JP2007109918A - Transistor and its manufacturing method - Google Patents

Transistor and its manufacturing method Download PDF

Info

Publication number
JP2007109918A
JP2007109918A JP2005299678A JP2005299678A JP2007109918A JP 2007109918 A JP2007109918 A JP 2007109918A JP 2005299678 A JP2005299678 A JP 2005299678A JP 2005299678 A JP2005299678 A JP 2005299678A JP 2007109918 A JP2007109918 A JP 2007109918A
Authority
JP
Japan
Prior art keywords
semiconductor layer
insulating film
gate insulating
transistor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005299678A
Other languages
Japanese (ja)
Inventor
Manabu Ito
学 伊藤
Masato Kon
真人 今
Mamoru Ishizaki
守 石▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2005299678A priority Critical patent/JP2007109918A/en
Publication of JP2007109918A publication Critical patent/JP2007109918A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transistor whose manufacturing process is simplified and reduced in cost but which is provided with excellent ON/OFF characteristics, mobility and conductivity under a low-off current low in interface ranking, by employing the same material for the formation of a semiconductor active layer and a gate insulating film. <P>SOLUTION: Upon manufacturing the gate insulating film and the semiconductor layer by the same spatter target, the flow rate of oxygen in spatter gas is controlled whereby the semiconductor layer having a conductivity of not less than 1×10<SP>-10</SP>S/cm and not more than 1×10<SP>-2</SP>S/cm, and the gate insulating film having the conductivity of not more than 10<SP>-11</SP>S/cm, can be formed in the same vacuum tank while evacuation upon forming the semiconductor layer and the gate insulating film can be carried out by one time whereby the transistor can be manufactured at a low cost. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、同一の材料から構成される半導体層とゲート絶縁膜を有するトランジスタおよびその製造方法に関するものである。 The present invention relates to a transistor having a semiconductor layer and a gate insulating film made of the same material, and a method for manufacturing the same.

一般に液晶表示デバイスや有機ELデバイスの駆動用等のトランジスタとして、アモルファスシリコンや多結晶シリコンを用いた薄膜トランジスタが広く使われてきた。
しかしながら、シリコンは可視光領域に光感度を有しているため、光によりキャリアが生成され導電率が上昇し、トランジスタ特性が大きく影響を受ける。
In general, thin film transistors using amorphous silicon or polycrystalline silicon have been widely used as transistors for driving liquid crystal display devices and organic EL devices.
However, since silicon has photosensitivity in the visible light region, carriers are generated by light, the conductivity is increased, and the transistor characteristics are greatly affected.

また、シリコンは200℃以上の高温で成膜することで優れた特性を発揮するため低温成膜が難しく、耐熱温度が低い汎用のポリマーフィルム上には形成しにくいため、フレキシブルな表示装置の普及を阻んできた。 In addition, since silicon exhibits excellent characteristics when deposited at a high temperature of 200 ° C. or higher, it is difficult to form a film at low temperature, and it is difficult to form it on a general-purpose polymer film having a low heat-resistant temperature. Has been blocked.

そこで、シリコンに代わる半導体材料としてZnOを用いて、電界効果型トランジスタを作製する試みが多くなされている。 Thus, many attempts have been made to produce field effect transistors using ZnO as a semiconductor material instead of silicon.

しかしながら、従来の技術では、ZnO膜内の酸素欠損や不純物を減らすことは極めて難しく、キャリア濃度を減らすことができないため、ノーマリーオフな電界効果型トランジスタを構成できない等の欠点がある。 However, in the conventional technique, it is extremely difficult to reduce oxygen vacancies and impurities in the ZnO film, and the carrier concentration cannot be reduced. Therefore, there is a disadvantage that a normally-off field effect transistor cannot be configured.

そこで近年、アモルファスIn−Ga−Zn−O材料を用いた電界効果型トランジスタが提案されている(非特許文献1参照)。 Therefore, in recent years, a field effect transistor using an amorphous In—Ga—Zn—O material has been proposed (see Non-Patent Document 1).

アモルファスIn−Ga−Zn−O材料を用いたアモルファス酸化物半導体を半導体層として用いることで、室温で、PET基板上に移動度10cm/Vs前後の優れた特性を持つ透明電界効果型トランジスタを作製することができる。
このような透明電界効果型トランジスタではゲート絶縁膜としては、酸化シリコン、窒化シリコン、酸化イットリウム、酸化ハフニウム、窒化ハフニウムシリケート等が用いられてきた。
しかしながら、半導体層、ゲート絶縁膜と種々の元素を含む材料をそれぞれ準備する必要があり、製造コストが大きく増加するという問題点があった(特許文献1参照)。
By using an amorphous oxide semiconductor using an amorphous In—Ga—Zn—O material as a semiconductor layer, a transparent field effect transistor having excellent characteristics of mobility of about 10 cm 2 / Vs on a PET substrate at room temperature can be obtained. Can be produced.
In such a transparent field effect transistor, silicon oxide, silicon nitride, yttrium oxide, hafnium oxide, hafnium nitride silicate, or the like has been used as a gate insulating film.
However, it is necessary to prepare a semiconductor layer, a gate insulating film, and materials containing various elements, respectively, and there is a problem that the manufacturing cost is greatly increased (see Patent Document 1).

K.Nomura et al.Nature,432,488(2004)K. Nomura et al. Nature, 432, 488 (2004) 特開2002−319682号広報JP 2002-319682 A

本発明の課題は、半導体層およびゲート絶縁膜の形成に用いる材料を同一にすることにより、製造プロセスを簡略化し低コスト化した、界面順位の低い低オフ電流で、良好なオン/オフ特性、移動度、導電率を持つトランジスタを提供するものである。 An object of the present invention is to make a manufacturing process simple and low cost by using the same material used for forming a semiconductor layer and a gate insulating film, with a low off-state current with a low interface state, and a good on / off characteristic. A transistor having mobility and conductivity is provided.

請求項1に記載の発明は、絶縁性基板上に設けられた半導体層と、該半導体層に電気的に接触して配列されたソース電極と、前記半導体層に電気的に接触すると共に前記ソース電極に離隔して配列されたドレイン電極と、前記絶縁性基板を真上から見たときに前記ソース電極と前記ドレイン電極の間に位置する前記半導体層上に設けられたゲート絶縁膜と、該ゲート絶縁膜上に設けられたゲート電極とを備え、該ゲート電極に印加する電圧の有無によって、前記ソース電極と前記ドレイン電極との導通をオン又はオフするトランジスタであって、前記半導体層および前記ゲート絶縁膜がIn、Ga、Zn、Oから構成されることを特徴とするトランジスタである。 The invention according to claim 1 is a semiconductor layer provided on an insulating substrate, a source electrode arranged in electrical contact with the semiconductor layer, an electrical contact with the semiconductor layer, and the source A drain electrode arranged apart from the electrode, a gate insulating film provided on the semiconductor layer located between the source electrode and the drain electrode when the insulating substrate is viewed from directly above, A transistor that turns on or off conduction between the source electrode and the drain electrode depending on the presence or absence of a voltage applied to the gate electrode, the semiconductor layer and the semiconductor layer The transistor is characterized in that the gate insulating film is composed of In, Ga, Zn, and O.

