの飽和磁化率が0.001〜1.7emu/gである請求項1に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein a saturation magnetic susceptibility per 1 g of the alloy material is 0.001 to 1.7 emu / g. Si、Fe、並びにTi、Zr、NiおよびCuからなる群より選ばれる少なくとも一種の遷移金属元素を含む原材料から、少なくともSiを含む相(A相)と、前記少なくとも一種の遷移金属元素とSiとの金属間化合物を含む相(B相)とを有し、金属状態のFeを含む合金材料を製造する工程を含み、前記工程中に、前記合金材料中のFe量に応じて変化する飽和磁化率を検出し、検出した飽和磁化率が所定値になったとき前記工程を終了させる、非水電解質二次電池用負極材料の製造方法。   From a raw material containing at least one transition metal element selected from the group consisting of Si, Fe and Ti, Zr, Ni and Cu, a phase containing at least Si (A phase), the at least one transition metal element and Si, And a phase (B phase) containing an intermetallic compound, and a step of producing an alloy material containing Fe in a metallic state, and during the step, saturation magnetization that changes according to the amount of Fe in the alloy material The manufacturing method of the negative electrode material for nonaqueous electrolyte secondary batteries which detects a rate and complete | finishes the said process when the detected saturation magnetic susceptibility becomes a predetermined value. 前記工程がメカニカルアロイング処理を含む請求項5記載の非水電解質二次電池用負極材料の製造方法。   The manufacturing method of the negative electrode material for nonaqueous electrolyte secondary batteries of Claim 5 in which the said process includes a mechanical alloying process.
JP2006310004A 2005-11-17 2006-11-16 Nonaqueous electrolyte secondary battery and method for producing negative electrode material for nonaqueous electrolyte secondary battery Active JP5072323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006310004A JP5072323B2 (en) 2005-11-17 2006-11-16 Nonaqueous electrolyte secondary battery and method for producing negative electrode material for nonaqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005332367 2005-11-17
JP2005332367 2005-11-17
JP2006310004A JP5072323B2 (en) 2005-11-17 2006-11-16 Nonaqueous electrolyte secondary battery and method for producing negative electrode material for nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2007165300A true JP2007165300A (en) 2007-06-28
JP5072323B2 JP5072323B2 (en) 2012-11-14

Family

ID=38247947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006310004A Active JP5072323B2 (en) 2005-11-17 2006-11-16 Nonaqueous electrolyte secondary battery and method for producing negative electrode material for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5072323B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078156A1 (en) * 2007-12-14 2009-06-25 Panasonic Corporation Electrode material evaluation method, electrode manufacturing method, and electrode manufacturing device
JP2010003602A (en) * 2008-06-23 2010-01-07 Sony Corp Anode active material and secondary battery
WO2011037162A1 (en) * 2009-09-24 2011-03-31 山陽特殊製鋼株式会社 Silicon alloy for use in materials for lithium secondary battery negative electrodes
EP2416410A2 (en) * 2009-03-30 2012-02-08 LG Chem, Ltd. Composite for electrode active material and secondary battery comprising the same
JP2012048888A (en) * 2010-08-25 2012-03-08 Sanyo Special Steel Co Ltd Si-BASED ALLOY NEGATIVE ELECTRODE MATERIAL AND LITHIUM-ION BATTERY
WO2012099056A1 (en) * 2011-01-17 2012-07-26 山陽特殊製鋼株式会社 Si alloy powder for negative electrode of lithium-ion secondary cell, and method for manufacturing same
JP2012527741A (en) * 2010-07-30 2012-11-08 イルジン エレクトリック コーポレーション リミテッド Negative electrode active material
JP2012238399A (en) * 2011-05-09 2012-12-06 Gs Yuasa Corp Electrode material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2013008584A (en) * 2011-06-24 2013-01-10 Sony Corp Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
EP2648249A1 (en) * 2012-04-06 2013-10-09 Samsung SDI Co., Ltd. Negative active material, lithium battery including the material, and method for manufacturing the material
WO2013168786A1 (en) * 2012-05-11 2013-11-14 国立大学法人鳥取大学 Negative electrode for lithium-ion secondary battery
JP2014160554A (en) * 2013-02-19 2014-09-04 Sanyo Special Steel Co Ltd Si-BASED ALLOY NEGATIVE ELECTRODE MATERIAL FOR POWER STORAGE DEVICE, AND ELECTRODE USING THE SAME
JP2014192064A (en) * 2013-03-28 2014-10-06 Shin Etsu Chem Co Ltd Silicon-containing particle, negative electrode material of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2014232732A (en) * 2014-07-23 2014-12-11 株式会社Gsユアサ Electrode material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2015088283A1 (en) 2013-12-13 2015-06-18 주식회사 엘지화학 Negative electrode material for secondary battery, and secondary battery using same
US9356287B2 (en) 2013-07-16 2016-05-31 Samsung Sdi Co., Ltd. Negative active material, negative electrode and lithium battery including the negative active material, and method of preparing the negative active material
WO2016098206A1 (en) * 2014-12-17 2016-06-23 日産自動車株式会社 Negative-electrode active material for electrical device, and electrical device using same
WO2016098216A1 (en) * 2014-12-17 2016-06-23 日産自動車株式会社 Electrical device
WO2016098215A1 (en) * 2014-12-17 2016-06-23 日産自動車株式会社 Electrical device
JP2017504161A (en) * 2014-01-20 2017-02-02 イルジン エレクトリック カンパニー リミテッド Cathode active material for lithium secondary battery
US9634325B2 (en) 2014-01-27 2017-04-25 Samsung Sdi Co., Ltd. Negative active material, negative electrode and lithium battery including the negative active material, and method of manufacturing the negative active material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015102A (en) * 1999-07-01 2001-01-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacture
JP2002042805A (en) * 2000-07-19 2002-02-08 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2005018998A (en) * 2003-06-23 2005-01-20 Sony Corp Negative electrode material and battery using the same
JP2005310487A (en) * 2004-04-20 2005-11-04 Pionics Co Ltd Cathode active material particles for lithium secondary battery, and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015102A (en) * 1999-07-01 2001-01-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacture
JP2002042805A (en) * 2000-07-19 2002-02-08 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2005018998A (en) * 2003-06-23 2005-01-20 Sony Corp Negative electrode material and battery using the same
JP2005310487A (en) * 2004-04-20 2005-11-04 Pionics Co Ltd Cathode active material particles for lithium secondary battery, and its manufacturing method

