JP2006340541A - Method for power supply to electric vehicle using microwave - Google Patents

Method for power supply to electric vehicle using microwave Download PDF

Info

Publication number
JP2006340541A
JP2006340541A JP2005164208A JP2005164208A JP2006340541A JP 2006340541 A JP2006340541 A JP 2006340541A JP 2005164208 A JP2005164208 A JP 2005164208A JP 2005164208 A JP2005164208 A JP 2005164208A JP 2006340541 A JP2006340541 A JP 2006340541A
Authority
JP
Japan
Prior art keywords
power
power supply
electric vehicle
road surface
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005164208A
Other languages
Japanese (ja)
Other versions
JP4784157B2 (en
Inventor
Takashi Hashimoto
隆志 橋本
Toshiro Muramatsu
寿郎 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005164208A priority Critical patent/JP4784157B2/en
Publication of JP2006340541A publication Critical patent/JP2006340541A/en
Application granted granted Critical
Publication of JP4784157B2 publication Critical patent/JP4784157B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply method by which power is efficiently supplied in correspondence with a variation in conditions on an electric vehicle side with respect to a power supply that supplies power from a road surface to an electric vehicle using a microwave. <P>SOLUTION: The power supply on the road surface side receives vehicle information including vehicle model of an electric vehicle. Based on the received vehicle information, the power supply controls power for the transmission of a microwave from an antenna so as to optimize it using the relation between transmission power and power supply efficiency stored beforehand in the road surface-side power supply in the form of map. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、走行車両に車両外の路面等インフラ側から電力を供給する方法に係る。   The present invention relates to a method of supplying electric power to a traveling vehicle from an infrastructure side such as a road surface outside the vehicle.

マイクロ波による電力伝送において伝送効率向上の方法として、従来は、下記特許文献1に開示されているようにレクテナを大電力化する方法か、あるいは下記特許文献2で開示されている給電系の構造によりマイクロ波の散乱によるロスを低減する方法等が検討されていた。特に、後者の効率向上に関しては、以下のような方法が開示されている。なお、レクテナとはマイクロ波受信アンテナと整流回路とからなるマイクロ波受信装置である。   As a method of improving transmission efficiency in microwave power transmission, conventionally, a method of increasing the power of a rectenna as disclosed in Patent Document 1 below, or a structure of a power feeding system disclosed in Patent Document 2 below is disclosed. A method for reducing loss due to microwave scattering has been studied. In particular, the following method is disclosed for the latter efficiency improvement. The rectenna is a microwave receiving device including a microwave receiving antenna and a rectifier circuit.

走行車両に対する電力受給システムとして下記特許文献2に記載のシステムが開示されている。この電力受給システムの基本構成は、インフラ側となる路面に埋設された電力供給装置と、受電側となる車両に搭載されている受信装置とで形成されている。電力供給装置はマイクロ波の形で送電されてくる電力の送電系としての導波管と、マイクロ波電力を放出するスロットアンテナとで構成されており、さらに、マイクロ波にある程度の方向性を持たせ、効率よく受信側に電力供給するための導電性材料により形成されている送信用反射板と、電力供給装置保護のためのマイクロ波を透過する覆いとが取り付けられている。   As a power receiving system for a traveling vehicle, a system described in Patent Document 2 below is disclosed. The basic configuration of this power receiving system is formed by a power supply device embedded in a road surface on the infrastructure side and a receiving device mounted on a vehicle on the power receiving side. The power supply device is composed of a waveguide as a power transmission system for power transmitted in the form of microwaves, and a slot antenna that emits microwave power, and has a certain degree of directionality to microwaves. In addition, a transmission reflector made of a conductive material for efficiently supplying power to the receiving side and a microwave transmitting cover for protecting the power supply device are attached.

車両側に搭載されている受信装置は、マイクロ波を受信し整流するマイクロ波受信装置であるレクテナと、このレクテナで受電した電力を充電する充電池とで構成されており、さらに、送電されて来たマイクロ波を効率よく受信するための導電性材料により形成されている受信用反射板が取り付けられている。この構成により、電力受給の効率を向上させた電力受給システムとしている。   The receiving device mounted on the vehicle side is composed of a rectenna, which is a microwave receiving device that receives and rectifies microwaves, and a rechargeable battery that charges the electric power received by the rectenna. A receiving reflector made of a conductive material for efficiently receiving the incoming microwave is attached. With this configuration, the power receiving system has improved power receiving efficiency.

前者の大電力化の方法は、電動車両の場合のように電力送信側と受信側との相対位置関係が絶えず変動する場合に対しては、ロスを見越しての大電力伝送が必要となる。また、後者の構造的に効率を向上する方法においては、特定の車種に対しては効率向上はあるものの、送信側と受信側のアンテナの相対位置により給電の効率変動があり、また、車種による必要電力変動に対しても十分に対応出来ないと言う問題もあった。   The former method of increasing power requires high power transmission in anticipation of loss when the relative positional relationship between the power transmitting side and the receiving side constantly changes as in the case of an electric vehicle. Further, in the latter method of improving efficiency structurally, although there is an improvement in efficiency for a specific vehicle type, there is a fluctuation in power supply efficiency depending on the relative position of the antenna on the transmission side and the reception side, and also depending on the vehicle type There was also a problem that it could not respond sufficiently to fluctuations in required power.

特許第385472号Patent No. 385472 特開2002−152996号広報Japanese Laid-Open Patent Publication No. 2002-152996

前記の様に、路面(インフラ)側に送信側反射板、車両側に受信側反射板を設置し、更に送信側反射板の幅領域を全て覆う様に受信側反射板の幅領域を前記送信側反射板のそれよりも広く設定する事により、路面・車両間すなわち送受信間における車外へのマイクロ波の洩れ波は低減され、電力受給の効率を向上させることが可能と考えられる。   As described above, a transmission-side reflector is installed on the road surface (infrastructure) side, a reception-side reflector is installed on the vehicle side, and the width region of the reception-side reflector is covered so as to cover the entire width region of the transmission-side reflector. By setting it wider than that of the side reflector, it is considered that microwave leakage to the outside of the vehicle between the road surface and the vehicle, that is, between transmission and reception is reduced, and it is possible to improve the efficiency of power reception.

しかしながら、路面側、車両側共に反射板を設置する必要があるので、特に路面側のシステム設定、及びその設置が大掛りになる。加えて、例えば車両がコーナ部分あるいは車両を道路の進行方向に対して斜方向に配置した場合等、上方からみて路面の進行方向と車両の長手方向とが一致しない場合、具体的には前記送信側反射板と受信側反射板とが平行にならない様な場面においては、送電側のマイクロ波を受電側に対してある程度の方向性を持たせることが困難となり、前記の様な電力受給の効率を向上させる事は難しくなる、という問題点があった。このため本発明においては、このような問題を解決し、高効率でマイクロ波電力の受給を行う方法の提供を目的とした。   However, since it is necessary to install reflectors on both the road surface side and the vehicle side, system setting and installation on the road surface side are particularly large. In addition, for example, when the vehicle has a corner portion or the vehicle is disposed obliquely with respect to the traveling direction of the road, when the traveling direction of the road surface does not coincide with the longitudinal direction of the vehicle when viewed from above, specifically the transmission In situations where the side reflector and the receiver reflector are not parallel, it is difficult to provide a certain degree of directivity for the microwave on the power transmission side with respect to the power reception side. There was a problem that it was difficult to improve the performance. Therefore, an object of the present invention is to provide a method for solving such problems and receiving microwave power with high efficiency.

上記目的を達成するために、本発明においては路面側給電装置から電動車両に給電を行うに際して、先ず路面側給電装置は電動車両側から車種およびレクテナの構成に基づく受信可能電力等の車両情報を受信する。路面側給電装置には予め車種別にマップ化した送信電力−給電効率の関係が設定されており、この関係を用いて路面側給電装置と電動車両との間での送信電力を最適給電効率となるように制御する方法としている。   In order to achieve the above object, in the present invention, when power is supplied from the road surface side power supply device to the electric vehicle, the road surface side power supply device first receives vehicle information such as receivable power based on the vehicle type and rectenna configuration from the electric vehicle side. Receive. A relationship between transmission power and power supply efficiency mapped in advance to each vehicle type is set in the road surface side power supply device, and the transmission power between the road surface side power supply device and the electric vehicle becomes the optimum power supply efficiency using this relationship. The way to control is as follows.

本発明によれば、受電側である電動車両の車種およびレクテナの構成に応じて必要とする電力を供給し、かつ路面側給電装置と電動車両とで給電する電力と給電効率とを監視することが出来、時々刻々供給電力を制御することができるため給電効率を高くすることが出来る。   According to the present invention, the electric power required according to the type of the electric vehicle on the power receiving side and the configuration of the rectenna is supplied, and the electric power supplied by the road surface side power supply device and the electric vehicle and the power supply efficiency are monitored. The power supply efficiency can be increased because the supplied power can be controlled from moment to moment.

以下、本発明を図により説明する。
(実施の形態1)
マイクロ波を用いた電動車両への給電方法の実施の形態1を図1に示す。図1(a)は、本実施の形態1の構成を上方より見たシステム構成図、同様に図1(b)は、本実施の形態1の構成を側方より見たシステム構成図である。
Hereinafter, the present invention will be described with reference to the drawings.
(Embodiment 1)
Embodiment 1 of a method for supplying power to an electric vehicle using microwaves is shown in FIG. FIG. 1A is a system configuration diagram when the configuration of the first embodiment is viewed from above. Similarly, FIG. 1B is a system configuration diagram when the configuration of the first embodiment is viewed from the side. .

路面側給電装置(マイクロ波送信設備)20は基本的に、路面(インフラ)側電源ライン21とマイクロ波発生ユニット22とマイクロ波送信アンテナ群23、並びに送受信器24とマイクロ波送信アンテナ制御回路25にて構成される。マイクロ波発生ユニット22は、前記インフラ側電源ライン21より供給された電気エネルギをマイクロ波に変換する。   The road surface side power supply device (microwave transmission equipment) 20 basically includes a road surface (infrastructure) side power line 21, a microwave generation unit 22, a microwave transmission antenna group 23, a transmitter / receiver 24, and a microwave transmission antenna control circuit 25. Consists of. The microwave generation unit 22 converts the electrical energy supplied from the infrastructure side power supply line 21 into microwaves.

マイクロ波送信アンテナ群23は、マイクロ波を送信する機構を備えたマイクロ波送信アンテナの集合で、マイクロ波を空間に送出するための手段であり、前記マイクロ波発生ユニット22にて変換されたマイクロ波を路面より上方、即ち電動車両26の車体下部に設置されたマイクロ波受信装置であるレクテナ27に向けてマイクロ波を放出する。   The microwave transmission antenna group 23 is a set of microwave transmission antennas having a mechanism for transmitting microwaves. The microwave transmission antenna group 23 is a means for transmitting microwaves to space. The microwave transmission antenna group 22 converts the microwaves converted by the microwave generation unit 22. The microwaves are emitted toward the rectenna 27 that is a microwave receiver installed above the road surface, that is, at the lower part of the vehicle body of the electric vehicle 26.

マイクロ波送信アンテナ制御回路25には、図2にて示される“送信電力−給電効率 関係”を予めマップ化して設定しておく。例えば、図2において車種Aまたは車種Bで示すように車種毎に最大給電効率が得られる送信電力となるように設定しておく。これにより、路面(インフラ)側給電装置20が、給電対象となる電動車両26の車種に応じて送信電力を最適制御する方法としている。   In the microwave transmission antenna control circuit 25, the “transmission power-feeding efficiency relationship” shown in FIG. For example, as shown by vehicle type A or vehicle type B in FIG. 2, the transmission power is set so as to obtain the maximum power supply efficiency for each vehicle type. Thereby, the road surface (infrastructure) side power supply device 20 is configured to optimally control the transmission power according to the vehicle type of the electric vehicle 26 to be supplied with power.

次に、受信側、すなわち電動車両26側における電力受信系について説明する。レクテナ27は、図示しないがマイクロ波受信アンテナと整流回路とで構成されている。図示しない前記マイクロ波受信アンテナは、路面側に設定した前記マイクロ波送信アンテナ群23より送信されたマイクロ波を受信する手段として機能する。   Next, the power reception system on the reception side, that is, the electric vehicle 26 side will be described. Although not shown, the rectenna 27 includes a microwave receiving antenna and a rectifier circuit. The microwave receiving antenna (not shown) functions as means for receiving microwaves transmitted from the microwave transmitting antenna group 23 set on the road surface side.

