JP2006177923A - Optical freshness identifying method and device thereof for tissue from living tissue - Google Patents

Optical freshness identifying method and device thereof for tissue from living tissue Download PDF

Info

Publication number
JP2006177923A
JP2006177923A JP2005143463A JP2005143463A JP2006177923A JP 2006177923 A JP2006177923 A JP 2006177923A JP 2005143463 A JP2005143463 A JP 2005143463A JP 2005143463 A JP2005143463 A JP 2005143463A JP 2006177923 A JP2006177923 A JP 2006177923A
Authority
JP
Japan
Prior art keywords
meat
freshness
reflectance
optical
heme protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005143463A
Other languages
Japanese (ja)
Other versions
JP4686714B2 (en
Inventor
Katsutoshi Izumimoto
泉本勝利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama University NUC
Original Assignee
Okayama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama University NUC filed Critical Okayama University NUC
Priority to JP2005143463A priority Critical patent/JP4686714B2/en
Publication of JP2006177923A publication Critical patent/JP2006177923A/en
Application granted granted Critical
Publication of JP4686714B2 publication Critical patent/JP4686714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To identify freshness of tissues from living bodies, such as meat and the like, with sufficient accuracy at real time. <P>SOLUTION: A baseline of reflectance spectroscopy is used in enhancement of accuracy of measurement. For this purpose, by analyzing the reflected spectrum of muscular basis material of non-existence, a baseline of convex and of its lowering with shorter wavelength of the reflectance spectroscopy is applied to a measuring formula. Thereby, reflectance spectroscopy of the meat can be expressed in a form of function on the basis of a scientific principle of spectrometry and thus the mixed fraction of hemoprotein derivatives of meat and the freshness of meat can be measured quickly with high accuracy. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は食肉等の鮮度を分光反射法によりリアルタイムで精度良く測定する方法及びかかる方法を使用する測定装置に関する。 The present invention relates to a method for accurately measuring the freshness of meat or the like in real time by a spectral reflection method and a measuring apparatus using such a method.

物体の色は物理量の可視波長領域の反射率スペクトルによって決まる。食肉には色素であるミオグロビンとよばれるヘムタンパク質が含まれ、特有の色調を呈する。食肉は新鮮なときは鮮紅色であるが、鮮度が低下すると褐色様の好まれない色調になる。従って食肉の品質にとって色調に基づく鮮度管理は重要である。 The color of the object is determined by the reflectance spectrum of the physical quantity in the visible wavelength region. Meat contains a heme protein called myoglobin, a pigment, and has a unique color tone. Meat is crimson when fresh, but it becomes a brownish unfavorable color when freshness decreases. Therefore, freshness management based on color tone is important for meat quality.

食肉はヘムタンパク質の含量が高いほど光吸収が強くなり、それにつれて反射率が低くなり明度が低下して暗色化する。またヘムタンパク質は種々の分子と結合し、結合分子とその状態によってそれぞれ異なった色調を有する種々の誘導体が形成される。食肉のヘムタンパク質の誘導体には還元型、酸素型、酸化型があり、これらが混在する割合で色調が変化する。食肉は新鮮なときには酸素型主体による鮮紅色を呈し、鮮度が低下すると酸化型が増えて褐色または暗褐色を呈すようになり、無酸素状態では還元型により紫赤色を呈する。このように食肉はヘムタンパク質誘導体の混在割合に応じて様々な色調を呈することになる。 The higher the heme protein content, the stronger the light absorption, and the lower the reflectivity, the lower the brightness and the darker the meat. Heme protein binds to various molecules, and various derivatives having different colors are formed depending on the binding molecule and its state. Meat heme protein derivatives include reduced, oxygen, and oxidized forms, and the color tone changes at a mixture ratio. When the meat is fresh, it exhibits a bright red color mainly due to the oxygen type, and when the freshness decreases, the oxidized type increases to display brown or dark brown, and in the anoxic state, it exhibits a purple-red color due to the reduced type. In this way, meat exhibits various colors according to the mixing ratio of heme protein derivatives.

実際の流通においては経験則による食肉の鮮度測定方法が用いられている。この経験則による方法は牛肉色基準(B.C.S.)を用いて食肉の鮮度を視覚的に判定している測定者と同等の結果を測定できることを主たる目的としており、このタイプの食肉鮮度測定装置が特許文献1に開示されている。B.C.S.は本来の使用目的は枝肉の格付け評価に用いるものである。これは、と殺後1〜2日の鮮度の極めて高い枝肉の色の濃さを判定するもので鮮度の低下で褐色の発現する酸化型ヘムタンパク質誘導体は全く考慮されていない色見本であり、これによって鮮度を判定することはできない。 In actual distribution, meat freshness measurement method based on empirical rules is used. This rule-of-thumb method is primarily intended to be able to measure results equivalent to those who measure the freshness of meat visually using the Beef Color Standard (BCS), and this type of meat freshness measuring device is patented. It is disclosed in Document 1. B.C.S. is intended for use in carcass rating evaluation. This is a color sample in which the darkness of the carcass color, which is extremely high in the freshness of 1-2 days after slaughter, is determined, and the oxidized heme protein derivative that appears brown due to the decrease in freshness is not considered at all. As a result, the freshness cannot be determined.

従って分光学的手段を用いて色調から食肉の鮮度、品質等の指標となる情報を科学的に得る方法の提案が種々行われている。 Accordingly, various proposals have been made for scientifically obtaining information that serves as an index of meat freshness, quality and the like from color tone using spectroscopic means.

この提案の一つに食肉のヘムタンパク質を溶液で抽出して、この溶液の吸光度から測定する方法がある。この吸光度法はBeer-Lambertの法則として確立された原理の応用であり、溶液についての測定値は正しい。しかしこの方法には次のような問題点がある。1)ヘムタンパク質は抽出中に空気との接触が避けられず還元型ヘムタンパク質は酸素型になるので還元型ヘムタンパク質を測定することが出来ない。すなわち抽出法では3成分うち2成分しか測定できない。2)通常ヘムタンパク質は完全には抽出できないので、定量値に誤差が生じる。3)包装肉など開封するとヘムタンパク質誘導体が変化するものには適用できない。4)測定時間に長時間を要するので迅速測定や多量測定ができない。5)抽出溶液の透過光の色調は食肉の反射光の色調と違うので、これらの色調を同一に扱うことができない。 One proposal is to extract meat heme protein with a solution and measure the absorbance of the solution. This absorbance method is an application of the principle established as the Beer-Lambert law, and the measured values for the solution are correct. However, this method has the following problems. 1) Heme protein cannot avoid contact with air during extraction, and reduced heme protein cannot be measured because reduced heme protein becomes oxygenated. That is, only two of the three components can be measured by the extraction method. 2) Normally, heme protein cannot be extracted completely, and an error occurs in the quantitative value. 3) Not applicable to products that change the hemoprotein derivative when opened, such as in packaged meat. 4) Since measurement takes a long time, rapid measurement and large quantity measurement cannot be performed. 5) Since the color tone of the transmitted light of the extraction solution is different from the color tone of the reflected light of the meat, these color tones cannot be handled in the same way.

吸光度法はヘムタンパク質誘導体を測定するための測定原理は確立されているものの、食肉の場合は抽出過程など処理過程でその誘導体の割合が変化するので、ヘムタンパク質誘導体の還元型、酸素型、酸化型を正しく測定できない致命的欠陥がある。 Absorbance methods have established the measurement principle for measuring heme protein derivatives, but in the case of meat, the ratio of the derivatives changes during the processing process such as extraction, so the reduced, oxygen, and oxidized forms of heme protein derivatives There is a fatal defect that prevents the mold from being measured correctly.

