JP2006174676A - Microwave transmitting system for vehicle and microwave receiving apparatus for vehicle - Google Patents

Microwave transmitting system for vehicle and microwave receiving apparatus for vehicle Download PDF

Info

Publication number
JP2006174676A
JP2006174676A JP2004367822A JP2004367822A JP2006174676A JP 2006174676 A JP2006174676 A JP 2006174676A JP 2004367822 A JP2004367822 A JP 2004367822A JP 2004367822 A JP2004367822 A JP 2004367822A JP 2006174676 A JP2006174676 A JP 2006174676A
Authority
JP
Japan
Prior art keywords
vehicle
power
microwave
power transmission
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004367822A
Other languages
Japanese (ja)
Other versions
JP4525331B2 (en
Inventor
Takashi Hashimoto
隆志 橋本
Toshiro Muramatsu
寿郎 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004367822A priority Critical patent/JP4525331B2/en
Publication of JP2006174676A publication Critical patent/JP2006174676A/en
Application granted granted Critical
Publication of JP4525331B2 publication Critical patent/JP4525331B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/526Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microwave transmitting system for a vehicle capable of effectively utilizing electric energy with a small sized and simple system and a control system. <P>SOLUTION: The microwave transmitting system 1 for an electric vehicle sets an appropriate power storage quantity in a power storage mechanism 22 based on the torque command (power-running/regeneration) of a vehicular 2 motor generator 23, the power storage capacity and power storage amount of a power storage mechanism 22, the travelling information of a vehicle 2, and road information or the like transmitted from road surface side microwave power transmission antenna equipment 10. The electric power quantity required by the vehicle 2 is detected based on the appropriate storage quantity, and the necessary electric power is lower than the total electric power capable of being received by a rectenna 21, and the transmission electric power from the microwave power transmission antenna group 13 of the road surface side microwave power transmission antenna equipment 10 is reduced in a stepwise manner corresponding to the lowering degree of the electric power. Resultantly, only a minimum necessary electric power is transmitted to the vehicle from the road surface by the microwave, with better electric power efficiency. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、路面設備等の外部設備から車両等の移動体にマイクロ波を介して電気エネルギーを供給する車両用マイクロ波送電システム、及び、その車両側装置たる車両用マイクロ波受電装置に関する。   The present invention relates to a microwave transmission system for a vehicle that supplies electric energy from an external facility such as a road surface facility to a moving body such as a vehicle via a microwave, and a microwave reception device for a vehicle that is a vehicle side device.

道路に沿って設けられた路面設備や人工衛星などの外部設備から、マイクロ波等を車両などの移動体に送信することにより、移動体に電気エネルギーを供給するシステムが提案されている。そのようなシステムであって、電気エネルギーを効率よく利用するシステムとして、例えば特許文献1に開示されている車両用エネルギー供給システムがある。このシステムは、車両のモータジェネレータによる発電において余剰電力が生じた場合に、余剰電力の電気エネルギーを車両側のマイクロ波発生器がマイクロ波に変換し、変換したマイクロ波をマイクロ波送信アンテナを介して車両から路面設備に送信し、路面設備としての例えば街灯等に供給するものである。
特開2004−224219号公報
There has been proposed a system that supplies electric energy to a moving body by transmitting microwaves or the like to the moving body such as a vehicle from an external facility such as a road surface facility or an artificial satellite provided along the road. An example of such a system that efficiently uses electric energy is a vehicle energy supply system disclosed in Patent Document 1. In this system, when surplus power is generated in the power generation by the motor generator of the vehicle, the electric energy of the surplus power is converted into microwave by the microwave generator on the vehicle side, and the converted microwave is transmitted via the microwave transmission antenna. The vehicle is transmitted from the vehicle to the road surface equipment and supplied to, for example, a street lamp as the road surface equipment.
JP 2004-224219 A

しかしながら、そのような“回生して余剰した電力は、街灯やエネルギー利用設備に供給する”システムは、路面設備と車両との間で相互に電気エネルギーを送受しており、電力の伝送ロスを考慮すると電力を十分に有効に利用しているとは言い難い。とりわけ車両から路面設備へマイクロ波にて電力を送り返す構成については、電力の利用効率を低下させるマイクロ波伝送をさらに繰り返すことになり、電気エネルギーの定量的側面においても有効とは考えにくい。   However, such a system that “regenerates surplus power to supply to streetlights and energy-utilizing equipment” exchanges electrical energy between the road surface equipment and the vehicle, and considers power transmission loss. Then, it is hard to say that electric power is used sufficiently effectively. In particular, in the configuration in which power is returned from the vehicle to the road surface equipment by microwaves, microwave transmission that lowers the power use efficiency is further repeated, and it is difficult to consider that the quantitative aspect of electric energy is effective.

また、そのようなシステムにおいては、街灯やエネルギー利用設備等の路面設備に加え、車両側に、余剰電力を送り出すために余剰電力をマイクロ波に変換する装置やマイクロ波を送電する装置等が必要となる。また、路面側には、車両側より送電されたマイクロ波を受電し電力へと変換するレクテナ等の設備が必要となる。そのため、システム(設備、インフラストラクチャ)の規模が大規模になり、さらに、そのような大規模なシステムを制御する制御システムも大規模で複雑な構成となる。これらの点は、このようなシステムを実現化する上での障害となるため、改善が望まれている。   Moreover, in such a system, in addition to road surface facilities such as street lamps and energy utilization facilities, a device for converting surplus power into microwaves or a device for transmitting microwaves is required to send surplus power to the vehicle side. It becomes. Further, on the road surface side, facilities such as a rectenna for receiving the microwave transmitted from the vehicle side and converting it into electric power are required. Therefore, the scale of the system (equipment, infrastructure) becomes large, and the control system for controlling such a large-scale system also has a large-scale and complicated configuration. Since these points are obstacles to realizing such a system, improvement is desired.

本発明はこのような課題に鑑みてなされたものであって、その目的は、より小規模で簡単なシステム及び制御システムで、電気エネルギーをより有効に利用できる車両用マイクロ波送電システム、及び、その車両側装置たる車両用マイクロ波受電装置を提供することにある。   The present invention has been made in view of such problems, and the object thereof is a microwave power transmission system for a vehicle that can use electric energy more effectively with a smaller and simpler system and control system, and An object of the present invention is to provide a vehicle microwave power receiving apparatus as the vehicle side apparatus.

前記目的を達成するために本発明に係る車両用マイクロ波送電システムは、車両にマイクロ波を介して電力を送電する送電装置と、前記車両に搭載される車両装置であって、前記マイクロ波を介して送電される電力を受電する受電手段と、前記受電した電力を蓄電し、当該車両を駆動する駆動手段に出力するとともに、当該駆動手段が回生駆動された場合に生じる電力を蓄電する蓄電手段とを有する車両装置とを有する車両用マイクロ波送電システムであって、前記車両に係る所望の情報である車両情報、及び、前記車両が走行する道路に係る所望の情報である道路情報に基づいて、当該車両の走行により前記蓄電手段に蓄電される電力が過不足しないと推測される当該蓄電手段の蓄電量を、前記車両装置における適正蓄電量として設定する適正蓄電量設定手段と、前記設定された前記車両の前記適正蓄電量に基づいて、前記送電装置から前記車両装置への送電量を制御する送電量制御手段とを有する。   In order to achieve the above object, a microwave transmission system for a vehicle according to the present invention includes a power transmission device that transmits electric power to a vehicle via a microwave, and a vehicle device mounted on the vehicle, wherein the microwave is transmitted to the vehicle. A power receiving means for receiving the power transmitted via the power storage, and a power storage means for storing the received power and outputting the power to a driving means for driving the vehicle, and storing power generated when the driving means is regeneratively driven. A vehicle power transmission system including: vehicle information that is desired information relating to the vehicle; and road information that is desired information relating to a road on which the vehicle travels. The amount of power stored in the power storage unit that is estimated to be sufficient for the power stored in the power storage unit due to travel of the vehicle is set as the appropriate amount of power stored in the vehicle device. A positive accumulation amount setting means, based on the proper storage amount of the set the vehicle, and a power transmission amount control means for controlling the amount of transmitted power to the vehicle system from the power transmitting device.

このような構成の車両用マイクロ波送電システムにおいては、車両側において車載した蓄電手段に対して、予め適正蓄電量を設定する。適正蓄電量は、例えば、駆動手段のトルク指令(力行/回生を示す情報を含む)、蓄電量SOC(State Of Charge)等の車両情報に加えて、道路状態(上り/下りの勾配)や標高等の道路情報をも加味して算出する。そして、例えば、時々刻々において車両に設定されたレクテナ(受電素子)等にて受電可能な総電力に対し、車両が必要とする電力が下回る場合は、車両側レクテナ素子の受電面に対応する路面側の送電アンテナからの送電電力を、その電力下回り度合に応じて段階的に減力する。その結果、必要最小限の電力のみをマイクロ波にて路面より車両に送電するので、電力効率が最も良くなる。   In the vehicle microwave power transmission system having such a configuration, an appropriate power storage amount is set in advance for power storage means mounted on the vehicle side. The appropriate amount of power storage is, for example, road conditions (up / down slope) and altitude in addition to vehicle information such as torque command of driving means (including information indicating power running / regeneration), power storage amount SOC (State Of Charge), etc. It is calculated taking into account road information such as For example, when the power required by the vehicle is lower than the total power that can be received by the rectenna (power receiving element) or the like set in the vehicle from moment to moment, the road surface corresponding to the power receiving surface of the vehicle-side rectenna element The transmission power from the power transmission antenna on the side is reduced step by step according to the power lowering degree. As a result, only the minimum necessary power is transmitted from the road surface to the vehicle by microwaves, so that the power efficiency is the best.

また、その適正蓄電量は、例えば“その時々刻々において、想定される最大回生入力があろうとも車載した蓄電機構の蓄電容量を上回る余剰電力が発生しない”という前提を考慮して決定される。したがって、例えば街灯や車両外のエネルギー利用設備を設定する必要が無くなる他、車両においても余剰電力をマイクロ波に変換するユニットやそれを路面側にマイクロ波として送電する機構も必要なくなり、車両側,路面側共における必要なハードウェアが軽減され、同時にシステムもシンプル化することが可能となる。   In addition, the appropriate amount of power storage is determined in consideration of the premise that “there is no surplus power exceeding the power storage capacity of the on-board power storage mechanism, even if there is an assumed maximum regenerative input. Therefore, for example, there is no need to set a streetlight or an energy utilization facility outside the vehicle, and there is no need for a unit for converting surplus power into microwaves or a mechanism for transmitting it as microwaves on the road surface. Necessary hardware on the road side is reduced, and the system can be simplified at the same time.