請求項2に記載の発明は、前記半導体層の導電率が1×10−10S/cm以上1×10−2S/cm以下、前記ゲート絶縁膜の導電率が1×10−11S/cm以下であることを特徴とする請求項1に記載のトランジスタである。 According to a second aspect of the present invention, the conductivity of the semiconductor layer is 1 × 10 −10 S / cm or more and 1 × 10 −2 S / cm or less, and the conductivity of the gate insulating film is 1 × 10 −11 S / cm. The transistor according to claim 1, wherein the transistor is equal to or less than cm.

請求項3に記載の発明は、絶縁性基板上に、酸化物半導体から構成される半導体層を形成する半導体層形成工程と、前記半導体層に電気的に接触すると共に、相互に離隔したソース電極とドレイン電極とを、前記半導体層上に配列するソース電極及びドレイン電極配列工程と、前記絶縁性基板を真上から見たときに前記ソース電極と前記ドレイン電極の間に位置する前記半導体層上にゲート絶縁膜を形成するゲート絶縁膜形成工程と、前記ゲート絶縁膜上にゲート電極を形成するゲート電極形成工程とを有するトランジスタの製造方法であって、前記半導体層形成工程および前記ゲート絶縁膜形成工程が、In、Ga、Zn、Oからなるスパッタターゲットを不活性ガスまたは酸素の少なくとも一方でスパッタする工程であって、前記半導体層を形成する工程で用いるスパッタガスの酸素流量比が10%以下であり、前記ゲート絶縁膜を形成する工程で用いるスパッタガスの酸素流量比が20%以上であることを特徴とするトランジスタの製造方法である。 According to a third aspect of the present invention, there is provided a semiconductor layer forming step of forming a semiconductor layer made of an oxide semiconductor on an insulating substrate, and source electrodes that are in electrical contact with the semiconductor layer and spaced apart from each other A source electrode and a drain electrode arrangement step for arranging the gate electrode and the drain electrode on the semiconductor layer; and on the semiconductor layer positioned between the source electrode and the drain electrode when the insulating substrate is viewed from directly above. A method for manufacturing a transistor, comprising: a gate insulating film forming step of forming a gate insulating film on the gate electrode; and a gate electrode forming step of forming a gate electrode on the gate insulating film, wherein the semiconductor layer forming step and the gate insulating film The forming step is a step of sputtering a sputtering target made of In, Ga, Zn, and O with at least one of an inert gas and oxygen, and the semiconductor A method for manufacturing a transistor, wherein an oxygen flow rate ratio of a sputtering gas used in the step of forming the gate electrode is 10% or less and an oxygen flow rate ratio of the sputtering gas used in the step of forming the gate insulating film is 20% or more It is.

半導体層を形成する工程において、In、Ga、Zn、Oからなるスパッタターゲットをスパッタして作製されるスパッタ膜の物性が、スパッタガスの酸素流量に極めて大きく左右されることを見い出した。 In the process of forming the semiconductor layer, it has been found that the physical properties of a sputtered film produced by sputtering a sputter target made of In, Ga, Zn, O are greatly influenced by the oxygen flow rate of the sputtering gas.

例えば、酸素流量を0%(アルゴン流量100%)でアモルファス酸化物を作製すると1(S/cm)を超える導電率が得られるが、酸素流量を50%とすると導電率が1×10−13(S/cm)以下の完全な絶縁体が得られる。
つまり、In、Ga、Zn、Oからなるスパッタターゲットを用いスパッタガスの酸素流量を制御してスパッタすることで、従来困難であったゲート絶縁膜と半導体層を同一のスパッタターゲットから作製することが可能となり、同一真空槽内で半導体層とゲート絶縁膜を形成することができ、半導体層およびゲート絶縁膜の形成に際しての真空引きが1回で済み、低コストでトランジスタを製造することができる。
For example, when an amorphous oxide is produced with an oxygen flow rate of 0% (argon flow rate 100%), a conductivity exceeding 1 (S / cm) can be obtained, but when the oxygen flow rate is 50%, the conductivity is 1 × 10 −13. A complete insulator of (S / cm) or less is obtained.
That is, by using a sputtering target composed of In, Ga, Zn, and O and performing sputtering while controlling the oxygen flow rate of the sputtering gas, the gate insulating film and the semiconductor layer, which have been difficult in the past, can be manufactured from the same sputtering target. Therefore, the semiconductor layer and the gate insulating film can be formed in the same vacuum chamber, and the semiconductor layer and the gate insulating film can be evacuated once, so that a transistor can be manufactured at low cost.

本発明のトランジスタは、同一のスパッタターゲットからゲート絶縁膜および半導体層を作製し、製造プロセスを簡略化し低コスト化することができ、またゲート絶縁膜および半導体層が同一材料から形成されているため、界面準位の低い良好な電気的特性をもつトランジスタを提供することが可能となった。 In the transistor of the present invention, the gate insulating film and the semiconductor layer can be manufactured from the same sputter target, the manufacturing process can be simplified and the cost can be reduced, and the gate insulating film and the semiconductor layer are formed from the same material. Thus, it is possible to provide a transistor having a favorable electrical characteristic with a low interface state.

トランジスタの製造方法の例を図2を基にして説明する。 An example of a method for manufacturing a transistor will be described with reference to FIG.

まず、絶縁性基板1上に半導体層2を形成する(図2(a))。 First, the semiconductor layer 2 is formed on the insulating substrate 1 (FIG. 2A).

絶縁性基板1の材料としては、ガラス、石英、YSZ(イットリア安定化ジルコニア)、MgO、ポリメチルメタクリレート、ポリカーボネート、ポリスチレン、ポリエチレンサルファイド、ポリエーテルスルホン、ポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース、ポリビニルフルオライドフィルム、エチレン−テトラフルオロエチレン共重合樹脂、耐候性ポリエチレンテレフタレート、耐候性ポリプロピレン、ガラス繊維強化アクリル樹脂フィルム、ガラス繊維強化ポリカーボネート、ポリイミド、透明性ポリイミド、フッ素系樹脂、環状ポリオレフィン系樹脂、ポリアクリル系樹脂などを用いることができるが、これらに限定されるわけではない。
これらは単独の基材として使用してもよいが、二種以上を積層した複合基材を使用することもできる。
また、絶縁性基板1の材料としては、可撓性、非可撓性のどちらでもよい。
Materials for the insulating substrate 1 include glass, quartz, YSZ (yttria stabilized zirconia), MgO, polymethyl methacrylate, polycarbonate, polystyrene, polyethylene sulfide, polyethersulfone, polyolefin, polyethylene terephthalate, polyethylene naphthalate, triacetyl cellulose. , Polyvinyl fluoride film, ethylene-tetrafluoroethylene copolymer resin, weather resistant polyethylene terephthalate, weather resistant polypropylene, glass fiber reinforced acrylic resin film, glass fiber reinforced polycarbonate, polyimide, transparent polyimide, fluorine resin, cyclic polyolefin resin Polyacrylic resin or the like can be used, but is not limited thereto.
These may be used as a single substrate, but a composite substrate in which two or more kinds are laminated can also be used.
The material of the insulating substrate 1 may be either flexible or inflexible.

半導体層2の形成方法としては、スパッタ法や、パルスレーザー蒸着法(PLD法)を用いることができるが、スパッタ法が好ましい。
スパッタ法ではパルスレーザー蒸着法(PLD法)と比較してより広い範囲で酸素濃度、キャリア濃度を制御可能でありかつ大面積に容易に成膜可能であるからである。
また、ここで述べるスパッタ法というのはRFマグネトロンスパッタ法、DCスパッタ法双方の概念を含む物である。
As a method for forming the semiconductor layer 2, a sputtering method or a pulsed laser deposition method (PLD method) can be used, but a sputtering method is preferable.
This is because the sputtering method can control the oxygen concentration and the carrier concentration in a wider range than the pulse laser deposition method (PLD method) and can easily form a film over a large area.
Further, the sputtering method described here includes the concepts of both the RF magnetron sputtering method and the DC sputtering method.

半導体層2の材料としては、スパッタターゲットとして、InZn(式中Mはガリウム及びアルミニウムのうち少なくとも一つの元素であり、
0.6<a<1.5
0.6<b<1.5
0.6<c<1.5
0≦d≦5)からなるアモルファス酸化物材料を用いることができる。
0.9<a<1.1
0.9<b<1.1
0.9<c<1.1
3.8<d<4.2であればより好ましい。
As a material of the semiconductor layer 2, as a sputter target, In A M B Zn C O D (where M is at least one element of gallium and aluminum,
0.6 <a <1.5
0.6 <b <1.5
0.6 <c <1.5
An amorphous oxide material consisting of 0 ≦ d ≦ 5) can be used.
0.9 <a <1.1
0.9 <b <1.1
0.9 <c <1.1
More preferably, 3.8 <d <4.2.

また、スパッタガスとしては、He、Ne、Ar、Kr、Xe等の不活性ガス、もしくは、これらを混合した物と、スパッタガスの酸素流量比が20%以下になるように、好ましくは10%以下になるように酸素を混合したものを用いることができる。
価格等を考慮するとArが好適に用いられる。
また酸素の代わりにオゾンもしくは酸素とオゾンの混合ガスを用いても構わない。
Further, as the sputtering gas, an inert gas such as He, Ne, Ar, Kr, or Xe, or a mixture thereof, and the oxygen flow rate ratio of the sputtering gas is preferably 10% so that the sputtering gas has an oxygen flow ratio of 20% or less. What mixed oxygen so that it may become below can be used.
Ar is preferably used in consideration of the price and the like.
In place of oxygen, ozone or a mixed gas of oxygen and ozone may be used.

半導体層2はInZn(式中Mはガリウムもしくはアルミニウムのうち少なくとも一つの元素であり、
0.7<X/Y<1.4
0.7<Z/Y<1.7
3<W<5)
から構成されるアモルファス酸化物材料であり、
0.9<X/Y<1.1
1.0<Z/Y<1.3
3.0<W<4.5であればより好ましい。
The semiconductor layer 2 is In X M Y Zn Z O W ( wherein M is at least one element selected from gallium or aluminum,
0.7 <X / Y <1.4
0.7 <Z / Y <1.7
3 <W <5)
An amorphous oxide material composed of
0.9 <X / Y <1.1
1.0 <Z / Y <1.3
More preferably, 3.0 <W <4.5.

半導体層2の導電率は10−10(S/cm)以上10−3(S/cm)以下、好ましくは10−9(S/cm)以上、10−4(S/cm)以下が好ましい。
半導体層2の導電率が上記範囲内であれば、良好な移動度とオン/オフ特性を持つ。
The electrical conductivity of the semiconductor layer 2 is 10 −10 (S / cm) or more and 10 −3 (S / cm) or less, preferably 10 −9 (S / cm) or more and 10 −4 (S / cm) or less.
If the conductivity of the semiconductor layer 2 is within the above range, it has good mobility and on / off characteristics.

次に、前記半導体層2上にゲート絶縁膜3を形成する(図2(b))。 Next, a gate insulating film 3 is formed on the semiconductor layer 2 (FIG. 2B).

ゲート絶縁膜3の形成方法としては、スパッタ法や、パルスレーザー蒸着法(PLD法)を用いることができるが、スパッタ法が好ましい。
この時、パターニングはマスクを用いて行う。
As a method for forming the gate insulating film 3, a sputtering method or a pulsed laser deposition method (PLD method) can be used, but a sputtering method is preferable.
At this time, patterning is performed using a mask.

ゲート絶縁膜3の材料は、半導体層2と同じにする。
但し、スパッタガスの酸素流量比は20%以上、好ましくは50%以上の物を用いる。
スパッタガスの酸素流量比を50%以上にすると、極めて低い導電率(10−12S/cm)のゲート絶縁膜3を得ることができる。
またゲート絶縁膜3の導電率が10−11S/cm以下であれば、良好な絶縁特性を発揮し、低いオフ電流、良好なオン/オフ特性を実現することができる。
The material of the gate insulating film 3 is the same as that of the semiconductor layer 2.
However, the oxygen flow rate ratio of the sputtering gas is 20% or more, preferably 50% or more.
When the oxygen flow rate ratio of the sputtering gas is 50% or more, the gate insulating film 3 having an extremely low conductivity (10 −12 S / cm) can be obtained.
Further, when the conductivity of the gate insulating film 3 is 10 −11 S / cm or less, good insulating characteristics can be exhibited, and a low off-current and good on / off characteristics can be realized.

ゲート絶縁膜3は、InZn(式中Mはガリウムもしくはアルミニウムのうち少なくとも一つの元素であり、
0.7<X/Y<1.4
0.7<Z/Y<1.7
3<W<5)
から構成されるアモルファス酸化物材料であり、
0.9<X/Y<1.1
1.0<Z/Y<1.3
3.0<W<4.5であればより好ましい。
The gate insulating film 3, In X M Y Zn Z O W ( wherein M is at least one element selected from gallium or aluminum,
0.7 <X / Y <1.4
0.7 <Z / Y <1.7
3 <W <5)
An amorphous oxide material composed of
0.9 <X / Y <1.1
1.0 <Z / Y <1.3
More preferably, 3.0 <W <4.5.

最後に、半導体活性層2上にソース電極5およびドレイン電極6を、また、ゲート絶縁膜3上にゲート電極4を形成しトランジスタを得る(図2(c))。 Finally, a source electrode 5 and a drain electrode 6 are formed on the semiconductor active layer 2 and a gate electrode 4 is formed on the gate insulating film 3 to obtain a transistor (FIG. 2C).