この吸光度法に替って固型状態のままで筋肉中のヘムタンパク質を直接分析する方法が反射分光法として提案されている。この反射分光法は溶液抽出を必要とせず食肉のままで測定できるので非破壊的方法であり、リアルタイムで大量測定ができることから有用な方法である。 Instead of this absorbance method, a method for directly analyzing heme protein in muscles in a solid state has been proposed as reflection spectroscopy. This reflection spectroscopy is a non-destructive method because it can be measured as meat without the need for solution extraction, and is a useful method because it can perform large-scale measurement in real time.

特許文献2には反射分光法を用いる技術が開示されているがこの技術では食肉の反射スペクトルを測定する際にベースラインが考慮されていない。また測定のための選定波長は474,572,597,614nmのように還元型、酸素型、酸化型ヘムタンパク質相互の等吸収点を利用するのでこれら3種の誘導体以外を測定することができない。さらにこれらの選定波長によれば測定機の波長精度が1nm以下の大型測定機または還元型、酸素型、酸化型ヘムタンパク質の測定に限定されたものであり、汎用性が全くない。 Patent Document 2 discloses a technique using reflection spectroscopy, but this technique does not consider the baseline when measuring the reflection spectrum of meat. In addition, since the selected wavelengths for measurement use the isosbestic points between reduced, oxygen, and oxidized heme proteins such as 474, 572, 597, and 614 nm, it is impossible to measure other than these three derivatives. Further, according to these selected wavelengths, the wavelength accuracy of the measuring instrument is limited to a large measuring instrument having a wavelength accuracy of 1 nm or less or measurement of reduced, oxygen, and oxidized heme proteins, and there is no versatility.

特許文献3には酸化型ヘムタンパク質誘導体の割合を測定するために波長624,616,694,744nmにおける透過反射率の2次微分値から算出する方法が提案されている。これらの選定波長および透過反射率の2次微分値によって酸化型ヘムタンパク質誘導体の割合が算出できる科学的根拠が乏しく、得られた測定結果が正しいか検証することが困難である。また、食肉は還元型、酸素型、酸化型で大きく色調が異なるが酸化型ヘムタンパク質誘導体の割合しか測定できない。そこで、鮮度ならびにその色調の情報としては不十分である。624,616,694,744nm等の2次微分値を得るには1nm以下の波長精度が要求される測定法は大型機械となる。したがって、可搬性が望めないので流通現場での応用への発展が困難である。 Patent Document 3 proposes a method of calculating from the second derivative value of transmitted reflectance at wavelengths of 624, 616, 694, and 744 nm in order to measure the ratio of oxidized heme protein derivatives. The scientific basis for calculating the ratio of the oxidized heme protein derivative based on these selected wavelengths and second-order differential values of the transmitted reflectance is scarce, and it is difficult to verify whether the obtained measurement results are correct. In addition, meat has a greatly different color tone for reduced, oxygen and oxidized types, but only the proportion of oxidized heme protein derivatives can be measured. Therefore, the information on the freshness and the color tone is insufficient. In order to obtain a second derivative such as 624, 616, 694, and 744 nm, a measurement method that requires a wavelength accuracy of 1 nm or less is a large machine. Therefore, since portability cannot be expected, it is difficult to develop the application at distribution sites.

反射分光法においてベースラインとして筋肉素地反射率を使用する方法がKrzywickiにより提案されている(非特許文献1)。図1は食肉の反射率スペクトルであり、ヘムタンパク質含量が高いほど低い反射率スペクトルを示す。図1に示すように、全体的に長波長ほど高い反射率を示す。長波長側の反射率はヘムタンパク質の光吸収が少ないことを意味するので、筋肉素地反射率は図1のように700nm付近の反射率とみなした考えがある。Krzywickiは筋肉素地反射率のスペクトルが700nm付近の反射率と考えた(非特許文献1)。筋肉素地反射率はヘムタンパク質を含まない素地であるから、ヘムタンパク質含量の多少とは関係しない値である。しかし図のように700nm付近の反射率は食肉中のヘムタンパク質含量の多少によって、高いほど低い値となり、大きく異なるので筋肉素地反射率とみなすことができない。また図1から明らかなように筋肉素地反射率が全波長で一定の値を示すとしたのも科学的な根拠がない。 Krzywicki has proposed a method of using muscle base reflectance as a base line in reflection spectroscopy (Non-patent Document 1). FIG. 1 shows the reflectance spectrum of meat. The higher the heme protein content, the lower the reflectance spectrum. As shown in FIG. 1, the higher the overall wavelength, the higher the reflectance. Since the reflectance on the long wavelength side means that light absorption of heme protein is small, there is an idea that the muscle base reflectance is regarded as a reflectance near 700 nm as shown in FIG. Krzywicki considered that the spectrum of the muscle base reflectivity was around 700 nm (Non-patent Document 1). The muscle base reflectivity is a base that does not contain heme protein, and is a value that is not related to the amount of heme protein content. However, as shown in the figure, the reflectivity near 700 nm is lower as it is higher depending on the amount of heme protein in the meat, and is greatly different. Therefore, it cannot be regarded as the muscle base reflectivity. Further, as apparent from FIG. 1, there is no scientific basis that the muscle base reflectivity shows a constant value at all wavelengths.

反射分光法で食肉中のヘムタンパク質誘導体の測定において、525nmと575nmの2波長の反射率の値を用いて酸化型のみを測定した例が非特許文献2に記載されている。単純な酸化型のみの測定においても、食肉の明度の違い、すなわち食肉中のヘムタンパク質含量によって誤差が生じることが明らかになっている。 Non-Patent Document 2 describes an example in which only an oxidized form is measured using reflectance values of two wavelengths of 525 nm and 575 nm in measurement of a heme protein derivative in meat by reflection spectroscopy. Even in the measurement of only a simple oxidized form, it has been clarified that an error occurs due to a difference in lightness of meat, that is, a heme protein content in the meat.

特開平4−350540号公報JP-A-4-350540 特開平3−96838号公報Japanese Patent Laid-Open No. 3-96838 特開2003−121351号公報JP 2003-121351 A Krzywicki,K. Meat Science, 3巻, 1−10頁,1979年Krzywicki, K. Meat Science, 3, 1-10, 1979 泉本勝利、日本農芸化学会誌、50巻,55−59頁,1976年Izumimoto, Japan Agricultural Chemical Society, 50, 55-59, 1976

ヘムタンパク質の変化を科学的原理に基づいて精度よく測定するためには、反射分光法のベースラインとして筋肉素地反射率のスペクトルを考慮した関係式によって測定する必要がある。しかし波長依存性のある筋肉素地反射率はこれまで明らかにされていなかったので、科学的な根拠のある筋肉素地反射率の値は測定に考慮されていない。 In order to accurately measure changes in heme protein based on scientific principles, it is necessary to measure by a relational expression that takes into account the spectrum of muscle base reflectance as the baseline of reflection spectroscopy. However, since the wavelength-dependent muscle base reflectivity has not been clarified so far, the value of the muscle base reflectivity with scientific evidence is not taken into account in the measurement.

本発明は、上記課題に基づいてなされたものであり、科学的な根拠のある筋肉素地反射率をベースラインとして用いる反射分光法により食肉等生体組織に含まれる分光学的性質を有する物質の含量および混在割合を算出し、これらの数値から食肉等生体組織の鮮度をリアルタイムで精度良く識別することができることを目的とするものである。 The present invention has been made on the basis of the above problems, and the content of a substance having spectroscopic properties contained in biological tissue such as meat by reflection spectroscopy using a muscle base reflectance having a scientific basis as a baseline. The purpose of this is to calculate the mixing ratio and to accurately identify the freshness of living tissue such as meat from these numerical values in real time.