加えて図示しない前記整流回路は、複数のフィルタと整流ダイオードにて構成されており、これらにより前記マイクロ波受信アンテナにて受信されたマイクロ波から直接直流電力を取り出す手段として機能する。従って前記電動車両26は、前記レクテナ27をその車体下部に設定することで、路面より受信したマイクロ波を電気エネルギに変換させ、蓄電機構28に蓄えるか或いは直接モータジェネレータ29へ供給する。   In addition, the rectifier circuit (not shown) is composed of a plurality of filters and rectifier diodes, and functions as means for directly extracting DC power from the microwaves received by the microwave receiving antenna. Therefore, the electric vehicle 26 converts the microwave received from the road surface into electric energy by setting the rectenna 27 at the lower part of the vehicle body, and stores it in the power storage mechanism 28 or directly supplies it to the motor generator 29.

モータジェネレータ29は、前記蓄電機構28に蓄えた、もしくは前記レクテナ27より直接供給された電気エネルギを駆動力に変換させることで電動車両26の走行が可能となる。或いは電動車両26内における電力消費状況(エアコンディショナやライトの有無等)に応じて、レクテナ27から供給された電気エネルギをDC/DCコンバータ30にて車両内電装系電圧に変換し、車両電装系用蓄電池31を介して車両内電装ユニットへ供給される。   The motor generator 29 can travel the electric vehicle 26 by converting the electric energy stored in the power storage mechanism 28 or directly supplied from the rectenna 27 into a driving force. Alternatively, the electric energy supplied from the rectenna 27 is converted into an in-vehicle electric system voltage by the DC / DC converter 30 in accordance with the power consumption state (the presence or absence of an air conditioner, a light, etc.) in the electric vehicle 26, and the vehicle electric equipment It is supplied to the in-vehicle electrical unit via the system storage battery 31.

また電動車両26には、路面側給電装置(マイクロ波送信設備)20における送受信器24と同様の送受信器32が設置されており、路面側給電装置20より電動車両26側へのマイクロ波送信電力を最適制御するにあたって必要な車両情報、具体的には当該車両の車種(車格)やマイクロ波受電システムの設定(レクテナ27の構成)、前記蓄電機構28の蓄電量SOC(State of Charge)情報の授受を給電動作と並行して行う。   In addition, the electric vehicle 26 is provided with a transmitter / receiver 32 similar to the transmitter / receiver 24 in the road surface side power supply device (microwave transmission facility) 20, and microwave transmission power from the road surface side power supply device 20 to the electric vehicle 26 side. Information necessary for optimal control of the vehicle, specifically, the vehicle type (vehicle grade) of the vehicle, the setting of the microwave power receiving system (configuration of the rectenna 27), the amount of charge SOC (State of Charge) information of the power storage mechanism 28 Is exchanged in parallel with the power feeding operation.

以上述べた、給電系の構成において、本実施の形態1に基づくマイクロ波を用いた電動車両への給電方法について図3、図4に示すフロー図により説明する。
まず、前記路面側給電装置20が給電対象の電動車両26を判別し、その判別結果に基づき給電を開始するまでの過程を、図3のフロー図により説明する。本発明においては、路面側給電装置20から電動車両26にマイクロ波により給電する際に、電動車両26に搭載された第1の送受信器32から路面側給電装置20に設置されている第2の送受信器24に対して電動車両26の車種等の車両情報を送信し、路面側給電装置20に内蔵のマイクロ波送信アンテナ制御回路25に予めマップ化して設定されている「送信電力−給電効率」関係を用い、前記の車両情報に対して固有の最適給電効率が維持される送信電力範囲となるように送信電力を制御する給電方法としている。
With reference to the flowcharts shown in FIGS. 3 and 4, a method for supplying power to the electric vehicle using the microwave according to the first embodiment in the configuration of the power supply system described above will be described.
First, the process until the road surface side power supply apparatus 20 determines the electric vehicle 26 to be supplied and starts power supply based on the determination result will be described with reference to the flowchart of FIG. In the present invention, when power is supplied from the road surface side power supply apparatus 20 to the electric vehicle 26 by microwaves, the second transmitter / receiver installed in the road surface side power supply apparatus 20 from the first transmitter / receiver 32 mounted on the electric vehicle 26. Vehicle information such as the vehicle type of the electric vehicle 26 is transmitted to the transmitter / receiver 24, and “transmission power-feeding efficiency” set in advance by mapping to the microwave transmission antenna control circuit 25 built in the road-side power feeding device 20 Using the relationship, the power supply method controls the transmission power so as to be within the transmission power range in which the optimum power supply efficiency unique to the vehicle information is maintained.

ステップS01にて、給電装置20は給電対象である電動車両26の車両情報を図1に示した送受信器24および32を用いて読み込む。この時、車両情報としては、電動車両26の車種(車格)又は前記レクテナ27の面積及び最大受電可能電力、前記蓄電機構28の蓄電量SOCを読み込む。これらの情報の大部分は、図1における路面側給電装置20と電動車両26との間でマイクロ波による無線電力伝送時に必要な情報である。もし更に必要な情報があれば、それを適宜追加する形式で同じ情報伝達経路である送受信器24および32を用いるものとする。   In step S01, the power feeding device 20 reads the vehicle information of the electric vehicle 26 to be fed using the transceivers 24 and 32 shown in FIG. At this time, as the vehicle information, the vehicle type (vehicle grade) of the electric vehicle 26, the area of the rectenna 27, the maximum power that can be received, and the storage amount SOC of the power storage mechanism 28 are read. Most of these pieces of information are information necessary for wireless power transmission by microwaves between the road surface side power feeding device 20 and the electric vehicle 26 in FIG. If there is more necessary information, it is assumed that the transmitters and receivers 24 and 32 that are the same information transmission path are used in a form that is appropriately added.

ステップS02では、前記ステップS01にて読み込まれた前記電動車両26の車種(車格)情報に基づき、予め路面側給電装置20に設定し、“送信電力−給電効率 関係”からマップ化した給電対象である電動車両26の「最適給電効率」領域を割り出す。この“送信電力−給電効率 関係”の一例を図2に示す。ここで、給電効率を向上するためにはレクテナ27を大電力化すればよいが、この大電力化の方法としては
1)レクテナ27の整流回路部に用いるダイオードを大電力化する
2)レクテナ27の整流回路部に用いるダイオードを直列・並列に数多く接続する
3)1つの受信アンテナから得られたマイクロ波を複数の伝送線路に等分配し、それぞれの伝送経路にて整流し平滑出力する複数の整流回路を具備する
等が挙げられるが(前記特許文献1参照)、いずれの場合も定性的に図5に示される様な変換効率が“上に凸”の傾向を示す(図5:特許文献1の図2)。図5に示される様に、レクテナ27において大電力化を試みると、その設定電力毎にレクテナ27への入力電力に対するRF−DC変換効率(マイクロ波を直流電力に変換する効率)の性質が異なる。図5で11,12,13,14の様に、前記RF−DC変換効率が最大値付近を維持する電力領域を、「最適給電効率」領域と定義すれば、この最適給電効率は送信側からのマイクロ波による入力電力により変化する。前記“RF−DC変換効率”は、本発明における“給電電力効率(受信電力/送信電力)”と等価に扱うことが可能である。この性質を利用すれば、図5に相当する複数の性質に対応した送信電力−給電効率の関係を路面側給電装置20に予め算出手段として設定しておき、給電対象である電動車両に設定されたマイクロ波受信システムの設定(レクテナ27の構成)を路面側給電装置20にて把握する事で、前記最適給電効率を維持する領域に対応する送信電力にて前記電動車両26への給電が可能となる。これにより無線伝達領域における洩れ波によるロスを最小限に留め、給電装置から電動車両への給電効率を高くすることができる。本発明における送信電力−給電効率の関係の具体例を図2に示す。図2の様に、予め複数の車種に対応した送信電力−給電効率の関係をマップ化させた上で、路面側給電装置20に算出手段として設定しておけばよい。
In step S02, the power supply target set in advance on the road surface side power supply device 20 based on the vehicle type (vehicle size) information of the electric vehicle 26 read in step S01 and mapped from the “transmission power-power supply efficiency relationship” The “optimum power supply efficiency” region of the electric vehicle 26 is determined. An example of this “transmission power-feeding efficiency relationship” is shown in FIG. Here, in order to improve the power supply efficiency, the rectenna 27 may be increased in power. As a method of increasing the power, 1) the diode used in the rectifier circuit portion of the rectenna 27 is increased in power. 2) rectenna 27 3) Connect a number of diodes used in the rectifier circuit section in series and in parallel. 3) Divide the microwaves obtained from one receiving antenna equally to multiple transmission lines, and rectify and smoothly output each of the transmission paths. The rectification circuit is provided (see Patent Document 1), but in any case, the conversion efficiency as shown in FIG. 5 tends to be “convex upward” (FIG. 5: Patent Document). 1 of FIG. 2). As shown in FIG. 5, when trying to increase the power in the rectenna 27, the property of RF-DC conversion efficiency (efficiency for converting microwaves to DC power) with respect to the input power to the rectenna 27 is different for each set power. . If the power region in which the RF-DC conversion efficiency is maintained near the maximum value as in 11, 12, 13, and 14 in FIG. 5 is defined as the “optimal power supply efficiency” region, this optimal power supply efficiency is determined from the transmission side. It changes with the input power by the microwave. The “RF-DC conversion efficiency” can be handled equivalently to “feed power efficiency (received power / transmitted power)” in the present invention. If this property is used, the relationship between transmission power and power supply efficiency corresponding to a plurality of properties corresponding to FIG. 5 is set in the road surface side power supply device 20 in advance as calculation means, and is set for the electric vehicle that is the power supply target. By grasping the setting of the microwave reception system (configuration of the rectenna 27) with the road surface side power supply device 20, it is possible to supply power to the electric vehicle 26 with transmission power corresponding to the region in which the optimum power supply efficiency is maintained. It becomes. As a result, loss due to leakage waves in the wireless transmission region can be minimized, and the power supply efficiency from the power supply device to the electric vehicle can be increased. A specific example of the relationship between transmission power and power supply efficiency in the present invention is shown in FIG. As shown in FIG. 2, the relationship between transmission power and power feeding efficiency corresponding to a plurality of vehicle types is mapped in advance, and then set in the road surface side power feeding device 20 as calculation means.

図2において「最適給電効率」領域は、“車種A”(比較的小型の車格で小電力にて駆動可能な車両を想定)に対しては右上がりの斜線でハッチングした領域で、“車種B”(普通〜大型の車格で大電力にて駆動される車両を想定)に対しては左上がりの斜線でハッチングした領域で示している。   In FIG. 2, the “optimum power supply efficiency” area is hatched with an upward slanting line for “vehicle type A” (assuming a relatively small vehicle that can be driven with low power), B ″ (assuming a vehicle driven by a large power with a normal to large vehicle size) is indicated by a hatched area with a diagonal line rising to the left.

これにより、予め路面側給電装置20において給電対象となる電動車両26が有する「最適給電効率」を把握しておき、最適給電効率値が維持される送信電力にて前記電動車両へ給電されることになるので、無線伝達領域における洩れ波によるロスを最小限に留め、路面側給電装置20から電動車両26への給電効率を高くすることができる。   As a result, the “optimum feeding efficiency” of the electric vehicle 26 to be fed in the road surface side feeding device 20 is grasped in advance, and the electric vehicle is fed with the transmission power that maintains the optimum feeding efficiency value. Therefore, loss due to leakage waves in the wireless transmission region can be minimized, and the power supply efficiency from the road surface side power supply device 20 to the electric vehicle 26 can be increased.

ステップS03では、給電対象の電動車両26に対応する車種での送信電力−給電効率の関係から、ステップS02にて割り出した最適給電効率領域における最高給電効率を予想最高給電効率とし、これに対応する送信電力値を予想送信電力値としてこの値を割り出し、この予想送信電力値にて路面側給電装置20より電動車両26へ給電を開始する。   In step S03, the maximum power supply efficiency in the optimum power supply efficiency region determined in step S02 is set as the predicted maximum power supply efficiency from the relationship between the transmission power and the power supply efficiency in the vehicle type corresponding to the electric vehicle 26 to be supplied with power. The transmission power value is determined as an expected transmission power value, and power supply from the road surface side power supply apparatus 20 to the electric vehicle 26 is started at the predicted transmission power value.

図2のマップを用いて“車種A”の場合を例として説明すると、前述の「最適給電効率」領域(右上がり斜線のハッチング部)において給電効率が最大となる点を「ηmax」とし、これに対応する送信電力値(パワー)を「Pin_0」とする。この送信電力値「Pin_0」をデフォルトの送信電力値として路面側給電装置20から電動車両26への給電を開始する。 The case of “vehicle type A” will be described as an example using the map of FIG. 2. The point at which the power supply efficiency becomes maximum in the above-mentioned “optimal power supply efficiency” region (hatched portion of the right-upward oblique line) is “η max ”. The transmission power value (power) corresponding to this is set to “P in _0”. Using this transmission power value “P in — 0” as a default transmission power value, power supply from the road surface side power supply apparatus 20 to the electric vehicle 26 is started.

次にステップS04では、マイクロ波を受信した前記電動車両26が直流電力に変換した電力値を「Pout_0」として前記送受信機24および32を介して前記路面側給電装置20へと送信する。これを受けてステップS05では、前記路面側給電装置20がステップS03にて算出した「Pin_0」とステップS04にて前記電動車両より受信した「Pout_0」とを用いて、デフォルトの給電効率「η_0」を算出する(ステップS05)。 Next, in step S04, the electric power value that the electric vehicle 26 that has received the microwaves converted into DC power is transmitted to the road surface side power feeding device 20 through the transceivers 24 and 32 as “P out — 0”. In response to this, in step S05, the road surface side power supply apparatus 20 uses “P in _0” calculated in step S03 and “P out _0” received from the electric vehicle in step S04, thereby supplying a default power supply. Efficiency “η_0” is calculated (step S05).

ここで、本発明においては、予め電動車両26の車種により変更されるマイクロ波受信システムの設定(レクテナ27の構成)毎に路面側給電装置20からの送信電力を用いて給電効率「η_0」を算出する際に、給電対象となる電動車両26の車種等車両情報から該電動車両26におけるレクテナ27の構成を含むマイクロ波受信システムの設定を判断し、この判断結果から得られる送信電力範囲内において上記の算出された給電効率の最大値を最適給電効率として電動車両26に送電する給電方法としている。   Here, in the present invention, the power feeding efficiency “η_0” is set using the transmission power from the road surface side power feeding device 20 for each setting of the microwave receiving system (configuration of the rectenna 27) that is changed in advance depending on the type of the electric vehicle 26. At the time of calculation, the setting of the microwave receiving system including the configuration of the rectenna 27 in the electric vehicle 26 is determined from the vehicle information such as the vehicle type of the electric vehicle 26 to be fed, and within the transmission power range obtained from the determination result The power supply method is to transmit power to the electric vehicle 26 with the calculated maximum value of the power supply efficiency as the optimal power supply efficiency.

また、これにより、路面側給電装置20から電動車両26に給電する際に、電動車両26各固体のばらつき、蓄電量(SOC)を考慮して、予め定められた最適給電効率の範囲を維持する送信電力領域における最大電力値で給電を行うようにしている。これにより、路面側給電装置20から電動車両26への給電効率を高めることが出来、急速な給電をも可能としている。   In addition, when the electric power is supplied from the road surface side power supply device 20 to the electric vehicle 26, the range of the optimum electric power supply efficiency set in advance is maintained in consideration of the variation of each electric vehicle 26 and the amount of stored electricity (SOC). Power is supplied at the maximum power value in the transmission power region. Thereby, the power feeding efficiency from the road surface side power feeding apparatus 20 to the electric vehicle 26 can be increased, and rapid power feeding is also possible.

ステップS06では、前記算出した給電効率「η_0」が、図2として前記給電装置20に設定されている最大給電効率値「ηmax」相当であるか否かを判断する。すなわち、給電効率「η_0」が最大給電効率値「ηmax」に等しいか否かを判断している。但し、前記電動車両26における車両個体のばらつきや、図1における蓄電機構28のインピーダンス、或いは経時劣化等による影響を考慮し、図2に示す様に規定幅S[%]を持たせ、これらの差分(「η_0」−「ηmax」)がこのばらつきである規定幅S内に収まっていればよい。 In step S06, it is determined whether or not the calculated power supply efficiency “η_0” corresponds to the maximum power supply efficiency value “η max ” set in the power supply apparatus 20 as shown in FIG. That is, it is determined whether or not the power supply efficiency “η_0” is equal to the maximum power supply efficiency value “η max ”. However, in consideration of the effects of variations in individual vehicles in the electric vehicle 26, the impedance of the power storage mechanism 28 in FIG. 1, deterioration with time, etc., a specified width S [%] is given as shown in FIG. The difference (“η_0” − “η max ”) only needs to be within the specified width S that is the variation.

前記規定幅S[%]の値は電動車両26側のマイクロ波受信システムの設定(特にレクテナ27の構成やレクテナ27単体の性能ばらつき)等で異なることが予想されるが、概ね3〜10[%]程度と考えられる。ステップS06にて給電効率「η_0」が最大給電効率「ηmax」に対しS[%]内に収まらなかった場合(ステップS06;No)は、車両不具合と判断し給電を停止する(ステップS061)。 The value of the specified width S [%] is expected to vary depending on the setting of the microwave receiving system on the electric vehicle 26 side (particularly, the configuration of the rectenna 27 and the performance variation of the rectenna 27 alone), but is generally 3 to 10 [ %]. If the power supply efficiency “η_0” does not fall within S [%] with respect to the maximum power supply efficiency “η max ” in step S06 (step S06; No), it is determined that the vehicle is defective and power supply is stopped (step S061). .

続いて、給電対象の電動車両26毎における個体ばらつきを考慮して、電動車両26に最も適した送信電力値を導出する過程を、図4のフローチャートにて説明する。ここにおいては、前記路面側給電装置20から電動車両26に給電する際に、給電対象である電動車両26から路面側給電装置20に当該車種の車両情報を送信し、路面側給電装置20は前記車両情報に基づき「最適給電効率」を維持し得る送信電力でマイクロ波を送信する。この車両情報にはレクテナ27の構成に関する情報も含まれているため、マイクロ波の放射範囲を決定することが出来る。   Next, a process of deriving a transmission power value most suitable for the electric vehicle 26 in consideration of individual variation for each electric vehicle 26 to be fed will be described with reference to a flowchart of FIG. Here, when power is supplied from the road surface side power supply device 20 to the electric vehicle 26, the vehicle information of the vehicle type is transmitted from the electric vehicle 26 to be supplied to the road surface side power supply device 20, and the road surface side power supply device 20 A microwave is transmitted with transmission power capable of maintaining “optimum power supply efficiency” based on vehicle information. Since this vehicle information includes information on the configuration of the rectenna 27, the radiation range of the microwave can be determined.

この送信されたマイクロ波を受信した電動車両26は受信電力値を電動車両26側に内蔵の第1の送受信器32および第2の送受信器24を経由して路面側給電装置20に送信し、路面側給電装置20は路面側給電装置20が送信した送信電力値と、当該電動車両26より受信した受信電力値とから給電効率を算出し、その算出した給電効率値が前記最適給電効率値に対し、予め定められた範囲内に収まる電力領域となるように送信電力を制御する方法としている。   The electric vehicle 26 that has received the transmitted microwave transmits the received power value to the road surface side power supply device 20 via the first transmitter / receiver 32 and the second transmitter / receiver 24 built in the electric vehicle 26 side, The road surface side power feeding device 20 calculates power feeding efficiency from the transmission power value transmitted by the road surface side power feeding device 20 and the received power value received from the electric vehicle 26, and the calculated power feeding efficiency value becomes the optimum power feeding efficiency value. On the other hand, the transmission power is controlled so that the power region falls within a predetermined range.

以下、図により説明する。最初のタスクに限り、図3のステップS07にて給電装置20は、前記ステップS03にてデフォルト設定した送信電力値「Pin_0」、ステップS05にて算出した給電効率値「η_0」をそれぞれ「Pin_0→Pin_n-1」,「η_0→η_n-1」としてイニシャライズを行う。 Hereinafter, it demonstrates with a figure. For the first task only, in step S07 in FIG. 3, the power supply apparatus 20 sets the transmission power value “P in —0” set as default in step S03 and the power supply efficiency value “η_0” calculated in step S05 to “ P in _0 → P in _n- 1 ", it performs the initialization as" η_0 → η_n-1 ".

ステップS08において、送信電力を「Pin_L」とし、直前タスクの送信電力値「Pin_n-1」に対してΔPinだけ減力させ電動車両26へ給電を行う。給電装置20は、送信電力値「Pin_L」を送信した時の電動車両26における受信電力値情報「Pout_L」を図1における送受信機24および32を介して得た(ステップS09)後、これらの値(Pin_LおよびPout_L)から減力時の給電効率「η_L」を算出する(ステップS10)。 In step S08, the transmission power is set to “P in _L”, and the electric power is supplied to the electric vehicle 26 by reducing the transmission power value “P in _n−1” of the immediately preceding task by ΔP in . The power feeding apparatus 20 obtains the received power value information “P out _L” in the electric vehicle 26 when the transmission power value “P in _L” is transmitted via the transceivers 24 and 32 in FIG. 1 (step S09). From these values (P in _L and P out _L), the power supply efficiency “η_L” during power reduction is calculated (step S10).

減力した量ΔPinの値としては、電動車両側26のマイクロ波受信システムの設定(特にレクテナ27の構成やレクテナ27単体の性能)や給電装置20における設定可変幅等で異なることが予想される。当然減力した量ΔPinとしては小さな値で設定した方が、きめ細かい送信電力精度が得られる。例えば、図2における給電効率最大点「ηmax」に対応する送信電力(パワー)である「Pin_0」の1[%]程度に前記ΔPinを設定すると、送信電力はその逆数、即ち100段階程度の精度にてコントロールすることが可能になると考えられる。 The value of the reduced amount ΔP in is expected to vary depending on the setting of the microwave reception system on the electric vehicle side 26 (particularly the configuration of the rectenna 27 and the performance of the rectenna 27 alone), the setting variable width in the power supply device 20, and the like. The Of course, finer transmission power accuracy can be obtained by setting the reduced amount ΔP in to a smaller value. For example, when ΔP in is set to about 1 [%] of “P in — 0” which is the transmission power (power) corresponding to the power supply efficiency maximum point “η max ” in FIG. 2, the transmission power is the reciprocal thereof, that is, 100 It is thought that it becomes possible to control with the accuracy of the level.

ステップS11では、ΔPinだけ減力した際の給電効率「η_L」が、ΔPin減力前の直前タスクにおける給電効率「η_n-1」より大きいか否かを判定する。もしη_Lの方が大きければ(S11;Yes)、ΔPin減力側、即ち直前タスクにて設定された送信電力「Pin_n-1」よりも小さい送信電力側に「最大給電効率 ηmax」が存在するはずである。これは前述の様に、マイクロ波受電素子(レクテナ)27の電力変換効率というのは、その入力電力に対して定性的に図5に示す「入力電力−RF・DC変換効率」の様な“上に凸”の傾向を示す、という根拠に基づく。従って、現タスクにおける送信電力「Pin_n」を「Pin_L」,給電効率「η_n」を「η_L」へ修正する(ステップS12)。この後、前記電動車両26における蓄電機構28の蓄電量SOCが運転可能範囲である規定値「Cp」に達しているか否かを判別し(ステップS13)、Cp未満であれば更に給電が必要で、且つ現タスクでの給電電力より減力側に「最大給電効率 ηmax」に対応する給電電力ポイントがあると考えられるので、前記最大給電効率点に達するまで、ステップS08〜ステップS131のシーケンスを繰返すフェーズに移行する。但し、その過程におけるステップS13において、前記蓄電機構28の蓄電量SOCが、前記規定値「Cp」以上となった場合は、給電完了と判断し終了(END)する。前述規定値「Cp」は、時々刻々における電動車両の状態により、0〜100[%]の範囲で設定されるものとする。 In step S11, it determines whether the power supply efficiency "η_L" when the reducer only [Delta] P in, feed efficiency "η_n-1" in the previous immediately preceding task decreased [Delta] P in power is greater than. If η_L is larger (S11; Yes), the “maximum power supply efficiency η max ” is set on the ΔP in power reduction side, that is, on the transmission power side smaller than the transmission power “P in _n−1” set in the immediately preceding task. There should be. As described above, the power conversion efficiency of the microwave power receiving element (rectenna) 27 is qualitatively expressed as “input power-RF / DC conversion efficiency” shown in FIG. Based on the grounds of showing a tendency to “convex upward”. Therefore, the transmission power “P in _n” in the current task is corrected to “P in _L”, and the power supply efficiency “η_n” is corrected to “η_L” (step S12). Thereafter, it is determined whether or not the charged amount SOC of the power storage mechanism 28 in the electric vehicle 26 has reached a specified value “Cp” that is an operable range (step S13). In addition, since it is considered that there is a feeding power point corresponding to “maximum feeding efficiency η max ” on the power reducing side with respect to the feeding power in the current task, the sequence of steps S08 to S131 is performed until the maximum feeding efficiency point is reached. Move to the repeating phase. However, in step S13 in the process, when the stored amount SOC of the power storage mechanism 28 becomes equal to or greater than the specified value “Cp”, it is determined that the power supply is completed and ends (END). The specified value “Cp” is set in the range of 0 to 100% depending on the state of the electric vehicle from moment to moment.

前記ステップS11において、もしΔPinだけ減力した際の前記給電効率「η_L」が、ΔPin減力前の直前タスクにおける給電効率「η_n-1」以下であった場合は(S11;No)、ステップS111において、送信電力を「Pin_H」とし、直前タスクの送信電力値「Pin_n-1」に対してΔPinだけ増力させ前記電動車両26へ給電を行う。給電装置20は、増力された送信電力「Pin_H」を送信した時の電動車両20における受信電力値情報「Pout_H」を、前記の送受信機24および32を介して読み込んだ後(ステップS112)後、これらの値(Pin_HおよびPout_H)から減力時の給電効率「η_H」を算出する(ステップS113)。ここでΔPinの定義は前記減力の場合と同様である。 In the step S11, if [Delta] P in is the power supply efficiency "η_L" when the reduced power only was powered efficiency "η_n-1" or less before the immediately preceding task decreased [Delta] P in force (S11; No), In step S111, the transmission power is set to “P in _H”, and the transmission power value “P in _n−1” of the immediately preceding task is increased by ΔP in to supply power to the electric vehicle 26. The power feeding device 20 reads the received power value information “P out _H” in the electric vehicle 20 when transmitting the increased transmission power “P in _H” via the transceivers 24 and 32 (step After S112), the power supply efficiency “η_H” at the time of power reduction is calculated from these values (P in _H and P out _H) (step S113). Here, the definition of ΔP in is the same as in the case of the reduction.

次にステップS114にて、ΔPinだけ増力した際の前記給電効率「η_H」が、ΔPin増力前の直前タスクにおける給電効率「η_n-1」以上か否かを判定する。もしη_Hがη_n-1以上であれば(ステップS114;Yes)、ΔPinの増力側、即ち直前タスクにて設定された送信電力「Pin_n-1」よりも大きい送信電力側に「最大給電効率 ηmax」が存在するはずである。これは前述の様に「マイクロ波受電素子(レクテナ)27の電力変換効率というのは、その入力電力に対して定性的に図5に示される様な“上に凸”の傾向を示す」という根拠に基づく。従って、現タスクにおける送信電力「Pin_n」を「Pin_H」,給電効率「η_n」を「η_H」へ修正する(ステップS115)。この後、電動車両26における蓄電機構28の蓄電量SOCが規定値「Cp」に達しているか否かを判別し(ステップS116)、蓄電量SOCが規定値「Cp」未満(ステップS116;No)であれば更に給電が必要で、且つ現タスクでの送信電力より増力側に「最大給電効率 ηmax」に対応する送信電力ポイントがあると考えられるので、前記の最大給電効率点(ηmax)に達するまで、ステップS111〜ステップS1161のシーケンスを繰返すフェーズに移行する。但し、その過程におけるステップS116において、前記蓄電機構28の蓄電量SOCが、前記規定値「Cp」以上となった場合(ステップS116;Yes)は、給電完了と判断し終了(END)する。前記の規定値「Cp」は、時々刻々における電動車両の状態により、0〜100[%]の範囲で設定されるものとする。 Then it determines in step S114, is the feed efficiency "η_H" when the energizing only [Delta] P in, whether power supply efficiency "η_n-1" or more in the [Delta] P in energizing just before the preceding tasks. If any η_H is η_n-1 or more (step S114; Yes), energizing side of the [Delta] P in, i.e. the set "maximum power the larger transmission power side of the transmission power" P in _n-1 "in immediately preceding task An efficiency η max ”should exist. As described above, this means that “the power conversion efficiency of the microwave power receiving element (rectenna) 27 qualitatively shows a tendency of“ upwardly convex ”as shown in FIG. 5 with respect to the input power”. Based on evidence. Accordingly, the transmission power “P in _n” in the current task is corrected to “P in _H”, and the power supply efficiency “η_n” is corrected to “η_H” (step S115). Thereafter, it is determined whether or not the storage amount SOC of the power storage mechanism 28 in the electric vehicle 26 has reached the specified value “Cp” (step S116), and the stored amount SOC is less than the specified value “Cp” (step S116; No). If it is, it is considered that there is a transmission power point corresponding to the “maximum power supply efficiency η max ” on the power increase side with respect to the transmission power in the current task, and therefore the maximum power supply efficiency point (η max ). The process proceeds to a phase in which the sequence of steps S111 to S1161 is repeated until the value reaches. However, in step S116 in the process, when the storage amount SOC of the power storage mechanism 28 is equal to or more than the specified value “Cp” (step S116; Yes), it is determined that the power supply is completed and ends (END). The specified value “Cp” is set in the range of 0 to 100% depending on the state of the electric vehicle from moment to moment.

前述ステップS114において、もしΔPinだけ増力した際の前記給電効率「η_H」が、ΔPin増力前の直前タスクにおける給電効率「η_n-1」未満であった場合(ステップS114;No)は同時に、前記ステップS11において、ΔPinだけ減力した際の前記給電効率「η_L」が、ΔPin減力前の直前タスクにおける給電効率「η_n-1」以下であった場合(ステップS11;No)でもあるので、これは即ち直前タスクにおける給電効率「η_n-1」が、「最大給電効率 ηmax」相当に達している事を意味する。 In the foregoing step S114, if the power supply efficiency when the energizing only [Delta] P in "η_H" is In the case of below the feed efficiency "η_n-1" in the [Delta] P in energizing just before the preceding tasks (step S114; No) at the same time, there also; (No step S11) in step S11, said power supply efficiency "η_L" when the reducer only [Delta] P in, if not more than feed efficiency "η_n-1" in the previous immediately preceding task decreased [Delta] P in force Therefore, this means that the power supply efficiency “η_n−1” in the immediately preceding task has reached the value corresponding to “maximum power supply efficiency η max ”.

従って、直前タスクの送信電力「Pin_n-1」が最適送信電力となるので、現タスクの送信電力「Pin_n」として給電装置20より電動車両26へ給電を行い(ステップS1141)、ステップS1141〜ステップS11451のシーケンスを繰返すフェーズに移行する。その過程におけるステップS1145において、前記蓄電機構28の蓄電量SOCが、前記規定値「Cp」以上となった場合(ステップS1145;Yes)は、給電完了と判断し終了(END)する。 Accordingly, since the transmission power “P in _n−1” of the immediately preceding task becomes the optimal transmission power, power is supplied from the power supply device 20 to the electric vehicle 26 as the transmission power “P in _n” of the current task (step S1141). The process proceeds to a phase in which the sequence of steps S1141 to S11451 is repeated. In step S1145 in the process, when the stored amount SOC of the power storage mechanism 28 is equal to or greater than the specified value “Cp” (step S1145; Yes), it is determined that the power supply is completed and ends (END).

このフェーズにおいては、基本的に送信電力は「Pin_n」のまま変化させないが、給電時における安全性を確保する為に、給電装置20は送信電力「Pin_n」送信時の電動車両26における受信電力値情報「Pout_n」を、図1における送受信機24および32を介して読み込んだ(ステップS1142)後、これらの値から減力時の給電効率「η_n」を算出し(ステップS1143)、この給電効率値「η_n」が図2にて規定されている「最大給電効率 ηmax」に対して、規定値S[%]の範囲内にあるか否かをモニタしておく(ステップS1144)。もし、ステップS1144にて規定値ばらつきの範囲よりもさらに下回る給電効率となった場合は、電動車両26側に何らかの不具合が発生したと判断し、給電を中止し(ステップS11441)処理を終了する。 In this phase, the transmission power basically remains unchanged at “P in _n”, but in order to ensure safety at the time of power supply, the power supply device 20 uses the electric vehicle 26 at the time of transmission of the transmission power “P in _n”. the "P out _n" received power value information in, read via the transceiver 24 and 32 in FIG. 1 (step S1142) after calculating the power supply efficiency "η_n" during the reduced power from these values (step S1143 It is monitored whether or not the power supply efficiency value “η_n” is within the range of the specified value S [%] with respect to the “maximum power supply efficiency η max ” specified in FIG. S1144). If in step S1144 the power supply efficiency is still lower than the specified value variation range, it is determined that some trouble has occurred on the electric vehicle 26 side, power supply is stopped (step S11441), and the process is terminated.

この様にして、電動車両26に搭載されたマイクロ波受電システムの設定(特にレクテナ27の構成やレクテナ27単体の性能)の性質に着目し、その「最適給電効率」領域内で対応する送信電力にて最適制御することにより、無線伝達領域での洩れ波によるロスを最小限に留め、給電装置20から電動車両26への給電効率を高くすることができる。   In this way, paying attention to the property of the setting of the microwave power receiving system mounted on the electric vehicle 26 (particularly the configuration of the rectenna 27 and the performance of the rectenna 27 alone), the corresponding transmission power within the “optimum power supply efficiency” region. By performing optimal control at, loss due to leakage waves in the wireless transmission region can be kept to a minimum, and the power supply efficiency from the power supply device 20 to the electric vehicle 26 can be increased.

(実施の形態2)
本実施の形態2におけるシステム構成は実施の形態1の場合と同様であり、このため図1(a)および(b)を使用する。また、本実施の形態2は実施の形態1に対して、主に給電装置20が給電対象である電動車両26の車種等を判別し、その判別結果に基づき給電を開始するまでの過程が異なるので、その部分を中心に図6のフロー図により説明する。また給電対象の電動車両26における車種(車格)としては、図2記載の“車種A”を想定し、これを例として説明する。
(Embodiment 2)
The system configuration in the second embodiment is the same as that in the first embodiment, and therefore FIGS. 1A and 1B are used. Further, the second embodiment differs from the first embodiment mainly in the process until the power supply device 20 determines the vehicle type of the electric vehicle 26 to which power is supplied and starts power supply based on the determination result. Therefore, the process will be described with reference to the flowchart of FIG. Further, as a vehicle type (vehicle grade) in the electric vehicle 26 to be supplied with power, “vehicle type A” shown in FIG. 2 is assumed, and this will be described as an example.

本実施の形態2においては、以下の手順を基本とする給電方法としている。すなわち、給電開始に際して、給電対象となる電動車両20は路面側給電装置20に当該電動車両26の最適給電効率値を、図1に記載の第1の送受信器32から路面側給電装置20に設置されている第2の送受信器に送信する。路面側給電装置20においてはこの送信されてきた最適給電効率値より、当該電動車両26の車種及びマイクロ波受信システムの設定、すなわちレクテナ27の構成に基づく受信可能電力等を判断し、この判断結果に基づく送信電力でマイクロ波を送信する。   In the second embodiment, the power feeding method is based on the following procedure. That is, when power supply is started, the electric vehicle 20 to be supplied with power supplies the road surface side power supply device 20 with the optimum power supply efficiency value of the electric vehicle 26 from the first transceiver 32 shown in FIG. To the second transceiver. The road-side power supply device 20 determines the vehicle type of the electric vehicle 26 and the setting of the microwave reception system, that is, the receivable power based on the configuration of the rectenna 27, based on the transmitted optimal power supply efficiency value. A microwave is transmitted with transmission power based on.

マイクロ波を受信した電動車両26は受信電力値を前記第1の送受信器を介して路面側給電装置20に設置されている第2の送受信器に向けて送信する。路面側給電装置20においては路面側給電装置20から送信した電力値と電動車両26の第1の送受信器から送信されてきた受信電力値とから給電効率を算出し、その算出した給電効率値が予め設定されている最適給電効率値の範囲内に収まる電力領域となるように前記送信電力を制御する。   The electric vehicle 26 that has received the microwave transmits the received power value to the second transmitter / receiver installed in the road surface side power feeding device 20 via the first transmitter / receiver. In the road surface side power feeding device 20, the power feeding efficiency is calculated from the power value transmitted from the road surface side power feeding device 20 and the received power value transmitted from the first transmitter / receiver of the electric vehicle 26, and the calculated power feeding efficiency value is obtained. The transmission power is controlled so as to be in a power region that falls within a range of a preset optimum power supply efficiency value.

以下この手順を図6のフロー図により具体的に説明する。
ステップT01において給電装置20は、給電対象である電動車両26にプリセットされた当該電動車両26の最大給電効率値η_Pを、図1に示した送受信器24および32を用いて読み込む。このη_Pは、予め電動車両26毎に、例えば生産過程にて計測される等で明らかにされた値で、即ちその車両における個体ばらつきも内包されている。
This procedure will be specifically described below with reference to the flowchart of FIG.
In step T01, the power feeding device 20 reads the maximum power feeding efficiency value η_P of the electric vehicle 26 preset in the electric vehicle 26 to be fed using the transceivers 24 and 32 shown in FIG. This η_P is a value that has been clarified in advance by, for example, measurement during the production process for each electric vehicle 26, that is, individual variations in the vehicle are included.