また、本発明の車両用マイクロ波送電システムにおいては、車両側におけるレクテナ等の受電能力に対して必要な電力が下回り、路面側からの送電電力を下回らせる場合は、これを送電アンテナのオン/オフのみで制御する。また、車両端部側に対応する送電アンテナから段階的にオフとしていく。したがって、シンプルなオン/オフのみで送電アンテナを制御できる。また、車両幅方向における端部から路面側の送電アンテナをオフにしていくので、車両内乗員はもちろん、歩行者等の車両外の人々に対してもマイクロ波の回折による洩れ波に対する安全性を向上することができる。   Further, in the vehicle microwave power transmission system of the present invention, when the power required for the power receiving capability of the rectenna or the like on the vehicle side is lower than the power transmitted from the road surface, this is turned on / off of the power transmission antenna. Control only off. Moreover, it turns off in steps from the power transmission antenna corresponding to the vehicle end side. Therefore, the power transmission antenna can be controlled only by simple on / off. In addition, since the power transmission antenna on the road surface side is turned off from the end in the vehicle width direction, not only passengers in the vehicle but also people outside the vehicle, such as pedestrians, have safety against leakage waves due to microwave diffraction. Can be improved.

また、本発明に係る車両用マイクロ波受電装置は、マイクロ波を介して送電される電力を受電する受電手段と、前記受電した電力を蓄電し、車両を駆動する駆動手段に出力するとともに、前記駆動手段が回生駆動された場合に生じる電力を蓄電する蓄電手段とを有する車両用マイクロ波受電装置であって、当該車両が走行する道路に係る所望の情報である道路情報を獲得する道路情報獲得手段と、前記車両に係る所望の情報である車両情報、及び、前記獲得した道路情報に基づいて、当該車両の走行により前記蓄電手段に蓄電される電力が過不足しないと推測される当該蓄電手段の蓄電量を、前記適正蓄電量として設定する適正蓄電量設定手段と、前記設定された前記適正蓄電量に基づいて、前記マイクロ波を介して送電される電力の送電量を検出する送電量検出手段とを有する。   In addition, the vehicle microwave power receiving device according to the present invention includes a power receiving unit that receives power transmitted through the microwave, and stores the received power and outputs the power to a driving unit that drives the vehicle. A vehicle microwave power receiving apparatus having power storage means for storing electric power generated when the drive means is regeneratively driven, and acquires road information that is desired information relating to a road on which the vehicle travels. And the power storage means that is presumed that the power stored in the power storage means by running of the vehicle is not excessive or insufficient based on the vehicle information, vehicle information that is desired information related to the vehicle, and the acquired road information And a power storage amount setting means for setting the power storage amount as the appropriate power storage amount, and a power transmission amount of power transmitted via the microwave based on the set appropriate power storage amount And a transmission amount detecting means detect.

本発明によれば、より小規模で簡単なシステム及び制御システムで、電気エネルギーをより有効に利用できる車両用マイクロ波送電システム及び車両用マイクロ波受電装置を提供することができる。   According to the present invention, it is possible to provide a vehicle microwave power transmission system and a vehicle microwave power receiving apparatus that can more effectively use electric energy with a smaller and simpler system and control system.

本発明の一実施形態の電動車両用マイクロ波送電システムについて、図1〜図3を参照して説明する。
図1は、本実施形態の電動車両用マイクロ波送電システム1の構成及び利用形態を模式的に示す図であり、図1(A)は上方から見た図であり、図1(B)は側方から見た図である。
A microwave power transmission system for an electric vehicle according to an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a diagram schematically showing the configuration and usage of a microwave power transmission system 1 for an electric vehicle according to the present embodiment. FIG. 1 (A) is a diagram seen from above, and FIG. It is the figure seen from the side.

まず、電動車両用マイクロ波送電システム1の構成について説明する。
図1に示すように、電動車両用マイクロ波送電システム1は、路面側マイクロ波送電アンテナ設備10及び車両側設備(車両用マイクロ波受電装置)20を有する。
First, the structure of the microwave transmission system 1 for electric vehicles is demonstrated.
As shown in FIG. 1, the microwave transmission system 1 for an electric vehicle includes a road-side microwave transmission antenna facility 10 and a vehicle-side facility (vehicle microwave power receiving device) 20.

路面側マイクロ波送電アンテナ設備10は、インフラ電源ライン11、マイクロ波発生ユニット12、マイクロ波送電アンテナ群13、送受信器14及びマイクロ波送電アンテナ制御回路15を有する。   The road surface side microwave power transmission antenna facility 10 includes an infrastructure power line 11, a microwave generation unit 12, a microwave power transmission antenna group 13, a transceiver 14, and a microwave power transmission antenna control circuit 15.

インフラ電源ライン11は、例えば路面に沿って敷設され、路面に沿って設けられた路面側マイクロ波送電アンテナ設備10に電力を供給する電力系統である。   The infrastructure power supply line 11 is a power system that is laid along the road surface, for example, and supplies power to the road surface side microwave power transmission antenna facility 10 provided along the road surface.

マイクロ波発生ユニット12は、マイクロ波送電アンテナ制御回路15からの制御信号に基づいて、インフラ電源ライン11より供給された電気エネルギーをマイクロ波生成信号に変換し、マイクロ波送電アンテナ群13の所望のマイクロ波送電アンテナ131に印加する。マイクロ波発生ユニット12が印加したマイクロ波生成信号に基づいて、各マイクロ波送電アンテナ131からマイクロ波が出射される。   Based on the control signal from the microwave power transmission antenna control circuit 15, the microwave generation unit 12 converts the electrical energy supplied from the infrastructure power supply line 11 into a microwave generation signal, and the microwave power transmission antenna group 13 receives a desired signal. Applied to the microwave power transmission antenna 131. A microwave is emitted from each microwave power transmission antenna 131 based on the microwave generation signal applied by the microwave generation unit 12.

したがってマイクロ波発生ユニット12は、路面を走行する車両2の車体下部に設置されたレクテナ21でそのマイクロ波が適切に受信されるように、すなわち、車両2の走行位置のマイクロ波送電アンテナ131からマイクロ波が出射されるように、マイクロ波送電アンテナ群13の中の所望のマイクロ波送電アンテナ131に対して選択的にマイクロ波生成信号を出力する。また、マイクロ波発生ユニット12は、所望の数のマイクロ波送電アンテナ131を選択的に有効にすることにより、要求される所望の電力が車両2に供給されるようにする。
これら、マイクロ波発生ユニット12によるマイクロ波送電アンテナ群13の制御方法は本発明に係る制御方法であり、これについては後に詳細に説明する。
Therefore, the microwave generation unit 12 is configured so that the microwave is properly received by the rectenna 21 installed at the lower part of the vehicle body 2 traveling on the road surface, that is, from the microwave power transmission antenna 131 at the traveling position of the vehicle 2. A microwave generation signal is selectively output to a desired microwave transmission antenna 131 in the microwave transmission antenna group 13 so that the microwave is emitted. In addition, the microwave generation unit 12 selectively enables a desired number of microwave power transmission antennas 131 so that the required desired power is supplied to the vehicle 2.
These control methods of the microwave power transmission antenna group 13 by the microwave generation unit 12 are control methods according to the present invention, which will be described in detail later.

なお、マイクロ波発生ユニット12、及び、後述する送受信器14及びマイクロ波送電アンテナ制御回路15は、図1(B)に示すように、車両2が走行する路面に所定の間隔で順次敷設されている。   In addition, the microwave generation unit 12, and a transmitter / receiver 14 and a microwave power transmission antenna control circuit 15 described later are sequentially laid at predetermined intervals on the road surface on which the vehicle 2 travels, as shown in FIG. Yes.

マイクロ波送電アンテナ群13は、例えば図1(A)に示すような所定の配列で路面に敷設された一連の複数のマイクロ波送電アンテナ131である。各マイクロ波送電アンテナ131は、マイクロ波発生ユニット12から印加されるマイクロ波生成信号に基づいてマイクロ波を路面より上方に出射する。各マイクロ波送電アンテナ131は、前述したように、路面を走行する車両2がそのマイクロ波送電アンテナ131の上方を通過する時に車両2の車体下部に設置されたレクテナ21に向けてマイクロ波を照射するように、マイクロ波発生ユニット12から選択的に制御される。   The microwave power transmitting antenna group 13 is a series of a plurality of microwave power transmitting antennas 131 laid on the road surface in a predetermined arrangement as shown in FIG. Each microwave power transmission antenna 131 emits microwaves above the road surface based on the microwave generation signal applied from the microwave generation unit 12. As described above, each microwave power transmission antenna 131 irradiates microwaves toward the rectenna 21 installed at the lower part of the vehicle body of the vehicle 2 when the vehicle 2 traveling on the road surface passes above the microwave power transmission antenna 131. Thus, the microwave generation unit 12 is selectively controlled.

送受信器14は、路面を走行する車両2の送受信器26と通信を行うための手段である。この送受信器14及び後述する車両2の送受信器26を介して、路面側マイクロ波送電アンテナ設備10と車両側設備20との間で相互に、車両2の車両情報及び道路情報(路面情報)の送受信が行われる。   The transceiver 14 is a means for communicating with the transceiver 26 of the vehicle 2 traveling on the road surface. Via this transmitter / receiver 14 and a transmitter / receiver 26 of the vehicle 2 to be described later, the vehicle information and road information (road surface information) of the vehicle 2 are mutually exchanged between the road surface side microwave power transmission antenna facility 10 and the vehicle side facility 20. Transmission / reception is performed.

マイクロ波送電アンテナ制御回路15は、所望の送電量で路面側マイクロ波送電アンテナ設備10から車両2に送電が行われるように、マイクロ波発生ユニット12を制御する。
本実施形態の電動車両用マイクロ波送電システム1において、本発明に係る路面側マイクロ波送電アンテナ設備10から車両2への送電量を決定する処理は、路面側マイクロ波送電アンテナ設備10で、又は車両2側の制御回路で、あるいは、それらに分散して行われる。本実施形態において、この送電量を決定する処理は、車両2の車両側設備20で行うものとする。したがって、マイクロ波送電アンテナ制御回路15は、車両2の車両側設備20において決定された送電量の情報を、送受信器26及び送受信器14を介して受信し、この情報に基づいてマイクロ波発生ユニット12を制御する。
The microwave power transmission antenna control circuit 15 controls the microwave generation unit 12 so that power is transmitted from the road surface side microwave power transmission antenna facility 10 to the vehicle 2 with a desired power transmission amount.
In the microwave power transmission system 1 for an electric vehicle according to the present embodiment, the process of determining the amount of power transmitted from the road surface side microwave power transmission antenna facility 10 to the vehicle 2 according to the present invention is performed by the road surface side microwave power transmission antenna facility 10 or This is performed by the control circuit on the vehicle 2 side or in a distributed manner. In the present embodiment, the process for determining the amount of power transmission is performed by the vehicle-side equipment 20 of the vehicle 2. Therefore, the microwave power transmission antenna control circuit 15 receives information on the amount of power transmission determined in the vehicle-side equipment 20 of the vehicle 2 via the transceiver 26 and the transceiver 14, and based on this information, the microwave generation unit 12 is controlled.