本発明は、(1)生体組織に光照射して得られる分光反射スペクトルの情報から所定の演算式を用いて、該生体組織に存在する分光学的性質を有する物質の含量および/または混在割合を算出し、かかる算出情報から生体組織の化学成分と鮮度を識別することを特徴とする生体組織の光学的鮮度識別方法において、分光反射率測定におけるベースラインとして筋肉素地反射率曲線を使用することを特徴とする生体組織の光学的鮮度識別方法を提供すること、(2)筋肉素地反射率が短波長ほど低い上に凸型の曲線で表される筋肉素地反射率スペクトル値を用いることを特徴とする上記(1)に記載の生体組織の光学的鮮度識別方法を提供すること、(3)波長が700nmにおける反射率が実在肉から漂白肉の間の45%から55%である筋肉素地曲線を使用することを特徴とする上記(1)および(2)に記載の生体組織の光学的鮮度識別方法を提供すること、(4)生体組織が食肉であることを特徴とする上記(1)から(3)に記載の生体組織の光学的鮮度識別方法を提供すること、(5)分光学的性質を有する物質が食肉に含まれるヘムタンパク質の酸素型、還元型および酸化型の3成分であることを特徴とする上記(1)から(4)に記載の生体組織の光学的鮮度識別方法を提供すること、(6)演算式が式(10)、

Figure 2006177923
で表される多変数一次式マトリクス(上式において、Pf1, Pf2 … Pfnは成分の混在割合を表す変数であり、f1、f2…fnは混在成分の種類を表し、G'は成分含量と比例する関数値であり、α'は光吸収係数を表し、α'の添え字は異なる波長λならびに異なる混在成分fを表し、λ1〜λnは異なる波長を表し、λisoは等吸収点(isosbestic point)の波長を表し、またnは成分数を表す。)で表されることを特徴とする上記(1)から(5)に記載の生体組織の光学的鮮度識別方法を提供すること、(7)前記式(10)においてnが3であり、分光学的性質を有する物質が食肉に含まれるヘムタンパク質の酸素型、還元型および酸化型の3成分であることを特徴とする上記(6)に記載の生体組織の光学的鮮度識別方法を提供すること、(8)生体組織に光照射を行う光源、生体からの反射光を受光する手段、受光された反射光をスペクトル分光する手段、スペクトルデータを記憶する手段、スペクトルデータを用いて所定の演算式に基づいて生体組織に含まれる分光学的性質を有する物質の含量および混在割合を演算する手段、および演算されたデータを出力する手段を備えて構成される生体鮮度識別装置であって、上記の演算手段が式(10)で表される演算式に基づくソフトウェアを備えていることを特徴とする生体の光学的鮮度識別装置を提供することにより、上記の課題を解決する。 The present invention provides (1) the content and / or mixture ratio of a substance having spectroscopic properties existing in a biological tissue using a predetermined arithmetic expression from information of spectral reflection spectrum obtained by irradiating the biological tissue with light. And using a muscle base reflectance curve as a baseline in spectral reflectance measurement in an optical freshness identification method for biological tissue, characterized in that the chemical composition and freshness of biological tissue are identified from the calculated information. And (2) using a muscle base reflectance spectrum value expressed by a convex curve on a lower wavelength as the wavelength of the muscle base is lower. And (3) a muscle having a reflectance of 45% to 55% between the actual meat and the bleached meat at a wavelength of 700 nm. (1) Providing the optical tissue freshness identification method according to the above (1) and (2), characterized by using a base curve, (4) The biological tissue is meat (above) 1) to 3) an optical freshness identification method for living tissue, and (5) an oxygen type, a reduced type and an oxidized type 3 of heme protein containing a substance having spectroscopic properties in meat. Providing an optical freshness identification method for living tissue according to any one of (1) to (4) above, characterized in that:
Figure 2006177923
(In the above equation, Pf1, Pf2 ... Pfn are variables representing the mixing ratio of the components, f1, f2 ... fn represent the types of the mixed components, and G 'is proportional to the component content) Α ′ represents a light absorption coefficient, a subscript of α ′ represents different wavelengths λ and different mixed components f, λ 1 to λ n represent different wavelengths, and λ iso represents an isosbestic point ( isosbestic point), and n represents the number of components.) The optical tissue freshness identification method according to (1) to (5) above, characterized in that (7) In the above formula (10), n is 3, and the substance having spectroscopic properties is an oxygen type, a reduced type and an oxidized type of heme protein contained in meat, 6) Providing the optical tissue freshness identification method according to 6), (8) Included in biological tissue based on a predetermined arithmetic expression using spectral data, light source for irradiation, means for receiving reflected light from living body, means for spectrally spectrally analyzing received reflected light, means for storing spectral data A biological freshness identification device comprising means for calculating the content and mixing ratio of a substance having spectroscopic properties, and means for outputting the calculated data, wherein the calculation means is expressed by equation (10). The above-described problem is solved by providing an optical freshness identification device for a living body characterized by including software based on an arithmetic expression represented.

反射分光法によるヘムタンパク質の測定のためには、その測定原理が科学的原理の理論に従うことで精度が向上し、具体的応用に合理的に発展できることになる。本発明の方法は、上記のように筋肉素地反射率に相当するβ値を解明し、これを用いることによりヘムタンパク質を科学的原理に基づいて精度よく測定する方法である。 For the measurement of heme protein by reflection spectroscopy, the accuracy of the measurement principle is improved by following the theory of scientific principles, and it can be rationally developed for specific applications. The method of the present invention is a method for accurately measuring heme protein based on scientific principles by elucidating the β value corresponding to the muscle base reflectivity as described above and using it.

本発明によれば、1)透過光に対する分光光度法に基づく多成分測定法と同等の原理を採用することができることから、筋肉素地反射率を反射スペクトル測定のベースラインとして演算式(10)に基づいて演算することによってから、リアルタイムで生体組織に含まれる分光学的性質を有する物質の含量および/または多成分の混在割合を算出することができ、従って生体組織の鮮度を科学的根拠をもって精度良く知ることが可能となる。特にヘムタンパク質誘導体である還元型、酸素型、酸化型各色素の混在割合を正確に算出することが可能となる。従って本発明によれば動植物の生体組織、特に食肉の品質評価や品質管理において極めて有益な情報を提供することができる。 According to the present invention, 1) Since a principle equivalent to a multi-component measurement method based on a spectrophotometric method for transmitted light can be employed, the muscle base reflectance is used as a baseline for reflection spectrum measurement in the calculation formula (10). It is possible to calculate the content of substances having spectroscopic properties contained in living tissue and / or the mixture ratio of multiple components in real time, so that the freshness of living tissue can be accurately determined with scientific basis. It becomes possible to know well. In particular, it is possible to accurately calculate the mixing ratio of reduced, oxygen, and oxidized dyes that are heme protein derivatives. Therefore, according to the present invention, it is possible to provide extremely useful information in quality evaluation and quality control of living tissues of animals and plants, particularly meat.