ステップT02では、路面側給電装置20は最大給電効率値η_Pから、予め給電装置20に記憶させた“送信電力−給電効率 関係”(図2)を用いて、給電対象である電動車両26の車種(車格)、およびマイクロ波受信システムの設定、すなわちレクテナ27の構成に基づく受信可能電力の割り出しを行う。   In step T02, the road surface side power feeding device 20 uses the “transmission power-power feeding efficiency relationship” (FIG. 2) stored in the power feeding device 20 in advance from the maximum power feeding efficiency value η_P, and the vehicle type of the electric vehicle 26 to be fed. (Vehicle size) and setting of the microwave receiving system, that is, the receivable power based on the configuration of the rectenna 27 is determined.

次に、路面側給電装置20より電動車両26へのデフォルト送信電力「Pin_P」を決定する為に、前記最大給電効率値η_Pと図2において予め当該電動車両26相当の車両(車格)に対して設定されている「最適給電電力」領域内における最大給電効率値ηmaxとを比較する(ステップT03)。図2における“車種A”の「最適給電効率」領域を拡大したものを図7に示す。ステップT03において、η_Pが前記ηmax以上である(当該電動車両26の給電効率が、最大給電効率値の水準よりも優れている)場合は、図7に示す様に“η_P=ηmax”と置き換えて、図2、図7マップ上のηmaxに対応する送信電力値Pin_0を給電装置のデフォルト送電電力(送信電力)Pin_Pとして電動車両26への給電を開始する(ステップT04)。前記η_Pが前記ηmax未満である(当該電動車両26の給電効率が、水準よりも下回る)場合は、図7に示す様に前記η_Pに対応する送信電力値Pin_a,Pin_bのうち、小電力側であるPin_aをデフォルト送信電力Pin_Pとして前記電動車両26へ給電を開始する(ステップT031)。 Next, in order to determine the default transmission power “P in _P” from the road surface side power supply device 20 to the electric vehicle 26, the maximum power supply efficiency value η_P and a vehicle (vehicle case) corresponding to the electric vehicle 26 in advance in FIG. Is compared with the maximum power supply efficiency value η max in the “optimal power supply” region set for (step T03). FIG. 7 shows an enlargement of the “optimum power supply efficiency” area of “vehicle type A” in FIG. In step T03, when η_P is equal to or greater than η max (the power feeding efficiency of the electric vehicle 26 is superior to the level of the maximum power feeding efficiency value), “η_P = η max ” as shown in FIG. Instead, power supply to the electric vehicle 26 is started with the transmission power value P in — 0 corresponding to η max on the maps of FIG. 2 and FIG. 7 as the default transmission power (transmission power) P in — P of the power feeding device (step T04). . When the η_P is less than the η max (the power feeding efficiency of the electric vehicle 26 is lower than the level), the transmission power values P in _a and P in _b corresponding to the η_P as shown in FIG. Then, power supply to the electric vehicle 26 is started with P in _a on the low power side as default transmission power P in _P (step T031).

ステップT05では、前述実施の形態1におけるステップS04(図3参照)と同様、マイクロ波を受信した前記電動車両26が直流電力に変換した電力値を「Pout_0」として送受信機24および32を介して路面側給電装置20へと送信する。これを受けてステップT06では、路面側給電装置20がステップT04、又はステップT031にて算出したデフォルト送信電力「Pin_P」とステップT05にて前記電動車両26より受信した「Pout_0」とを用いて、デフォルトの給電効率「η_0」を算出する(ステップT06)。 In step T05, as in step S04 (see FIG. 3) in the first embodiment, the transmitter / receiver 24 and 32 are set with the power value converted into DC power by the electric vehicle 26 receiving the microwave as “P out — 0”. To the road surface side power supply device 20. In response to this, in step T06, the road surface side power supply apparatus 20 receives the default transmission power “P in _P” calculated in step T04 or step T031, and “P out _0” received from the electric vehicle 26 in step T05. Is used to calculate the default power supply efficiency “η_0” (step T06).

ステップT07では、前記算出したデフォルトの給電効率「η_0」が、図2として給電装置20に設定されている最大給電効率値「ηmax」相当であるか否かを判断する。但し、電動車両26における車両個体ばらつきや図1における蓄電機構28のインピーダンス、或いは経時劣化等による影響を考慮し、図2,図7に示す様に規定幅として「S」を持たせ、このばらつきである規定幅S内に収まっていればよい。規定幅「S」の値は電動車両26側のマイクロ波受信システムの設定(特にレクテナ27の構成やレクテナ27単体の性能)等で異なることが予想されるが、概ね3〜10[%]程度と考えられる。 In Step T07, it is determined whether or not the calculated default power supply efficiency “η_0” corresponds to the maximum power supply efficiency value “η max ” set in the power supply apparatus 20 as shown in FIG. However, in consideration of the influence of the individual vehicle variation in the electric vehicle 26, the impedance of the power storage mechanism 28 in FIG. 1 or the deterioration with time, etc., as shown in FIGS. As long as it is within the specified width S. The value of the specified width “S” is expected to vary depending on the setting of the microwave reception system on the electric vehicle 26 side (particularly, the configuration of the rectenna 27 and the performance of the rectenna 27 alone), but about 3 to 10%. it is conceivable that.

ステップT07において給電効率「η_0」が最大給電効率「ηmax」に対しS[%]内に収まらなかった場合(ステップT07;No)は、車両不具合と判断し警告処理にて給電を停止する(ステップT071)。この処理により、電動車両26に搭載されているレクテナ27の構成が電動車両26にプリセットされている最大給電効率「η_P」相当で機能しているか否かを検査・確認することが可能となる。 If the power supply efficiency “η — 0” does not fall within S [%] with respect to the maximum power supply efficiency “η max ” in step T07 (step T07; No), it is determined that the vehicle is defective and power supply is stopped by warning processing ( Step T071). By this processing, it is possible to inspect and confirm whether or not the configuration of the rectenna 27 mounted on the electric vehicle 26 is functioning at the maximum power supply efficiency “η_P” preset in the electric vehicle 26.

この過程に続いて、給電対象の電動車両26における個体ばらつきを考慮して、その電動車両26に最も適した送信電力値を導出する過程に関しては、前記実施の形態1と同等で、図6のステップT08から図4のステップS08に接続して動作する。   Following this process, the process of deriving the transmission power value most suitable for the electric vehicle 26 in consideration of individual variations in the electric vehicle 26 to be fed is the same as that of the first embodiment, and is similar to that of FIG. It operates by connecting from step T08 to step S08 of FIG.

この様にして、電動車両に搭載されたマイクロ波受信装置の設定(レクテナ27の構成)の性質に着目し、その「最適給電効率」領域内で対応する送信電力で最適制御することにより、電力の無線伝達領域での洩れ波によるロスを最小限に留め、給電装置20から電動車両26への給電効率を高くすることができる。
また、給電開始後は前記電動車両26から受信電力値情報を得ることにより時々刻々における給電効率を算出し、その算出した給電効率値と前記最適給電効率値とを比較する事で路面側給電装置20から前記電動車両26への送信電力を最適制御することが可能となるので、無線伝達領域での洩れ波によるロスを最小限に留め、給電装置から電動車両への給電効率を高くすることができる。
In this way, by paying attention to the property of the setting of the microwave receiver mounted on the electric vehicle (the configuration of the rectenna 27), optimal control is performed with the corresponding transmission power within the “optimum power supply efficiency” region. The loss due to the leakage wave in the wireless transmission area can be minimized, and the power supply efficiency from the power supply device 20 to the electric vehicle 26 can be increased.
In addition, after the start of power supply, the power supply efficiency is calculated every moment by obtaining the received power value information from the electric vehicle 26, and the road surface side power supply apparatus is compared with the calculated power supply efficiency value and the optimum power supply efficiency value. Therefore, it is possible to optimally control the transmission power from 20 to the electric vehicle 26, so that loss due to leakage waves in the wireless transmission region can be minimized and the power supply efficiency from the power supply device to the electric vehicle can be increased. it can.

さらに、本実施の形態2においては、給電対象の電動車両26にそれぞれの最高給電効率値を記憶させているので、デフォルトの送信電力でかなり給電効率が良いと考えられ、最適送電電力に到達するまでのタスク数が減り、結果として制御レスポンスが良くなるというメリットが得られると考えられる。   Furthermore, in the second embodiment, the maximum power supply efficiency value is stored in the electric vehicle 26 to be supplied with power, so it is considered that the power supply efficiency is quite good with the default transmission power, and the optimum transmission power is reached. It is considered that there is a merit that the number of tasks up to and the control response is improved as a result.

(実施の形態3)
本実施の形態3に関しても、機械的構成に関しては前記実施の形態1および2と同様であるので、図1をそのまま踏襲し、前記実施の形態1および2に対して異なる部分を中心にして説明する。すなわち、図1(a)は、本実施の形態3を上方より見た模式図であり、同様に(b)は、本実施の形態3を側方より見た模式図である。
(Embodiment 3)
Since the mechanical configuration of the third embodiment is the same as that of the first and second embodiments, the description will be made with reference to FIG. 1 as it is, with a focus on differences from the first and second embodiments. To do. That is, FIG. 1A is a schematic view of the third embodiment viewed from above, and similarly, FIG. 1B is a schematic view of the third embodiment viewed from the side.

本実施の形態3による給電方法は以下の手順を基本的方法としている。路面側給電装置20が電動車両26に給電する際、先ず、給電対象である電動車両26から路面側給電装置20に対して当該電動車両26の最適給電効率値を電動車両26に搭載の第1の送受信器32から路面側給電装置20に設置されている第2の送受信器24に送信する。次いで、路面側給電装置20においては送信されてきた最適給電効率値を基に、当該電動車両26の車種及びマイクロ波受信装置の設定、すなわちレクテナ27の構成による受信可能電力を判断し、路面側給電装置20はこの判断結果に基づく送信電力でマイクロ波を送信し、同時に路面側給電装置20は送信電力値を前記第2の送受信器24を介して当該電動車両26に搭載の第1の送受信器32に送信する。   The power supply method according to the third embodiment uses the following procedure as a basic method. When the road surface power supply device 20 supplies power to the electric vehicle 26, first, the electric vehicle 26 is mounted on the electric vehicle 26 with the optimal power supply efficiency value of the electric vehicle 26 from the electric vehicle 26 to be supplied to the road surface power supply device 20. Is transmitted from the transmitter / receiver 32 to the second transmitter / receiver 24 installed in the road surface side power supply device 20. Next, the road surface side power feeding device 20 determines the vehicle type of the electric vehicle 26 and the setting of the microwave receiving device, that is, the receivable power according to the configuration of the rectenna 27 based on the transmitted optimum power feeding efficiency value. The power feeding device 20 transmits microwaves with transmission power based on the determination result, and at the same time, the road surface side power feeding device 20 transmits the transmission power value to the first transmission / reception device 26 mounted on the electric vehicle 26 via the second transceiver 24. To the device 32.

前記マイクロ波を受信した電動車両26においては路面側給電装置20からの送信電力値と送信されたマイクロ波の実際の受信電力値とから給電効率値を算出し、この算出結果を路面側給電装置20に設置されている第2の送受信器に上記第1の送受信器を経由して送信し、路面側給電装置20は電動車26の第1の送受信器から送信されてきた算出結果である給電効率値が最適給電効率値に対し、予め定められた範囲に収まる電力領域となるように送信電力を制御する方法としている。   In the electric vehicle 26 that has received the microwave, the power supply efficiency value is calculated from the transmission power value from the road surface side power supply device 20 and the actual received power value of the transmitted microwave, and the calculation result is used as the road surface side power supply device. Power to the second transmitter / receiver installed at 20 via the first transmitter / receiver, and the road surface side power supply device 20 supplies power as a calculation result transmitted from the first transmitter / receiver of the electric vehicle 26. In this method, the transmission power is controlled so that the efficiency value falls within a predetermined power range with respect to the optimum power supply efficiency value.

以下、本実施の形態3に基づくマイクロ波を用いた電動車両26への給電方法のフロー図を図8,図9にて示し、これらにより説明する。
まず、路面側給電装置20が給電対象の電動車両26を判別し、その判別結果に基づき給電を開始するまでの過程を、図8のフロー図にて説明する。尚、給電対象の電動車両26における車種(車格)としては、図2記載の“車種A”を想定し、説明する。
Hereinafter, flowcharts of a method for supplying power to the electric vehicle 26 using the microwave based on the third embodiment are shown in FIGS. 8 and 9, and will be described.
First, the process until the road surface side power supply apparatus 20 determines the electric vehicle 26 to be supplied and starts power supply based on the determination result will be described with reference to the flowchart of FIG. In addition, as a vehicle type (vehicle grade) in the electric vehicle 26 to be supplied with power, a “vehicle type A” shown in FIG. 2 is assumed and described.