ソース電極5、ドレイン電極6およびゲート電極4の材料としては、インジウム(In)、アルミ(Al)、金(Au)、銀(Ag)等の金属や、酸化インジウム(In)、酸化スズ(SnO)、酸化亜鉛(ZnO)、酸化カドミウム(CdO)、酸化インジウムカドミウム(CdIn)、酸化カドミウムスズ(CdSnO)、酸化亜鉛スズ(ZnSnO)等の酸化物材料を用いることができる。
また、これらの酸化物材料に不純物をドープしたものも好適に用いられる。
例えば、Inにスズ(Sn)やモリブデン(Mo)、チタン(Ti)をドープしたもの、SnOにアンチモン(Sb)やフッ素(F)をドープしたもの、ZnOにインジウム、アルミニウム、ガリウム(Ga)をドープしたもの等である。
ゲート電極、ソース電極及びドレイン電極の材料は、全て同じでもよく、異なっても良い。
As the material of the source electrode 5, the drain electrode 6 and the gate electrode 4, metals such as indium (In), aluminum (Al), gold (Au), silver (Ag), indium oxide (In 2 O 3 ), oxidation Oxidation of tin (SnO 2 ), zinc oxide (ZnO), cadmium oxide (CdO), indium cadmium oxide (CdIn 2 O 4 ), cadmium tin oxide (Cd 2 SnO 4 ), zinc tin oxide (Zn 2 SnO 4 ), etc. Material materials can be used.
In addition, those oxide materials doped with impurities are also preferably used.
For example, In 2 O 3 doped with tin (Sn), molybdenum (Mo), titanium (Ti), SnO 2 doped with antimony (Sb) or fluorine (F), ZnO indium, aluminum, gallium For example, doped with (Ga).
The materials of the gate electrode, the source electrode, and the drain electrode may all be the same or different.

ソース電極5、ドレイン電極6およびゲート電極4の形成方法としては、スパッタ法とフォトリソグラフィー法の組み合わせた方法を用いることができる。 As a method for forming the source electrode 5, the drain electrode 6, and the gate electrode 4, a method in which a sputtering method and a photolithography method are combined can be used.

スパッタガスとしては、Arおよび酸素を用いることができる。 Ar and oxygen can be used as the sputtering gas.

プラスチックフィルム上に薄膜トランジスタを形成する場合は連続巻取成膜法で成膜することが望ましい。
この場合、半導体層2、ゲート絶縁膜3および電極(ゲート電極4、ソース電極5、ドレイン電極6)の全ての層をスパッタ法で作製しても構わないし、半導体層2およびゲート絶縁膜3をスパッタ法で作製し、電極は蒸着法、CVD(Chemical Vapor Deposition)法、印刷法等で形成しても構わない。
When a thin film transistor is formed on a plastic film, it is desirable to form the film by a continuous winding film forming method.
In this case, all layers of the semiconductor layer 2, the gate insulating film 3, and the electrodes (gate electrode 4, source electrode 5, drain electrode 6) may be formed by sputtering, or the semiconductor layer 2 and the gate insulating film 3 may be formed. The electrode may be formed by sputtering, and the electrode may be formed by vapor deposition, CVD (Chemical Vapor Deposition), printing, or the like.

以下、本発明の実施例を説明するが、本発明は実施例に記載された構成および条件に限られるものではない。 Examples of the present invention will be described below, but the present invention is not limited to the configurations and conditions described in the examples.

表1に示した作製条件で、RFマグネトロンスパッタ法においてガラス基板上に作製した。In−Ga−Zn−O薄膜の導電率を図1に示す。
In−Ga−Zn−O系の材料においては酸素流量を変えることで14桁以上もの極めて広範囲において導電率を変化させることが可能であった。
この材料は半導体層2およびゲート絶縁膜3の双方として使用可能であることが確認された。
It was produced on a glass substrate by the RF magnetron sputtering method under the production conditions shown in Table 1. The conductivity of the In—Ga—Zn—O thin film is shown in FIG.
In an In—Ga—Zn—O-based material, it was possible to change the conductivity in an extremely wide range of 14 digits or more by changing the oxygen flow rate.
It was confirmed that this material can be used as both the semiconductor layer 2 and the gate insulating film 3.

まず、スパッタターゲットとしてInGaZnOを、スパッタガスとしてArガスと酸素ガスの混合ガス(混合ガスの流量20SCCM)を用い、RFマグネトロンスパッタ法によってガラス製の絶縁性基板上に40nmの膜厚を有する半導体層を作製した。 First, a semiconductor having a film thickness of 40 nm on an insulating substrate made of glass by RF magnetron sputtering using InGaZnO 4 as a sputtering target and a mixed gas of Ar gas and oxygen gas (mixed gas flow rate 20 SCCM) as a sputtering gas. A layer was made.

上記の混合ガスにおいて、酸素ガスの流量を0.2SCCM〜2SCCM(酸素流量比で1%〜10%)の範囲内で変化させることで、5×10−10〜1.8(S/cm)の導電率を持つ半導体層を作製した。
作製した半導体層は元素比In:Ga:Zn=1:1:0.9のアモルファス膜であった。
In the above mixed gas, by changing the flow rate of oxygen gas within the range of 0.2 SCCM to 2 SCCM (1% to 10% in oxygen flow ratio), 5 × 10 −10 to 1.8 (S / cm) A semiconductor layer having the following conductivity was manufactured.
The produced semiconductor layer was an amorphous film having an element ratio In: Ga: Zn = 1: 1: 0.9.

次に、半導体層を作製した真空槽内で大気開放せずに、スパッタターゲットとしては半導体層の作製で用いたものと同じInGaZnOを、スパッタガスとしてArガスと酸素ガスの混合ガスにおいて、酸素ガスの流量を4SCCM〜18SCCM(酸素流量比で20%〜90%)の範囲内で変化させて、RFマグネトロンスパッタ法によって、170nmの膜厚を有するゲート絶縁膜を半導体層上の一部にマスクを用いて形成した。
ゲート絶縁膜は元素比In:Ga:Zn=1:1:0.9のアモルファス膜であった。
Next, without opening to the atmosphere in the vacuum chamber in which the semiconductor layer was produced, the same InGaZnO 4 as that used for producing the semiconductor layer was used as the sputtering target, and oxygen gas was mixed in the mixed gas of Ar gas and oxygen gas as the sputtering gas. The gas flow rate is changed within the range of 4 SCCM to 18 SCCM (20% to 90% in oxygen flow ratio), and a gate insulating film having a film thickness of 170 nm is masked on a part of the semiconductor layer by RF magnetron sputtering. Formed using.
The gate insulating film was an amorphous film having an element ratio of In: Ga: Zn = 1: 1: 0.9.

次に、このゲート絶縁膜および半導体層上に、スパッタターゲットとしてSnを10%ドープしたInを用い、スパッタガスとして、Arを流量20SCCM、酸素を流量0.1SCCM用いてスパッタを行った後、フォトリソグラフィーでSnをドープした酸化インジウムでできたスパッタ膜をソース電極、ドレイン電極およびゲート電極の3領域に分離しトランジスタを形成した。
このとき形成されたSnドープ酸化インジウム(ITO)からなる電極膜の導電率は4.0×10(S/cm)であった。
チャネル長は50μm、チャネル幅は200μmであった。
Next, sputtering was performed on the gate insulating film and the semiconductor layer by using In 2 O 3 doped with 10% of Sn as a sputtering target, Ar at a flow rate of 20 SCCM, and oxygen at a flow rate of 0.1 SCCM. Thereafter, a sputtered film made of indium oxide doped with Sn was separated into three regions of a source electrode, a drain electrode, and a gate electrode by photolithography to form a transistor.
The conductivity of the electrode film made of Sn-doped indium oxide (ITO) formed at this time was 4.0 × 10 3 (S / cm).
The channel length was 50 μm and the channel width was 200 μm.

<比較例1>
まず、スパッタターゲットとしてInGaZnOを、スパッタガスとしてArガスと酸素ガスの混合ガス(混合ガスの流量20SCCM)を用い、RFマグネトロンスパッタ法によってガラス製の絶縁性基板上に40nmの膜厚を有する半導体層を作製した。
<Comparative Example 1>
First, a semiconductor having a film thickness of 40 nm on an insulating substrate made of glass by RF magnetron sputtering using InGaZnO 4 as a sputtering target and a mixed gas of Ar gas and oxygen gas (mixed gas flow rate 20 SCCM) as a sputtering gas. A layer was made.

上記の混合ガスにおいて、酸素ガスの流量を0.2SCCM〜2SCCM(酸素流量比で1%〜10%)の範囲内で変化させて、3×10−13〜1.8(S/cm)の導電率を持つ半導体層を作製した。
作製した半導体層は元素比In:Ga:Zn=1:1:0.9のアモルファス膜であった。
In the above mixed gas, the flow rate of oxygen gas is changed within the range of 0.2 SCCM to 2 SCCM (oxygen flow rate ratio of 1% to 10%), and 3 × 10 −13 to 1.8 (S / cm) A semiconductor layer having electrical conductivity was produced.
The produced semiconductor layer was an amorphous film having an element ratio In: Ga: Zn = 1: 1: 0.9.

次に、半導体層を作製した真空槽内で大気開放せずに、スパッタターゲットとしては半導体層の作製で用いたものと同じInGaZnOを、スパッタガスとしてArガスと酸素ガスの混合ガスにおいて、酸素ガスの流量を0.2SCCM〜2SCCM(酸素流量比で1%〜10%)の範囲内で変化させて、RFマグネトロンスパッタ法によって、170nmの膜厚を有するゲート絶縁膜を半導体層上の一部にマスクを用いて形成した。
ゲート絶縁膜は元素比In:Ga:Zn=1:1:0.9のアモルファス膜であった。
Next, without opening to the atmosphere in the vacuum chamber in which the semiconductor layer was produced, the same InGaZnO 4 as that used for producing the semiconductor layer was used as the sputtering target, and oxygen gas was mixed in the mixed gas of Ar gas and oxygen gas as the sputtering gas. A part of the gate insulating film having a thickness of 170 nm is formed on the semiconductor layer by RF magnetron sputtering by changing the gas flow rate within a range of 0.2 SCCM to 2 SCCM (1% to 10% in oxygen flow ratio). And using a mask.
The gate insulating film was an amorphous film having an element ratio of In: Ga: Zn = 1: 1: 0.9.

次に、このゲート絶縁膜および半導体層上に、スパッタターゲットとしてSnを10%ドープしたInを用い、スパッタガスとして、Arを流量20SCCM、酸素を流量0.1SCCM用いてスパッタを行った後、フォトリソグラフィーでSnをドープした酸化インジウムでできたスパッタ膜をソース電極、ドレイン電極およびゲート電極の3領域に分離しトランジスタを形成した。
このとき形成されたSnドープ酸化インジウム(ITO)からなる電極膜の導電率は4.0×10(S/cm)であった。
チャネル長は50μm、チャネル幅は200μmであった。
Next, sputtering was performed on the gate insulating film and the semiconductor layer by using In 2 O 3 doped with 10% of Sn as a sputtering target, Ar at a flow rate of 20 SCCM, and oxygen at a flow rate of 0.1 SCCM. Thereafter, a sputtered film made of indium oxide doped with Sn was separated into three regions of a source electrode, a drain electrode, and a gate electrode by photolithography to form a transistor.
The conductivity of the electrode film made of Sn-doped indium oxide (ITO) formed at this time was 4.0 × 10 3 (S / cm).
The channel length was 50 μm and the channel width was 200 μm.

<比較例2>
まず、スパッタターゲットとしてInGaZnOを、スパッタガスとしてArガスと酸素ガスの混合ガス(混合ガスの流量20SCCM)を用い、RFマグネトロンスパッタ法によってガラス製の絶縁性基板上に40nmの膜厚を有する半導体層を作製した。
<Comparative example 2>
First, a semiconductor having a film thickness of 40 nm on an insulating substrate made of glass by RF magnetron sputtering using InGaZnO 4 as a sputtering target and a mixed gas of Ar gas and oxygen gas (mixed gas flow rate 20 SCCM) as a sputtering gas. A layer was made.

上記の混合ガスにおいて、酸素ガスの流量を4SCCM〜10SCCM(酸素流量比で20%〜50%)の範囲内で変化させて、3×10−13〜1.8(S/cm)の導電率を持つ半導体層を作製した。
作製した半導体層は元素比In:Ga:Zn=1:1:0.9のアモルファス膜であった。
In the above mixed gas, the flow rate of oxygen gas is changed within the range of 4 SCCM to 10 SCCM (20% to 50% in oxygen flow ratio), and the conductivity is 3 × 10 −13 to 1.8 (S / cm). A semiconductor layer having was produced.
The produced semiconductor layer was an amorphous film having an element ratio In: Ga: Zn = 1: 1: 0.9.

次に、半導体層を作製した真空槽内で大気開放せずに、スパッタターゲットとしては半導体層の作製で用いたものと同じInGaZnOを、スパッタガスとしてArガスと酸素ガスの混合ガスにおいて、酸素ガスの流量を2SCCM〜18SCCM(酸素流量比で10%〜90%)の範囲内で変化させて、RFマグネトロンスパッタ法によって、170nmの膜厚を有するゲート絶縁膜を半導体層上の一部にマスクを用いて形成した。
ゲート絶縁膜は元素比In:Ga:Zn=1:1:0.9のアモルファス膜であった。
Next, without opening to the atmosphere in the vacuum chamber in which the semiconductor layer was produced, the same InGaZnO 4 as that used for producing the semiconductor layer was used as the sputtering target, and oxygen gas was mixed in the mixed gas of Ar gas and oxygen gas as the sputtering gas. The gas flow rate is changed within a range of 2 SCCM to 18 SCCM (10% to 90% in terms of oxygen flow ratio), and a gate insulating film having a thickness of 170 nm is masked on a part of the semiconductor layer by RF magnetron sputtering. Formed using.
The gate insulating film was an amorphous film having an element ratio of In: Ga: Zn = 1: 1: 0.9.

次に、このゲート絶縁膜および半導体層上に、スパッタターゲットとしてSnを10%ドープしたInを用い、スパッタガスとして、Arを流量20SCCM、酸素を流量0.1SCCM用いてスパッタを行った後、フォトリソグラフィーでSnをドープした酸化インジウムでできたスパッタ膜をソース電極、ドレイン電極およびゲート電極の3領域に分離しトランジスタを形成した。
このとき形成されたSnドープ酸化インジウム(ITO)からなる電極膜の導電率は4.0×10(S/cm)であった。
チャネル長は50μm、チャネル幅は200μmであった。
Next, sputtering was performed on the gate insulating film and the semiconductor layer by using In 2 O 3 doped with 10% of Sn as a sputtering target, Ar at a flow rate of 20 SCCM, and oxygen at a flow rate of 0.1 SCCM. Thereafter, a sputtered film made of indium oxide doped with Sn was separated into three regions of a source electrode, a drain electrode, and a gate electrode by photolithography to form a transistor.
The conductivity of the electrode film made of Sn-doped indium oxide (ITO) formed at this time was 4.0 × 10 3 (S / cm).
The channel length was 50 μm and the channel width was 200 μm.