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078156A1 (en) * 2007-12-14 2009-06-25 Panasonic Corporation Electrode material evaluation method, electrode manufacturing method, and electrode manufacturing device
JP2010003602A (en) * 2008-06-23 2010-01-07 Sony Corp Anode active material and secondary battery
JP4626679B2 (en) * 2008-06-23 2011-02-09 ソニー株式会社 Negative electrode active material and secondary battery
JP2012522351A (en) * 2009-03-30 2012-09-20 エルジー・ケム・リミテッド Electrode active material composite and secondary battery including the same
EP2416410A2 (en) * 2009-03-30 2012-02-08 LG Chem, Ltd. Composite for electrode active material and secondary battery comprising the same
EP2416410A4 (en) * 2009-03-30 2014-01-01 Lg Chemical Ltd Composite for electrode active material and secondary battery comprising the same
WO2011037162A1 (en) * 2009-09-24 2011-03-31 山陽特殊製鋼株式会社 Silicon alloy for use in materials for lithium secondary battery negative electrodes
JP2011070779A (en) * 2009-09-24 2011-04-07 Sanyo Special Steel Co Ltd Si alloy for lithium secondary battery negative electrode material
JP2012527741A (en) * 2010-07-30 2012-11-08 イルジン エレクトリック コーポレーション リミテッド Negative electrode active material
JP2012048888A (en) * 2010-08-25 2012-03-08 Sanyo Special Steel Co Ltd Si-BASED ALLOY NEGATIVE ELECTRODE MATERIAL AND LITHIUM-ION BATTERY
US9397334B2 (en) 2011-01-17 2016-07-19 Sanyo Special Steel Co., Ltd. Si alloy powder for negative electrode of lithium-ion secondary cell, and method for manufacturing same
JP2012150910A (en) * 2011-01-17 2012-08-09 Sanyo Special Steel Co Ltd Si ALLOY POWDER FOR LITHIUM ION SECONDARY BATTERY NEGATIVE ELECTRODE AND MANUFACTURING METHOD FOR THE SAME
CN103403926A (en) * 2011-01-17 2013-11-20 山阳特殊制钢株式会社 Si alloy powder for negative electrode of lithium-ion secondary cell, and method for manufacturing same
WO2012099056A1 (en) * 2011-01-17 2012-07-26 山陽特殊製鋼株式会社 Si alloy powder for negative electrode of lithium-ion secondary cell, and method for manufacturing same
JP2012238399A (en) * 2011-05-09 2012-12-06 Gs Yuasa Corp Electrode material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2013008584A (en) * 2011-06-24 2013-01-10 Sony Corp Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
US9083054B2 (en) 2011-06-24 2015-07-14 Sony Corporation Lithium ion secondary battery, lithium ion secondary battery negative electrode, battery pack, electric vehicle, electricity storage system, power tool, and electronic apparatus
EP2648249A1 (en) * 2012-04-06 2013-10-09 Samsung SDI Co., Ltd. Negative active material, lithium battery including the material, and method for manufacturing the material
KR101749506B1 (en) * 2012-04-06 2017-06-21 삼성에스디아이 주식회사 Negative active material, lithium battery including the material, and method for manufacturing the material
US9123955B2 (en) 2012-04-06 2015-09-01 Samsung Sdi Co., Ltd. Negative active material, lithium battery including the material, and method for manufacturing the material
US9947925B2 (en) 2012-05-11 2018-04-17 Santoku Corporation Negative electrode for lithium-ion secondary battery
CN104471758A (en) * 2012-05-11 2015-03-25 株式会社三德 Negative electrode for lithium-ion secondary battery
CN104471758B (en) * 2012-05-11 2017-09-12 株式会社三德 The negative pole of lithium rechargeable battery
WO2013168786A1 (en) * 2012-05-11 2013-11-14 国立大学法人鳥取大学 Negative electrode for lithium-ion secondary battery
JP2014160554A (en) * 2013-02-19 2014-09-04 Sanyo Special Steel Co Ltd Si-BASED ALLOY NEGATIVE ELECTRODE MATERIAL FOR POWER STORAGE DEVICE, AND ELECTRODE USING THE SAME
JP2014192064A (en) * 2013-03-28 2014-10-06 Shin Etsu Chem Co Ltd Silicon-containing particle, negative electrode material of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US9356287B2 (en) 2013-07-16 2016-05-31 Samsung Sdi Co., Ltd. Negative active material, negative electrode and lithium battery including the negative active material, and method of preparing the negative active material
JP2015133320A (en) * 2013-12-13 2015-07-23 エルジー・ケム・リミテッド Negative electrode material for secondary battery, and secondary battery using the same
WO2015088283A1 (en) 2013-12-13 2015-06-18 주식회사 엘지화학 Negative electrode material for secondary battery, and secondary battery using same
US10199640B2 (en) 2013-12-13 2019-02-05 Lg Chem, Ltd. Negative electrode material for secondary battery and secondary battery using the same
JP2017504161A (en) * 2014-01-20 2017-02-02 イルジン エレクトリック カンパニー リミテッド Cathode active material for lithium secondary battery
US9634325B2 (en) 2014-01-27 2017-04-25 Samsung Sdi Co., Ltd. Negative active material, negative electrode and lithium battery including the negative active material, and method of manufacturing the negative active material
JP2014232732A (en) * 2014-07-23 2014-12-11 株式会社Gsユアサ Electrode material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2016098215A1 (en) * 2014-12-17 2016-06-23 日産自動車株式会社 Electrical device
WO2016098216A1 (en) * 2014-12-17 2016-06-23 日産自動車株式会社 Electrical device
WO2016098206A1 (en) * 2014-12-17 2016-06-23 日産自動車株式会社 Negative-electrode active material for electrical device, and electrical device using same
JPWO2016098216A1 (en) * 2014-12-17 2017-09-28 日産自動車株式会社 Electrical device
JPWO2016098206A1 (en) * 2014-12-17 2017-10-12 日産自動車株式会社 Negative electrode active material for electric device and electric device using the same
JPWO2016098215A1 (en) * 2014-12-17 2017-10-19 日産自動車株式会社 Electrical device

Also Published As

Publication number Publication date
JP5072323B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5072323B2 (en) Nonaqueous electrolyte secondary battery and method for producing negative electrode material for nonaqueous electrolyte secondary battery
JP5030414B2 (en) Nonaqueous electrolyte secondary battery
US7662514B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP5200339B2 (en) Nonaqueous electrolyte secondary battery
JP5079334B2 (en) Lithium ion secondary battery and method for producing the negative electrode
KR100790271B1 (en) Non-aqueous electrolyte secondary battery and production method thereof
JP4644895B2 (en) Lithium secondary battery
JP4767428B2 (en) Nonaqueous electrolyte secondary battery
US7923150B2 (en) Non-aqueous electrolyte secondary battery
JP4994631B2 (en) Nonaqueous electrolyte secondary battery and positive electrode active material thereof
JP2004103340A (en) Negative electrode material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
KR20060004597A (en) Negative active material and method for production thereof, non-aqueous electrolyte secondary cell using the same
KR20070117827A (en) Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
JP2010033924A (en) Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery using the same
JP5021982B2 (en) Nonaqueous electrolyte secondary battery
JP2013191529A (en) Composite material, method for manufacturing composite material, electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2013168328A (en) Anode material, method for producing the same, anode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2003317705A (en) Battery
JP4984402B2 (en) Nonaqueous electrolyte secondary battery
JP3624417B2 (en) NEGATIVE ELECTRODE ACTIVE MATERIAL, PROCESS FOR PRODUCING THE SAME, AND NON-AQUEOUS ELECTROLYTE BATTERY
JP2007200683A (en) Manufacturing method of cathode active substance for lithium secondary battery, cathode for lithium secondary battery and lithium secondary battery
JP3848187B2 (en) Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2005317447A (en) Battery
KR100681465B1 (en) Electrode active material with high capacity and good cycleability and lithium secondary cell comprising the same
JP6245954B2 (en) Negative electrode active material for lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120821

R150 Certificate of patent or registration of utility model

Ref document number: 5072323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3