ステップU01にて路面側給電装置20は、給電対象である電動車両26にプリセットされた最大給電効率値η_Pを、図1に示した送受信器24および32を用いて読み込む。このη_Pは、電動車両26毎に、例えば生産過程にて計測される等で明らかにされた値で、すなわち電動車両26毎における個体ばらつきも加味されている。   In step U01, the road surface side power feeding apparatus 20 reads the maximum power feeding efficiency value η_P preset in the electric vehicle 26 to be fed using the transceivers 24 and 32 shown in FIG. This η_P is a value that is clarified by, for example, measurement in the production process for each electric vehicle 26, that is, an individual variation for each electric vehicle 26 is taken into consideration.

ステップU02では、路面側給電装置20は電動車両26にプリセットされている最大給電効率値「η_P」から、予め路面側給電装置20に記憶させた“送信電力−給電効率 関係”(図2)を用いて、給電対象である電動車両26の車種(車格)、及びマイクロ波受信システムの設定(レクテナ27の構成に基づく受信可能電力)を割り出す。   In Step U02, the road surface side power feeding device 20 uses the maximum power feeding efficiency value “η_P” preset in the electric vehicle 26 to store the “transmission power-feeding efficiency relationship” (FIG. 2) stored in the road surface side power feeding device 20 in advance. It is used to determine the type (vehicle grade) of the electric vehicle 26 to be fed and the setting of the microwave reception system (receivable power based on the configuration of the rectenna 27).

次に、給電装置20より電動車両26へのデフォルト送信電力「Pin_P」を決定する為に、電動車両26にプリセットされている最大給電効率値「η_P」と図2により当該電動車両26相当の車種(車格)に対して予め記憶されている「最適給電効率」の領域内における最大給電効率値ηmaxを比較する(ステップU03)。図2における“車種A”の「最適給電効率」領域を拡大したものを図7に示す。ステップU03において、「η_P」が前記「ηmax」以上である、すなわち当該電動車両26の給電効率が、最適給電効率の領域内における最大給電効率値の水準よりも優れている)場合は、図7に示す様に“η_P=ηmax”と置き換えて、図2、図7マップ上の「ηmax」に対応する送信電力値「Pin_0」を路面側給電装置20のデフォルト送電電力Pin_Pとして電動車両26へ給電を開始する(ステップU04)。 Next, in order to determine the default transmission power “P in _P” from the power supply device 20 to the electric vehicle 26, the maximum power supply efficiency value “η_P” preset in the electric vehicle 26 and the electric vehicle 26 corresponding to FIG. The maximum power supply efficiency value η max in the region of “optimum power supply efficiency” stored in advance for the vehicle type (vehicle grade) is compared (step U03). FIG. 7 shows an enlargement of the “optimum power supply efficiency” area of “vehicle type A” in FIG. In step U03, when “η_P” is equal to or greater than “η max ”, that is, the power supply efficiency of the electric vehicle 26 is superior to the level of the maximum power supply efficiency value in the region of the optimum power supply efficiency) 7, the transmission power value “P in — 0” corresponding to “η max ” on the map of FIG. 2 and FIG. 7 is replaced with the default transmission power P in of the road surface side power supply device 20 by replacing “η_P = η max ”. Power supply to the electric vehicle 26 is started as _P (step U04).

前記「η_P」が前記「ηmax」未満である(当該電動車両の給電効率が、上記の水準よりも下回る)場合は、図7に示す様に前記η_Pに対応する送信電力値Pin_a,Pin_bのうち、小電力側であるPin_aをデフォルト送電電力Pin_Pとして前記電動車両26へ給電を開始する(ステップU031)。同時に路面側給電装置20は、前記デフォルト送信電力値Pin_P情報を、図1に示した送受信器24および32を用いて電動車両26へ送信する(ステップU05)。マイクロ波を受けた電動車両26は、直流電力に変換した電力値を用いて給電効率値「η_0」を算出し、送受信機24および32を介して路面側給電装置20へと送信する(ステップU06)。 When the “η_P” is less than the “η max ” (the power supply efficiency of the electric vehicle is lower than the above level), the transmission power value P in _a corresponding to the η_P as shown in FIG. of P in _b, the starts feeding to the electric vehicle 26 to P in _a a low power side as the default transmission power P in _P (step U031). At the same time, the road surface side power supply apparatus 20 transmits the default transmission power value P in _P information to the electric vehicle 26 using the transceivers 24 and 32 shown in FIG. 1 (step U05). The electric vehicle 26 that has received the microwave calculates a power supply efficiency value “η — 0” using the power value converted into DC power, and transmits the power supply efficiency value “η_0” to the road surface side power supply device 20 via the transceivers 24 and 32 (step U06). ).

ステップU07において、電動車両26で算出され路面側給電装置20が受信した給電効率値「η_0」が、電動車両26に記憶されている最大給電効率値「η_P」相当であるか否かを判断する。但し、電動車両26における車両個体ばらつきや、前記図1における蓄電機構28のインピーダンス、或いは経時劣化等による影響を考慮し、図2、図7に示す様に規定幅としてS[%]を持たせ、このばらつき内に収まっていればよい。   In step U07, it is determined whether or not the power supply efficiency value “η_0” calculated by the electric vehicle 26 and received by the road surface side power supply device 20 is equivalent to the maximum power supply efficiency value “η_P” stored in the electric vehicle 26. . However, in consideration of the influence of individual variations in the electric vehicle 26, the impedance of the power storage mechanism 28 in FIG. 1 or the deterioration with time, etc., S [%] is given as the specified width as shown in FIGS. As long as it is within this variation.

この規定幅「S」の値は実施の形態1、実施の形態2と同様に、電動車両26側のマイクロ波受信システムの設定(特にレクテナ27の構成やレクテナ27単体性能)等で異なることが予想されるが、概ね3〜10[%]程度と考えられる。ステップU07にて給電効率「η_0」が電動車両26に記憶されている最大給電効率「ηmax」に対しS[%]内に収まらなかった場合(ステップU07;No)は、車両不具合と判断し、警告処理にて給電を停止する(ステップU071)。この処理により、電動車両26の電力受信システム(レクテナ27の構成)が電動車両26にプリセットされている最大給電効率「η_P」相当で機能しているか否かを検査・確認することが可能となる。 As in the first and second embodiments, the value of the specified width “S” is different depending on the setting of the microwave reception system on the electric vehicle 26 side (particularly, the configuration of the rectenna 27 and the performance of the rectenna 27 alone). Although expected, it is considered to be about 3 to 10%. If the power supply efficiency “η_0” does not fall within S [%] with respect to the maximum power supply efficiency “η max ” stored in the electric vehicle 26 in step U07 (step U07; No), it is determined that the vehicle is defective. Then, power supply is stopped in the warning process (step U071). By this processing, it is possible to inspect and confirm whether or not the power reception system (the configuration of the rectenna 27) of the electric vehicle 26 is functioning at the maximum power supply efficiency “η_P” preset in the electric vehicle 26. .

続いて、給電対象の電動車両26における個体ばらつきを考慮して、その車両に最も適した送信電力値を導出する過程を、図9のフロー図により説明する。
最初のタスクに限り、ステップU08にて路面側給電装置20は、前記ステップU04、又はステップU031にてデフォルト設定した送信電力値、ステップS07において算出した給電効率値をそれぞれ「Pin_P→Pin_n-1」,「η_0 →η_n-1」としてイニシャライズを行う。
Next, the process of deriving the transmission power value most suitable for the vehicle in consideration of individual variations in the electric vehicle 26 to be fed will be described with reference to the flowchart of FIG.
Only first task, the road-side power supply device 20 in step U08, the step U04, or step transmission power value defaults by U031, respectively "P in _P → P in the calculated power supply efficiency value in step S07 _n-1 "and" η_0 → η_n-1 "are initialized.

ステップU09において、路面側給電装置20の送信電力を「Pin_H」とし、直前タスクの送信電力値「Pin_n-1」に対してΔPinだけ増力させ電動車両26へ給電を行う。同時に路面側給電装置20は、送信電力値Pin_H情報を、図1に示した送受信器24および32を用いて電動車両26へ送信する(ステップU10)。マイクロ波を受けた電動車両26は、直流電力に変換した電力値を用いて給電効率値「η_H」を算出し、送受信機24および32を介して路面側給電装置20へと送信する(ステップU11)。ΔPinの定義としては、前記の実施の形態1の場合と同様である。 In step U09, the transmission power of the road surface side power supply apparatus 20 is set to “P in _H”, and the electric power is supplied to the electric vehicle 26 by increasing the transmission power value “P in _n−1” of the immediately preceding task by ΔP in . At the same time, the road surface side power supply apparatus 20 transmits the transmission power value P in _H information to the electric vehicle 26 using the transceivers 24 and 32 shown in FIG. 1 (step U10). The electric vehicle 26 that has received the microwave calculates a power supply efficiency value “η_H” using the power value converted into DC power, and transmits the power supply efficiency value “η_H” to the road surface side power supply device 20 via the transceivers 24 and 32 (step U11). ). The definition of ΔP in is the same as that in the first embodiment.

次にステップU12にて、ΔPinだけ増力した際の前記給電効率「η_H」が、ΔPin増力前の直前タスクにおける給電効率「η_n-1」以上か否かを判定する。もし「η_H」が「η_n-1」以上であれば(U12;Yes)、ΔPin増力側、即ち直前タスクにて設定された送信電力「Pin_n-1」よりも大きい送信電力側に「最大給電効率 ηmax」が存在するはずである。これは前述の様に「マイクロ波受電素子(レクテナ27)の電力変換効率というのは、その入力電力に対して定性的に図5に示される様な“上に凸”の傾向を示す」という根拠に基づく。従って、現タスクにおける送信電力「Pin_n」を「Pin_H」、給電効率「η_n」を「η_H」へ修正する(ステップU13)。この後、電動車両26における蓄電機構28の蓄電量SOCが電動車両26の運転可能である蓄電量としての規定値「Cp」に達しているか否かを判別し(ステップU14)、Cp未満であれば(ステップU14;No)更に給電が必要で、且つ現タスクでの送信電力より増力側に「最大給電効率 ηmax」に対応する送信電力ポイントがあると考えられるので、前記最大給電効率点に達するまで、ステップU09〜ステップU141のシーケンスを繰返すフェーズに移行する。但し、その過程におけるステップU14において、前記蓄電機構28の蓄電量SOCが、前記規定値「Cp」以上となった場合(ステップU14;Yes)は、給電完了と判断し終了(END)する。 Then determines in step U12, said power supply efficiency "η_H" when the energizing only [Delta] P in, whether power supply efficiency "η_n-1" or more in the [Delta] P in energizing just before the preceding tasks. If if "η_H" is "η_n-1" or more (U12; Yes), ΔP in energizing side, that is, greater transmission power side of the transmission power set at just before the task "P in _n-1", " There should be a “maximum feed efficiency η max ”. This is because, as described above, “the power conversion efficiency of the microwave power receiving element (rectenna 27) qualitatively shows a tendency of“ upwardly convex ”as shown in FIG. 5 with respect to the input power”. Based on evidence. Accordingly, the transmission power “P in _n” in the current task is corrected to “P in _H”, and the power supply efficiency “η_n” is corrected to “η_H” (step U13). Thereafter, it is determined whether or not the storage amount SOC of the power storage mechanism 28 in the electric vehicle 26 has reached a specified value “Cp” as the storage amount that the electric vehicle 26 can be operated (step U14). (Step U14; No) Further power feeding is required, and it is considered that there is a transmission power point corresponding to the “maximum power feeding efficiency η max ” on the boost side from the transmission power in the current task. The process proceeds to a phase in which the sequence of step U09 to step U141 is repeated until it reaches. However, in step U14 in the process, when the charged amount SOC of the power storage mechanism 28 becomes equal to or more than the specified value “Cp” (step U14; Yes), it is determined that the power supply is completed and ends (END).

前述ステップU12において、もしΔPinだけ増力した際の前記給電効率「η_H」が、ΔPin増力前の直前タスクにおける給電効率「η_n-1」未満であった場合(ステップU12;No)は、給電時間短縮等を目的として送電電力を上げても、逆に給電効率が低下するので、結果として電動車両26における受信電力が低下するか、もしくは車外へのマイクロ波の洩れ波が増加する事を意味する。従って、直前タスクの送信電力「Pin_n-1」が最適送信電力と判断し、現タスクの送信電力「Pin_n」に設定して給電装置20より電動車両26への給電を行い、(ステップU121)。ステップU121〜ステップU1251のシーケンスを繰返すフェーズに移行する。その過程におけるステップU125において、蓄電機構28の蓄電量SOCが、前記規定値「Cp」以上となった場合(ステップU125;Yes)は、給電完了と判断し終了(END)する。Cpの定義は前述と同様である。 When in the foregoing step U12, if the power supply efficiency when the energizing only [Delta] P in "η_H" was less than the feed efficiency "η_n-1" in the [Delta] P in energizing just before the preceding tasks (step U12; No), the power supply Even if the transmission power is increased for the purpose of shortening the time or the like, the power supply efficiency is decreased. As a result, the reception power in the electric vehicle 26 is decreased or the leakage wave of the microwave outside the vehicle is increased. To do. Accordingly, the transmission power “P in _n−1” of the immediately preceding task is determined as the optimum transmission power, and is set to the transmission power “P in _n” of the current task to supply power to the electric vehicle 26 from the power supply device 20 ( Step U121). The process proceeds to a phase in which the sequence of steps U121 to U1251 is repeated. In step U125 in the process, when the charged amount SOC of the power storage mechanism 28 is equal to or greater than the specified value “Cp” (step U125; Yes), it is determined that the power supply is completed and ends (END). The definition of Cp is the same as described above.

このフェーズにおいては、基本的に送信電力は「Pin_n」のまま変化させないが、給電時における安全性を確保する為に、電動車両26は当該車両における受信電力値から給電効率をタスク毎に算出し、送受信機24および32を介して「η_n」として路面側給電装置20に送信し(ステップU123)、この給電効率値「η_n」が図2にて規定されている「最大給電効率 ηmax」に対して、規定幅S[%]未満とならないか否かをモニタしておく(ステップU124)。もし、ステップU124にて前記規定値を下回る給電効率となった場合(ステップU124;No)は、電動車両26側に何らかの不具合が発生したと判断し、給電を中止する(ステップU1241)。 In this phase, the transmission power basically remains unchanged at “P in _n”, but in order to ensure safety during power supply, the electric vehicle 26 determines the power supply efficiency for each task from the received power value in the vehicle. It is calculated and transmitted as “η_n” to the road surface side power supply device 20 via the transceivers 24 and 32 (step U123), and this power supply efficiency value “η_n” is defined as “maximum power supply efficiency η max ”Is monitored whether it is less than the specified width S [%] (step U124). If the power supply efficiency falls below the specified value in step U124 (step U124; No), it is determined that some trouble has occurred on the electric vehicle 26 side, and power supply is stopped (step U1241).

この様にして、電動車両26に搭載されたマイクロ波受電システムの設定(レクテナ27の構成やレクテナ27単体性能)の性質に着目し、その「最適給電効率」領域内で対応する送信電力にて最適制御することにより、無線伝達領域での洩れ波によるロスを最小限に留め、路面側給電装置20から電動車両26への給電効率を高くすることができる。また本実施の形態3においては給電対象の電動車両26にそれぞれの最高給電効率値を記憶させているので、デフォルトの送信電力にてかなり給電効率が良いと考えられ、図9に示す様に送信電力の最適制御を増力側にのみ行うことで制御ロジックがシンプルになる。加えて本実施の形態3においては、電動車両26側において路面側給電装置20から送信電力値情報を得て給電効率を計算することが可能であることから、電動車両26側でも給電効率を把握する事が出来るというメリットがある。   In this way, paying attention to the characteristics of the setting of the microwave power receiving system mounted on the electric vehicle 26 (the configuration of the rectenna 27 and the performance of the rectenna 27 alone), the transmission power corresponding in the “optimum power supply efficiency” region. By performing optimal control, loss due to leakage waves in the wireless transmission region can be minimized, and the power supply efficiency from the road surface side power supply device 20 to the electric vehicle 26 can be increased. Further, in the third embodiment, since each electric power supply target electric power vehicle 26 stores the maximum power supply efficiency value, it is considered that the power supply efficiency is considerably good with the default transmission power, and transmission is performed as shown in FIG. Control logic is simplified by performing optimal power control only on the booster side. In addition, in the third embodiment, since it is possible to calculate the power supply efficiency by obtaining the transmission power value information from the road surface side power supply device 20 on the electric vehicle 26 side, the power supply efficiency is also grasped on the electric vehicle 26 side. There is a merit that it can be done.

なお、実施の形態1乃至実施の形態3においては、予め給電対象の車種およびレクテナ27の構成に基づく受信可能な電力を判断した上で給電電力を最適化しているので、一仕様の路面側給電装置のみで複数の車種への給電を可能としている。さらに、車種(車格)情報から「最適給電効率」を算出し、給電開始後は電動車両26から受信電力値情報を得ることにより時々刻々における給電効率を算出し、その算出した給電効率値と前記最適給電効率値を比較する事で路面側給電装置から電動車両26への送信電力を最適制御することが可能となるので、無線伝達領域での洩れ波によるロスを最小限に留め、前記給電装置から前記電動車両への給電効率を高くすることができる。以上のように本発明においては、マイクロ波による無線伝達領域での洩れ波によるロスを最小限に留めるように制御しているため、特に車外における人体や生物へのマイクロ波の曝露に対する安全性も向上する。   In the first to third embodiments, the power to be received is optimized after determining the receivable power based on the vehicle type to be fed and the configuration of the rectenna 27 in advance. It is possible to supply power to multiple vehicle types with just the device. Furthermore, “optimum power supply efficiency” is calculated from the vehicle type (vehicle case) information, and after the start of power supply, the received power value information is obtained from the electric vehicle 26 to calculate the power supply efficiency every moment, and the calculated power supply efficiency value and By comparing the optimum power feeding efficiency values, it becomes possible to optimally control the transmission power from the road surface side power feeding device to the electric vehicle 26. Therefore, the loss due to the leakage wave in the radio transmission region is minimized, and the power feeding is performed. Power supply efficiency from the device to the electric vehicle can be increased. As described above, in the present invention, control is performed so as to minimize loss due to leakage waves in the radio transmission region due to microwaves, and therefore, safety against exposure of microwaves to human bodies and living organisms outside the vehicle is also particularly high. improves.

本発明によるシステム構成図、(a)図は上方から見た平面図、(b)図は側方から見た側面図。The system block diagram by this invention, (a) A figure is the top view seen from upper direction, (b) The figure is a side view seen from the side. 送信電力−給電効率 関係図。Transmission power-power supply efficiency relationship diagram. 実施の形態1を示すフロー図。FIG. 3 is a flowchart showing the first embodiment. 図3に続く実施の形態1を示すフロー図。FIG. 4 is a flowchart showing the first embodiment following FIG. 3. 入力−RF・DC変換効率 関係図。Input-RF / DC conversion efficiency relationship diagram. 実施の形態2を示すフロー図。FIG. 5 is a flowchart showing Embodiment 2. 車種Aの最適給電効率領域の拡大図。The enlarged view of the optimal electric power feeding efficiency area | region of the vehicle type A. FIG. 実施の形態3を示すフロー図。FIG. 9 is a flowchart showing Embodiment 3. 図8に続く実施の形態3を示すフロー図。FIG. 9 is a flowchart showing the third embodiment following FIG.

符号の説明Explanation of symbols

20:路面側給電装置 21:インフラ側電源ライン
22:マイクロ波発生ユニット 23:マイクロ波送信アンテナ群
24:送受信器 25:マイクロ波送信アンテナ制御回路
26:電動車両 27:レクテナ
28:蓄電機構 29:モータジェネレータ
30:DC/DCコンバータ 31:車両電装系用蓄電池
32:送受信器 33:制御回路
20: Road surface side power supply device 21: Infrastructure side power supply line 22: Microwave generation unit 23: Microwave transmission antenna group 24: Transceiver 25: Microwave transmission antenna control circuit 26: Electric vehicle 27: Rectenna 28: Power storage mechanism 29: Motor generator 30: DC / DC converter 31: Storage battery for vehicle electrical system 32: Transmitter / receiver 33: Control circuit

Claims (7)