効果を確認するため、作製した薄膜トランジスタの特性評価を行った。
成膜条件(酸素流量)、半導体層およびゲート絶縁膜の導電率、およびそれらを用いたトランジスタのON/OFF比を表1に示す。
In order to confirm the effect, characteristics of the manufactured thin film transistor were evaluated.
Table 1 shows the film formation conditions (oxygen flow rate), the conductivity of the semiconductor layer and the gate insulating film, and the ON / OFF ratio of the transistor using them.

また、この結果をグラフにまとめたものを図3に示す。 FIG. 3 shows a summary of the results in a graph.

半導体の導電率が1×10−3〜2×10−9(S/cm)の範囲内、ゲート絶縁膜の導電率が1×10−11(S/cm)以下の範囲で、移動度0.8〜8.5cm/Vs以上、ON/OFF比7×10〜3×10の良好な特性を示している。
半導体層の導電率が上記の範囲内にあっても、絶縁層の導電率が5×10−10(S/cm)であれば、ON/OFF比が8〜700程度と低くトランジスタとしては使用できない。また上記の範囲外ではトランジスタの動作は確認できなかった。
When the conductivity of the semiconductor is in the range of 1 × 10 −3 to 2 × 10 −9 (S / cm) and the conductivity of the gate insulating film is in the range of 1 × 10 −11 (S / cm) or less, the mobility is 0. Good characteristics of 0.8 to 8.5 cm 2 / Vs or more and an ON / OFF ratio of 7 × 10 5 to 3 × 10 8 are shown.
Even if the conductivity of the semiconductor layer is within the above range, if the conductivity of the insulating layer is 5 × 10 −10 (S / cm), the ON / OFF ratio is as low as about 8 to 700, and it is used as a transistor. Can not. Outside of the above range, the operation of the transistor could not be confirmed.

本発明のトランジスタは液晶ディスプレー、有機ELディスプレー、光書き込み型コレステリック液晶型ディスプレー、Twisting Ball 方式ディスプレー、トナーディスプレー方式ディスプレー、可動フィルム方式ディスプレー、RFID(Radio Frequency Identification)、センサーなどのデバイスに利用することができる。 The transistor of the present invention is used for devices such as liquid crystal displays, organic EL displays, optical writing cholesteric liquid crystal displays, Twisting Ball type displays, toner display type displays, movable film type displays, RFID (Radio Frequency Identification), and sensors. Can do.

酸素流量比に対するIn−Ga−Zn−O系アモルファス材料の導電率の変化を説明するための図である。It is a figure for demonstrating the change of the electrical conductivity of In-Ga-Zn-O type | system | group amorphous material with respect to oxygen flow rate ratio. 本発明における製造プロセスを説明するための断面図である。It is sectional drawing for demonstrating the manufacturing process in this invention. 本発明のトランジスタの半導体層の導電率とゲート絶縁膜の導電率に対する、トタンジスタの動作状況およびON/OFF比を説明するための図である。It is a figure for demonstrating the operating condition and ON / OFF ratio of a transistor with respect to the electrical conductivity of the semiconductor layer of the transistor of this invention, and the electrical conductivity of a gate insulating film.

符号の説明Explanation of symbols

1・・・絶縁性基板
2・・・半導体層
3・・・ゲート絶縁膜
4・・・ゲート電極
5・・・ソース電極
6・・・ドレイン電極
DESCRIPTION OF SYMBOLS 1 ... Insulating substrate 2 ... Semiconductor layer 3 ... Gate insulating film 4 ... Gate electrode 5 ... Source electrode 6 ... Drain electrode

Claims (3)

絶縁性基板上に設けられた半導体層と、該半導体層に電気的に接触して配列されたソース電極と、前記半導体層に電気的に接触すると共に前記ソース電極に離隔して配列されたドレイン電極と、前記絶縁性基板を真上から見たときに前記ソース電極と前記ドレイン電極の間に位置する前記半導体層上に設けられたゲート絶縁膜と、該ゲート絶縁膜上に設けられたゲート電極とを備え、該ゲート電極に印加する電圧の有無によって、前記ソース電極と前記ドレイン電極との導通をオン又はオフするトランジスタであって、前記半導体層および前記ゲート絶縁膜がIn、Ga、Zn、Oから構成されることを特徴とするトランジスタ。 A semiconductor layer provided on an insulating substrate, a source electrode arranged in electrical contact with the semiconductor layer, and a drain arranged in electrical contact with the semiconductor layer and spaced apart from the source electrode An electrode, a gate insulating film provided on the semiconductor layer located between the source electrode and the drain electrode when the insulating substrate is viewed from directly above, and a gate provided on the gate insulating film And a transistor for turning on or off conduction between the source electrode and the drain electrode depending on the presence or absence of a voltage applied to the gate electrode, wherein the semiconductor layer and the gate insulating film are In, Ga, Zn , O. A transistor characterized by comprising O. 前記半導体層の導電率が1×10−10S/cm以上1×10−2S/cm以下、前記ゲート絶縁膜の導電率が1×10−11S/cm以下であることを特徴とする請求項1に記載のトランジスタ。 The conductivity of the semiconductor layer is 1 × 10 −10 S / cm or more and 1 × 10 −2 S / cm or less, and the conductivity of the gate insulating film is 1 × 10 −11 S / cm or less. The transistor according to claim 1. 絶縁性基板上に、酸化物半導体から構成される半導体層を形成する半導体層形成工程と、前記半導体層に電気的に接触すると共に、相互に離隔したソース電極とドレイン電極とを、前記半導体層上に配列するソース電極及びドレイン電極配列工程と、前記絶縁性基板を真上から見たときに前記ソース電極と前記ドレイン電極の間に位置する前記半導体層上にゲート絶縁膜を形成するゲート絶縁膜形成工程と、前記ゲート絶縁膜上にゲート電極を形成するゲート電極形成工程とを有するトランジスタの製造方法であって、前記半導体層形成工程および前記ゲート絶縁膜形成工程が、In、Ga、Zn、Oからなるスパッタターゲットを不活性ガスまたは酸素の少なくとも一方でスパッタする工程であって、前記半導体層を形成する工程で用いるスパッタガスの酸素流量比が10%以下であり、前記ゲート絶縁膜を形成する工程で用いるスパッタガスの酸素流量比が20%以上であることを特徴とするトランジスタの製造方法。 A semiconductor layer forming step of forming a semiconductor layer made of an oxide semiconductor on an insulating substrate, and a source electrode and a drain electrode that are in electrical contact with the semiconductor layer and are spaced apart from each other. A source and drain electrode arrangement step arranged on top, and gate insulation for forming a gate insulation film on the semiconductor layer located between the source electrode and the drain electrode when the insulating substrate is viewed from directly above A method of manufacturing a transistor comprising a film forming step and a gate electrode forming step of forming a gate electrode on the gate insulating film, wherein the semiconductor layer forming step and the gate insulating film forming step include In, Ga, Zn , A step of sputtering a sputtering target made of O with at least one of an inert gas and oxygen, and used in the step of forming the semiconductor layer. Flow rate ratio of oxygen Pattagasu is not less than 10%, the manufacturing method of the transistor, wherein the oxygen flow rate ratio of the sputtering gas used in the step of forming the gate insulating film is 20% or more.
JP2005299678A 2005-10-14 2005-10-14 Transistor and its manufacturing method Pending JP2007109918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005299678A JP2007109918A (en) 2005-10-14 2005-10-14 Transistor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005299678A JP2007109918A (en) 2005-10-14 2005-10-14 Transistor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007109918A true JP2007109918A (en) 2007-04-26

Family

ID=38035541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005299678A Pending JP2007109918A (en) 2005-10-14 2005-10-14 Transistor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007109918A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135380A (en) * 2007-05-30 2009-06-18 Canon Inc Method for manufacturing thin film transistor using oxide semiconductor and display device
JP2010062549A (en) * 2008-08-08 2010-03-18 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JPWO2008139860A1 (en) * 2007-05-07 2010-07-29 出光興産株式会社 Semiconductor thin film, semiconductor thin film manufacturing method, and semiconductor element
KR20100100659A (en) 2009-03-05 2010-09-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20100100673A (en) 2009-03-05 2010-09-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20100100671A (en) 2009-03-05 2010-09-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
KR20110015388A (en) 2009-08-07 2011-02-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
JP2011150322A (en) * 2009-12-24 2011-08-04 Semiconductor Energy Lab Co Ltd Display device and electronic device
JP2011181800A (en) * 2010-03-03 2011-09-15 Fujifilm Corp Method of manufacturing igzo-based amorphous oxide insulating film and method of manufacturing field effect transistor using the same
JP2011249691A (en) * 2010-05-28 2011-12-08 Fujifilm Corp Method for producing amorphous oxide thin film and method of manufacturing field effect transistor
JP2012019092A (en) * 2010-07-08 2012-01-26 Canon Inc Electronic device, method of separating elements in electronic device, method of manufacturing electronic device, and display device having electronic device
JP2012114247A (en) * 2010-11-25 2012-06-14 Lg Display Co Ltd Manufacturing methods of thin-film transistor and electrode substrate for display device
KR20120064626A (en) * 2010-12-09 2012-06-19 엘지디스플레이 주식회사 Oxide including film, and oxide semiconductor thin film transistor, and fabrication method of oxide semiconductor thin film transistor using the same
JP2012212714A (en) * 2011-03-30 2012-11-01 Toshiba Corp Thin film transistor array substrate, method of manufacturing the same, and display device
US8324027B2 (en) 2009-07-10 2012-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2013012751A (en) * 2010-04-16 2013-01-17 Semiconductor Energy Lab Co Ltd Semiconductor device manufacturing method
JP2013175555A (en) * 2012-02-24 2013-09-05 Tohoku Univ Method of manufacturing field effect type thin film transistor, and method of forming oxide semiconductor film
JP2013179276A (en) * 2012-02-02 2013-09-09 Semiconductor Energy Lab Co Ltd Semiconductor device
US9257082B2 (en) 2009-09-04 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP2017135408A (en) * 2012-03-14 2017-08-03 株式会社半導体エネルギー研究所 Semiconductor device
WO2018037335A1 (en) * 2016-08-26 2018-03-01 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP2018093166A (en) * 2016-08-03 2018-06-14 株式会社半導体エネルギー研究所 Semiconductor device manufacturing method
CN108428730A (en) * 2018-05-16 2018-08-21 京东方科技集团股份有限公司 Oled display substrate and preparation method thereof, display device
KR20190122628A (en) * 2009-02-06 2019-10-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method of manufacturing the semiconductor device

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008139860A1 (en) * 2007-05-07 2010-07-29 出光興産株式会社 Semiconductor thin film, semiconductor thin film manufacturing method, and semiconductor element
US9249032B2 (en) 2007-05-07 2016-02-02 Idemitsu Kosan Co., Ltd. Semiconductor thin film, semiconductor thin film manufacturing method and semiconductor element
JP2009135380A (en) * 2007-05-30 2009-06-18 Canon Inc Method for manufacturing thin film transistor using oxide semiconductor and display device
KR101685451B1 (en) 2008-08-08 2016-12-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8729547B2 (en) 2008-08-08 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10205030B2 (en) 2008-08-08 2019-02-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101805381B1 (en) 2008-08-08 2017-12-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9793416B2 (en) 2008-08-08 2017-10-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9437748B2 (en) 2008-08-08 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR20160077022A (en) * 2008-08-08 2016-07-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP2010062549A (en) * 2008-08-08 2010-03-18 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US9236456B2 (en) 2008-08-08 2016-01-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9166058B2 (en) 2008-08-08 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8946703B2 (en) 2008-08-08 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR20190122628A (en) * 2009-02-06 2019-10-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method of manufacturing the semiconductor device
KR102229569B1 (en) 2009-02-06 2021-03-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method of manufacturing the semiconductor device
US10686061B2 (en) 2009-03-05 2020-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20220070403A (en) 2009-03-05 2022-05-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8461582B2 (en) 2009-03-05 2013-06-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11961894B2 (en) 2009-03-05 2024-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11955537B2 (en) 2009-03-05 2024-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20180082385A (en) 2009-03-05 2018-07-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9941393B2 (en) 2009-03-05 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8759206B2 (en) 2009-03-05 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20180025312A (en) 2009-03-05 2018-03-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20190016528A (en) 2009-03-05 2019-02-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US10326008B2 (en) 2009-03-05 2019-06-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20200006613A (en) 2009-03-05 2020-01-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US11233132B2 (en) 2009-03-05 2022-01-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20210090151A (en) 2009-03-05 2021-07-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20210036335A (en) 2009-03-05 2021-04-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20190069374A (en) 2009-03-05 2019-06-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20190092360A (en) 2009-03-05 2019-08-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20100100659A (en) 2009-03-05 2010-09-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20170036670A (en) 2009-03-05 2017-04-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20170019401A (en) 2009-03-05 2017-02-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20100100673A (en) 2009-03-05 2010-09-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20100100671A (en) 2009-03-05 2010-09-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US10916566B2 (en) 2009-07-10 2021-02-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9054138B2 (en) 2009-07-10 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10522568B2 (en) 2009-07-10 2019-12-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20160087401A (en) 2009-07-10 2016-07-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
KR20180105263A (en) 2009-07-10 2018-09-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
KR20210018551A (en) 2009-07-10 2021-02-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
KR20190096445A (en) 2009-07-10 2019-08-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US8324027B2 (en) 2009-07-10 2012-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9754974B2 (en) 2009-07-10 2017-09-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9490277B2 (en) 2009-07-10 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11374029B2 (en) 2009-07-10 2022-06-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20140148483A (en) 2009-07-10 2014-12-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
KR20220100086A (en) 2009-07-10 2022-07-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US8835920B2 (en) 2009-07-10 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8441011B2 (en) 2009-07-10 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10157936B2 (en) 2009-07-10 2018-12-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8384085B2 (en) 2009-08-07 2013-02-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20110015388A (en) 2009-08-07 2011-02-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US10134912B2 (en) 2009-09-04 2018-11-20 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US11430899B2 (en) 2009-09-04 2022-08-30 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
KR20230144506A (en) 2009-09-04 2023-10-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device
KR20180062443A (en) 2009-09-04 2018-06-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device
US11652174B2 (en) 2009-09-04 2023-05-16 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US10700215B2 (en) 2009-09-04 2020-06-30 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
KR20220135226A (en) 2009-09-04 2022-10-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device
KR20200008001A (en) 2009-09-04 2020-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device
US9257082B2 (en) 2009-09-04 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
KR20220032542A (en) 2009-09-04 2022-03-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device
KR20210124128A (en) 2009-09-04 2021-10-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device
US11069817B2 (en) 2009-09-04 2021-07-20 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US9047836B2 (en) 2009-12-24 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP2011150322A (en) * 2009-12-24 2011-08-04 Semiconductor Energy Lab Co Ltd Display device and electronic device
JP2011181800A (en) * 2010-03-03 2011-09-15 Fujifilm Corp Method of manufacturing igzo-based amorphous oxide insulating film and method of manufacturing field effect transistor using the same
JP2016213499A (en) * 2010-04-16 2016-12-15 株式会社半導体エネルギー研究所 Insulation film manufacturing method
US9698008B2 (en) 2010-04-16 2017-07-04 Semiconductor Energy Laboratory Co., Ltd. Deposition method and method for manufacturing semiconductor device
US10529556B2 (en) 2010-04-16 2020-01-07 Semiconductor Energy Laboratory Co., Ltd. Deposition method and method for manufacturing semiconductor device
US8518761B2 (en) 2010-04-16 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Deposition method and method for manufacturing semiconductor device
JP2013012751A (en) * 2010-04-16 2013-01-17 Semiconductor Energy Lab Co Ltd Semiconductor device manufacturing method
US9006046B2 (en) 2010-04-16 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Deposition method and method for manufacturing semiconductor device
JP2011249691A (en) * 2010-05-28 2011-12-08 Fujifilm Corp Method for producing amorphous oxide thin film and method of manufacturing field effect transistor
TWI485775B (en) * 2010-05-28 2015-05-21 Fujifilm Corp Method for producing amorphous oxide thin-film, method for producing field-effect transistor
KR101523125B1 (en) * 2010-05-28 2015-05-26 후지필름 가부시키가이샤 Method for manufacturing amorphous oxide thin film and method for manufacturing field effect transistor
JP2012019092A (en) * 2010-07-08 2012-01-26 Canon Inc Electronic device, method of separating elements in electronic device, method of manufacturing electronic device, and display device having electronic device
JP2012114247A (en) * 2010-11-25 2012-06-14 Lg Display Co Ltd Manufacturing methods of thin-film transistor and electrode substrate for display device
KR20120064626A (en) * 2010-12-09 2012-06-19 엘지디스플레이 주식회사 Oxide including film, and oxide semiconductor thin film transistor, and fabrication method of oxide semiconductor thin film transistor using the same
KR101970548B1 (en) 2010-12-09 2019-04-19 엘지디스플레이 주식회사 oxide including film, and oxide semiconductor thin film transistor, and fabrication method of oxide semiconductor thin film transistor using the same
JP2012212714A (en) * 2011-03-30 2012-11-01 Toshiba Corp Thin film transistor array substrate, method of manufacturing the same, and display device
JP2013179276A (en) * 2012-02-02 2013-09-09 Semiconductor Energy Lab Co Ltd Semiconductor device
US9812582B2 (en) 2012-02-02 2017-11-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2013175555A (en) * 2012-02-24 2013-09-05 Tohoku Univ Method of manufacturing field effect type thin film transistor, and method of forming oxide semiconductor film
JP2017135408A (en) * 2012-03-14 2017-08-03 株式会社半導体エネルギー研究所 Semiconductor device
JP2018093166A (en) * 2016-08-03 2018-06-14 株式会社半導体エネルギー研究所 Semiconductor device manufacturing method
US11404016B2 (en) 2016-08-26 2022-08-02 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device having neural network for calculating set values of luminance and color tone
WO2018037335A1 (en) * 2016-08-26 2018-03-01 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US10733946B2 (en) 2016-08-26 2020-08-04 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
CN108428730A (en) * 2018-05-16 2018-08-21 京东方科技集团股份有限公司 Oled display substrate and preparation method thereof, display device
US11348987B2 (en) 2018-05-16 2022-05-31 Beijing Boe Display Technology Co., Ltd. OLED display substrate having large aperture ratio, method of manufacturing the same, and display device
CN108428730B (en) * 2018-05-16 2021-01-26 京东方科技集团股份有限公司 OLED display substrate, manufacturing method thereof and display device
WO2019218993A1 (en) * 2018-05-16 2019-11-21 京东方科技集团股份有限公司 Oled display substrate and manufacturing method therefor, and display device

Similar Documents

Publication Publication Date Title
JP2007109918A (en) Transistor and its manufacturing method
KR101263538B1 (en) Semiconductor thin film method for producing same and thin film transistor
JP5386179B2 (en) Semiconductor device, image display apparatus, thin film transistor manufacturing method, and thin film transistor substrate
JP5213458B2 (en) Amorphous oxide and field effect transistor
JP5250929B2 (en) Transistor and manufacturing method thereof
KR101398332B1 (en) Semiconductor thin film and method for manufacturing same, and thin film transistor
JP5538797B2 (en) Field effect transistor and display device
US9991135B2 (en) Method for fabricating a metal oxide thin film transistor
JP5339792B2 (en) Thin film field effect transistor, method of manufacturing the same, and display device using the same
JP2010040552A (en) Thin film transistor and manufacturing method thereof
KR20110073536A (en) Thin film transistor and method for manufacturing same
KR20080087744A (en) Thin film field effect transistor and display
JPWO2008099863A1 (en) Semiconductor, semiconductor device and complementary transistor circuit device
KR20100097002A (en) Top gate type field effect transistor, manufacturing method thereof, and display device comprising the same
JP2009260254A (en) Composition for oxide semiconductor thin film, field-effect transistor using it, and its method for manufacturing
JP2010074061A (en) Thin-film field effect transistor
JP2010186860A (en) Field effect transistor, and method of manufacturing the same
US20170317195A1 (en) Method for fabricating metallic oxide thin film transistor
WO2015119385A1 (en) Thin-film transistor having active layer made of molybdenum disulfide, method for manufacturing same, and display device comprising same
JP5098152B2 (en) Thin film transistor manufacturing method
JP5274165B2 (en) Thin film field effect transistor and method of manufacturing the same
KR101132989B1 (en) Method for producing thin film transistor and method for producing electronic optical device
JP2007123661A (en) Thin-film transistor and method of manufacturing same
KR101417932B1 (en) Thin film transistor having double layered semiconductor channel and method of manufacturing the thin film transistor
JP2010045159A (en) Thin film field effect transistor and process of fabricating the same