また本発明によれば以下のような効果が期待できる。2)反射分光法は非破壊法であるから、包装内容物に一切の処理を行うことなく、内容物の状態を直接測定することができる。3)加熱肉など加工中のニトロシイル(ニトロソ)ヘムタンパク質誘導体の形成割合である発色度を精度良く測定できる方法に適用できる。4)色調品質の管理情報として活用できる。例えば、ヘムタンパク質誘導体の酸素型よりも還元型および酸化型は色調品質が不良であるが、還元型であれば経時的に酸素型に変換されるので、還元型から酸素型に変化したときの良好な色調品質の予測による管理ができる。5)牛枝肉の格付けにおいて、牛肉色基準(B.C.S.)を用いて食肉の品質を視覚的に判定している。この格付けは新鮮肉で行うので、ヘムタンパク質誘導体は酸素型と還元型の混在である。したがって、鮮やかである酸素型が多いと良好と判定され、鮮やかでない還元型が多いと不良に判定される。還元型は酸素型に流通過程で変換されるので不合理な側面がある。本発明のシステムはヘムタンパク質誘導体の酸素型、還元型、酸化型の混在する色調から例えば酸素型の特定の誘導体の反射率スペクトルあるいは色調を予測することに発展できることから改善することができるので、格付けの不合理な判定を避けることができる。6)食肉のヘムタンパク質の誘導体の還元型、酸素型、酸化型の測定法は他の一酸化窒素型等の誘導体の割合にも同様方法で測定することができる。7)測定データをオンライン接続のコンピュータに取得し、コンピュータ演算によってリアルタイムに測定結果が得られる。8)本発明の演算式をプログラム演算することで誰でも瞬時に精度の高い測定ができる。 Further, according to the present invention, the following effects can be expected. 2) Since reflection spectroscopy is a non-destructive method, the state of the contents can be measured directly without any processing on the package contents. 3) It can be applied to a method that can accurately measure the degree of color development, which is the formation ratio of nitrosyl (nitroso) heme protein derivatives during processing such as heated meat. 4) Can be used as color tone quality management information. For example, the reduced and oxidized types of heme protein derivatives have poorer color quality than the oxygen type, but if the reduced type is converted to the oxygen type over time, the reduced type and oxygen type Management by predicting good color quality. 5) In the rating of beef carcass, the quality of the meat is visually judged using the beef color standard (BCS). Since this rating is done with fresh meat, the heme protein derivatives are a mixture of oxygen and reduced forms. Therefore, if there are many vivid oxygen types, it will be judged as good, and if there are many non-brilliant reduced types, it will be judged as bad. Since the reduced form is converted to the oxygen form in the flow process, there is an irrational aspect. Since the system of the present invention can be developed from predicting the reflectance spectrum or color tone of a specific derivative of oxygen type from the color tone of oxygen type, reduced type and oxidized type of heme protein derivatives, Avoid irrational ratings. 6) The methods for measuring the reduced, oxygen, and oxidized forms of meat heme protein derivatives can also be measured by the same method for the ratio of other nitric oxide derivatives. 7) Measurement data is acquired by an online computer, and measurement results are obtained in real time by computer computation. 8) Anyone can instantaneously measure with high accuracy by programming the arithmetic expression of the present invention.

本発明になる生体組織の光学的鮮度識別装置は、図2に示すように試験台上設置される被検体に対面して光照射を行う光源1を有する。光源は蛍光灯、ハロゲンランプ、発光ダイオード、有機EL、レーザー、フラッシュライトなどを用いることができ、白色光であってもフィルターにより制限される等の特定の単波長光であってもよい。測定目的に合わせて選択使用することができる。生体からの反射光は分光・受光部で分光・受光され、各波長毎に分光スペクトル分析が行われる。この情報は記憶装置3に記憶されると同時に演算手段4において所定の演算式に基づいて分光学的性質を有する物資の含量および成分の混合割合が計算される。この情報は出力手段5に送られ液晶表示、有機EL表示、発光ダイオード表示などで文字や画像情報として表示され、プリント機能を付設することにより紙記録も可能である。かかる装置は使用する目的に応じて固定設置型か携帯型かを選択することができる。 As shown in FIG. 2, the biological tissue optical freshness identification apparatus according to the present invention has a light source 1 that irradiates light to face a subject placed on a test bench. As the light source, a fluorescent lamp, a halogen lamp, a light emitting diode, an organic EL, a laser, a flashlight, or the like can be used. The light source may be white light or specific single wavelength light limited by a filter. It can be selected and used according to the measurement purpose. Reflected light from the living body is split and received by the spectroscopic / light receiving unit, and spectral spectrum analysis is performed for each wavelength. This information is stored in the storage device 3 and at the same time, the calculation means 4 calculates the content of the material having spectroscopic properties and the mixing ratio of the components based on a predetermined calculation formula. This information is sent to the output means 5 and displayed as text or image information on a liquid crystal display, an organic EL display, a light emitting diode display, etc., and paper recording is possible by adding a print function. Such an apparatus can be selected as a fixed installation type or a portable type according to the purpose of use.

測定機とコンピュータはオンライン接続され、測定データはリアルタイムに解析され、瞬時に多成分の混在割合を表示できる。ここで、測定データはコンピュータへの入力であり、解析結果の表示は出力となる。コンピュータが通信回線に接続されておればネットワークの活用により、国内はもとより全世界に解析結果を提供することができる。 The measuring instrument and the computer are connected online, the measurement data is analyzed in real time, and the mixing ratio of multiple components can be displayed instantaneously. Here, the measurement data is input to the computer, and the display of the analysis result is output. If the computer is connected to the communication line, the network can be used to provide the analysis results not only in Japan but throughout the world.

以下に本発明になる測定原理について詳述する。かかる原理の基本は反射率(R)を変数とする関数(G)がヘムタンパク質含量(C)と直線関係にあることによる。その関数はα,βを定数として、

G = f(R) (1)
G = α・C + β (2)

となる。βはC=0のときのGである。βはC=0のとき食肉中のヘムタンパク質が無いときの食肉の筋肉素地に相当するものであり実在しないので測定することはできない。この筋肉素地の反射率を「筋肉素地反射率」という。筋肉素地反射率は反射分光法の基線(ベースライン)として欠くことのできない値である。すなわち、反射率スペクトルの全波長でβを確定すると

(G − β)= α・C (3)

となり、左辺の(G − β)は原理的に確立されている吸光度法の吸光度係数と同等に扱うことができる。これによって反射分光法の測定の理論根拠が確立されるとともに測定精度の向上が期待されることになる。
The measurement principle according to the present invention will be described in detail below. The basis of this principle is that the function (G) with the reflectance (R) as a variable is linearly related to the heme protein content (C). The function uses α and β as constants.

G = f (R) (1)
G = α ・ C + β (2)

It becomes. β is G when C = 0. β is equivalent to the muscle base of meat when there is no heme protein in the meat when C = 0, and cannot be measured because it does not exist. This muscle base reflectance is called "muscle base reflectance". The muscle base reflectivity is an indispensable value as the base line (baseline) of reflection spectroscopy. That is, if β is determined at all wavelengths of the reflectance spectrum,

(G-β) = α · C (3)

Thus, (G-β) on the left side can be handled in the same manner as the absorbance coefficient of the absorbance method established in principle. This establishes a theoretical basis for reflection spectroscopy measurement and is expected to improve measurement accuracy.

式(1)の関数の具体例を示す(非特許文献2)。K/S (吸収係数/散乱係数比)は反射率(R)から導かれ次式で示される。

G = K/S = (1 − R)2/(2R) (4)

K/Sはヘムタンパク質含量(C)との間に式(2)の関数Gに相当する直線関係が認められている。これによって、食肉中に含まれるヘムタンパク質含量が多少にかかわらず一定のβ値が求められ、β値から筋肉素地の波長525〜575nmの反射率が40−43%になることが明らかにされている(非特許文献2)。
A specific example of the function of Expression (1) is shown (Non-patent Document 2). K / S (absorption coefficient / scattering coefficient ratio) is derived from the reflectance (R) and expressed by the following equation.

G = K / S = (1−R) 2 / (2R) (4)

A linear relationship corresponding to the function G in Equation (2) is recognized between K / S and the heme protein content (C). As a result, a constant β value is obtained regardless of the amount of heme protein contained in the meat, and it has been clarified that the reflectance at a wavelength of 525 to 575 nm of the muscle substrate is 40 to 43% from the β value. (Non-Patent Document 2).

筋肉素地反射率β値を式(3)に代入し、(G − β)をG'とおくと、G'はヘムタンパク質含量と直線関係になる。

G' = G − β = α・C (5)
Substituting the muscle base reflectance β value into Equation (3) and setting (G−β) as G ′, G ′ has a linear relationship with the heme protein content.

G '= G-β = α · C (5)

αは反射分光法における吸光係数である。任意の波長での値を意味するλを添え字で付記し式(6)となる。

G'λ = αλ・C (6)
α is an extinction coefficient in reflection spectroscopy. Λ, which means a value at an arbitrary wavelength, is appended with a subscript to obtain Equation (6).

G ' λ = α λ · C (6)

このことから、分光光度法の原理と同等に扱うことができ、食肉中のヘムタンパク質誘導体の還元型、酸素型、酸化型の混在割合を測定できる。その式をマトリクス表記すると以下のとおりである。

Figure 2006177923
この式において、Poxy、Pred、Pmetは求めるヘムタンパク質の誘導体の各々酸素型、還元型、酸化型の割合である。αは反射分光法の吸光係数であり、添え字のλ付の異なる数値は異なる波長を示す。G'は式(5)で示される反射率(R)から導かれる関数の値、Cはヘムタンパク質含量である。 From this, it can be handled in the same manner as the principle of spectrophotometry, and the mixing ratio of reduced, oxygen, and oxidized forms of heme protein derivatives in meat can be measured. The equation is expressed as a matrix as follows.
Figure 2006177923
In this formula, Poxy, Pred, and Pmet are the ratios of oxygen type, reduced type, and oxidized type of the desired heme protein derivative, respectively. α is the extinction coefficient of reflection spectroscopy, and different numerical values with the subscript λ indicate different wavelengths. G ′ is a value of a function derived from the reflectance (R) shown in Equation (5), and C is a heme protein content.

食肉のヘムタンパク質の誘導体が酸素型、還元型、酸化型のとき、波長525nmの反射率(R)は等しく、等吸収点(isosbestic point)とよばれる。すなわち、波長525nmの反射率はヘムタンパク質の誘導体に依存しないで、その含量(C)のみに依存する。そこで、式(6)より、添え字λisoを用いて等吸収点(isosbestic point)のときの値を示すと

G'λiso αλiso・C (8)

が得られる。
When meat heme protein derivatives are oxygen, reduced, and oxidized, the reflectance (R) at a wavelength of 525 nm is equal and is called the isosbestic point. That is, the reflectance at a wavelength of 525 nm does not depend on the hemoprotein derivative, but only on the content (C). Therefore, from Equation (6), the value at the isosbestic point is shown using the subscript λiso.

G ' λiso = α λiso · C (8)

Is obtained.

式(8)はG'λisoが含量(C)と正比例することを示している。したがって、式(7)の含量(C)の代わりにG'λisoを用い、新たに得られる左辺の係数をα'とおけば、次式が得られる。

Figure 2006177923
式(9)はCの代わりにG'λisoを用いることによって、含量(C)を測定しないで、ヘムタンパク質の誘導体の役割(Poxy、Pred、Pmet)を求める式である。 Equation (8) shows that G′λ iso is directly proportional to the content (C). Therefore, if G′λ iso is used in place of the content (C) in equation (7) and the newly obtained left side coefficient is α ′, the following equation is obtained.

Figure 2006177923
Expression (9) is an expression for determining the role of heme protein derivatives (Poxy, Pred, Pmet) without measuring the content (C) by using G′λ iso instead of C.

式(9)の関係式は透過光の分光光度法による多成分測定法の原理と同等である。したがって、測定に用いる選定波長を特定する必要がなく従来法の特定波長を指定する方法よりも自由度が高いので、測定波長間隔の広い測定機でも精度良く測定できる。 The relational expression of equation (9) is equivalent to the principle of the multi-component measurement method by spectrophotometry of transmitted light. Therefore, it is not necessary to specify the selected wavelength used for the measurement, and the degree of freedom is higher than the method of specifying the specific wavelength of the conventional method, so that measurement can be performed with high accuracy even with a measuring instrument having a wide measurement wavelength interval.

式(9)のPoxy、Pred、Pmetは変数であるが、これら以外はすべて反射率スペクトルのみから導かれる値である。また右辺は測定値である。そこで、この式を解くことによって反射率スペクトルのデータのみで変数Poxy、Pred、Pmetが定まる。すなわち、Poxy、Pred、Pmetの値が定まるとヘムタンパク質の誘導体の各々酸素型、還元型、酸化型の割合は反射率スペクトルのみから算出され、迅速かつ精度の高い食肉の鮮度測定が可能になる。 In formula (9), Poxy, Pred, and Pmet are variables, but all other values are values derived only from the reflectance spectrum. The right side is the measured value. Therefore, by solving this equation, the variables Poxy, Pred, and Pmet are determined only from the reflectance spectrum data. That is, when the values of Poxy, Pred, and Pmet are determined, the proportion of oxygen type, reduced type, and oxidized type of heme protein derivatives can be calculated only from the reflectance spectrum, and it is possible to quickly and accurately measure the freshness of meat. .

以上より生体組織に含まれる分光学的性質を有する多成分系の物質については、式(10)の一般式が適用できる。

Figure 2006177923
なお、式中の記号は前記と同じである。 As described above, the general formula of formula (10) can be applied to the multi-component substance having spectroscopic properties contained in the living tissue.
Figure 2006177923
The symbols in the formula are the same as described above.

反射分光法のベースラインとなる無色の構造成分と仮想される筋肉素地の反射率スペクトルは非実在で不明である。そこで反射分光法によるミオグロビン測定のための筋肉素地と仮想されるベースラインは次のように推定した。 The reflectance spectrum of the muscle structure assumed to be a colorless structural component and the base line of reflection spectroscopy is unexistent and unknown. Therefore, the muscle base and mythical baseline for myoglobin measurement by reflection spectroscopy were estimated as follows.

このベースラインの反射率スペクトルは漂白肉の類推として解析され、この漂白肉の変化を解析したしたところ、図3に示される濃い曲線の特性が得られた。図3の淡灰色の曲線は食肉の漂白試料についての多数の反射率スペクトルを示している。漂白試料はヘムタンパク質が漂白されているので図1に見られるようなヘムタンパク質の光吸収が認められず滑らかな曲線を示している。また、短波長ほど反射率が低い、上に凸の曲線となっている。 The baseline reflectance spectrum was analyzed as an analogy of bleached meat, and the change in the bleached meat was analyzed. As a result, the characteristic of the dark curve shown in FIG. 3 was obtained. The light gray curve in FIG. 3 shows a number of reflectance spectra for the meat bleach sample. The bleached sample shows a smooth curve with no light absorption of heme protein as seen in FIG. 1 because heme protein is bleached. Moreover, the reflectance becomes lower as the wavelength is shorter, and the curve is convex upward.

これらの反射率特性のうち、ヘムタンパク質を含まない筋肉素地の反射率スペクトルは漂白試料(図3の700nmの反射率が55%付近)よりも低く、ヘムタンパク質を含む実在の食肉(図1の700nmの反射率が45%付近)よりも高い反射率スペクトルになる。このことから筋肉素地の反射率スペクトルは、700nmの反射率が約45%から約55%の限られた範囲の曲線になると推定される。しかし測定器の反射光の測定方式によりかなりの相違があり、このことを考慮すれば筋肉素地の反射率は大凡40%から60%の範囲にあるとみなされる。 Among these reflectance characteristics, the reflectance spectrum of the muscle substrate that does not contain heme protein is lower than that of the bleached sample (the reflectance at 700 nm in FIG. 3 is around 55%), and real meat containing heme protein (of FIG. 1). The reflectance spectrum is higher than the reflectance at 700 nm (around 45%). From this, the reflectance spectrum of the muscle substrate is estimated to be a curve in a limited range where the reflectance at 700 nm is about 45% to about 55%. However, there is a considerable difference depending on the measurement method of the reflected light of the measuring device, and considering this, the reflectance of the muscle substrate is considered to be in the range of approximately 40% to 60%.

筋肉素地の反射率スペクトルは波長の4乗の逆数値との間に直線関係となる式で示される。CIE三刺激値の逆数である1/Yと1/Xの間に直線関係が認められ、筋肉素地スペクトル特性の直線関係と食肉の直線関係が認められる。これら両者の直線の交点は筋肉素地に相当することを意味し、交点の値は1/Y=2.25、1/X=2.23となり、図3のスペクトル特性のうち700nmの反射率が50%のスペクトルに対応する。CIE色調値と逆反射率についての特性解析によって得られた筋肉素地のスペクトルはβ値(式2)に対応し、反射分光法のベースラインとして適合することが認められた。 The reflectance spectrum of the muscle substrate is expressed by an equation having a linear relationship with the inverse value of the fourth power of the wavelength. A linear relationship is recognized between 1 / Y and 1 / X, which are the reciprocals of the CIE tristimulus values, and a linear relationship of muscle base spectrum characteristics and a linear relationship of meat are recognized. The intersection of these two straight lines means that it corresponds to a muscle substrate, and the values of the intersection are 1 / Y = 2.25 and 1 / X = 2.23, and the reflectance at 700 nm is the spectral characteristic of FIG. Corresponds to 50% spectrum. It was confirmed that the spectrum of the muscle substrate obtained by the characteristic analysis on the CIE color tone value and the retroreflectance corresponds to the β value (Equation 2) and is suitable as the baseline of reflection spectroscopy.

以下に、食肉試料に含まれるヘムタンパク質誘導体の含有割合の算出について実施例を挙げて詳述する。ただし本発明はこれらの実施例に限定されるものではない。なお、本実施例においては、筋肉素地反射率スペクトル特性曲線(図3)のうち700nmの反射率が50%である特性曲線を選択した。食肉試料は市販の牛肉の腿部および背部(胸最長筋)を縦3cm×横5cm×厚さ1cmに切断したものをクレラップ(呉羽化学工業製)で包み、用いた。分光反射スペクトルは反射分光測定機(ミノルタCM1000型)によって400〜700nmの波長範囲で測定した。食肉試料に含まれるヘムタンパク質誘導体の含有割合は得られたデータから上記式(5)および(9)の関係式を用いて算出された。またカラーバリューはCIELAB1976 カラーシステムによった。 Hereinafter, calculation of the content ratio of the heme protein derivative contained in the meat sample will be described in detail with reference to examples. However, the present invention is not limited to these examples. In this example, a characteristic curve having a reflectance of 50% at 700 nm was selected from the muscle base reflectance spectral characteristic curve (FIG. 3). Meat samples were obtained by wrapping commercially available beef thighs and backs (longest chest muscle) into 3 cm long x 5 cm wide x 1 cm thick wrapped with Kurelap (Kureha Chemical Industries). The spectral reflection spectrum was measured in a wavelength range of 400 to 700 nm by a reflection spectrophotometer (Minolta CM1000 type). The content ratio of the heme protein derivative contained in the meat sample was calculated from the obtained data using the relational expressions of the above formulas (5) and (9). The color value is based on the CIELAB1976 color system.

(食肉試料のヘムタンパク質誘導体が酸素型の場合)
計算の結果は図4に示されている。図の横軸L*はJIS Z8729で定義されている明度であり、縦軸は誘導体の割合である。図のように明度が大きく異なった食肉、すなわち食肉が極めて濃い色調から明るい色調のすべての食肉において、ヘムタンパク質誘導体が酸素型であることが明瞭に区別されて測定されている。一方、還元型および酸化型のヘムタンパク質誘導体は0%付近の値で明瞭に識別測定されている。
(When the heme protein derivative of the meat sample is of oxygen type)
The result of the calculation is shown in FIG. The horizontal axis L * in the figure is the brightness defined in JIS Z8729, and the vertical axis is the ratio of the derivative. As shown in the figure, it is clearly distinguished and measured that the heme protein derivative is of oxygen type in all meats having greatly different lightness, that is, all meats having a very dark color to a light color. On the other hand, reduced and oxidized heme protein derivatives are clearly discriminated and measured at a value around 0%.

(食肉試料のヘムタンパク質誘導体が還元型の場合)
計算の結果は図5に示されている。試料および測定装置は実施例1と同様である。図の横軸L*はJIS Z8729で定義された明度であり、縦軸は誘導体の割合である。還元型が明瞭に区別されて測定されている。一方、酸素型および酸化型のヘムタンパク質誘導体は0%付近の値で測定されている。
(When heme protein derivative of meat sample is reduced)
The result of the calculation is shown in FIG. The sample and measuring apparatus are the same as those in Example 1. The horizontal axis L * in the figure is the brightness defined by JIS Z8729, and the vertical axis is the ratio of derivatives. The reduced form is clearly distinguished and measured. On the other hand, oxygen-type and oxidized-type heme protein derivatives are measured at values near 0%.

(食肉試料のヘムタンパク質誘導体が酸化型の場合)
計算の結果は図6に示されている。試料および測定装置は実施例1と同様である。図の横軸L*はJIS Z8729で定義された明度であり、縦軸は誘導体の割合である。酸化型が明瞭に区別されて測定されている。一方、酸素型および還元型のヘムタンパク質誘導体は0%付近の値で明瞭に識別測定されている。
(When the heme protein derivative of the meat sample is oxidized)
The result of the calculation is shown in FIG. The sample and measuring apparatus are the same as those in Example 1. The horizontal axis L * in the figure is the brightness defined by JIS Z8729, and the vertical axis is the ratio of derivatives. Oxidized forms are clearly distinguished and measured. On the other hand, oxygen-type and reduced-type heme protein derivatives are clearly discriminated and measured at a value around 0%.

(新鮮な牛腿肉のヘムタンパク質誘導体割合の貯蔵中の変化)
計算結果は図7に示されている。測定機は実施例1と同様である。経時的に還元型が酸素型に変化し、良好な鮮紅色の発現が認められる。また、酸化型への変化が認められないので、鮮紅色で新鮮な色調の食肉として明瞭に識別される。
(Changes in storage ratio of heme protein derivative in fresh beef)
The calculation results are shown in FIG. The measuring instrument is the same as that in Example 1. Over time, the reduced type changes to the oxygen type, and a good bright red color is observed. Moreover, since the change to an oxidation type is not recognized, it is clearly identified as meat of a bright red color.

(新鮮でない牛腿肉のヘムタンパク質誘導体割合の貯蔵中の変化)
計算結果は図8に示されている。測定機は実施例1と同様である。経時的に還元型が減少するが、酸素型への変化がわずかで、良好な鮮紅色の発現が認められない。一方、酸化型の増加が著しく、褐色化した鮮度が不良の食肉として明瞭に識別される。
(Changes in the proportion of heme protein derivatives in fresh thigh meat during storage)
The calculation results are shown in FIG. The measuring instrument is the same as that in Example 1. Although the reduced type decreases with time, the change to the oxygen type is slight, and no good bright red color is observed. On the other hand, the increase in the oxidized form is remarkable, and the browned freshness is clearly identified as poor meat.

本発明の測定法は食肉中のヘムタンパク質含量に依存せず、食肉全般に適用できる。従来法(特許文献1、2、3、非特許文献1)はどの程度の明度に適用できるか明示的に示されていないが、科学的原理において「筋肉素地反射率」を考慮しないと食肉の明度によって、測定値が変動することは避けられないことになる。精度が低いと食肉試料のヘムタンパク質誘導体の酸素型、還元型、酸化型の3種すべてを精度良く測定できないので、例えば食肉中では酸素型、還元型、酸化型の3種が混在しているにもかかわらず、酸化型のみの測定のように限定されたものになる。本方法によれば図4,図5,図6に示すように、ヘムタンパク質誘導体の酸素型、還元型、酸化型の3種すべてを精度良く測定できる。 The measurement method of the present invention does not depend on the heme protein content in meat and can be applied to all meat. The conventional method (Patent Documents 1, 2, 3 and Non-Patent Document 1) does not explicitly indicate how lightness can be applied, but if the scientific principle does not consider “muscle base reflectance”, It is inevitable that the measured value varies depending on the brightness. If the accuracy is low, it is not possible to accurately measure all three types of oxygenated, reduced, and oxidized forms of heme protein derivatives in meat samples. For example, three types of oxygen, reduced, and oxidized types are mixed in meat. Nevertheless, the measurement is limited to the oxidation type only. According to this method, as shown in FIGS. 4, 5, and 6, all three types of oxygenated, reduced, and oxidized heme protein derivatives can be measured with high accuracy.

本発明の測定法はリアルタイムにヘムタンパク質誘導体の酸素型、還元型、酸化型の3種すべてを精度良く測定できる。本方法は抽出法では不可能である包装肉中のヘムタンパク質誘導体を開封することなく非破壊測定ができ、試料を採取して研究室などに移動・搬入して分析に供することなく産業界の工場ラインの現場に適用できる。リアルタイム測定が可能なので、大量迅速な測定が可能であるので、従来の抜き取り検査等による統計的手法による推計では、不良品の割合が推定できるものの不良品そのものの排除ができないが、本方法は全検査ができるので、その場で不良品を特定できる。 The measurement method of the present invention can accurately measure all three types of oxygenated, reduced, and oxidized heme protein derivatives in real time. This method is capable of nondestructive measurement without opening the heme protein derivative in the packaged meat, which is impossible with the extraction method, and samples are collected and transferred to laboratories etc. Applicable to the factory line. Since real-time measurement is possible, large-scale and rapid measurement is possible.Thus, the estimation by the conventional statistical method such as sampling inspection can estimate the proportion of defective products, but cannot exclude defective products themselves. Since inspection is possible, defective products can be identified on the spot.

本発明の測定法は科学的原理を適用した測定法である。したがって、本発明は動物生体に限らず、例えば果物の変色をともなう鮮度や熟度の識別測定へ応用し、色調品質と化学成分の要因の関連性をもとに果物のような農産物の管理システムに活用できる。 The measuring method of the present invention is a measuring method to which scientific principles are applied. Therefore, the present invention is not limited to animal living organisms, and is applied to, for example, identification measurement of freshness and ripeness accompanied by discoloration of fruits, and a management system for agricultural products such as fruits based on the relationship between color quality and factors of chemical components Can be used for

食肉の反射スペクトルを示す図である。It is a figure which shows the reflection spectrum of meat. 本発明の光学的鮮度識別装置の概略を示す図である。It is a figure which shows the outline of the optical freshness identification apparatus of this invention. 食肉の筋肉素地の反射スペクトルを示す図である。It is a figure which shows the reflection spectrum of the muscle base material of meat. 食肉の酸素型ヘムタンパク質の誘導体割合と明度との関係を示す図である。It is a figure which shows the relationship between the derivative ratio of the oxygen-type heme protein of meat, and the brightness. 食肉の還元型ヘムタンパク質の誘導体割合と明度との関係を示す図である。It is a figure which shows the relationship between the derivative | guide_body ratio of reduced heme protein of meat, and the brightness. 食肉の酸化型ヘムタンパク質の誘導体割合と明度との関係を示す図である。It is a figure which shows the relationship between the derivative ratio of the oxidation type heme protein of meat, and the brightness. 新鮮である食肉のヘムタンパク質の誘導体割合の貯蔵中変化を示す図である。It is a figure which shows the change in storage of the derivative | guide_body ratio of the meat heme protein which is fresh. 新鮮でない食肉のヘムタンパク質の誘導体割合の貯蔵中変化を示す図である。It is a figure which shows the change in the storage of the heme protein derivative ratio of the meat which is not fresh.

符号の説明Explanation of symbols

1 光源
2 分光・受光部
3 記憶装置
4 演算手段
5 出力手段
DESCRIPTION OF SYMBOLS 1 Light source 2 Spectroscopic / light-receiving part 3 Memory | storage device 4 Calculation means 5 Output means

Claims (8)

生体組織に光照射して得られる分光反射スペクトルの情報から所定の演算式を用いて、該生体組織に存在する分光学的性質を有する物質の含量および/または混在割合を算出し、かかる算出情報から生体組織の化学成分と鮮度を識別することを特徴とする生体組織の光学的鮮度識別方法において、分光反射率測定におけるベースラインとして筋肉素地反射率曲線を使用することを特徴とする生体組織の光学的鮮度識別方法。 Calculate the content and / or mixture ratio of a substance having spectroscopic properties present in the living tissue from the information of the spectral reflection spectrum obtained by irradiating the living tissue with light using a predetermined arithmetic expression. In the optical tissue freshness identification method characterized in that the chemical composition and freshness of biological tissue are distinguished from each other, a muscle base reflectance curve is used as a baseline in spectral reflectance measurement. Optical freshness identification method. 筋肉素地反射率が短波長ほど低い上に凸型の曲線で表される筋肉素地反射率スペクトル値を用いることを特徴とする請求項1に記載の生体組織の光学的鮮度識別方法。 2. The method for discriminating optical freshness of biological tissue according to claim 1, wherein the muscle base reflectance is lower as the wavelength is shorter, and the muscle base reflectance spectrum value represented by a convex curve is used. 波長が700nmにおける反射率が実在肉から漂白肉の間の45%から55%である筋肉素地曲線を使用することを特徴とする請求項1および2に記載の生体組織の光学的鮮度識別方法。 3. The method for discriminating optical freshness of biological tissue according to claim 1, wherein a muscle base curve having a reflectance of 45% to 55% between real meat and bleached meat at a wavelength of 700 nm is used. 生体組織が食肉であることを特徴とする請求項1から3に記載の生体組織の光学的鮮度識別方法。 4. The method for discriminating optical freshness of biological tissue according to claim 1, wherein the biological tissue is meat. 分光学的性質を有する物質が食肉に含まれるヘムタンパク質の酸素型、還元型および酸化型の3成分であることを特徴とする請求項1から4に記載の生体組織の光学的鮮度識別方法。 5. The method for discriminating optical freshness of biological tissue according to claim 1, wherein the substance having spectroscopic properties is an oxygen type, a reduced type and an oxidized type of heme protein contained in meat. 演算式が式(10)、
Figure 2006177923
で表される多変数一次式マトリクスで表されることを特徴とする請求項1から5に記載の生体組織の光学的鮮度識別方法。上式において、Pf1, Pf2 … Pfnは成分の混在割合を表す変数であり、f1、f2…fnは混在成分の種類を表し、G'は成分含量と比例する関数値であり、α'は光吸収係数を表し、α'の添え字は異なる波長λならびに異なる混在成分fを表し、λ1〜λnは異なる波長、λisoは等吸収点(isosbestic point)の波長を表し,nは成分数を
表す。
The arithmetic expression is expression (10),
Figure 2006177923
6. The method for discriminating optical freshness of biological tissue according to claim 1, characterized in that it is expressed by a multivariable linear expression matrix expressed by: In the above equation, Pf1, Pf2... Pfn are variables representing the mixing ratio of components, f1, f2... Fn represent the types of mixed components, G ′ is a function value proportional to the component content, and α ′ is light. The absorption coefficient represents an absorption coefficient, the suffix α ′ represents different wavelengths λ and different mixed components f, λ1 to λn represent different wavelengths, λiso represents the wavelength of an isosbestic point, and n represents the number of components.
前記式(10)においてnが3であり、分光学的性質を有する物質が食肉に含まれるヘムタンパク質の酸素型、還元型および酸化型の3成分であることを特徴とする請求項6に記載の生体組織の光学的鮮度識別方法。 7. In the formula (10), n is 3, and the substance having spectroscopic properties is an oxygen type, a reduced type and an oxidized type of heme protein contained in meat. Discriminating method of optical freshness of living tissue. 生体組織に光照射を行う光源、生体からの反射光を受光する手段、受光された反射光をスペクトル分光する手段、スペクトルデータを記憶する手段、スペクトルデータを用いて所定の演算式に基づいて生体組織に含まれる分光学的性質を有する物質の含量および混在割合を演算する手段、および演算されたデータを出力する手段を備えて構成される生体鮮度識別装置であって、上記の演算手段が式(10)で表される演算式に基づくソフトウェアを備えていることを特徴とする生体組織の光学的鮮度識別装置。
Figure 2006177923
上式において、Pf1, Pf2 … Pfnは成分の混在割合を表す変数であり、f1、f2…fnは混在成分の種類を表し、G'は成分含量と比例する関数値であり、α'は光吸収係数を表し、α'の添え字は異なる波長λならびに異なる混在成分fを表し、λ1〜λnは異なる波長、λisoは等吸収点(isosbestic point)の波長を表し、nは成分数を表す。
A light source for irradiating a living tissue with light, a means for receiving reflected light from the living body, a means for performing spectral spectroscopy on the received reflected light, a means for storing spectral data, and a living body based on a predetermined arithmetic expression using the spectral data A biological freshness identification apparatus comprising means for calculating the content and mixing ratio of a substance having spectroscopic properties contained in a tissue, and means for outputting the calculated data, wherein the calculation means is a formula An optical freshness identification device for living tissue, comprising software based on the arithmetic expression represented by (10).
Figure 2006177923
In the above equation, Pf1, Pf2... Pfn are variables representing the mixing ratio of components, f1, f2... Fn represent the types of mixed components, G ′ is a function value proportional to the component content, and α ′ is light. Represents an absorption coefficient, the suffix of α ′ represents different wavelengths λ and different mixed components f, λ1 to λn represent different wavelengths, λiso represents the wavelength of an isosbestic point, and n represents the number of components.
JP2005143463A 2004-11-29 2005-05-17 Meat optical freshness identification method and apparatus Active JP4686714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005143463A JP4686714B2 (en) 2004-11-29 2005-05-17 Meat optical freshness identification method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004344653 2004-11-29
JP2004344653 2004-11-29
JP2005143463A JP4686714B2 (en) 2004-11-29 2005-05-17 Meat optical freshness identification method and apparatus

Publications (2)

Publication Number Publication Date
JP2006177923A true JP2006177923A (en) 2006-07-06
JP4686714B2 JP4686714B2 (en) 2011-05-25

Family

ID=36732154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005143463A Active JP4686714B2 (en) 2004-11-29 2005-05-17 Meat optical freshness identification method and apparatus

Country Status (1)

Country Link
JP (1) JP4686714B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009042466A1 (en) * 2007-09-27 2009-04-02 The United States Of America, As Represented By The Secretary Of Agriculture Method and system for wholesomeness inspection of freshly slaughtered chickens on a processing line
JP4567814B1 (en) * 2010-02-12 2010-10-20 株式会社ユニソク Food quality measuring device
WO2011122584A1 (en) * 2010-03-29 2011-10-06 株式会社システムブレイン Food quality inspection device and method of inspecting food quality
WO2013176114A1 (en) * 2012-05-21 2013-11-28 国立大学法人帯広畜産大学 Meat color grade determination method
JP2020051878A (en) * 2018-09-27 2020-04-02 東芝ライテック株式会社 Method for evaluating light source and illumination device
CN116087195A (en) * 2023-03-06 2023-05-09 华南师范大学 Fish freshness evaluation method and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454883B2 (en) * 2021-04-19 2024-03-25 国立大学法人大阪大学 Methods for characterizing particles for molecular delivery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004173751A (en) * 2002-11-25 2004-06-24 Honda Motor Co Ltd Optical measuring instrument

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004173751A (en) * 2002-11-25 2004-06-24 Honda Motor Co Ltd Optical measuring instrument

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009042466A1 (en) * 2007-09-27 2009-04-02 The United States Of America, As Represented By The Secretary Of Agriculture Method and system for wholesomeness inspection of freshly slaughtered chickens on a processing line
JP4567814B1 (en) * 2010-02-12 2010-10-20 株式会社ユニソク Food quality measuring device
WO2011122584A1 (en) * 2010-03-29 2011-10-06 株式会社システムブレイン Food quality inspection device and method of inspecting food quality
WO2013176114A1 (en) * 2012-05-21 2013-11-28 国立大学法人帯広畜産大学 Meat color grade determination method
JP2014002136A (en) * 2012-05-21 2014-01-09 Obihiro Univ Of Agriculture & Veterinary Medicine Method for classifying meat color
JP2020051878A (en) * 2018-09-27 2020-04-02 東芝ライテック株式会社 Method for evaluating light source and illumination device
JP7187931B2 (en) 2018-09-27 2022-12-13 東芝ライテック株式会社 Light source evaluation method
CN116087195A (en) * 2023-03-06 2023-05-09 华南师范大学 Fish freshness evaluation method and system

Also Published As

Publication number Publication date
JP4686714B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP4686714B2 (en) Meat optical freshness identification method and apparatus
Jha Colour measurements and modeling
Girolami et al. Measurement of meat color using a computer vision system
Swatland A review of meat spectrophotometry (300 to 800 nm)
RU2427807C2 (en) System and method of determining hair colour treatment
Collell et al. Feasibility of near-infrared spectroscopy to predict aw and moisture and NaCl contents of fermented pork sausages
Chapman et al. Shining light into meat–a review on the recent advances in in vivo and carcass applications of near infrared spectroscopy
Byrne et al. Monitoring of headspace total volatile basic nitrogen from selected fish species using reflectance spectroscopic measurements of pH sensitive films
Kamruzzaman et al. Hyperspectral imaging in tandem with multivariate analysis and image processing for non-invasive detection and visualization of pork adulteration in minced beef
Ingle et al. Determination of protein content by NIR spectroscopy in protein powder mix products
EP1877756A1 (en) Spectroscopic method of determining the amount of an analyte in a mixture of analytes
JP2013514530A5 (en)
Fernandes et al. Measurement of intra-ring wood density by means of imaging VIS/NIR spectroscopy (hyperspectral imaging)
DE102016212202A1 (en) Method and device for determining a degree of damage of hair and method for determining a user-specific hair treatment agent
Møller et al. Monitoring chemical changes of dry-cured Parma ham during processing by surface autofluorescence spectroscopy
JP2015511024A (en) Method and apparatus for characterizing a sample by measuring light scattering and fluorescence
Hossain et al. Fluorescence-based determination of olive oil quality using an endoscopic smart mobile spectrofluorimeter
Brewer et al. Instrumental evaluation of pH effects on ability of pork chops to bloom
Egelandsdal et al. Autofluorescence quantifies collagen in sausage batters with a large variation in myoglobin content
Downey et al. Species identification in selected raw homogenized meats by reflectance spectroscopy in the mid-infrared, near-infrared, and visible ranges
JP2003121351A (en) Decision method for freshness of meat
Romero‐Pastor et al. Assessment of Raman microscopy coupled with principal component analysis to examine egg yolk–pigment interaction based on the protein C H stretching region (3100–2800 cm− 1)
Hernández et al. Comparison between two different methods to obtain the proportions of myoglobin redox forms on fresh meat from reflectance measurements
JP3663373B2 (en) Meat property inspection method and apparatus for red fish
Bjelanovic et al. Determination of the myoglobin states in ground beef using non-invasive reflectance spectrometry and multivariate regression analysis

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Effective date: 20070604

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A621 Written request for application examination

Effective date: 20080509

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A131 Notification of reasons for refusal

Effective date: 20100824

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20101025

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20110118

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150