受信アンテナを介して受信したマイクロ波により電力供給を受ける電動車両に向けて、電力の供給源である路面側給電装置からマイクロ波を放射するマイクロ波送信アンテナを備えたマイクロ波電力伝送システムに用いられる前記電動車両への給電方法であって、
前記路面側給電装置より前記電動車両へ給電する際に、
前記路面側給電装置は前記電動車両からの車両情報を受信し、
該車両情報に基づいて、前記路面側給電装置内に予めマップ化して設定されている「送信電力−給電効率」関係を用い、前記路面側給電装置のマイクロ波送信アンテナからの送信電力を最適制御すること、
を特徴とするマイクロ波を用いた電動車両への給電方法。
Used in a microwave power transmission system equipped with a microwave transmission antenna that radiates microwaves from a road-side power supply device that is a power supply source toward an electric vehicle that is supplied with power by microwaves received via a reception antenna A method for supplying power to the electric vehicle,
When supplying power to the electric vehicle from the road surface side power supply device,
The road surface side power supply device receives vehicle information from the electric vehicle,
Based on the vehicle information, the transmission power from the microwave transmission antenna of the road surface side power supply apparatus is optimally controlled using the “transmission power-power supply efficiency” relationship that is set in advance in the road surface side power supply apparatus. To do,
A method for supplying power to an electric vehicle using microwaves.
請求項1に記載のマイクロ波を用いた前記電動車両への給電方法において、
前記路面側給電装置は、給電対象となる前記電動車両の車両情報を受信し、
該車両情報に対して固有の最適給電効率が維持される送信電力範囲となるように前記電動車両への送信電力を制御すること、
を特徴とするマイクロ波を用いた電動車両への給電方法。
In the electric power feeding method to the electric vehicle using the microwave according to claim 1,
The road surface side power feeding device receives vehicle information of the electric vehicle to be fed,
Controlling the transmission power to the electric vehicle so as to be within a transmission power range in which the optimum power supply efficiency inherent to the vehicle information is maintained;
A method for supplying power to an electric vehicle using microwaves.
請求項2記載のマイクロ波を用いた前記電動車両への給電方法において、
前記路面側給電装置からの送信電力を用いて給電効率を算出する際に、
給電対象となる前記電動車両の車両情報から該電動車両における前記マイクロ波受信システムであるレクテナの構成を判断し、該判断結果から得られる送信電力範囲内において、前記算出された給電効率の最大値を最適給電効率とすること、
を特徴とする請求項2記載のマイクロ波を用いた電動車両への給電方法。
In the electric power feeding method to the electric vehicle using the microwave according to claim 2,
When calculating the power supply efficiency using the transmission power from the road surface side power supply device,
The configuration of the rectenna that is the microwave receiving system in the electric vehicle is determined from the vehicle information of the electric vehicle to be supplied with power, and the calculated maximum value of the power supply efficiency within the transmission power range obtained from the determination result The optimal power supply efficiency,
The method for feeding power to an electric vehicle using the microwave according to claim 2.
請求項3に記載のマイクロ波を用いた電動車両への給電方法において、
前記路面側給電装置にて電動車両に給電する際に、当該電動車両の個体ばらつきや蓄電量を考慮し、予め定められた前記「最適給電効率」の範囲を維持する送信電力領域における最大電力値にて給電を行うこと、
を特徴とする請求項3記載のマイクロ波を用いた電動車両への給電方法。
In the electric power feeding method to the electric vehicle using the microwave according to claim 3,
When supplying electric power to the electric vehicle with the road surface side power supply device, the maximum electric power value in the transmission power region that maintains the predetermined range of the “optimum electric power supply efficiency” in consideration of individual variation of the electric vehicle and the amount of stored electricity To supply power at
A method for feeding power to an electric vehicle using the microwave according to claim 3.
請求項4に記載のマイクロ波を用いた前記電動車両への給電方法において、
前記路面側給電装置から前記電動車両に給電する際に、
給電対象の前記電動車両から前記路面側給電装置に当該車種の車両情報を送信し、
前記路面側給電装置は前記車両情報に基づき前記「最適給電効率」を維持し得る送信電力にてマイクロ波を送信し、
前記マイクロ波を受信した前記電動車両は内蔵の第1の送受信器を介して前記路面側給電装置に内蔵の第2の送受信器に受信電力値を送信し、
前記路面側給電装置は前記路面側給電装置が送信した送信電力値と、当該電動車両から送信されてきた受信電力値とから給電効率を算出し、該算出した給電効率値が前記最適給電効率値に対し、予め定められた範囲内に収まる電力領域となるように前記送信電力を制御すること、
を特徴とするマイクロ波を用いた電動車両への給電方法。
In the electric power feeding method to the electric vehicle using the microwave according to claim 4,
When supplying power to the electric vehicle from the road surface side power supply device,
Transmitting vehicle information of the vehicle type from the electric vehicle to be fed to the road surface side feeding device,
The road surface side power supply device transmits a microwave with transmission power capable of maintaining the "optimum power supply efficiency" based on the vehicle information,
The electric vehicle that has received the microwave transmits a received power value to a second transmitter / receiver built in the road surface side power feeding device via a built-in first transmitter / receiver,
The road surface side power supply device calculates power supply efficiency from the transmission power value transmitted by the road surface side power supply device and the received power value transmitted from the electric vehicle, and the calculated power supply efficiency value is the optimum power supply efficiency value. In contrast, the transmission power is controlled to be in a power region that falls within a predetermined range;
A method for supplying power to an electric vehicle using microwaves.
請求項4記載のマイクロ波を用いた前記電動車両への給電方法において、
前記路面側給電装置にて前記電動車両に給電する際に、
給電対象の前記電動車両は前記路面側給電装置に当該電動車両の最適給電効率値を前記電動車両に搭載の第1の送受信器を介して送信し、
前記路面側給電装置は該送信されて来た前記最適給電効率値より、当該電動車両の車種及びマイクロ波受信システムの設定を判断し、
前記路面側給電装置は前記判断結果に基づく送信電力にてマイクロ波を送信し、
該マイクロ波を受信した当該電動車両は受信電力値を前記第1の送受信器を介して前記路面側給電装置に設置されている第2の送受信器に向けて送信し、
前記路面側給電装置は前記路面側給電装置における送信電力値と当該電動車両の前記第1の送受信器から送信されてきた受信電力値とから給電効率を算出し、
該算出した給電効率値が前記最適給電効率値に対し、予め定められた範囲内に収まる電力領域となるように前記送信電力を制御すること、
を特徴とする請求項4記載のマイクロ波を用いた電動車両への給電方法。
In the electric power feeding method to the electric vehicle using the microwave according to claim 4,
When supplying power to the electric vehicle with the road surface side power supply device,
The electric vehicle to be fed transmits the optimum power feeding efficiency value of the electric vehicle to the road surface side power feeding device via the first transceiver mounted on the electric vehicle,
The road surface side power supply device determines the vehicle type of the electric vehicle and the setting of the microwave receiving system from the transmitted optimal power supply efficiency value,
The road surface side power supply device transmits a microwave with transmission power based on the determination result,
The electric vehicle that has received the microwave transmits the received power value to the second transmitter / receiver installed in the road surface side power feeding device via the first transmitter / receiver,
The road surface side power supply device calculates the power supply efficiency from the transmission power value in the road surface side power supply device and the received power value transmitted from the first transceiver of the electric vehicle,
Controlling the transmission power so that the calculated power supply efficiency value falls within a predetermined power range with respect to the optimum power supply efficiency value;
The power feeding method to the electric vehicle using the microwave according to claim 4.
請求項4記載のマイクロ波を用いた電動車両への給電方法において、
前記路面側給電装置にて前記電動車両に給電する際に、
給電対象の前記電動車両から前記路面側給電装置に当該電動車両の最適給電効率値を前記電動車両に搭載の第1の送受信器により送信し、
前記路面側給電装置は前記最適給電効率値より、当該電動車両の車種及びマイクロ波受信システムの設定を判断し、
前記路面側給電装置は前記判断結果に基づく送信電力にてマイクロ波を送信し、同時に前記路面側給電装置は該送信電力値を路面側給電装置に設置の第2の送受信器を介して当該電動車両搭載の第1の送受信器に送信し、
前記マイクロ波を受信した当該電動車両は、前記路面側給電装置からの送信電力値と前記送信されて来たマイクロ波の受信電力値とから給電効率値を算出して、該算出結果を前記路面側給電装置に設置されている前記第2の送受信器に送信し、
前記路面側給電装置は前記電動車両の前記第1の送受信器から送信されて来た前記算出結果である給電効率値が前記最適給電効率値に対し、予め定められた範囲に収まる電力領域となるように前記送信電力を制御すること、
を特徴とするマイクロ波を用いた電動車両への給電方法。
In the electric power feeding method to the electric vehicle using the microwave according to claim 4,
When supplying power to the electric vehicle with the road surface side power supply device,
The optimal power supply efficiency value of the electric vehicle is transmitted from the electric vehicle to be supplied to the road surface side power supply device by the first transmitter / receiver mounted on the electric vehicle,
The road surface side power supply device determines the vehicle type of the electric vehicle and the setting of the microwave receiving system from the optimum power supply efficiency value,
The road surface side power feeding device transmits a microwave with transmission power based on the determination result, and at the same time, the road surface side power feeding device transmits the transmission power value via the second transmitter / receiver installed in the road surface side power feeding device. To the first transceiver on the vehicle,
The electric vehicle that has received the microwave calculates a power supply efficiency value from the transmission power value from the road surface side power supply device and the received power value of the microwave that has been transmitted, and the calculation result is used as the road surface. To the second transmitter / receiver installed in the side power supply device,
The road surface side power supply device is a power region in which a power supply efficiency value as the calculation result transmitted from the first transmitter / receiver of the electric vehicle falls within a predetermined range with respect to the optimum power supply efficiency value. Controlling the transmission power as follows:
A method for supplying power to an electric vehicle using microwaves.
JP2005164208A 2005-06-03 2005-06-03 Power supply method for electric vehicles using microwaves Expired - Fee Related JP4784157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005164208A JP4784157B2 (en) 2005-06-03 2005-06-03 Power supply method for electric vehicles using microwaves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005164208A JP4784157B2 (en) 2005-06-03 2005-06-03 Power supply method for electric vehicles using microwaves

Publications (2)

Publication Number Publication Date
JP2006340541A true JP2006340541A (en) 2006-12-14
JP4784157B2 JP4784157B2 (en) 2011-10-05

Family

ID=37560590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005164208A Expired - Fee Related JP4784157B2 (en) 2005-06-03 2005-06-03 Power supply method for electric vehicles using microwaves

Country Status (1)

Country Link
JP (1) JP4784157B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298278A (en) * 2008-06-12 2009-12-24 Toyota Motor Corp Vehicle for traveling in specific region
JP2013188032A (en) * 2012-03-08 2013-09-19 Fujitsu Ltd Apparatus, program and method for calculation of electric power
JP2013223301A (en) * 2012-04-13 2013-10-28 Toyota Industries Corp Power reception device and power transmission device of contactless power transfer unit
JP2013541313A (en) * 2010-09-23 2013-11-07 日本テキサス・インスツルメンツ株式会社 Wireless power transmission system and method with interference detection
JPWO2013114522A1 (en) * 2012-01-30 2015-05-11 トヨタ自動車株式会社 Vehicle power receiving device, power supply facility, and power transmission system
JP2015126635A (en) * 2013-12-26 2015-07-06 キヤノン株式会社 Power transmission device, control method and program
US9536656B2 (en) 2012-05-21 2017-01-03 Texas Instruments Incorporated Systems and methods of reduction of parasitic losses in a wireless power system
JP2017163641A (en) * 2016-03-07 2017-09-14 古河電気工業株式会社 Power transmission system and power transmission device
US9880208B2 (en) 2012-01-09 2018-01-30 Alcatel Lucent Method, a device, a system, a computer program and a computer program product for determining information about efficiency of an inductive charging system, having a primary coil embedded in a road infrastructure
US10211684B2 (en) 2014-06-12 2019-02-19 Canon Kabushiki Kaisha Power transmitting apparatus, control method, and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001145203A (en) * 1999-11-16 2001-05-25 Toyota Motor Corp Energy supply method, mobile object and energy supply apparatus
JP2001177916A (en) * 1999-12-10 2001-06-29 Toyota Motor Corp Energy-supplying apparatus
JP2002152995A (en) * 2000-11-10 2002-05-24 Toyota Motor Corp Electrical power receiving and supplying system
JP2004229421A (en) * 2003-01-23 2004-08-12 Toyota Motor Corp Vehicle
JP2004242380A (en) * 2003-02-04 2004-08-26 Toyota Motor Corp Radio power receiving device for vehicle, tire, and wheel
JP2006174676A (en) * 2004-12-20 2006-06-29 Nissan Motor Co Ltd Microwave transmitting system for vehicle and microwave receiving apparatus for vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001145203A (en) * 1999-11-16 2001-05-25 Toyota Motor Corp Energy supply method, mobile object and energy supply apparatus
JP2001177916A (en) * 1999-12-10 2001-06-29 Toyota Motor Corp Energy-supplying apparatus
JP2002152995A (en) * 2000-11-10 2002-05-24 Toyota Motor Corp Electrical power receiving and supplying system
JP2004229421A (en) * 2003-01-23 2004-08-12 Toyota Motor Corp Vehicle
JP2004242380A (en) * 2003-02-04 2004-08-26 Toyota Motor Corp Radio power receiving device for vehicle, tire, and wheel
JP2006174676A (en) * 2004-12-20 2006-06-29 Nissan Motor Co Ltd Microwave transmitting system for vehicle and microwave receiving apparatus for vehicle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298278A (en) * 2008-06-12 2009-12-24 Toyota Motor Corp Vehicle for traveling in specific region
JP2016029887A (en) * 2010-09-23 2016-03-03 日本テキサス・インスツルメンツ株式会社 System and method for wireless power transmission equipped with interference detection
JP2013541313A (en) * 2010-09-23 2013-11-07 日本テキサス・インスツルメンツ株式会社 Wireless power transmission system and method with interference detection
US9294153B2 (en) 2010-09-23 2016-03-22 Texas Instruments Incorporated Systems and methods of wireless power transfer with interference detection
US9880208B2 (en) 2012-01-09 2018-01-30 Alcatel Lucent Method, a device, a system, a computer program and a computer program product for determining information about efficiency of an inductive charging system, having a primary coil embedded in a road infrastructure
JPWO2013114522A1 (en) * 2012-01-30 2015-05-11 トヨタ自動車株式会社 Vehicle power receiving device, power supply facility, and power transmission system
US9533591B2 (en) 2012-01-30 2017-01-03 Toyota Jidosha Kabushiki Kaisha Vehicular power reception device, power supply apparatus, and electric power transfer system
JP2013188032A (en) * 2012-03-08 2013-09-19 Fujitsu Ltd Apparatus, program and method for calculation of electric power
JP2013223301A (en) * 2012-04-13 2013-10-28 Toyota Industries Corp Power reception device and power transmission device of contactless power transfer unit
US9536656B2 (en) 2012-05-21 2017-01-03 Texas Instruments Incorporated Systems and methods of reduction of parasitic losses in a wireless power system
JP2015126635A (en) * 2013-12-26 2015-07-06 キヤノン株式会社 Power transmission device, control method and program
US10211684B2 (en) 2014-06-12 2019-02-19 Canon Kabushiki Kaisha Power transmitting apparatus, control method, and storage medium
JP2017163641A (en) * 2016-03-07 2017-09-14 古河電気工業株式会社 Power transmission system and power transmission device

Also Published As

Publication number Publication date
JP4784157B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4784157B2 (en) Power supply method for electric vehicles using microwaves
US10110068B2 (en) Wireless power feeding system and wireless power feeding method
US8836170B2 (en) Wireless power feeding system and wireless power feeding method
JP4661978B2 (en) vehicle
JP2008092704A (en) Power feeding system between road vehicle
JP5879748B2 (en) Non-contact power supply device, vehicle and non-contact power supply system
JP5957112B2 (en) Wireless power supply system
US20120200151A1 (en) Non-contact power supply control device, non-contact power supply system, and non-contact power charge system
JP5570343B2 (en) Non-contact power feeding device
JP5719466B2 (en) Contactless charging system
KR20130141703A (en) Torque control apparatus and contactless charging system
EP3113327B1 (en) Non-contact power supply system and power transmission device
US9849797B2 (en) Wireless power-transmitting device and system
JP2004229425A (en) Charging apparatus for vehicle, vehicle bumper, and vehicle parking system
JP4710314B2 (en) Road-to-vehicle power supply system
CN103326447A (en) Wireless charging system for electric bicycle
KR20150124716A (en) wireless charging module-base
KR101299858B1 (en) Electromagnetic coupled resonance type wirelessly power transmission system for supplying an electric power to a sensor attached on rotating spindle
CN108512281A (en) Onboard wireless charging method, system and relevant apparatus
US9819229B2 (en) Apparatus for receiving non-contact energy and controlling method therefor
KR102042319B1 (en) Apparatus and method for selectively supplying wired/wireless power to electric vechile
JP2020162391A5 (en)
JP5256672B2 (en) Vehicle power supply device
KR20160099273A (en) Apparatus and method for harvesting Radio Frequency energy of base station antenna, base station device
US20220407370A1 (en) Signal emitting apparatus and signal transmission/reception system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

R150 Certificate of patent or registration of utility model

Ref document number: 4784157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees