JP2007130006A - Method for real-time examination of gene base substitution - Google Patents

Method for real-time examination of gene base substitution Download PDF

Info

Publication number
JP2007130006A
JP2007130006A JP2005356904A JP2005356904A JP2007130006A JP 2007130006 A JP2007130006 A JP 2007130006A JP 2005356904 A JP2005356904 A JP 2005356904A JP 2005356904 A JP2005356904 A JP 2005356904A JP 2007130006 A JP2007130006 A JP 2007130006A
Authority
JP
Japan
Prior art keywords
specific
gene
allele
base substitution
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005356904A
Other languages
Japanese (ja)
Inventor
Gotaro Watanabe
剛太郎 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005356904A priority Critical patent/JP2007130006A/en
Publication of JP2007130006A publication Critical patent/JP2007130006A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for real-time examination of a gene base substitution by the kind of emitted fluorescence by reacting a specific sequence incorporated into an allele-specific primer for identifying a specific site of a gene with a fluorescent labeling probe. <P>SOLUTION: The method for real-time examination of a gene base sequence comprises binding an oligonucleotide having a specific base sequence to the 5' side of an allele-specific primer corresponding to each base substitution of the gene, mixing the oligonucleotide with a fluorescent labeling probe having the same base sequence, carrying out a polymerase chain reaction (PCR reaction) and detecting fluorescence emitted by PRET (Fluorescence Resonance Energy Transfer) effect of the fluorescent labeling probe. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

発明の詳細な説明Detailed Description of the Invention

産業上の利用分野Industrial application fields

この発明は、特定のプローブ配列を組み込んだアレル特異的プライマーと、同じ塩基配列を持つ蛍光標識プローブとを混合物し、ポリメラーゼ連鎖反応(PCR反応)することで、FRTE(Fluorescence Resonance Energy Transfer)効果で発する蛍光を検出し、遺伝子の塩基置換をリアルタイムに検査する方法に関するものである。  In the present invention, an allele-specific primer incorporating a specific probe sequence and a fluorescently labeled probe having the same base sequence are mixed and subjected to a polymerase chain reaction (PCR reaction), thereby achieving an FRTE (Fluorescence Resonance Energy Transfer) effect. The present invention relates to a method for inspecting gene base substitution in real time by detecting emitted fluorescence.

従来、2種類の蛍光物質の間に生じるFRTE効果を用いて、遺伝子の塩基置換をリアルタイムに検出する方法は広範囲に実施されている。しかし、それらはいずれも、特殊な蛍光標識プローブ(Taq Manプローブ、Hybプローブ、Molecular Beacon)が塩基置換部位にハイブリダイズすることで発生する蛍光を検出するものであり、特定のプローブ配列を組み込んだアレル特異的プライマーを用いてPCR反応を行うものではなかった。  Conventionally, a method for detecting a base substitution of a gene in real time using the FRTE effect generated between two types of fluorescent substances has been widely implemented. However, all of them detect fluorescence generated by hybridizing a special fluorescently labeled probe (Taq Man probe, Hyb probe, Molecular Beacon) to the base substitution site, and incorporate a specific probe sequence. The PCR reaction was not performed using allele-specific primers.

発明が解決しようとする課題Problems to be solved by the invention

従来法には次のような欠点があった。
(イ) ハイブリダイゼーションプローブを用いて一塩基の違いを厳密に識別することは困難であり、置換している塩基の組み合わせによっては、非特異反応のため測定結果が不正確になる。
(ロ) ハイブリダイゼーションを基本とした方法では、反応強度がサイクル数に一次比例して増加するため、サイクル回数を多くするか、事前にPCR増幅した試料を用いないと明瞭な結果が得られ難い。
(ハ) 多数の一塩基置換を検出するには、検査する部位ごとに、各アレルに対応した配列を持った2つの特殊な蛍光標識プローブ(Taq Manプローブ、Hybプローブ、Molecular Beacon)が必要であり、検査個所の2倍の数の蛍光標識プローブを用意しなくてはならない。
(ニ) ハイブリダイゼーション反応を良好に行うには、反応温度と時間を適正に設定する必要があり、検査個所が増加すると、その都度反応条件を検討しなければならないため煩雑である。
The conventional method has the following drawbacks.
(A) It is difficult to accurately discriminate a single base difference using a hybridization probe, and depending on the combination of substituted bases, the measurement result becomes inaccurate due to a non-specific reaction.
(B) In the method based on hybridization, since the reaction intensity increases linearly with the number of cycles, it is difficult to obtain clear results unless the number of cycles is increased or a sample subjected to PCR amplification in advance is used. .
(C) To detect a large number of single nucleotide substitutions, two special fluorescently labeled probes (Taq Man probe, Hyb probe, Molecular Beacon) having sequences corresponding to each allele are required for each site to be examined. Yes, twice as many fluorescently labeled probes as the test site must be prepared.
(D) In order to carry out the hybridization reaction well, it is necessary to set the reaction temperature and time appropriately. When the number of inspection points increases, it is complicated because the reaction conditions must be examined each time.

課題を解決するための手段Means for solving the problem

本発明は、これらの欠点を除くために次のような手段で検査を行う。
遺伝子の塩基置換に対応した2種類のアレル特異的プライマーの、5’末端に本来の塩基配列とは異なる2種類の特殊な塩基配列を持つオリゴヌクレオチドを別々に結合させる。
それぞれが、この特殊な塩基配列の何れか一方と同じ配列を持ち、蛍光色素の異なる2種類の蛍光標識プローブ(Taq Manプローブ、Hybプローブ、Molecular Beacon)を合成し、2種類のアレル特異的プライマーおよびリバースプライマーと一緒に混合してPCR反応を行う。
アレル特異的プライマーとリバースプライマーから増幅されたPCR産物には特殊な塩基配列が導入され、この特異配列部位に、対応する蛍光標識プローブがハイブリダイズすることで蛍光を発する。
この蛍光を測定することで塩基置換を検出する。
In the present invention, in order to eliminate these drawbacks, inspection is performed by the following means.
Two kinds of allele-specific primers corresponding to the base substitution of the gene are separately bound with oligonucleotides having two kinds of special base sequences different from the original base sequences at the 5 ′ end.
Two types of allele-specific primers, each of which has the same sequence as any one of this special base sequence and synthesizes two types of fluorescently labeled probes (Taq Man probe, Hyb probe, and Molecular Beacon) with different fluorescent dyes. Mix with reverse primer and perform PCR reaction.
A special base sequence is introduced into the PCR product amplified from the allele-specific primer and the reverse primer, and fluorescence is emitted when the corresponding fluorescently labeled probe is hybridized to the specific sequence site.
Base substitution is detected by measuring this fluorescence.

作用Action

本検査法では、対応するアレル特異的プライマーによって、塩基置換を厳密に識別することができる。アレル特異的PCR反応によって得られる増幅産物には、塩基置換の種類によって特定の配列が組み込まれるので、組み込む塩基配列を大きく変えることで、対応する蛍光標識プローブのみが特異的にハイブリダイズするように設定できる。
その際、組み込まれる塩基配列が大きく異なれば、蛍光標識プローブのハイブリダイズに厳密な反応条件(温度や時間)を必要としない。
さらに、蛍光標識プローブの塩基配列を、予め標識蛍光物質ごとに特徴的なものに決めておけば、検査に必要となるのは、これらの特徴的な塩基配列を組み込んだアレル特異的プライマーだけなので、多数の塩基置換部位を検査する場合でも、新たに蛍光標識プローブを用意する必要はない。
本検査法では、利用する蛍光物質の数は、必要に応じて増減できるため、多数の蛍光物質を用いることで、複数の多型部位を同時に安価で検査することができる。
In this test method, the base substitution can be strictly identified by the corresponding allele-specific primer. A specific sequence is incorporated into the amplification product obtained by the allele-specific PCR reaction depending on the type of base substitution, so that only the corresponding fluorescently labeled probe can specifically hybridize by changing the incorporated base sequence greatly. Can be set.
At this time, if the base sequences to be incorporated are greatly different, strict reaction conditions (temperature and time) are not required for hybridization of the fluorescently labeled probe.
In addition, if the base sequence of the fluorescently labeled probe is determined in advance for each labeled fluorescent substance, only the allele-specific primer incorporating these characteristic base sequences is required for the inspection. Even when many base substitution sites are examined, it is not necessary to prepare a new fluorescently labeled probe.
In the present inspection method, the number of fluorescent materials to be used can be increased or decreased as necessary. Therefore, by using a large number of fluorescent materials, a plurality of polymorphic sites can be simultaneously tested at a low cost.

ヒトのグライコフォリンA遺伝子座にある点変異部位(エクソン2の塩基番号34番のグアニンとアデニンの塩基置換と、塩基番号35番のチミンとグアニンの置換部位)に対応した2つのアレル特異的プライマー(1、2)とリバースプライマー(3)を合成した。
各プライマーの塩基配列は、プライマー1;5’−agaagcacttgatgcacaacatgtGactTgacctGaActgacGCATCAAGTACCACTGGT−3’、プライマー2;5’−agaagcacttgatgcacaatgcactgctgatgacGacTcagAGCATTAAGTACCACTGAG−3’、プライマー3;5’−TcAAatGGGTTACATCACAAGAATG−3’である(小文字は非相補的な塩基配列を表している)。
さらに、2つのアレル特異的プライマーの5’末端に付けた特異配列と同じ配列を持ち、別々の蛍光物質(TETとFAM)で標識した2種類のTaq Manプローブ(A、B)および共通するフォワードプライマー4を合成した。
各塩基配列は、Taq ManプローブA;5’TET−GACTTGACCTGAACTGAC−TAMRA3’、Taq ManプローブB;5’FAM−ACTGCTGATGACGACTCA−TAMRA3’、プライマー4;5’−AGAAGCACTTGATGCACAA−3’である。
プライマー1〜4とTaq ManプローブA、Bを各20ピコモルずつ混合したPCR反応液を作り、血液型がM型、N型、MN型のヒトDNAを用いてリアルタイムPCR反応を行った。
遺伝子型が、M型ではでTETの蛍光が検出され、N型ではFAMの蛍光が検出され、MN型ではTETとFAMの蛍光が検出された。
同様にして、ABO式血液型遺伝子、アメロゲニン遺伝子における塩基置換部位の検出を行った。
この方法で、アレル特異的プライマーによって識別できる遺伝子上のすべての塩基置換をリアルタイムに検査することができる。
また、複数の蛍光物質を用いることで、多数の塩基置換部位を同時に検査することができる。
さらに、蛍光物質ごとに対応する特異配列を決めて蛍光標識プローブを合成しておけば、検査部位を変えることで必要となるのは蛍光標識していないアレル特異的プライマーだけであり、新たに蛍光標識プローブを合成する必要はない。
Two allele-specific primers corresponding to the point mutation sites in the human glycophorin A locus (base substitution of guanine and adenine at base number 34 of exon 2 and substitution site of thymine and guanine at base number 35) (1,2) and reverse primer (3) were synthesized.
Nucleotide sequence of each primer, Primer 1; 5'-agaagcacttgatgcacaacatgtGactTgacctGaActgacGCATCAAGTACCACTGGT-3 ', primer 2; 5'-agaagcacttgatgcacaatgcactgctgatgacGacTcagAGCATTAAGTACCACTGAG-3', primer 3; 5'-TcAAatGGGTTACATCACAAGAATG-3 is a '(lower case non-complementary nucleotide sequences Represents).
In addition, two Taq Man probes (A, B) having the same sequence as that attached to the 5 ′ end of two allele-specific primers and labeled with different fluorescent materials (TET and FAM) and a common forward Primer 4 was synthesized.
Each base sequence is Taq Man probe A; 5 ′ TET-GACTTGACCCTGAACTGAC-TAMRA3 ′, Taq Man probe B;
A PCR reaction solution was prepared by mixing primers 1 to 4 and Taq Man probes A and B at 20 pmoles each, and a real-time PCR reaction was performed using human DNAs of blood types M, N, and MN.
When the genotype was M, TET fluorescence was detected, N type was detected with FAM fluorescence, and MN type was detected with TET and FAM fluorescence.
Similarly, the base substitution site in the ABO blood group gene and the amelogenin gene was detected.
In this way, all base substitutions on genes that can be distinguished by allele specific primers can be examined in real time.
In addition, by using a plurality of fluorescent substances, a large number of base substitution sites can be simultaneously examined.
In addition, if a specific sequence corresponding to each fluorescent substance is determined and a fluorescently labeled probe is synthesized, only an allele-specific primer that is not fluorescently labeled is required by changing the test site. There is no need to synthesize a labeled probe.

発明の効果The invention's effect

この発明によれば、様々な生物のDNAから複数の塩基置換部位を正確に、しかも安価で迅速に検査できるので、各個体の遺伝子の違いによる薬剤効果の違いや副作用の有無を知ることができるし、高い精度で個体識別を行うことが可能である。  According to this invention, since a plurality of base substitution sites can be accurately and inexpensively examined from DNAs of various organisms, it is possible to know the difference in drug effect and the presence or absence of side effects due to the difference in genes of each individual. In addition, individual identification can be performed with high accuracy.

本考案の説明図である。  It is explanatory drawing of this invention.

符号の説明Explanation of symbols

1 特異配列
2 アレル特異的プライマー
3 リバースプライマー
4 Qはクエンチャー物質の略
5 Pはリポーター蛍光物質の略
6 TaqManプローブ
7 蛍光標識プローブ
DESCRIPTION OF SYMBOLS 1 Specific sequence 2 Allele specific primer 3 Reverse primer 4 Q is about quencher substance P is about reporter fluorescent substance 6 TaqMan probe 7 Fluorescent label probe

Claims (1)

遺伝子の各塩基置換に対応したアレル特異的プライマーの5’側に特異な塩基配列を持つオリゴヌクレオチドを結合させ、同じ塩基配列を持つ蛍光標識プローブを混合してポリメラーゼ連鎖反応(PCR反応)を行い、蛍光標識プローブのFRET効果によって発した蛍光を検出することで、遺伝子の塩基置換をリアルタイムに検査する方法。  An oligonucleotide having a specific base sequence is bound to the 5 'side of the allele-specific primer corresponding to each base substitution of the gene, and a fluorescently labeled probe having the same base sequence is mixed to perform a polymerase chain reaction (PCR reaction). A method for examining the base substitution of a gene in real time by detecting the fluorescence emitted by the FRET effect of the fluorescently labeled probe.
JP2005356904A 2005-11-11 2005-11-11 Method for real-time examination of gene base substitution Pending JP2007130006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005356904A JP2007130006A (en) 2005-11-11 2005-11-11 Method for real-time examination of gene base substitution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005356904A JP2007130006A (en) 2005-11-11 2005-11-11 Method for real-time examination of gene base substitution

Publications (1)

Publication Number Publication Date
JP2007130006A true JP2007130006A (en) 2007-05-31

Family

ID=38152187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005356904A Pending JP2007130006A (en) 2005-11-11 2005-11-11 Method for real-time examination of gene base substitution

Country Status (1)

Country Link
JP (1) JP2007130006A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507992A (en) * 2009-10-27 2013-03-07 スウィフト バイオサイエンシーズ, インコーポレイテッド Polynucleotide primers and probes
WO2016059798A1 (en) * 2014-10-17 2016-04-21 国立大学法人 東京医科歯科大学 Method for detecting and quantifying target nucleic acid in test sample using novel positive control nucleic acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507992A (en) * 2009-10-27 2013-03-07 スウィフト バイオサイエンシーズ, インコーポレイテッド Polynucleotide primers and probes
US10480030B2 (en) 2009-10-27 2019-11-19 Swift Biosciences, Inc. Polynucleotide primers and probes
WO2016059798A1 (en) * 2014-10-17 2016-04-21 国立大学法人 東京医科歯科大学 Method for detecting and quantifying target nucleic acid in test sample using novel positive control nucleic acid

Similar Documents

Publication Publication Date Title
CN110283888B (en) Assays for single molecule detection and uses thereof
JP4653366B2 (en) Digital amplification
CN102344960B (en) Quantification of gene expression
US20120107820A1 (en) Multiplexed Quantitative PCR End Point Analysis of Nucleic Acid Targets
US20050191636A1 (en) Detection of STRP, such as fragile X syndrome
Zou et al. Rapid, real-time chemiluminescent detection of DNA mutation based on digital microfluidics and pyrosequencing
KR20150028063A (en) Liquid Type Melting Array Using Probe Comprising Reporter and Quenching and Method for Target DNA or Mutant Detection Using Liquid Type Melting Array
JP2009106220A (en) Method for catching and detecting target base sequence by isothermal amplification reaction on substrate
US10364459B2 (en) Method of quantitatively and qualitatively analyzing biomaterial in real-time
JP3752466B2 (en) Genetic testing method
JPWO2017170644A1 (en) Gene mutation detection method
JP2003135097A (en) Method for testing nucleic acid sequence
JP2008259453A (en) Method for detecting nucleic acid
JP4873427B2 (en) Hairpin primer used in nucleic acid amplification reaction and use thereof
WO2011068518A1 (en) Multiplexed quantitative pcr end point analysis of nucleic acid targets
JP2007130006A (en) Method for real-time examination of gene base substitution
WO2012036111A1 (en) Primer, probe, and method for multi-specimen analysis
CN101292045A (en) Method of analyzing nucleic acid
EP1964929B1 (en) Hla-b genotyping method and kit based on real-time pcr
JPWO2007055255A1 (en) Method for amplifying a plurality of nucleic acid sequences for identification
JP2006006274A (en) Gene testing method
JP2005328758A (en) Method for nucleic acid amplification and method for analyzing single nucleotide polymorphism utilizing the same
US20060078881A1 (en) Method and kit for detection of mutations in mitochondrial dna
TWI570242B (en) Method of double allele specific pcr for snp microarray
JP2009045048A (en) Method for examining polymorphism of deoxyribonucleic acid