なお、送電量の決定の処理を路面側マイクロ波送電アンテナ設備10側で行う場合には、このマイクロ波送電アンテナ制御回路15でその処理を行う。
その場合、マイクロ波送電アンテナ制御回路15は、送受信器14を介して車両2と送受したその車両2に関する諸情報、及び、マイクロ波送電アンテナ制御回路15内に予めセットされて記憶されるその路面に関する諸情報に基づいて、車両2に供給する電力の量を決定する。そして、決定した電力が車両2に対して実際供給されるように、マイクロ波発生ユニット12を制御する。マイクロ波送電アンテナ制御回路15においては、車両2において電力が余剰しないような、すなわち無駄にならないように、供給する電力を決定する。
また、送電量の決定の処理を、路面側マイクロ波送電アンテナ設備10及び車両2の車両側設備20で分散して行う場合には、マイクロ波送電アンテナ制御回路15は、例えば車両側設備20の車両側設備制御回路27と協働して、前述したような処理を行う。
When the process for determining the amount of power transmission is performed on the road surface side microwave power transmission antenna facility 10 side, the microwave power transmission antenna control circuit 15 performs the process.
In that case, the microwave power transmission antenna control circuit 15 is configured to store various information about the vehicle 2 transmitted / received to / from the vehicle 2 via the transceiver 14 and the road surface set and stored in the microwave power transmission antenna control circuit 15 in advance. The amount of electric power to be supplied to the vehicle 2 is determined based on various information relating to the above. Then, the microwave generation unit 12 is controlled so that the determined power is actually supplied to the vehicle 2. In the microwave power transmission antenna control circuit 15, power to be supplied is determined so that power is not excessive in the vehicle 2, that is, is not wasted.
Further, when the process of determining the amount of power transmission is performed in a distributed manner in the road surface side microwave power transmission antenna facility 10 and the vehicle side facility 20 of the vehicle 2, the microwave power transmission antenna control circuit 15, for example, The above-described processing is performed in cooperation with the vehicle-side facility control circuit 27.

車両側設備20は、レクテナ21、蓄電機構22、モータジェネレータ23、DC/DCコンバータ24、車両電装系用蓄電器25、送受信器26及び車両側設備制御回路27を有する。
なお、車両側設備20は、電動車両用マイクロ波送電システム1に適用される(電動車両用マイクロ波送電システム1による電力供給サービスを利用する)車両ごとに設けられる。
The vehicle-side facility 20 includes a rectenna 21, a power storage mechanism 22, a motor generator 23, a DC / DC converter 24, a vehicle electrical system capacitor 25, a transceiver 26, and a vehicle-side facility control circuit 27.
The vehicle-side equipment 20 is provided for each vehicle that is applied to the microwave transmission system 1 for an electric vehicle (uses a power supply service by the microwave transmission system 1 for an electric vehicle).

レクテナ21は、車両2の車体下部に設けられており、路面から送信されるマイクロ波を受信し、電力を取り出す(電気エネルギーに変換する)回路である。
レクテナ21は、マイクロ波受電アンテナ及び整流回路を有する。マイクロ波受電アンテナは、路面側に設定したマイクロ波送電アンテナ群13より送電されたマイクロ波を受信する。整流回路は、複数の入出力フィルタと整流ダイオードにて構成されており、受電アンテナにて受電されたマイクロ波より直流電力を取り出す。
レクテナ21で変換されて生成された電力は、蓄電機構22に供給される。また、必要に応じて及びモータジェネレータ23に供給される。
The rectenna 21 is a circuit that is provided at the lower part of the vehicle 2 and receives a microwave transmitted from the road surface and extracts electric power (converts it into electric energy).
The rectenna 21 includes a microwave power receiving antenna and a rectifier circuit. The microwave power receiving antenna receives the microwaves transmitted from the microwave power transmitting antenna group 13 set on the road surface side. The rectifier circuit includes a plurality of input / output filters and rectifier diodes, and extracts DC power from the microwaves received by the power receiving antenna.
The electric power generated by being converted by the rectenna 21 is supplied to the power storage mechanism 22. Further, it is supplied to the motor generator 23 as needed.

蓄電機構22は、車両2を駆動するための電気エネルギーを蓄積するバッテリである。
蓄電機構22には、路面側設備10からマイクロ波の形態で供給された電力がレクテナ21から供給される。また、モータジェネレータ23が回生駆動されている時には、その回生駆動によりモータジェネレータ23で生成される電力が供給される。
また、蓄電機構22に蓄積された電力は、モータジェネレータ23を駆動(力行駆動)する電力として、モータジェネレータ23に出力される。また、必要に応じてDC/DCコンバータ24を介して車両電装系用蓄電器25に供給される。
The power storage mechanism 22 is a battery that stores electrical energy for driving the vehicle 2.
Electric power supplied in the form of microwaves from the road surface side equipment 10 is supplied from the rectenna 21 to the power storage mechanism 22. Further, when the motor generator 23 is regeneratively driven, electric power generated by the motor generator 23 is supplied by the regenerative drive.
Further, the electric power stored in the power storage mechanism 22 is output to the motor generator 23 as electric power for driving the motor generator 23 (powering drive). Further, it is supplied to the vehicle electrical system battery 25 via the DC / DC converter 24 as necessary.

モータジェネレータ23は、蓄電機構22又はモータジェネレータ23から供給される電力により力行駆動されることにより車両2の駆動輪を回転駆動し、車両2を走行させる。また、車両2が回生走行している場合には、車輪の回転により回生駆動されて発電を行い、生成した電力を蓄電機構22に供給する。   The motor generator 23 is driven by the electric power supplied from the power storage mechanism 22 or the motor generator 23 to rotationally drive the driving wheels of the vehicle 2 to cause the vehicle 2 to travel. When the vehicle 2 is traveling regeneratively, the vehicle 2 is regeneratively driven by the rotation of the wheels to generate power, and the generated power is supplied to the power storage mechanism 22.

DC/DCコンバータ24は、蓄電機構22の出力電圧と車両電装系用蓄電器25の入力電圧とを変換する変換器である。   The DC / DC converter 24 is a converter that converts the output voltage of the power storage mechanism 22 and the input voltage of the vehicle electrical system storage battery 25.

車両電装系用蓄電器25は、車両2のエアコンディショナ、ライト、ナビゲーション装置、カーオーディオ等の車両電装品に対して電力を供給するための蓄電池である。車両電装系用蓄電器25には、必要に応じて、すなわち車両2内における電力消費状況(エアコンディショナやライトの使用/不使用等)に応じて、蓄電機構22に蓄積されている電力がDC/DCコンバータ24で電圧変換されて供給される。   The vehicle electrical system capacitor 25 is a storage battery for supplying electric power to vehicle electrical components such as an air conditioner, a light, a navigation device, and a car audio of the vehicle 2. The electric storage device 25 for vehicle electrical system uses the electric power stored in the electric storage mechanism 22 as DC according to necessity, that is, depending on the power consumption state in the vehicle 2 (use / non-use of an air conditioner, light, etc.). / Voltage converted by the DC converter 24 and supplied.

送受信器26は、路面側マイクロ波送電アンテナ設備10の送受信器14と通信を行う手段である。
送受信器26は、例えば、路面側と車両側にてマイクロ波送電時に必要な情報を路面側マイクロ波送電アンテナ設備10の送受信器14に送信する。具体的には、車両2が通過している位置のマイクロ波送電アンテナ131を作動させて車両2のレクテナ21で適切にマイクロ波を受信するために必要な、車両2の位置、車速及びレクテナ面積等に関する情報を送信する。また、路面側マイクロ波送電アンテナ設備10から供給される電気エネルギーの量を決定するために必要な、モータジェネレータ23のトルク指令値(モータジェネレータ23が力行駆動か回生駆動かを示す情報を含む)、及び、蓄電機構22の蓄電量の情報を送信する。
The transceiver 26 is a means for communicating with the transceiver 14 of the road surface side microwave power transmission antenna facility 10.
For example, the transmitter / receiver 26 transmits information necessary for microwave power transmission on the road surface side and the vehicle side to the transceiver 14 of the road surface side microwave power transmission antenna facility 10. Specifically, the position, the vehicle speed, and the rectenna area of the vehicle 2 that are necessary for operating the microwave power transmission antenna 131 at the position where the vehicle 2 passes and appropriately receiving the microwave by the rectenna 21 of the vehicle 2. Send information about etc. Further, the torque command value of the motor generator 23 necessary for determining the amount of electric energy supplied from the road surface side microwave transmission antenna equipment 10 (including information indicating whether the motor generator 23 is power running drive or regenerative drive). And information on the amount of electricity stored in the electricity storage mechanism 22 is transmitted.

また、送受信器26は、例えば、予め路面側マイクロ波送電アンテナ設備10にセットされている車両2の走行路面に関する情報を、路面側マイクロ波送電アンテナ設備10の送受信器14から受信する。具体的には、道路の上り/下りの勾配に関する情報、及び、標高に関する情報等を受信する。   Moreover, the transmitter / receiver 26 receives, for example, information related to the traveling road surface of the vehicle 2 set in advance on the road surface side microwave power transmission antenna facility 10 from the transmitter / receiver 14 of the road surface side microwave power transmission antenna facility 10. Specifically, the information regarding the up / down slope of the road, the information about the altitude, and the like are received.

車両側設備制御回路27は、車両側設備20が所望の動作をするように車両側設備20の各部を制御する。本実施形態において特に車両側設備制御回路27は、路面側マイクロ波送電アンテナ設備10から車両2に不足や余剰状態が起きないような適切な量の電気エネルギーが供給されるように、路面側マイクロ波送電アンテナ設備10から車両2の車両側設備20に供給される電力を制御する処理を行う。車両側設備制御回路27におけるこの制御処理については、この後段において、電動車両用マイクロ波送電システム1における動作の説明として図2を参照して詳細に説明する。   The vehicle-side facility control circuit 27 controls each part of the vehicle-side facility 20 so that the vehicle-side facility 20 performs a desired operation. In the present embodiment, in particular, the vehicle-side facility control circuit 27 is configured so that an appropriate amount of electrical energy is supplied from the road-side microwave power transmission antenna facility 10 so that a shortage or surplus state does not occur in the vehicle 2. The process which controls the electric power supplied to the vehicle side equipment 20 of the vehicle 2 from the wave power transmission antenna equipment 10 is performed. This control process in the vehicle-side equipment control circuit 27 will be described in detail later with reference to FIG. 2 as an explanation of the operation in the microwave power transmission system 1 for an electric vehicle.

次に、このような構成の電動車両用マイクロ波送電システム1における車両2への電力供給制御方法について、図2に示すフローチャートを参照して説明する。
なお、以下に説明する制御処理を行えば、最終的には、路面側マイクロ波送電アンテナ設備10のマイクロ波発生ユニット12からマイクロ波送電アンテナ群13を介して車両2にマイクロ波の形態で供給される電力の量が制御される。しかしながら、この制御処理は、路面側マイクロ波送電アンテナ設備10側(例えばマイクロ波送電アンテナ制御回路15で)で行っても良いし、車両2側(例えば、車両2の車両側設備制御回路27)で行っても良い。また、これらが協働して一連のこのような処理を行うようにしても良い。いずれにしても、最終的に決定された制御操作及び制御量の情報は、路面側マイクロ波送電アンテナ設備10のマイクロ波送電アンテナ制御回路15に通知され、その結果)、マイクロ波送電アンテナ制御回路15によりマイクロ波発生ユニット12が制御される。
なお、ここでは、車両2の車両側設備制御回路27により以下の処理を行うものとする。すなわち、車両2の車両側設備20の車両側設備制御回路27において、自車両に対する電力供給を制御するために、以下のような処理を行う。
Next, a method for controlling power supply to the vehicle 2 in the microwave power transmission system 1 for an electric vehicle having such a configuration will be described with reference to a flowchart shown in FIG.
If the control process described below is performed, the microwave is finally supplied from the microwave generation unit 12 of the road-side microwave transmission antenna facility 10 to the vehicle 2 through the microwave transmission antenna group 13 in the form of microwaves. The amount of power being controlled is controlled. However, this control process may be performed on the road surface side microwave power transmission antenna facility 10 side (for example, in the microwave power transmission antenna control circuit 15) or on the vehicle 2 side (for example, the vehicle side facility control circuit 27 of the vehicle 2). You can go there. Further, these may cooperate to perform a series of such processes. In any case, the information of the finally determined control operation and control amount is notified to the microwave power transmission antenna control circuit 15 of the road surface side microwave power transmission antenna facility 10, and as a result, the microwave power transmission antenna control circuit. The microwave generation unit 12 is controlled by 15.
Here, the following processing is performed by the vehicle-side facility control circuit 27 of the vehicle 2. That is, the following processing is performed in the vehicle-side facility control circuit 27 of the vehicle-side facility 20 of the vehicle 2 in order to control power supply to the host vehicle.

まず、電力供給の制御に必要な所望の情報、すなわち車両情報及び道路情報の読み込みを行う(ステップS1)。車両側設備制御回路27は、車両2内より、車両2の車速、力行/回生を示すモータジェネレータ23におけるトルク指令値、蓄電機構22の蓄電量SOC(State Of Charge)、レクテナ21の面積及び最大受電可能電力、運転者の運転スタイル(加減速の緩急度合等)等の情報を読み込む。また、車両2の送受信器26及び路面側マイクロ波送電アンテナ設備10の送受信器14を介して、路面側マイクロ波送電アンテナ設備10から、道路の上り/下りの勾配情報及び標高等の情報を読み込む。   First, desired information necessary for controlling power supply, that is, vehicle information and road information is read (step S1). From the inside of the vehicle 2, the vehicle-side equipment control circuit 27 sends the vehicle 2 vehicle speed, the torque command value in the motor generator 23 indicating power running / regeneration, the amount of charge SOC (State Of Charge) of the power storage mechanism 22, the area of the rectenna 21 and the maximum Reads information such as the power that can be received and the driving style of the driver (acceleration / deceleration rate, etc.). In addition, road up / down gradient information and information such as altitude are read from the road surface microwave power transmission antenna facility 10 via the transmitter / receiver 26 of the vehicle 2 and the transmitter / receiver 14 of the road surface microwave power transmission antenna facility 10. .

次に、ステップS1で読み込んだ各情報に基づいて、その時々刻々における車両の適正蓄電量SOC_Pを算出する(ステップS2)。適正蓄電量SOC_Pは、その時の車両状態に加え、走行中の道路状況をも加味して算出する。
例えば、車両2の今後の走行路面が長い下り坂で回生ブレーキを作動させるシーンが断続的に続くと予想される場合は、適正蓄電量SOC_Pを予め低目に設定する。これにより、来るべき下り坂で回生ブレーキを活用して得られる電気エネルギーを蓄えられるだけの余裕代を、蓄電機構22に確保しておくことができ、回生ブレーキにより生成される電気エネルギーを有効活用することができる。
逆に、峠越え等、車両2の今後の走行路面として上り坂が断続的に続くと予想される場合は、適正蓄電量SOC_Pを高めに設定しておく。これにより、路面側からの電力供給に対するバックアップ体制を強化することができる。
Next, based on each piece of information read in step S1, an appropriate charged amount SOC_P of the vehicle at every moment is calculated (step S2). The appropriate storage amount SOC_P is calculated by taking into account the road conditions during travel in addition to the vehicle state at that time.
For example, when it is predicted that the scene in which the regenerative brake is operated intermittently on a downhill with a long driving road surface of the vehicle 2 will continue, the appropriate storage amount SOC_P is set to a low value in advance. As a result, it is possible to reserve in the power storage mechanism 22 a sufficient margin for storing electric energy obtained by using the regenerative brake on the coming downhill, and effectively use the electric energy generated by the regenerative brake. can do.
On the other hand, when it is expected that the uphill will continue intermittently as a future road surface of the vehicle 2 such as over the ridge, the appropriate storage amount SOC_P is set higher. Thereby, the backup system with respect to the electric power supply from the road surface side can be strengthened.

次に、ステップS2と同様にステップS1で読み込んだ各情報に基づいて、現時点における車両必要電力Wnを算出しておく(ステップS3)。   Next, the required vehicle power Wn at the present time is calculated based on the information read in step S1 as in step S2 (step S3).

次に、ステップS1で読み込んだ車両2の蓄電機構22の蓄電量SOCと、ステップS2にて算出された適正蓄電量SOC_Pとを比較する(ステップS4)。
その結果、蓄電量SOCが適正蓄電量SOC_P未満であれば、蓄電機構22にまだ余裕がある(蓄電機構22にさらに充電が可能である)と判断し、路面側マイクロ波送電アンテナ設備10から車両2に対して十分な送電が行われるようにする(ステップS5)。具体的には、車両2の車両側設備制御回路27から送受信器26及び送受信器14を介して路面側マイクロ波送電アンテナ設備10のマイクロ波送電アンテナ制御回路15にその旨の通知がなされ、マイクロ波送電アンテナ制御回路15は、例えばマイクロ波送電アンテナ群13を全稼動する等、車両2のレクテナ21で受電可能な最大の出力、あるいは、マイクロ波送電アンテナ群13で送電可能な最大の出力で車両2に電力を供給するよう、マイクロ波発生ユニット12を制御する。
Next, the storage amount SOC of the storage mechanism 22 of the vehicle 2 read in step S1 is compared with the appropriate storage amount SOC_P calculated in step S2 (step S4).
As a result, if the storage amount SOC is less than the appropriate storage amount SOC_P, it is determined that the power storage mechanism 22 still has a margin (the power storage mechanism 22 can be further charged), and the road surface side microwave power transmission antenna facility 10 transmits the vehicle. 2 is sufficiently transmitted (step S5). Specifically, the vehicle side equipment control circuit 27 of the vehicle 2 is notified to the microwave power transmission antenna control circuit 15 of the road surface side microwave power transmission antenna equipment 10 via the transceiver 26 and the transceiver 14, and the micro The wave power transmission antenna control circuit 15 is the maximum output that can be received by the rectenna 21 of the vehicle 2 or the maximum output that can be transmitted by the microwave power transmission antenna group 13, for example, fully operating the microwave power transmission antenna group 13. The microwave generation unit 12 is controlled so as to supply electric power to the vehicle 2.

また、ステップS4において、蓄電量SOCが適正蓄電量SOC_P以上であれば、車両2に蓄えられている電気エネルギー量は適正と判断する。
その上で、次に、モータジェネレータ23が回生中か否かを検出し(ステップS41)、回生中であれば、車両駆動にて消費される電気エネルギーは無いので、路面側マイクロ波送電アンテナ設備10から車両2に対して送電が行われないようにする(ステップS42)。具体的には、車両2の車両側設備制御回路27から送受信器26及び送受信器14を介して路面側マイクロ波送電アンテナ設備10のマイクロ波送電アンテナ制御回路15にその旨の通知がなされ、マイクロ波送電アンテナ制御回路15は、マイクロ波送電アンテナ群13を全停止するように、マイクロ波発生ユニット12を制御する。
In step S4, if the charged amount SOC is equal to or greater than the appropriate charged amount SOC_P, it is determined that the amount of electrical energy stored in the vehicle 2 is appropriate.
Then, it is next detected whether or not the motor generator 23 is being regenerated (step S41), and if it is being regenerated, there is no electric energy consumed by driving the vehicle. No power is transmitted from the vehicle 10 to the vehicle 2 (step S42). Specifically, the vehicle side equipment control circuit 27 of the vehicle 2 is notified to the microwave power transmission antenna control circuit 15 of the road surface side microwave power transmission antenna equipment 10 via the transceiver 26 and the transceiver 14, and the micro The microwave transmission antenna control circuit 15 controls the microwave generation unit 12 so that the microwave transmission antenna group 13 is completely stopped.

また、ステップS41において、回生中でなければ、まず、蓄電機構出力可能電力Ws_maxを算出する(ステップS411)。なお、蓄電機構出力可能電力Ws_maxは、主に蓄電機構22のその時点における蓄電量SOCに左右されるが、例えばニッケル水素電池やリチウムイオンバッテリを前記蓄電機構として用いていた場合は、これまでの充放電による積算充放電量や劣化度合等も勘案の上で決定される。したがって、蓄電量SOCがそれなりの値を有していても、蓄電機構出力可能電力Ws_max=0となる場合もあり得る。   In step S41, if regeneration is not in progress, first, power storage mechanism output possible power Ws_max is calculated (step S411). The power storage mechanism output possible power Ws_max mainly depends on the power storage amount SOC of the power storage mechanism 22 at that time. For example, when a nickel metal hydride battery or a lithium ion battery is used as the power storage mechanism, The integrated charge / discharge amount and the degree of deterioration due to charge / discharge are also determined in consideration. Therefore, even if the storage amount SOC has a reasonable value, the power storage mechanism output possible power Ws_max = 0 may be obtained.

次に、ステップS411で算出した蓄電機構出力可能電力Ws_maxと、ステップS3において算出した車両必要電力Wnとを比較する(ステップS412)。
その結果、蓄電機構出力可能電力Ws_maxが車両必要電力Wnを上回る場合は、車両における蓄電機構に電気エネルギーが十分蓄えられており、これを用いて車両を走行させてよいと判断し、路面側マイクロ波送電アンテナ設備10から車両2に対して送電が行われないようにする(ステップS42)。具体的には、車両2の車両側設備制御回路27から送受信器26及び送受信器14を介して路面側マイクロ波送電アンテナ設備10のマイクロ波送電アンテナ制御回路15にその旨の通知がなされ、マイクロ波送電アンテナ制御回路15は、マイクロ波送電アンテナ群13を全停止するように、マイクロ波発生ユニット12を制御する。その結果、車両2は、蓄電機構22に蓄積された電気エネルギーにて走行する(S413)。
Next, the power storage mechanism output possible power Ws_max calculated in step S411 is compared with the required vehicle power Wn calculated in step S3 (step S412).
As a result, when the power storage mechanism output possible power Ws_max exceeds the vehicle required power Wn, it is determined that the electrical energy is sufficiently stored in the power storage mechanism in the vehicle, and that the vehicle can be run using this. Power is not transmitted from the wave power transmission antenna facility 10 to the vehicle 2 (step S42). Specifically, the vehicle side equipment control circuit 27 of the vehicle 2 is notified to the microwave power transmission antenna control circuit 15 of the road surface side microwave power transmission antenna equipment 10 via the transceiver 26 and the transceiver 14, and the micro The microwave transmission antenna control circuit 15 controls the microwave generation unit 12 so that the microwave transmission antenna group 13 is completely stopped. As a result, the vehicle 2 travels with the electric energy accumulated in the power storage mechanism 22 (S413).

また、ステップS412において、蓄電機構出力可能電力Ws_maxが車両必要電力Wn以下の場合(車両における電気エネルギーに余裕はあるが、走行を賄いきれる程ではない場合)は、路面側マイクロ波送電アンテナ設備10から車両2に対して送電が行われるようにする(ステップS4121,S4122及びS41211)。
その際には、まず、車両走行に必要な電力である車両必要電力Wnと蓄電機構出力可能電力Ws_maxの差(Wn - Ws_max)と、レクテナ21の最大受電可能電力Wr_maxとを比較し(ステップS4121)、レクテナ21の最大受電可能電力Wr_maxの方が大きければ、路面側マイクロ波送電アンテナ設備10から車両2に対して、車両必要電力Wnと蓄電機構出力可能電力Ws_maxの差(Wn - Ws_max)に相当する電力量だけ送電を行う(ステップS4122)。
Further, in step S412, when the power storage mechanism output possible power Ws_max is equal to or less than the vehicle required power Wn (when the electric energy in the vehicle has a margin but is not sufficient to cover the traveling), the road surface side microwave power transmission antenna facility 10 Power is transmitted from the vehicle 2 to the vehicle 2 (steps S4121, S4122 and S42111).
In that case, first, the difference (Wn−Ws_max) between the required vehicle power Wn, which is the power required for vehicle travel, and the power storage mechanism output possible power Ws_max is compared with the maximum receivable power Wr_max of the rectenna 21 (step S4121). ) If the maximum receivable power Wr_max of the rectenna 21 is larger, the difference (Wn−Ws_max) between the vehicle required power Wn and the power storage mechanism output possible power Ws_max from the road surface side microwave power transmission antenna facility 10 to the vehicle 2 Power is transmitted by a corresponding amount of power (step S4122).

また、ステップS4121において、レクテナ21の最大受電可能電力Wr_maxが車両必要電力Wnと蓄電機構出力可能電力Ws_maxの差(Wn - Ws_max)以下の場合には、路面側マイクロ波送電アンテナ設備10から車両2に対して、レクテナ21の最大受電可能電力Wr_maxに相当する電力量で送電を行う(ステップS41211)。
ステップS4122及びS41211のいずれの場合も、車両2の車両側設備制御回路27から送受信器26及び送受信器14を介して路面側マイクロ波送電アンテナ設備10のマイクロ波送電アンテナ制御回路15に、その送電電力量に関する通知がなされる。その結果、マイクロ波送電アンテナ制御回路15がマイクロ波発生ユニット12を制御し、マイクロ波送電アンテナ群13の複数のマイクロ波送電アンテナ131の中の通知された送電量を送電するために必要なマイクロ波送電アンテナ131に対して選択的に、マイクロ波発生ユニット12からマイクロ波生成信号が印加される。その結果、その所望の送電量で、路面側マイクロ波送電アンテナ設備10から車両2に送電がなされる。
In Step S4112, when the maximum receivable power Wr_max of the rectenna 21 is equal to or less than the difference between the vehicle required power Wn and the power storage mechanism output possible power Ws_max (Wn−Ws_max), the road surface side microwave power transmission antenna facility 10 to the vehicle 2. On the other hand, power transmission is performed with the amount of power corresponding to the maximum receivable power Wr_max of the rectenna 21 (step S42111).
In both cases of steps S4122 and S4211, the transmission from the vehicle-side facility control circuit 27 of the vehicle 2 to the microwave transmission antenna control circuit 15 of the road-side microwave transmission antenna facility 10 via the transceiver 26 and the transceiver 14 is performed. A notification regarding the amount of electric power is given. As a result, the microwave power transmission antenna control circuit 15 controls the microwave generation unit 12 to transmit the notified power transmission amount among the plurality of microwave power transmission antennas 131 of the microwave power transmission antenna group 13. A microwave generation signal is selectively applied from the microwave generation unit 12 to the wave transmission antenna 131. As a result, power is transmitted from the road surface side microwave power transmission antenna facility 10 to the vehicle 2 with the desired power transmission amount.

次に、このような構成及び動作の電動車両用マイクロ波送電システム1における、路面側マイクロ波送電アンテナ設備10から車両2への実際の送電電力の調整方法であって、路面側マイクロ波送電アンテナ設備10のマイクロ波発生ユニット12によるマイクロ波送電アンテナ群13の制御方法について、図3を参照して説明する。   Next, in the microwave transmission system 1 for an electric vehicle having such a configuration and operation, a method for adjusting the actual transmission power from the road-side microwave transmission antenna facility 10 to the vehicle 2, which is a road-side microwave transmission antenna A method for controlling the microwave transmission antenna group 13 by the microwave generation unit 12 of the facility 10 will be described with reference to FIG.

路面側マイクロ波送電アンテナ設備10から車両2(車両側設備20)に送電する電力量の制御は、マイクロ波を送出するマイクロ波送電アンテナ131の数により制御する。すなわち、各マイクロ波送電アンテナ131は、要望される送電量に基づいてマイクロ波を出射させるマイクロ波送電アンテナ131の個数を決定し、その個数のマイクロ波送電アンテナ131をマイクロ波出射対象のアンテナとして選択し、選択されたマイクロ波送電アンテナ131に対して所定の振幅及び波長のマイクロ波生成信号を印加する。
したがって、個々のマイクロ波送電アンテナ131においては、単にマイクロ波発生ユニット12から信号が印加されてマイクロ波を出射するかあるいは信号の印加がなされずに何も出射しないか、すなわち、オン(ON)かオフ(OFF)かに制御されることになる。このような制御方法とすることで、多数のマイクロ波送電アンテナ131の各々を比較的シンプルなシステム系により制御することができる。
The amount of electric power transmitted from the road surface side microwave power transmission antenna facility 10 to the vehicle 2 (vehicle side facility 20) is controlled by the number of microwave power transmission antennas 131 that transmit microwaves. That is, each microwave power transmission antenna 131 determines the number of microwave power transmission antennas 131 that emit microwaves based on a desired amount of power transmission, and sets the number of microwave power transmission antennas 131 as antennas for microwave emission. Then, a microwave generation signal having a predetermined amplitude and wavelength is applied to the selected microwave transmission antenna 131.
Therefore, in each microwave power transmission antenna 131, a signal is simply applied from the microwave generation unit 12 to emit a microwave, or no signal is applied and nothing is emitted, that is, ON (ON). Or off (OFF). By adopting such a control method, each of a large number of microwave power transmission antennas 131 can be controlled by a relatively simple system system.

また、このような制御方法に基づいて、要望される送電量に応じた所定の個数のマイクロ波送電アンテナ131をオンに場合、マイクロ波発生ユニット12は、車両2の周辺部(端部)に配置されるマイクロ波送電アンテナ131から順に、マイクロ波を出射しないアンテナ(オフに制御するアンテナ)としていく。換言すれば、マイクロ波発生ユニット12は、車両2の内部に配置されるマイクロ波送電アンテナ131から順に、実際にマイクロ波を出射する有効なアンテナ(オンに制御するアンテナ)として選択していく。   In addition, when a predetermined number of microwave power transmission antennas 131 corresponding to a desired power transmission amount are turned on based on such a control method, the microwave generation unit 12 is placed at the periphery (end) of the vehicle 2. The antennas that do not emit microwaves (antennas that are controlled to be turned off) are sequentially arranged from the arranged microwave power transmission antenna 131. In other words, the microwave generation unit 12 is selected as an effective antenna (antenna to be turned on) that actually emits microwaves in order from the microwave power transmission antenna 131 arranged inside the vehicle 2.

このマイクロ波を出射するアンテナの選択方法について、具体的に図3を参照して説明する。
例えば、図示のごとくマイクロ波送電アンテナ群13が敷設された路面において、この路面を走行中の車両2が図示のような位置に配置されていたとする。このような場合において、路面側マイクロ波送電アンテナ設備10(図1参照)のマイクロ波発生ユニット12が車両2にマイクロ波を送信するマイクロ波送電アンテナ131を選択する場合、まず、マイクロ波発生ユニット12は、車両2の下部のレクテナ21(図1参照)に対向する領域に配置される複数のマイクロ波送電アンテナ131(図3において、車両2の範囲に含まれるマイクロ波送電アンテナ131)を、車両2の周辺からの距離に応じてグループ分けする。
A method for selecting an antenna for emitting microwaves will be specifically described with reference to FIG.
For example, it is assumed that the vehicle 2 traveling on the road surface on which the microwave power transmission antenna group 13 is laid as shown in FIG. In such a case, when the microwave generation unit 12 of the road surface side microwave transmission antenna facility 10 (see FIG. 1) selects the microwave transmission antenna 131 that transmits microwaves to the vehicle 2, first the microwave generation unit 12 shows a plurality of microwave power transmission antennas 131 (in FIG. 3, microwave power transmission antennas 131 included in the range of the vehicle 2) arranged in a region facing the rectenna 21 (see FIG. 1) at the bottom of the vehicle 2. Grouping is performed according to the distance from the periphery of the vehicle 2.

図3に示す例においては、例えば同じパターンにより塗りつぶされているアンテナが、同じグループのアンテナである。したがって、車両2の範囲に含まれるマイクロ波送電アンテナ131は、マイクロ波送電アンテナ135と同じパターンで塗りつぶされているグループのアンテナ、マイクロ波送電アンテナ134と同じパターンで塗りつぶされているグループのアンテナ、及び、マイクロ波送電アンテナ133と同じパターンで塗りつぶされているグループのアンテナの3つのグループと、中心のマイクロ波送電アンテナ132とに分けられる。   In the example illustrated in FIG. 3, for example, antennas that are painted with the same pattern are antennas of the same group. Therefore, the microwave power transmission antenna 131 included in the range of the vehicle 2 is a group antenna painted in the same pattern as the microwave power transmission antenna 135, a group antenna painted in the same pattern as the microwave power transmission antenna 134, And it is divided into three groups of antennas of the group painted with the same pattern as the microwave power transmission antenna 133, and the center microwave power transmission antenna 132.

そして、マイクロ波発生ユニット12は、車両2の中心に近いグループほど優先順位が高くなり、車両2の周辺に近いグループほど優先順位が低くなるような、選択のための優先順位を各グループに付しておく。
そして、要望される送電電力に応じて、車両2の範囲に含まれるマイクロ波送電アンテナ131より一部のマイクロ波送電アンテナ131を有効なマイクロ波送電アンテナ131として選択する場合、マイクロ波発生ユニット12は、車両2の中心に近い優先度の高いグループのマイクロ波送電アンテナ131から順に選択していく。同じグループ内では、任意の方法で所望の個数のマイクロ波送電アンテナ131を有効なマイクロ波送電アンテナ131として選択する。
The microwave generation unit 12 assigns each group a priority order for selection such that the priority level is higher in the group closer to the center of the vehicle 2 and the priority level is lower in the group near the periphery of the vehicle 2. Keep it.
When a part of the microwave power transmission antennas 131 is selected as the effective microwave power transmission antenna 131 from the microwave power transmission antennas 131 included in the range of the vehicle 2 according to the desired transmission power, the microwave generation unit 12 Are selected in order from the microwave power transmission antenna 131 of the group with high priority close to the center of the vehicle 2. Within the same group, a desired number of microwave transmission antennas 131 are selected as effective microwave transmission antennas 131 by an arbitrary method.

具体的には、例えば路面側マイクロ波送電アンテナ設備10が最大の電力で車両2に電力を供給する場合には、車両2の範囲に含まれる全てのマイクロ波送電アンテナ131が選択される。これを基準として、例えば要望される供給電力が減力された場合には、その減力度合に応じて、図3に示すアンテナ135のグループ→アンテナ134のグループ→アンテナ133のグループの順序、すなわち、車両2の周辺部(端部(edge))側から中心部側に向かって各グループのマイクロ波送電アンテナ131を順に停止させていく。そして、全前停止する場合に、車両2の中心に位置するマイクロ波送電アンテナ132も停止される。   Specifically, for example, when the road surface side microwave power transmission antenna facility 10 supplies power to the vehicle 2 with the maximum power, all the microwave power transmission antennas 131 included in the range of the vehicle 2 are selected. With reference to this, for example, when the required supply power is reduced, the order of the group of antenna 135 → the group of antenna 134 → the group of antenna 133 shown in FIG. Then, the microwave power transmitting antennas 131 of each group are sequentially stopped from the peripheral part (edge) side of the vehicle 2 toward the central part side. And when stopping all before, the microwave power transmission antenna 132 located in the center of the vehicle 2 is also stopped.

このような方法により、マイクロ波を実際に出射するマイクロ波送電アンテナ131を選択することにより、すなわち、車両2の端部(edge)側に対応する送電アンテナから優先的に停止させていくことにより、車両端部(edge)による回折波が原因となる洩れ波が減少する。また、車両の利用者はもちろん、歩行者等の車両外の人々の安全性も向上される。   By such a method, by selecting the microwave power transmission antenna 131 that actually emits microwaves, that is, by preferentially stopping from the power transmission antenna corresponding to the edge side of the vehicle 2. The leakage wave caused by the diffracted wave at the vehicle edge is reduced. Moreover, the safety of people outside the vehicle such as pedestrians as well as users of the vehicle is improved.

以上説明したように、本実施形態の電動車両用マイクロ波送電システム1においては、車両2の車速、モータジェネレータ23におけるトルク指令値、蓄電機構22の蓄電量SOC(State Of Charge)、レクテナ21の面積及び最大受電可能電力Wr_max、運転者の運転スタイル(加減速の緩急度合等)、道路の上り/下りの勾配情報及び標高の情報等、車両2及び車両2が走行する路面に関する種々の情報を検出し、これにより例えば適正蓄電量SOC_P、車両必要電力Wn及び蓄電機構出力可能電力Ws_max等を算出した上で、車両2に必要な電力のみを路面側マイクロ波送電アンテナ設備10から車両2に供給するようにしている。
したがって、車両2の蓄電機構22には、蓄電機構22の蓄電容量の範囲内で常に必要十分な電力が蓄積されることになる。その結果、車両2において電力が余剰した状態となることを防ぐことができ、電力を有効に利用することができる。
As described above, in the microwave power transmission system 1 for an electric vehicle according to the present embodiment, the vehicle speed of the vehicle 2, the torque command value in the motor generator 23, the storage amount SOC (State Of Charge) of the power storage mechanism 22, the rectenna 21 Various information regarding the road surface on which the vehicle 2 and the vehicle 2 travel, such as the area and maximum power that can be received Wr_max, the driving style of the driver (acceleration / deceleration degree, etc.), road up / down slope information and altitude information, etc. Detecting and calculating, for example, an appropriate storage amount SOC_P, vehicle required power Wn, power storage mechanism output possible power Ws_max, etc., and then supplying only the power required for the vehicle 2 from the road-side microwave power transmission antenna facility 10 to the vehicle 2 Like to do.
Accordingly, the power storage mechanism 22 of the vehicle 2 always stores necessary and sufficient power within the range of the power storage capacity of the power storage mechanism 22. As a result, it is possible to prevent the electric power from being surplus in the vehicle 2, and the electric power can be used effectively.

また、車両2の蓄電機構22において電力が余剰な状態となることが防止されるため、余剰な電力を車両2から路面側マイクロ波送電アンテナ設備10側に伝送する(戻す)必要が無くなる。その結果、例えば従来の同様のシステムに具備されていた車両2側の電力送信設備、及び、路面側マイクロ波送電アンテナ設備10側のレクテナ21等の受電設備が不要となり、電動車両用マイクロ波送電システム1全体の構成及びその制御システムの構成を簡単にすることができる。
また、本実施形態の電動車両用マイクロ波送電システム1においては、多数のマイクロ波送電アンテナ131の制御を、オン/オフ制御のみの比較的シンプルなシステム系により制御している。したがって、送信電力を調整する制御部の構成を小規模で簡単にすることができる。
In addition, since the power storage mechanism 22 of the vehicle 2 is prevented from being in a surplus state, it is not necessary to transmit (return) the surplus power from the vehicle 2 to the road surface side microwave power transmission antenna facility 10 side. As a result, for example, the power transmission equipment on the vehicle 2 side and the power receiving equipment such as the rectenna 21 on the road surface side microwave power transmission antenna equipment 10 which are provided in the same conventional system are not required, and microwave power transmission for the electric vehicle is performed. The configuration of the entire system 1 and the configuration of its control system can be simplified.
Further, in the microwave power transmission system 1 for an electric vehicle according to the present embodiment, the control of many microwave power transmission antennas 131 is controlled by a relatively simple system system including only on / off control. Therefore, the configuration of the control unit for adjusting the transmission power can be simplified on a small scale.

また、このような電動車両用マイクロ波送電システム1においては、マイクロ波の形態で伝送される電力はなるべく少なくなるような構成とされている。したがって、伝送ロスによる電力利用効率の低下を防ぐことができる上に、車両内外の乗員や通行者等の人々に対するマイクロ波による影響を低減することができ、乗員等の人々の安全性を確保することができる。
また、送信するマイクロ波を調整する際には、車両2の端部(edge)側に対応する送電アンテナからの送信を優先的に停止させているので、この点でもマイクロ波による車両の利用者や歩行者への影響を低減し、周囲の人々の安全性を向上することができる。
Moreover, in the microwave power transmission system 1 for such an electric vehicle, the power transmitted in the form of microwaves is configured to be as small as possible. Therefore, it is possible to prevent a decrease in power usage efficiency due to transmission loss, and to reduce the influence of microwaves on passengers and passers-by inside and outside the vehicle, thereby ensuring the safety of people such as passengers. be able to.
In addition, when adjusting the microwave to be transmitted, transmission from the power transmission antenna corresponding to the edge side of the vehicle 2 is preferentially stopped, so in this respect as well, the vehicle user using the microwave The impact on people and pedestrians can be reduced, and the safety of people around them can be improved.

なお、本実施形態は、本発明の理解を容易にするために記載されたものであって本発明を何ら限定するものではない。本実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含み、また任意好適な種々の改変が可能である。   In addition, this embodiment is described in order to make an understanding of this invention easy, and does not limit this invention at all. Each element disclosed in the present embodiment includes all design changes and equivalents belonging to the technical scope of the present invention, and various suitable modifications can be made.

図1は、本発明の一実施形態の電動車両用マイクロ波送電システムの構成及び利用形態を模式的に示す図である。FIG. 1 is a diagram schematically illustrating the configuration and usage of a microwave power transmission system for an electric vehicle according to an embodiment of the present invention. 図2は、図1に示した電動車両用マイクロ波送電システムにおいて路面側マイクロ波送電アンテナ設備から車両への電力供給を制御する処理を示すフローチャートである。FIG. 2 is a flowchart showing a process for controlling power supply from the road-side microwave power transmission antenna facility to the vehicle in the microwave power transmission system for the electric vehicle shown in FIG. 図3は、図1に示した電動車両用マイクロ波送電システムにおいて路面側マイクロ波送電アンテナ設備から車両へ電力供給wマイクロ波送電アンテナの選択方法を説明するための図である。FIG. 3 is a diagram for explaining a method for selecting a power transmission w microwave transmission antenna from the road-side microwave transmission antenna equipment to the vehicle in the microwave transmission system for an electric vehicle shown in FIG. 1.

符号の説明Explanation of symbols

1…電動車両用マイクロ波送電システム
10…路面側マイクロ波送電アンテナ設備
11…インフラ電源ライン
12…マイクロ波発生ユニット
13…マイクロ波送電アンテナ群
132〜135…マイクロ波送電アンテナ
14…路面側送受信器
15…マイクロ波送電アンテナ制御回路
20…車両側設備(車両用マイクロ波受電装置)
21…レクテナ
22…蓄電機構
23…モータジェネレータ
24…DC/DCコンバータ
25…車両電装系用蓄電器
26…車両側送受信器
27…車両側設備制御回路
2…車両
DESCRIPTION OF SYMBOLS 1 ... Microwave power transmission system for electric vehicles 10 ... Road surface side microwave power transmission antenna equipment 11 ... Infrastructure power supply line 12 ... Microwave generation unit 13 ... Microwave power transmission antenna group
DESCRIPTION OF SYMBOLS 132-135 ... Microwave power transmission antenna 14 ... Road surface side transmitter / receiver 15 ... Microwave power transmission antenna control circuit 20 ... Vehicle side equipment (microwave power receiving apparatus for vehicles)
DESCRIPTION OF SYMBOLS 21 ... Rectenna 22 ... Power storage mechanism 23 ... Motor generator 24 ... DC / DC converter 25 ... Electric storage system battery 26 ... Vehicle side transceiver 27 ... Vehicle side equipment control circuit 2 ... Vehicle

Claims (6)

車両にマイクロ波を介して電力を送電する送電装置と、前記車両に搭載される車両装置であって、前記マイクロ波を介して送電される電力を受電する受電手段と、前記受電した電力を蓄電し、当該車両を駆動する駆動手段に出力するとともに、当該駆動手段が回生駆動された場合に生じる電力を蓄電する蓄電手段とを有する車両装置とを有する車両用マイクロ波送電システムであって、
前記車両に係る所望の情報である車両情報、及び、前記車両が走行する道路に係る所望の情報である道路情報に基づいて、当該車両の走行により前記蓄電手段に蓄電される電力が過不足しないと推測される当該蓄電手段の蓄電量を、前記車両装置における適正蓄電量として設定する適正蓄電量設定手段と、
前記設定された前記車両の前記適正蓄電量に基づいて、前記送電装置から前記車両装置への送電量を制御する送電量制御手段と
を有することを特徴とする車両用マイクロ波送電システム。
A power transmission device for transmitting electric power to a vehicle via microwaves, a vehicle device mounted on the vehicle, receiving power for receiving electric power transmitted via the microwaves, and storing the received electric power And a vehicle power transmission system having a vehicle device having a power storage means for storing electric power generated when the drive means is regeneratively driven, while outputting to the drive means for driving the vehicle,
Based on the vehicle information that is the desired information related to the vehicle and the road information that is the desired information related to the road on which the vehicle travels, the power stored in the power storage means by the travel of the vehicle is not excessive or insufficient. Appropriate storage amount setting means for setting the estimated storage amount of the storage means as the appropriate storage amount in the vehicle device;
A vehicle power transmission system, comprising: a power transmission amount control unit configured to control a power transmission amount from the power transmission device to the vehicle device based on the set appropriate power storage amount of the vehicle.
前記適正蓄電量設定手段は、前記車両の前記蓄電手段の蓄電能力に係る情報、前記車両の前記蓄電手段の蓄電量に係る情報、前記車両の走行に係る情報及び前記車両が走行する道路に係る情報に基づいて、前記適正蓄電量を設定する
ことを特徴とする請求項1に記載の車両用マイクロ波送電システム。
The appropriate storage amount setting means relates to information related to the storage capacity of the storage means of the vehicle, information related to the storage amount of the storage means of the vehicle, information related to travel of the vehicle, and roads on which the vehicle travels The vehicle microwave power transmission system according to claim 1, wherein the appropriate power storage amount is set based on information.
前記適正蓄電量設定手段は、当該車両の走行において前記駆動手段が回生駆動されて電力が生じた場合に、当該回生駆動により生じた電力が余剰電力とならずに前記蓄電手段に適切に蓄電されるように前記蓄電手段に蓄電可能な電力量を確保した蓄電量に前記適正蓄電量を設定する
ことを特徴とする請求項1又は2に記載の車両用マイクロ波送電システム。
When the driving means is regeneratively driven during driving of the vehicle and the power is generated, the appropriate power storage amount setting means appropriately stores the power generated by the regenerative driving in the power storage means without becoming surplus power. The vehicle power transmission system according to claim 1 or 2, wherein the appropriate power storage amount is set to a power storage amount that secures an amount of power that can be stored in the power storage means.
前記送電装置は、前記車両装置の前記受電手段に対して同時に所定のマイクロ波を出力する複数の送電アンテナを有し、
前記送電量制御手段は、前記複数の送電アンテナの各々をオン・オフ制御することにより前記送電量を制御する
ことを特徴とする請求項1〜3のいずれかに記載の車両用マイクロ波送電システム。
The power transmission device has a plurality of power transmission antennas that simultaneously output predetermined microwaves to the power receiving means of the vehicle device,
The vehicle power transmission system according to any one of claims 1 to 3, wherein the power transmission amount control unit controls the power transmission amount by performing on / off control of each of the plurality of power transmission antennas. .
前記送電装置は、前記車両が走行する路面に敷設された一連の複数の送電アンテナを有し、
前記車両装置の前記受電手段は、当該車両が走行する路面に対向する当該車両の底面において、前記マイクロ波を受信する受信手段を有し、
前記送電量制御手段は、前記オン・オフ制御により、前記車両の底面に対向する範囲の前記路面に敷設された前記複数の送電アンテナの一部をオフに制御する場合には、前記車両の底面に対向する範囲の周辺部に近い位置に配置される前記送電アンテナから順次オフに制御し、前記送電量を制御する
ことを特徴とする請求項4に記載の車両用マイクロ波送電システム。
The power transmission device has a series of a plurality of power transmission antennas laid on a road surface on which the vehicle travels,
The power receiving means of the vehicle device has receiving means for receiving the microwave on the bottom surface of the vehicle facing a road surface on which the vehicle travels,
The power transmission amount control means is configured to turn off a part of the plurality of power transmission antennas laid on the road surface in a range facing the bottom surface of the vehicle by the on / off control. The vehicle power transmission system according to claim 4, wherein the power transmission amount is controlled by sequentially controlling the power transmission antennas to be off from the power transmission antennas disposed at positions close to a peripheral portion of a range facing the vehicle.
マイクロ波を介して送電される電力を受電する受電手段と、前記受電した電力を蓄電し、車両を駆動する駆動手段に出力するとともに、前記駆動手段が回生駆動された場合に生じる電力を蓄電する蓄電手段とを有する車両用マイクロ波受電装置であって、
当該車両が走行する道路に係る所望の情報である道路情報を獲得する道路情報獲得手段と、
前記車両に係る所望の情報である車両情報、及び、前記獲得した道路情報に基づいて、当該車両の走行により前記蓄電手段に蓄電される電力が過不足しないと推測される当該蓄電手段の蓄電量を、前記適正蓄電量として設定する適正蓄電量設定手段と、
前記設定された前記適正蓄電量に基づいて、前記マイクロ波を介して送電される電力の送電量を検出する送電量検出手段と
を有することを特徴とする車両用マイクロ波受電装置。
Power receiving means for receiving electric power transmitted via the microwave, and storing the received electric power, outputting to the driving means for driving the vehicle, and storing electric power generated when the driving means is regeneratively driven A vehicle microwave power receiving device having power storage means,
Road information acquisition means for acquiring road information which is desired information relating to a road on which the vehicle travels;
Based on vehicle information, which is desired information related to the vehicle, and the acquired road information, the amount of power stored in the power storage unit that is presumed that the power stored in the power storage unit due to traveling of the vehicle is not excessive or insufficient. Appropriate storage amount setting means for setting as the appropriate storage amount,
A vehicle microwave power receiving apparatus comprising: a power transmission amount detection unit configured to detect a power transmission amount of electric power transmitted via the microwave based on the set appropriate power storage amount.
JP2004367822A 2004-12-20 2004-12-20 Microwave power transmission system for vehicle and microwave power transmission device for vehicle Expired - Fee Related JP4525331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004367822A JP4525331B2 (en) 2004-12-20 2004-12-20 Microwave power transmission system for vehicle and microwave power transmission device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004367822A JP4525331B2 (en) 2004-12-20 2004-12-20 Microwave power transmission system for vehicle and microwave power transmission device for vehicle

Publications (2)

Publication Number Publication Date
JP2006174676A true JP2006174676A (en) 2006-06-29
JP4525331B2 JP4525331B2 (en) 2010-08-18

Family

ID=36674804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004367822A Expired - Fee Related JP4525331B2 (en) 2004-12-20 2004-12-20 Microwave power transmission system for vehicle and microwave power transmission device for vehicle

Country Status (1)

Country Link
JP (1) JP4525331B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340541A (en) * 2005-06-03 2006-12-14 Nissan Motor Co Ltd Method for power supply to electric vehicle using microwave
JP2008092704A (en) * 2006-10-03 2008-04-17 Toyota Motor Corp Power feeding system between road vehicle
WO2009054221A1 (en) * 2007-10-25 2009-04-30 Toyota Jidosha Kabushiki Kaisha Electric vehicle and power feeding apparatus for the vehicle
WO2009150969A1 (en) 2008-06-09 2009-12-17 トヨタ自動車株式会社 Vehicle, and vehicle controlling method
WO2010041312A1 (en) * 2008-10-08 2010-04-15 トヨタ自動車株式会社 Vehicle supplied with energy from outside by non-contacting method and vehicle control method
JP2010193677A (en) * 2009-02-20 2010-09-02 Toppan Printing Co Ltd Power supply system
WO2011043628A2 (en) * 2009-10-08 2011-04-14 Korea Advanced Institute Of Science And Technology Power supply apparatus for on-line electric vehicle
WO2011046223A1 (en) 2009-10-14 2011-04-21 Udトラックス株式会社 Electric storage device
KR101039766B1 (en) * 2009-06-04 2011-06-09 한국철도기술연구원 Induced Sudden Charging System for Electric Rail Car
JP2011111268A (en) * 2009-11-26 2011-06-09 Murata Machinery Ltd Traveling vehicle system and noncontact power supply method to traveling vehicle
JP2011121456A (en) * 2009-12-10 2011-06-23 Toyota Motor Corp Feeder system, vehicle, and vehicle power feeding system
KR101056160B1 (en) 2009-12-23 2011-08-11 한국과학기술원 Charging Power Distribution Control Method of Electric Vehicle with Non-contact Magnetic Induction Charging
JP2012517793A (en) * 2009-02-10 2012-08-02 クアルコム,インコーポレイテッド Power transmission system, apparatus and method in public facilities
CN102712267A (en) * 2010-01-12 2012-10-03 丰田自动车株式会社 Power transmission system and power supply device for vehicles
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
US8892035B2 (en) 2008-05-13 2014-11-18 Qualcomm Incorporated Repeaters for enhancement of wireless power transfer
US8970060B2 (en) 2008-09-25 2015-03-03 Toyota Jidosha Kabushiki Kaisha Power feeding system and electrical powered vehicle
JP2015181336A (en) * 2006-08-31 2015-10-15 株式会社半導体エネルギー研究所 power supply system
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US9583953B2 (en) 2009-02-10 2017-02-28 Qualcomm Incorporated Wireless power transfer for portable enclosures
JP2017135837A (en) * 2016-01-27 2017-08-03 三菱自動車工業株式会社 Electric power receiver for vehicle
USRE48659E1 (en) 2010-12-24 2021-07-27 Toyota Jidosha Kabushiki Kaisha Non-contact charging system, non-contact charging method, non-contact charging type vehicle, and non-contact charging management apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08322107A (en) * 1995-05-24 1996-12-03 Nippondenso Co Ltd Controller of hybrid vehicle
JP2001268708A (en) * 2000-03-21 2001-09-28 Nissan Motor Co Ltd Hybrid vehicle control device
JP2002152995A (en) * 2000-11-10 2002-05-24 Toyota Motor Corp Electrical power receiving and supplying system
JP2002209343A (en) * 2001-01-11 2002-07-26 Yokohama Rubber Co Ltd:The Transponder, interogator and system for the same
JP2002249285A (en) * 2001-02-21 2002-09-03 Hitachi Ltd Elevator
JP2004229421A (en) * 2003-01-23 2004-08-12 Toyota Motor Corp Vehicle
JP2005168085A (en) * 2003-11-28 2005-06-23 Toyota Motor Corp Power supply system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08322107A (en) * 1995-05-24 1996-12-03 Nippondenso Co Ltd Controller of hybrid vehicle
JP2001268708A (en) * 2000-03-21 2001-09-28 Nissan Motor Co Ltd Hybrid vehicle control device
JP2002152995A (en) * 2000-11-10 2002-05-24 Toyota Motor Corp Electrical power receiving and supplying system
JP2002209343A (en) * 2001-01-11 2002-07-26 Yokohama Rubber Co Ltd:The Transponder, interogator and system for the same
JP2002249285A (en) * 2001-02-21 2002-09-03 Hitachi Ltd Elevator
JP2004229421A (en) * 2003-01-23 2004-08-12 Toyota Motor Corp Vehicle
JP2005168085A (en) * 2003-11-28 2005-06-23 Toyota Motor Corp Power supply system

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340541A (en) * 2005-06-03 2006-12-14 Nissan Motor Co Ltd Method for power supply to electric vehicle using microwave
US10256669B2 (en) 2006-08-31 2019-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and power receiving device
US9531214B2 (en) 2006-08-31 2016-12-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and power receiving device
JP2015181336A (en) * 2006-08-31 2015-10-15 株式会社半導体エネルギー研究所 power supply system
JP2008092704A (en) * 2006-10-03 2008-04-17 Toyota Motor Corp Power feeding system between road vehicle
WO2009054221A1 (en) * 2007-10-25 2009-04-30 Toyota Jidosha Kabushiki Kaisha Electric vehicle and power feeding apparatus for the vehicle
US8008888B2 (en) 2007-10-25 2011-08-30 Toyota Jidosha Kabushiki Kaisha Electrical powered vehicle and power feeding device for vehicle
US9421868B2 (en) 2007-10-25 2016-08-23 Toyota Jidosha Kabushiki Kaisha Electrical powered vehicle and power feeding device for vehicle
US9180779B2 (en) 2007-10-25 2015-11-10 Toyota Jidosha Kabushiki Kaisha Electrical powered vehicle and power feeding device for vehicle
US9024575B2 (en) 2007-10-25 2015-05-05 Toyota Jidosha Kabushiki Kaisha Electrical powered vehicle and power feeding device for vehicle
RU2499694C2 (en) * 2007-10-25 2013-11-27 Тойота Дзидося Кабусики Кайся Electrically driven vehicle and electric power feeder for said vehicle
CN102848924A (en) * 2007-10-25 2013-01-02 丰田自动车株式会社 Electrical powered vehicle and power feeding device for vehicle
RU2428329C1 (en) * 2007-10-25 2011-09-10 Тойота Дзидося Кабусики Кайся Electrically driven vehicle and power feeder therefor
US9184632B2 (en) 2008-05-13 2015-11-10 Qualcomm Incorporated Wireless power transfer for furnishings and building elements
US9130407B2 (en) 2008-05-13 2015-09-08 Qualcomm Incorporated Signaling charging in wireless power environment
US9236771B2 (en) 2008-05-13 2016-01-12 Qualcomm Incorporated Method and apparatus for adaptive tuning of wireless power transfer
US9190875B2 (en) 2008-05-13 2015-11-17 Qualcomm Incorporated Method and apparatus with negative resistance in wireless power transfers
US9991747B2 (en) 2008-05-13 2018-06-05 Qualcomm Incorporated Signaling charging in wireless power environment
US9954399B2 (en) 2008-05-13 2018-04-24 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
US9178387B2 (en) 2008-05-13 2015-11-03 Qualcomm Incorporated Receive antenna for wireless power transfer
US8965461B2 (en) 2008-05-13 2015-02-24 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
US8892035B2 (en) 2008-05-13 2014-11-18 Qualcomm Incorporated Repeaters for enhancement of wireless power transfer
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
US8473132B2 (en) 2008-06-09 2013-06-25 Toyota Jidosha Kabushiki Kaisha Vehicle and method for controlling the same
CN102056762A (en) * 2008-06-09 2011-05-11 丰田自动车株式会社 Vehicle, and vehicle controlling method
WO2009150969A1 (en) 2008-06-09 2009-12-17 トヨタ自動車株式会社 Vehicle, and vehicle controlling method
US8970060B2 (en) 2008-09-25 2015-03-03 Toyota Jidosha Kabushiki Kaisha Power feeding system and electrical powered vehicle
WO2010041312A1 (en) * 2008-10-08 2010-04-15 トヨタ自動車株式会社 Vehicle supplied with energy from outside by non-contacting method and vehicle control method
JP5141770B2 (en) * 2008-10-08 2013-02-13 トヨタ自動車株式会社 Vehicle receiving energy supply from outside by non-contact method and vehicle control method
JP2012517793A (en) * 2009-02-10 2012-08-02 クアルコム,インコーポレイテッド Power transmission system, apparatus and method in public facilities
US9583953B2 (en) 2009-02-10 2017-02-28 Qualcomm Incorporated Wireless power transfer for portable enclosures
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
JP2010193677A (en) * 2009-02-20 2010-09-02 Toppan Printing Co Ltd Power supply system
KR101039766B1 (en) * 2009-06-04 2011-06-09 한국철도기술연구원 Induced Sudden Charging System for Electric Rail Car
WO2011043628A2 (en) * 2009-10-08 2011-04-14 Korea Advanced Institute Of Science And Technology Power supply apparatus for on-line electric vehicle
WO2011043628A3 (en) * 2009-10-08 2011-08-11 Korea Advanced Institute Of Science And Technology Power supply apparatus for on-line electric vehicle
US9496721B2 (en) 2009-10-14 2016-11-15 Ud Trucks Corporation Power storage apparatus
WO2011046223A1 (en) 2009-10-14 2011-04-21 Udトラックス株式会社 Electric storage device
US10128694B2 (en) 2009-10-14 2018-11-13 Volvo Truck Corporation Power storage apparatus
JP2011111268A (en) * 2009-11-26 2011-06-09 Murata Machinery Ltd Traveling vehicle system and noncontact power supply method to traveling vehicle
TWI412485B (en) * 2009-11-26 2013-10-21 村田機械股份有限公司 Traveling vehicle system and method of non-contact power feeding to traveling vehicle
JP2011121456A (en) * 2009-12-10 2011-06-23 Toyota Motor Corp Feeder system, vehicle, and vehicle power feeding system
KR101056160B1 (en) 2009-12-23 2011-08-11 한국과학기술원 Charging Power Distribution Control Method of Electric Vehicle with Non-contact Magnetic Induction Charging
CN102712267A (en) * 2010-01-12 2012-10-03 丰田自动车株式会社 Power transmission system and power supply device for vehicles
USRE48659E1 (en) 2010-12-24 2021-07-27 Toyota Jidosha Kabushiki Kaisha Non-contact charging system, non-contact charging method, non-contact charging type vehicle, and non-contact charging management apparatus
JP2017135837A (en) * 2016-01-27 2017-08-03 三菱自動車工業株式会社 Electric power receiver for vehicle

Also Published As

Publication number Publication date
JP4525331B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
JP4525331B2 (en) Microwave power transmission system for vehicle and microwave power transmission device for vehicle
KR102444661B1 (en) Hybrid vehicle and method of changing operation mode for the same
CN102881955B (en) The system and method that target state-of-charge is determined to be charged to the battery in vehicle
JP4736678B2 (en) Vehicle preferential system, electric vehicle and server
CN104066636B (en) Travel controlling system
JP6262002B2 (en) Electric vehicle control device
US20080288132A1 (en) Method of operating vehicle and associated system
CN102887144A (en) Adaptive energy management in a hybrid vehicle
CN104973045A (en) Energy reservation coordination for hybrid vehicle
CN102069804B (en) Predictive control method for running state of hybrid power automobile
US20220072962A1 (en) Power Management Method
KR101033360B1 (en) Control device of electric vehicle provided with fixed position automatic stop control means
JP2005210843A (en) Power supplying system, vehicle power supply and roadside power supply
EP2151362B1 (en) Method of operating a vehicle and associated system
JP4417949B2 (en) Railway vehicle drive system
JPH09327103A (en) Control apparatus for hybrid vehicle
JP2008011681A (en) Vehicle power supply system and on-vehicle machine
JP2009298278A (en) Vehicle for traveling in specific region
JP2002354612A (en) Operation system for hybrid automobile
JP2014039415A (en) Charge control device
JP4023445B2 (en) Control device for hybrid vehicle
JP2005218178A (en) Method and device for controlling energy of vehicle
TW201033040A (en) Method and system for charging traffic vehicle not using overhead wire
JP3768982B2 (en) Intermittent power supply type electric vehicle system and electric vehicle
JP2004136860A (en) Power receiving/feeding system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4525331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees