JP2003121351A - Decision method for freshness of meat - Google Patents

Decision method for freshness of meat

Info

Publication number
JP2003121351A
JP2003121351A JP2001311912A JP2001311912A JP2003121351A JP 2003121351 A JP2003121351 A JP 2003121351A JP 2001311912 A JP2001311912 A JP 2001311912A JP 2001311912 A JP2001311912 A JP 2001311912A JP 2003121351 A JP2003121351 A JP 2003121351A
Authority
JP
Japan
Prior art keywords
wavelength
log
calibration curve
meat
freshness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001311912A
Other languages
Japanese (ja)
Inventor
Mitsuru Mitsumoto
充 三津本
Keisuke Sasaki
啓介 佐々木
Hitoshi Murakami
斉 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agricultural Research Organization
Original Assignee
National Agricultural Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agricultural Research Organization filed Critical National Agricultural Research Organization
Priority to JP2001311912A priority Critical patent/JP2003121351A/en
Publication of JP2003121351A publication Critical patent/JP2003121351A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method in which the redness, the color deterioration ratio and the lipid oxidation level as indexes of the freshness of meat can be measured nondestructively in a short time. SOLUTION: The transmission-reflectance of stored beef is measured, the quadratic differential value X1 of log (1/transmittance-reflectance) at a wavelength of 620±20 nm, the quadratic differential value X2 of log (1/transmittance- reflectance) at a wavelength of 744±2 nm, and the quadratic differential value X3 of log (1/transmittance-reflectance) at a wavelength of 590±2 nm, are found, and the freshness of the stored beef is decided on the basis of the redness Y obtained by the following working curve; Y=K0 +K1 X1 +K2 X2 +K3 X3 (K0 =2.55 to 7.47, K1 =77.30 to 98.96, K2 =303.10 to 513.63, K3 =42.72 to 52.93).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、食肉(牛肉、豚
肉、鶏肉)の流通、小売り段階において重要な形質であ
る退色・変色度や脂質酸化度を非破壊で短時間かつ正確
に測定できるようにし、食肉の鮮度を簡易に判定する方
法に関する。
TECHNICAL FIELD The present invention enables nondestructive and accurate measurement of fading / discoloration and lipid oxidation, which are important traits in the distribution and retail stages of meat (beef, pork, chicken), in a short time. And a method for easily determining the freshness of meat.

【0002】[0002]

【従来の技術】食肉は冷蔵庫に保存していても、時間の
経過とともに肉色は退色し、脂質は酸化して酸化臭を発
する。保存中の食肉の鮮度は、現在は視覚あるいは嗅覚
で判定されており、より科学的な評価法が求められてい
る。肉色を表す明度(L*)、赤色度(a*)、黄色度
(b*)の形質の中で、保存中の変化が最も大きいのは
赤色度である。保存期間中に赤色度は黄色度に比べて大
きく低下し、また明度はほとんど変化しない。そこで赤
色度は、メトミオグロビン形成割合や脂質酸化度と同様
に、食肉の鮮度を表す良い指標であると言える。
2. Description of the Related Art Even when meat is stored in a refrigerator, the meat color fades with the passage of time and lipids oxidize to give off an oxidative odor. The freshness of meat during storage is currently judged by sight or smell, and more scientific evaluation methods are required. Among the traits of lightness (L *), flesh color, redness (a *), and yellowness (b *), redness has the largest change during storage. During the storage period, the redness is significantly lower than the yellowness, and the brightness is almost unchanged. Therefore, it can be said that the redness is a good indicator of the freshness of meat, like the metmyoglobin formation rate and the lipid oxidation degree.

【0003】消費者は牛肉表面のメトミオグロビン形成
割合が30〜40%になると購入しなくなると報告され
ている(Greene, B. E., Hsin, I. and Zipser, M. W.
(1971) J. Food. Sci. 36: 940-942.)。一般の食味評
価者が肉の酸化臭を検出できるのはTBARS値が0.
6〜2.0mgMDA/kg肉の範囲であり(Greene,
B. E. and Cumuze, T. H. (1981) J. Food Sci. 47: 52
-54, 58.)、また経験を積んだ食味評価者ではTBAR
S値が0.5〜1.0mgMDA/kg肉の範囲で酸化
臭を検出できると報告されている(Tarladgis, B. G.,
Watts, B. M.,Younathan, M. T. and Dugan, L. (1960)
J. Amer. Oil Chem. Soc. 37: 44-48.)。さらに、消
費者はTBARS値が約0.5mgMDA/kg肉以下
では酸化臭を検出できないと報告されている(Gray, J.
I. and Pearson, A. M. (1987)in Advances in Meat R
esearch, Vol. 3., Restructured meat and poultry pr
oducts, Ed by A. M. Pearson and T. R. Dutson. Van
Nostrand Reinhold Co, New York, p. 221.)。
It is reported that consumers will stop purchasing when the rate of metmyoglobin formation on the beef surface reaches 30-40% (Greene, BE, Hsin, I. and Zipser, MW).
(1971) J. Food. Sci. 36: 940-942.). A general taste evaluator can detect the oxidized odor of meat when the TBARS value is 0.
6 to 2.0 mg MDA / kg meat range (Greene,
BE and Cumuze, TH (1981) J. Food Sci. 47: 52
-54, 58.) and TBAR for experienced tasters
It has been reported that an oxidative odor can be detected in the S value range of 0.5 to 1.0 mg MDA / kg meat (Tarladgis, BG,
Watts, BM, Younathan, MT and Dugan, L. (1960)
J. Amer. Oil Chem. Soc. 37: 44-48.). Furthermore, consumers are reported to be unable to detect an oxidative odor at TBARS values below about 0.5 mg MDA / kg meat (Gray, J.
I. and Pearson, AM (1987) in Advances in Meat R
esearch, Vol. 3., Restructured meat and poultry pr
oducts, Ed by AM Pearson and TR Dutson. Van
Nostrand Reinhold Co, New York, p. 221.).

【0004】[0004]

【発明が解決しようとする課題】脂質酸化の客観的な測
定は、食肉の試薬との混和、粉砕、濾過、反応時間、分
光光度計による測定等の処理を必要とし、かつ時間がか
かり過ぎる。食肉の流通・販売現場では多くの食肉を検
査するため、非破壊で短時間かつ正確に鮮度を判定でき
ることが必要である。
The objective measurement of lipid oxidation requires treatments such as mixing of meat with a reagent, crushing, filtration, reaction time, and measurement with a spectrophotometer, and is too time consuming. Since many meats are inspected at the meat distribution / sales site, it is necessary to be able to accurately determine the freshness in a short time in a non-destructive manner.

【0005】肉色とメトミオグロビン形成割合の測定に
は高精度な分光光度計と積分球の検出器による分析が必
要である。また、脂質酸化度の分析には劇薬のトリクロ
ロ酢酸(20%、50mL)を用いて食肉(20.0
g)を破砕して一定量(100mL)にメスアップし、
濾過後、濾液を別の試薬(テトラエトキシプロパン)と
長時間(16時間)暗所で反応させ、分光光度計で53
2nmにおける吸光度を測定し、同時に標準試料で検量
線を作成して脂質の酸化を表す2−チオバルビツール酸
反応物質(TBARS)値を求める必要がある。
The measurement of flesh color and metmyoglobin formation rate requires analysis with a highly accurate spectrophotometer and an integrating sphere detector. For analysis of lipid oxidation degree, trichloroacetic acid (20%, 50 mL), a powerful drug, was used to remove meat (20.0%).
g) is crushed and made up to a fixed amount (100 mL),
After filtration, the filtrate is allowed to react with another reagent (tetraethoxypropane) for a long time (16 hours) in the dark and measured with a spectrophotometer at 53
It is necessary to measure the absorbance at 2 nm and at the same time prepare a calibration curve with a standard sample to determine a 2-thiobarbituric acid reactive substance (TBARS) value representing oxidation of lipid.

【0006】一方、近赤外光(約700〜2500nm
の波長領域)を物質に当てると、物質構造(官能基)固
有の振動バンドから成る吸収スペクトルが得られる。こ
の性質を利用して、吸収スペクトルと物質の理化学組成
とを回帰式により関連付けることができる。近年、コン
ピュータによるスペクトルデータの高速処理化とともに
近赤外分光分析計が発達し、食品や飼料の成分を迅速か
つ非破壊的に分析できるようになった(Osborne and Fe
arn、1986)。本発明者らは、本発明の前の試験として、
牛枝肉切開面の胸最長筋の透過反射率を測定し、検量線
によって得られる脂肪含量に基づいて品質格付けするこ
とを特徴とする牛枝肉の品質格付け方法を開発した(特
許第3060059号)。そこで、本発明では、食肉の
鮮度の指標である赤色度、退色割合、脂質酸化度を非破
壊的に短時間(約10秒)で測定する方法を開発、提供
することを目的とする。
On the other hand, near infrared light (about 700 to 2500 nm)
(Wavelength region of) is applied to the substance, an absorption spectrum consisting of vibration bands peculiar to the substance structure (functional group) is obtained. Utilizing this property, the absorption spectrum and the physicochemical composition of a substance can be related by a regression equation. In recent years, near-infrared spectrophotometers have been developed with the rapid processing of spectral data by computers, enabling rapid and nondestructive analysis of food and feed ingredients (Osborne and Fe
arn, 1986). As a test before the present invention, the present inventors have
A quality grading method for beef carcass was developed, which was characterized by measuring the transmissivity of the longissimus thoracic muscle on the incised surface of beef carcass, and rating the quality based on the fat content obtained by a calibration curve (Patent No. 3060059). Therefore, an object of the present invention is to develop and provide a method for nondestructively measuring redness, fading rate, and lipid oxidation degree, which are indicators of freshness of meat, in a short time (about 10 seconds).

【0007】[0007]

【課題を解決するための手段】保存中の多くの食肉(牛
肉、豚肉、鶏肉)について400〜1100nmにおけ
る透過反射率を近赤外分光分析計で測定し、log(1/透
過反射率)として記録し、カット肉の持つ不均一な影響
を軽減するためにその対数変換値を2次微分した。赤外
分光分析計で測定した部位について、保存中における食
肉の鮮度の変化を最も良く表す赤色度(a*)、メトミ
オグロビン形成割合、脂質酸化度(2−チオバルビツー
ル酸反応物質:TBARS)を実験室で常法により分析
した。重回帰式を用いて近赤外分光値から食肉の赤色
度、メトミオグロビン形成割合、脂質酸化度を最も良く
表す検量線を作成して、流通や小売り段階で種々の食肉
の鮮度が非破壊で短時間に測定できるようにした。
[Means for Solving the Problems] The transmission reflectance of many meats (beef, pork, chicken) during storage at 400 to 1100 nm was measured by a near infrared spectrophotometer and expressed as log (1 / transmission reflectance). It was recorded and its log-transformed value was secondarily differentiated in order to reduce the non-uniform effect of cut meat. The redness (a *), which represents the change in freshness of meat during storage, the rate of metmyoglobin formation, the degree of lipid oxidation (2-thiobarbituric acid reactive substance: TBARS), which is the best indicator of the freshness of meat during storage Was analyzed in the laboratory by standard methods. A calibration curve that best represents the redness of meat, the rate of metmyoglobin formation, and the degree of lipid oxidation was created from near-infrared spectroscopic values using multiple regression equations, and the freshness of various meats was non-destructive at the distribution and retail stages. It is possible to measure in a short time.

【0008】本発明による食肉の鮮度判定方法は、保存
中の牛肉の透過反射率を測定して波長620±2nmに
おけるlog(1/透過反射率)の2次微分値X1、波長7
44±2nmにおけるlog(1/透過反射率)の2次微分
値X2、波長590±2nmにおけるlog(1/透過反射
率)の2次微分値X3を求め、次の検量線によって得ら
れる赤色度Yに基づいて保存中の牛肉の鮮度を判定する
ことを特徴とする。 Y=K0+K1X1+K2X2+K3X3 (K0=2.55〜7.47、K1=77.30〜9
8.96、K2=303.10〜513.63、K3=
42.72〜52.93)
According to the method for determining freshness of meat according to the present invention, the transmission reflectance of beef during storage is measured and the second derivative of log (1 / transmission reflectance) at a wavelength of 620 ± 2 nm, X1, wavelength 7
Redness degree obtained by the following calibration curve by obtaining the secondary differential value X2 of log (1 / transmissive reflectance) at 44 ± 2 nm and the secondary differential value X3 of log (1 / transmissive reflectance) at a wavelength of 590 ± 2 nm. It is characterized in that the freshness of the beef during storage is judged based on Y. Y = K0 + K1X1 + K2X2 + K3X3 (K0 = 2.55 to 7.47, K1 = 77.30 to 9)
8.96, K2 = 303.10-513.63, K3 =
42.72 to 52.93)

【0009】本発明による食肉の鮮度判定方法の他の態
様は、保存中の牛肉の透過反射率を測定して波長624
±2nmにおけるlog(1/透過反射率)の2次微分値X
1、波長1020±2nmにおけるlog(1/透過反射
率)の2次微分値X2を求め、次の検量線によって得ら
れるメトミオグロビン形成割合Yに基づいて保存中の牛
肉の鮮度を判定することを特徴とする。 Y=K0+K1X1+K2X2 (K0=42.24〜77.33、K1=−225.7
9〜−218.18、K2=676.81〜1673.
07)
Another aspect of the method for determining freshness of meat according to the present invention is to measure the transmission reflectance of beef during storage to measure a wavelength of 624.
Second derivative of log (1 / transmissivity) at ± 2 nm
1. Determining the freshness of the beef in storage based on the metmyoglobin formation rate Y obtained by the following calibration curve by obtaining the second derivative X2 of the log (1 / transmissivity / reflectance) at a wavelength of 1020 ± 2 nm. Characterize. Y = K0 + K1X1 + K2X2 (K0 = 42.24 to 77.33, K1 = -225.7)
9-218.18, K2 = 676.881-1673.
07)

【0010】本発明による食肉の鮮度判定方法の他の態
様は、保存中の牛肉の透過反射率を測定して波長620
±2nmにおけるlog(1/透過反射率)の2次微分値X
1、波長978±2nmにおけるlog(1/透過反射率)
の2次微分値X2、波長722±2nmにおけるlog(1
/透過反射率)の2次微分値X3を求め、次の検量線に
よって得られる脂質酸化度(TBARS)Yに基づいて
保存中の牛肉の鮮度を判定することを特徴とする。 Y=K0+K1X1+K2X2+K3X3 (K0=2.40〜2.90、K1=−9.78〜−
8.99、K2=−17.77〜−16.42、K3=
−53.52〜−30.78)
Another aspect of the method for determining freshness of meat according to the present invention is to measure the transmission reflectance of beef during storage to measure a wavelength of 620.
Second derivative of log (1 / transmissivity) at ± 2 nm
1, log at wavelength 978 ± 2nm (1 / transmissivity)
Second-order derivative value X2 of log (1
It is characterized in that the freshness of the beef during storage is determined based on the lipid oxidation degree (TBARS) Y obtained by the following calibration curve. Y = K0 + K1X1 + K2X2 + K3X3 (K0 = 2.40 to 2.90, K1 = −9.78 to −
8.99, K2 = -17.77 to -16.42, K3 =
-53.52--30.78)

【0011】本発明による食肉の鮮度判定方法の他の態
様は、保存中の豚肉の透過反射率を測定して波長588
±2nmにおけるlog(1/透過反射率)の2次微分値X
1、波長688±2nmにおけるlog(1/透過反射率)
の2次微分値X2、波長556±2nmにおけるlog(1
/透過反射率)の2次微分値X3を求め、次の検量線に
よって得られる赤色度Yに基づいて保存中の豚肉の鮮度
を判定することを特徴とする。 Y=K0+K1X1+K2X2+K3X3 (K0=−1.77〜−0.44、K1=−35.67
〜−26.95、K2=40.51〜46.07、K3
=−16.59〜−15.57)
Another embodiment of the method for determining the freshness of meat according to the present invention is to measure the transmission reflectance of pork during storage to measure a wavelength of 588.
Second derivative of log (1 / transmissivity) at ± 2 nm
1, log at wavelength 688 ± 2 nm (1 / transmissivity)
Second-order derivative value X2 of log (1 at wavelength 556 ± 2 nm
/ Transmissivity / reflectance) second-order differential value X3, and the freshness of the stored pork is determined based on the redness Y obtained from the following calibration curve. Y = K0 + K1X1 + K2X2 + K3X3 (K0 = -1.77 to -0.44, K1 = -35.67
~ -26.95, K2 = 40.51 to 46.07, K3
= -16.59 to -15.57)

【0012】本発明による食肉の鮮度判定方法の他の態
様は、保存中の豚肉の透過反射率を測定して波長616
±2nmにおけるlog(1/透過反射率)の2次微分値X
1、波長694±2nmにおけるlog(1/透過反射率)
の2次微分値X2、波長744±2nmにおけるlog(1
/透過反射率)の2次微分値X3を求め、次の検量線に
よって得られるメトミオグロビン形成割合Yに基づいて
保存中の豚肉の鮮度を判定することを特徴とする。 Y=K0+K1X1+K2X2+K3X3 (K0=51.28〜61.10、K1=−204.2
2〜−191.43、K2=381.67〜445.5
5、K3=613.28〜1901.96)
Another embodiment of the method for determining freshness of meat according to the present invention is that the transmission reflectance of pork during storage is measured to determine a wavelength of 616.
Second derivative of log (1 / transmissivity) at ± 2 nm
1, log at wavelength 694 ± 2 nm (1 / transmissivity)
Second-order differential value X2 of log (1 at wavelength 744 ± 2 nm
/ Transmissivity / reflectance) second-order differential value X3, and the freshness of the stored pork is determined based on the metmyoglobin formation rate Y obtained by the following calibration curve. Y = K0 + K1X1 + K2X2 + K3X3 (K0 = 51.28 to 61.10, K1 = −204.2)
2--191.43, K2 = 381.67-445.5.
5, K3 = 613.28 to 1901.96)

【0013】本発明による食肉の鮮度判定方法の他の態
様は、保存中の豚肉の透過反射率を測定して波長604
±2nmにおけるlog(1/透過反射率)の2次微分値X
1、波長934±2nmにおけるlog(1/透過反射率)
の2次微分値X2、波長480±2nmにおけるlog(1
/透過反射率)の2次微分値X3、波長748±2nm
におけるlog(1/透過反射率)の2次微分値X4を求
め、次の検量線によって得られる脂質酸化度(TBAR
S)Yに基づいて保存中の豚肉の鮮度を判定することを
特徴とする。 Y=K0+K1X1+K2X2+K3X3+K4X4 (K0=1.05〜1.21、K1=−2.53〜−
2.31、K2=−6.41〜−3.95、K3=−
0.42〜−0.11、K4=10.04〜19.8
5)
Another embodiment of the method for determining freshness of meat according to the present invention is to measure the transmission reflectance of pork during storage to measure the wavelength 604.
Second derivative of log (1 / transmissivity) at ± 2 nm
1, log at wavelength 934 ± 2 nm (1 / transmissivity)
Second derivative value X2 of the log (1 at wavelength 480 ± 2 nm
/ Transmissivity / reflectance) second derivative X3, wavelength 748 ± 2 nm
The second derivative X4 of log (1 / transmissivity / reflectance) at is calculated, and the lipid oxidation degree (TBAR obtained by the following calibration curve is obtained.
S) The freshness of the stored pork is judged based on Y. Y = K0 + K1X1 + K2X2 + K3X3 + K4X4 (K0 = 1.05 to 1.21, K1 = −2.53 to −
2.31, K2 = -6.41 to -3.95, K3 =-
0.42 to -0.11, K4 = 10.04 to 19.8
5)

【0014】本発明による食肉の鮮度判定方法の他の態
様は、保存中の鶏肉の透過反射率を測定して波長576
±2nmにおけるlog(1/透過反射率)の2次微分値X
1、波長462±2nmにおけるlog(1/透過反射率)
の2次微分値X2、波長1018±2nmにおけるlog
(1/透過反射率)の2次微分値X3を求め、次の検量線
によって得られる赤色度Yに基づいて保存中の鶏肉の鮮
度を判定することを特徴とする。 Y=K0+K1X1+K2X2+K3X3 (K0=3.87〜4.73、K1=−31.48〜−
18.47、K2=−14.70〜−12.43、K3
=167.13〜395.84)
Another embodiment of the method for determining the freshness of meat according to the present invention is to measure the transmission reflectance of chicken meat during storage to measure a wavelength of 576.
Second derivative of log (1 / transmissivity) at ± 2 nm
1, log at wavelength 462 ± 2 nm (1 / transmissivity)
Second derivative of X2, log at wavelength 1018 ± 2 nm
It is characterized in that the second-order differential value X3 of (1 / transmissivity / reflectance) is obtained, and the freshness of the chicken during storage is determined based on the redness degree Y obtained by the following calibration curve. Y = K0 + K1X1 + K2X2 + K3X3 (K0 = 3.87 to 4.73, K1 = −31.48 to −
18.47, K2 = -14.70 to -12.43, K3
= 167.13 to 395.84)

【0015】本発明による食肉の鮮度判定方法の他の態
様は、保存中の鶏肉の透過反射率を測定して波長618
±2nmにおけるlog(1/透過反射率)の2次微分値X
1、波長998±2nmにおけるlog(1/透過反射率)
の2次微分値X2、波長832±2nmにおけるlog(1
/透過反射率)の2次微分値X3を求め、次の検量線に
よって得られるメトミオグロビン形成割合Yに基づいて
保存中の鶏肉の鮮度を判定することを特徴とする。 Y=K0+K1X1+K2X2+K3X3 (K0=30.31〜38.76、K1=−343.0
8〜−278.65、K2=−1065.73〜−89
5.98、K3=−5067.40〜−3753.5
0)
Another embodiment of the method for determining freshness of meat according to the present invention is to measure the transmission reflectance of chicken meat during storage to measure the wavelength 618.
Second derivative of log (1 / transmissivity) at ± 2 nm
1, log at wavelength 998 ± 2 nm (1 / transmissivity)
Second-order differential value X2 of log (1 at wavelength 832 ± 2 nm
/ Transmissivity / reflectance) second-order differential value X3 is determined, and the freshness of the chicken meat during storage is determined based on the metmyoglobin formation rate Y obtained by the following calibration curve. Y = K0 + K1X1 + K2X2 + K3X3 (K0 = 30.31 to 38.76, K1 = -343.0
8 to -278.65, K2 = -1065.73 to -89.
5.98, K3 = -5067.40 to -3753.5
0)

【0016】本発明による食肉の鮮度判定方法の他の態
様は、保存中の鶏肉の透過反射率を測定して波長626
±2nmにおけるlog(1/透過反射率)の2次微分値X
1、波長552±2nmにおけるlog(1/透過反射率)
の2次微分値X2、波長832±2nmにおけるlog(1
/透過反射率)の2次微分値X3を求め、次の検量線に
よって得られる脂質酸化度(TBARS)Yに基づいて
保存中の鶏肉の鮮度を判定することを特徴とする。 Y=K0+K1X1+K2X2+K3X3 (K0=−1.43〜0.29、K1=−22.34〜
−17.11、K2=−15.55〜−9.53、K3
=392.02〜456.21)
Another embodiment of the method for judging the freshness of meat according to the present invention is to measure the transmission reflectance of chicken meat during storage to measure the wavelength 626.
Second derivative of log (1 / transmissivity) at ± 2 nm
1, log at wavelength 552 ± 2 nm (1 / transmissivity)
Second-order differential value X2 of log (1 at wavelength 832 ± 2 nm
/ Transmissivity / reflectance) second-order differential value X3 is determined, and the freshness of the chicken meat during storage is determined based on the lipid oxidation degree (TBARS) Y obtained by the following calibration curve. Y = K0 + K1X1 + K2X2 + K3X3 (K0 = −1.43 to 0.29, K1 = −22.34 to
-17.11, K2 = -15.55 to -9.53, K3
= 392.02 to 456.21)

【0017】本発明で用いた牛肉試料から赤色度(a
*)とメトミオグロビン形成割合との関係式(a*=−
0.1924×メトミオグロビン形成割合+21.89
6)および、赤色度(a*)とTBARS値との関係式
(a*=−4.2276×TBARS+18.948
6)を求めた。牛肉の?退色割合の基準値である30%
のメトミオグロビン形成割合を前者の式に代入するとa
*は16.1になり、?脂質酸化の基準値である0.6
mgMDA/kg肉のTBARSを後者の式に代入する
とa*は16.4となる。これらの関係式より牛肉の赤
色度(a*)が16より低くなると消費者は購入しなく
なると推定した。
From the beef samples used in the present invention, the redness (a
*) And metmyoglobin formation ratio (a * =-
0.1924 x metmyoglobin formation rate + 21.89
6) and the relational expression (a * = − 4.2276 × TBARS + 18.948) between the redness (a *) and the TBARS value.
6) was calculated. Is it beef? 30% which is the standard value of the fading rate
Substituting the metmyoglobin formation rate of
* Becomes 16.1, and? The standard value for lipid oxidation is 0.6
Substituting TBARS for mg MDA / kg meat into the latter equation yields a * of 16.4. From these relational expressions, it was estimated that consumers would stop purchasing when the redness (a *) of beef became lower than 16.

【0018】また、本発明で用いた豚肉試料から赤色度
(a*)とTBARS値との関係式(a*=−3.15
08×TBARS+ 7.4327)および、メトミオグ
ロビン形成割合とTBARS値との関係式(メトミオグ
ロビン形成割合=54.791×TBARS+28.2
25)を求めた。これらの関係式に脂質酸化の基準値で
ある0.6mgMDA/kg肉のTBARSを代入する
とa*は5.5となり、メトミオグロビン形成割合は6
1.1%となる。これらの関係式より、豚肉の赤色度
(a*)が6より低くなると消費者は購入しなくなり、
また豚肉のメトミオグロビン形成割合が60%より高く
なると消費者は購入しなくなると推定した。
From the pork sample used in the present invention, the relational expression (a * =-3.15) between redness (a *) and TBARS value.
08 × TBARS + 7.4327) and the relational expression between metmyoglobin formation rate and TBARS value (metmyoglobin formation rate = 54.791 × TBARS + 28.2)
25) was calculated. Substituting the standard value of lipid oxidation of 0.6 mg MDA / kg meat TBARS into these relational expressions, a * was 5.5, and the metmyoglobin formation ratio was 6
It becomes 1.1%. From these relational expressions, if the redness (a *) of pork becomes lower than 6, consumers will stop buying,
It was also estimated that consumers would stop purchasing when the rate of metmyoglobin formation in pork was higher than 60%.

【0019】さらに、本発明で用いた鶏肉試料から赤色
度(a*)とTBARS値との関係式(a*=−0.9
33×TBARS+ 3.7368)および、メトミオグ
ロビン形成割合とTBARS値との関係式(メトミオグ
ロビン形成割合=6.6561×TBARS+48.2
99)を求めた。これらの関係式に脂質酸化の基準値で
ある0.6mgMDA/kg肉のTBARSを代入する
とa*は3.2となり、メトミオグロビン形成割合は5
2.3%となる。これらの関係式より、鶏肉の赤色度
(a*)が3より低くなると消費者は購入しなくなり、
また鶏肉のメトミオグロビン形成割合が50%より高く
なると消費者は購入しなくなると推定した。
Furthermore, the relational expression (a * =-0.9) between the redness (a *) and the TBARS value from the chicken sample used in the present invention.
33 × TBARS + 3.7368) and a relational expression between the ratio of metmyoglobin formation and the TBARS value (formation ratio of metmyoglobin = 6.6561 × TBARS + 48.2).
99) was calculated. Substitution of 0.6 mg MDA / kg meat TBARS, which is the standard value of lipid oxidation, into these relational expressions gave a * of 3.2, and the metmyoglobin formation ratio was 5
It becomes 2.3%. From these relational expressions, if the redness (a *) of chicken becomes lower than 3, consumers will stop purchasing,
It was also estimated that consumers would stop buying when the metmyoglobin formation rate of chicken was higher than 50%.

【0020】そこで、消費者が食肉を購入しなくなると
される上述の基準値、すなわち牛肉においては赤色度
(a*)は16、メトミオグロビン形成割合は30%、
TBARS値は0.6mgMDA/kg肉の基準を当て
はめることにより、豚肉においては赤色度(a*)は
6、メトミオグロビン形成割合は60%、TBARS値
は0.6mgMDA/kg肉の基準を当てはめることに
より、鶏肉においては赤色度(a*)は3、メトミオグ
ロビン形成割合は50%、TBARS値は0.6mgM
DA/kg肉の基準を当てはめることにより、各食肉の
赤色度の変化と肉色素の酸化および脂質酸化度を判定す
ることができる。従って、本実施例の方法で食肉の赤色
度、メトミオグロビン形成割合、脂質酸化度を測定する
ことにより、流通や小売り段階で種々の食肉の鮮度(あ
る食肉が販売に適しているか、あるいは適していない
か)を非破壊で短時間に判定できるようになる。
Therefore, in the above-mentioned standard value at which consumers will not purchase meat, that is, in beef, the redness (a *) is 16, the metmyoglobin formation rate is 30%,
By applying the TBARS value of 0.6 mg MDA / kg meat, the redness (a *) in pork is 6, the metmyoglobin formation rate is 60%, and the TBARS value of 0.6 mg MDA / kg meat is applied. As a result, the redness (a *) of chicken was 3, the rate of metmyoglobin formation was 50%, and the TBARS value was 0.6 mgM.
By applying the standard of DA / kg meat, the change in redness of each meat and the degree of oxidation of meat pigment and lipid oxidation can be determined. Therefore, by measuring the redness of the meat, the ratio of metmyoglobin formation, and the degree of lipid oxidation by the method of this example, the freshness of various meats at the distribution and retail stages (a certain meat is suitable for sale, or suitable) Can be determined in a short time non-destructively.

【0021】[0021]

【発明の実施の形態】以下、図面を参照して本発明の内
容を詳細に説明する。
DETAILED DESCRIPTION OF THE INVENTION The contents of the present invention will be described below in detail with reference to the drawings.

【0022】材料には黒毛和種去勢牛6頭の半腱様筋と
胸最長筋、LWD交雑肥育豚12頭の大腿二頭筋と胸最
長筋、およびブロイラー24羽の浅胸筋を用いた。各筋
肉から厚さ1cm直径約5cmのステーキサンプル(2
0.0g)を作成した。サンプルを各々プラスチック秤
量皿に入れ、酸素透過性のポリ塩化ビニールで覆い、通
常の食肉販売店の展示条件を模して蛍光灯下4℃で保存
した(以下この保存状態を展示という)。近赤外分光分
析計(NIRSystems 5500)に肉断面測定用光ファイバー
を取り付けて、牛肉と豚肉は展示1、4、7、10日後
の、鶏肉は展示4日後のサンプルを10回スキャンし
(約10秒)、400〜1100nmにおける透過反射
率(Re)を測定し、log(1/Re)として記録した。
測定した部位の肉色の赤色度(a*)と肉色素の酸化を
表す茶褐色のメトミオグロビン形成割合および脂質の酸
化を表す2−チオバルビツール酸反応物質(TBAR
S)値を分析した。
The materials used were the semitendinosus muscle and the longissimus dorsi muscle of 6 Japanese Black steers, the biceps femoris and longissimus muscle of 12 LWD cross-fed pigs, and the superficial pectoralis muscle of 24 broilers. . Steak samples (2 cm thick, 1 cm thick from each muscle)
0.0 g) was prepared. Each sample was placed in a plastic weighing dish, covered with oxygen permeable polyvinyl chloride, and stored at 4 ° C. under a fluorescent lamp, simulating the display conditions of a normal meat store (hereinafter, this storage state is referred to as display). A near-infrared spectrophotometer (NIRSystems 5500) was equipped with an optical fiber for measuring meat cross-sections, and beef and pork were sampled 10 times after exhibition 1, 4, 7, 10 days, and chicken 4 days after exhibition (about 10 times). Sec), and the transmission reflectance (Re) at 400 to 1100 nm was measured and recorded as log (1 / Re).
The redness (a *) of the flesh color of the measured site and the brown-brown metmyoglobin formation rate indicating the oxidation of the flesh pigment and the 2-thiobarbituric acid reactive substance (TBAR) indicating the oxidation of the lipid
S) values were analyzed.

【0023】カット肉の持つ不均一な影響を軽減するた
めに、その対数変換値(log(1/Re))を2次微分し
た。下記の重回帰式を用いて近赤外分光値から赤色度、
メトミオグロビン形成割合、脂質酸化度を最も良く表す
検量線を作成した。その手順として、まず、波長の変動
に対して単相関係数あるいは重相関係数が安定している
波長領域で、かつ係数(Kn)も安定している波長を探
し、形質に帰属する波長を求め、検量線に説明変数(波
長数)を取り込み過ぎてオーバーフィッティング(過剰
適合)にならないように最大4波長を各形質の検量線モ
デルとして選択した。次に、各検量線モデルの精度評価
を交差確認法により行った。そして、検量線モデルの重
相関係数の増加と交差確認法による予測標準誤差の減少
とを比較・検討し、最少の説明変数(波長数)でもって
最も精度の良い検量線を決定した。
In order to reduce the non-uniform effect of cut meat, its logarithmic conversion value (log (1 / Re)) was second-order differentiated. Redness from near-infrared spectral values using the following multiple regression equation,
A calibration curve that best represents the ratio of metmyoglobin formation and the degree of lipid oxidation was prepared. As the procedure, first, a wavelength in which the single correlation coefficient or the multiple correlation coefficient is stable with respect to the fluctuation of the wavelength, and the coefficient (Kn) is also stable is searched for, and the wavelength belonging to the trait is determined. A maximum of 4 wavelengths was selected as a calibration curve model for each trait so as to prevent overfitting (overfitting) due to too many explanatory variables (number of wavelengths) being incorporated into the calibration curve. Next, the accuracy of each calibration curve model was evaluated by the cross-validation method. Then, the increase of the multiple correlation coefficient of the calibration curve model and the decrease of the prediction standard error by the cross-validation method were compared and examined, and the most accurate calibration curve was determined with the smallest explanatory variable (number of wavelengths).

【0024】 Y=K0+K1(X1)+…+Kn(Xn) ただし、Y:食肉の赤色度、メトミオグロビン形成割合
あるいは脂質酸化度 K0〜Kn:検量線の係数 X1〜Xn:各波長におけるlog(1/Re)の2次微分
値 (n:1から最大4まで) 以下、各種の食肉に対する検量線の導出方法について詳
細に説明する。
Y = K0 + K1 (X1) + ... + Kn (Xn) where Y: meat redness, metmyoglobin formation rate or lipid oxidation degree K0-Kn: calibration curve coefficients X1-Xn: log (1) at each wavelength / Re) second derivative (n: 1 to maximum 4) Hereinafter, a method of deriving a calibration curve for various kinds of meat will be described in detail.

【0025】〔実施の形態1〕牛肉 (1)赤色度(a*)の検量線 牛肉の赤色度(a*)の検量線における3種の波長は以
下のようにして選定したものである。図1(a)は、a
*に対する各波長の単相関係数を示す図である。この図
から、各波長の変動に対して単相関係数が安定している
波長領域で、係数(K1)も安定している波長を探し、
620nmを第1波長として選択した(610〜700
nmは赤色の波長範囲である)。図1(b)は、第1波
長を選択した後の第2番目の波長とa*との重相関係数
を示す図である。この図から、各波長の変動に対して重
相関係数が安定している波長領域で、係数(K2)も安
定している波長を探し、第2波長として744nmを選
択した。図1(c)は、第1及び第2波長を選択した後
の第3番目の波長とa*との重相関係数を示す図であ
る。この図から、各波長の変動に対して重相関係数が安
定している波長領域で、係数(K3)も安定している波
長を探し、第3波長として590nmを選択した。第
1、第2及び第3波長を選択した後の第4番目の波長と
a*との重相関係数を示す図から、各波長の変動に対し
て重相関係数が安定している波長領域で、係数(K4)
も安定している波長を探し、第4波長として780nm
を選択した。
[Embodiment 1] Beef (1) Redness (a *) calibration curve Three kinds of wavelengths in the redness (a *) calibration curve of beef are selected as follows. FIG. 1A shows a
It is a figure which shows the single correlation coefficient of each wavelength with respect to *. From this figure, find the wavelength where the coefficient (K1) is stable in the wavelength region where the single correlation coefficient is stable with respect to the fluctuation of each wavelength,
620 nm was selected as the first wavelength (610-700).
nm is the red wavelength range). FIG. 1B is a diagram showing a multiple correlation coefficient between the second wavelength and the a * after the first wavelength is selected. From this figure, a wavelength in which the coefficient (K2) is stable is searched for in the wavelength region in which the multiple correlation coefficient is stable with respect to changes in each wavelength, and 744 nm is selected as the second wavelength. FIG.1 (c) is a figure which shows the multiple correlation coefficient of the 3rd wavelength and a * after selecting the 1st and 2nd wavelength. From this figure, a wavelength in which the coefficient (K3) is stable is searched for in the wavelength region in which the multiple correlation coefficient is stable with respect to fluctuations in each wavelength, and 590 nm is selected as the third wavelength. From the figure showing the multiple correlation coefficient of the fourth wavelength and a * after selecting the first, second and third wavelengths, the wavelength at which the multiple correlation coefficient is stable with respect to fluctuations of each wavelength In the area, coefficient (K4)
Also find a stable wavelength, 780nm as the fourth wavelength
Was selected.

【0026】以上4種の波長を説明変数として順次取り
入れた4種の検量線モデル(第1波長を用いた検量線、
第1及び第2波長を用いた検量線、第1、第2及び第3
波長を用いた検量線、第1、第2、第3及び第4波長を
用いた検量線)について、その精度評価を交差確認法に
より行い、検量線モデルの重相関係数の増加と交差確認
法による予測標準誤差の減少とを比較して、最少の説明
変数(波長数)でもって最も精度の良い検量線を検討し
た。結果を表1に示す。その結果、上記の第1、第2及
び第3波長を用いた検量線を選定した。
Four calibration curve models (calibration curve using the first wavelength, which sequentially incorporates the above four wavelengths as explanatory variables)
Calibration curves using first and second wavelengths, first, second and third
For a calibration curve using wavelengths, a calibration curve using the first, second, third and fourth wavelengths), the accuracy evaluation is performed by the cross-validation method, and cross-validation is performed with an increase in the multiple correlation coefficient of the calibration curve model. The most accurate calibration curve with the fewest explanatory variables (number of wavelengths) was examined by comparing with the reduction of the standard error of prediction by the method. The results are shown in Table 1. As a result, a calibration curve using the above first, second and third wavelengths was selected.

【0027】[0027]

【表1】 [Table 1]

【0028】図2は、縦軸に本実施例の方法による測定
値をとり、横軸に常法による分析値をとって48のサン
プル毎の測定点をプロットしたものである。その結果、
両者の測定値間の重相関係数(R)は0.963、標準
誤差(SEC)は1.14と非常に高い相関関係を示し
た。
In FIG. 2, the vertical axis represents the measured value by the method of this embodiment, and the horizontal axis represents the analytical value by the conventional method, in which the measurement points of 48 samples are plotted. as a result,
The multiple correlation coefficient (R) between both measured values was 0.963, and the standard error (SEC) was 1.14, showing a very high correlation.

【0029】ここで例えば、第1波長として618n
m、第2波長として742nm、第3波長として588
nmを選定すると、この検量線の重相関係数は0.96
1、標準誤差は1.18となり、第1波長として622
nm、第2波長として746nm、第3波長として59
2nmを選定すると、この検量線の重相関係数は0.9
64、標準誤差は1.13となる。このように第1波
長、第2波長、第3波長とも±2nmの範囲で変化させ
てもほぼ同等の高い相関を得ることができ、係数につい
ても、K0=2.55〜7.47、K1=77.30〜
98.96、K2=303.10〜513.63、K3
=42.72〜52.93の範囲内の値を用いれば、重
相関係数0.961〜0.964、標準誤差1.13〜
1.18と、十分高い相関を得ることができる。
Here, for example, the first wavelength is 618n
m, second wavelength 742 nm, third wavelength 588
When nm is selected, the multiple correlation coefficient of this calibration curve is 0.96.
1, the standard error is 1.18, and the first wavelength is 622.
nm, the second wavelength is 746 nm, and the third wavelength is 59
When 2 nm is selected, the multiple correlation coefficient of this calibration curve is 0.9
64, and the standard error is 1.13. As described above, even if the first wavelength, the second wavelength, and the third wavelength are changed in the range of ± 2 nm, substantially the same high correlation can be obtained, and the coefficients are K0 = 2.55 to 7.47 and K1. = 77.30-
98.96, K2 = 303.10-513.63, K3
= 42.72 to 52.93, a multiple correlation coefficient of 0.961 to 0.964 and a standard error of 1.13 to
A sufficiently high correlation of 1.18 can be obtained.

【0030】こうして得られた牛肉の赤色度(a*)の
検量線を用いると、流通や小売り段階において牛肉の赤
色度の変化を非破壊で短時間かつ正確に測定できるよう
なる。赤色度の低下は鮮度の低下を示すので、本発明の
方法で測定した赤色度が16以下であれば牛肉の鮮度が
落ちていることを、赤色度が16以上であれば鮮度が良
いことを判定することができる。
By using the calibration curve of the redness (a *) of beef thus obtained, it is possible to accurately and nondestructively measure the change in the redness of beef in the distribution and retail stages in a short time. A decrease in redness indicates a decrease in freshness. Therefore, if the redness measured by the method of the present invention is 16 or less, the freshness of beef is low, and if the redness is 16 or more, the freshness is good. Can be determined.

【0031】(2)メトミオグロビン形成割合の検量線 牛肉のメトミオグロビン形成割合の検量線における2種
の波長は以下のようにして選定したものである。図3
(a)は、メトミオグロビン形成割合に対する各波長の
単相関係数を表す図である。この図から、各波長の変動
に対して単相関係数が安定している波長領域で、係数
(K1)も安定している波長を探し、かつメトミオグロ
ビンの最大吸収波長(630nm)に近い波長を求め、
624nmを第1波長として選択した。図3(b)は、
第1波長を選択した後の第2番目の波長とメトミオグロ
ビン形成割合との重相関係数を示す図である。この図か
ら、各波長の変動に対して重相関係数が安定している波
長領域で、係数(K2)も安定している波長を探し、第
2波長として1020nmを選択した(1020nmは
蛋白に帰属する波長であり、ミオグロビンは色素蛋白で
ある)。第1及び第2波長を選択した後の第3番目の波
長とメトミオグロビン形成割合との重相関係数を示す図
から、各波長の変動に対して重相関係数が安定している
波長領域で、係数(K3)も安定している波長を探し、
第3波長として698nmを選択した。第1、第2及び
第3波長を選択した後の第4番目の波長とメトミオグロ
ビン形成割合との重相関係数を示す図から、各波長の変
動に対して重相関係数が安定している波長領域で、係数
(K4)も安定している波長を探し、第4波長として5
88nmを選択した。
(2) Calibration curve for the ratio of metmyoglobin formation The two wavelengths in the calibration curve for the ratio of metmyoglobin formation of beef are selected as follows. Figure 3
(A) is a figure showing the single correlation coefficient of each wavelength with respect to the metmyoglobin formation rate. From this figure, find a wavelength in which the coefficient (K1) is stable in the wavelength region where the single correlation coefficient is stable with respect to fluctuations of each wavelength, and a wavelength close to the maximum absorption wavelength (630 nm) of metmyoglobin. Seeking
624 nm was selected as the first wavelength. Figure 3 (b) shows
It is a figure which shows the multiple correlation coefficient of the 2nd wavelength after selecting the 1st wavelength, and the metmyoglobin formation rate. From this figure, in the wavelength region where the multiple correlation coefficient is stable with respect to fluctuations of each wavelength, a wavelength having a stable coefficient (K2) is searched for, and 1020 nm is selected as the second wavelength (1020 nm is a protein Is the wavelength at which myoglobin is a chromoprotein). From the figure showing the multiple correlation coefficient between the third wavelength after selecting the first and second wavelengths and the metmyoglobin formation ratio, the wavelength region in which the multiple correlation coefficient is stable with respect to fluctuations in each wavelength Then, look for a wavelength with a stable coefficient (K3),
698 nm was selected as the third wavelength. From the figure showing the multiple correlation coefficient between the fourth wavelength and the metmyoglobin formation rate after selecting the first, second and third wavelengths, it can be seen that the multiple correlation coefficient is stable with respect to variations in each wavelength. In the existing wavelength range, search for a wavelength with a stable coefficient (K4), and set the fourth wavelength to 5
88 nm was selected.

【0032】以上4種の波長を説明変数として順次取り
入れた4種の検量線モデル(第1波長を用いた検量線、
第1及び第2波長を用いた検量線、第1、第2及び第3
波長を用いた検量線、第1、第2、第3及び第4波長を
用いた検量線)について、その精度評価を交差確認法に
より行い、検量線モデルの重相関係数の増加と交差確認
法による予測標準誤差の減少とを比較して、最少の説明
変数(波長数)でもって最も精度の良い検量線を検討し
た。結果を表2に示す。その結果、上記の第1及び第2
波長を用いた検量線を選定した。
Four calibration curve models (calibration curve using the first wavelength,
Calibration curves using first and second wavelengths, first, second and third
For a calibration curve using wavelengths, a calibration curve using the first, second, third and fourth wavelengths), the accuracy evaluation is performed by the cross-validation method, and cross-validation is performed with an increase in the multiple correlation coefficient of the calibration curve model. The most accurate calibration curve with the fewest explanatory variables (number of wavelengths) was examined by comparing with the reduction of the standard error of prediction by the method. The results are shown in Table 2. As a result, the above first and second
A calibration curve using wavelength was selected.

【0033】[0033]

【表2】 [Table 2]

【0034】図4は、縦軸に本実施例の方法による測定
値をとり、横軸に常法による分析値をとって48のサン
プル毎の測定点をプロットしたものである。その結果、
両者の測定値間の重相関係数(R)は0.989、標準
誤差(SEC)は3.06%と非常に高い相関関係を示
した。
In FIG. 4, the vertical axis represents the measured value by the method of this embodiment, and the horizontal axis represents the analytical value by the conventional method, in which the measurement points of 48 samples are plotted. as a result,
The multiple correlation coefficient (R) between both measured values was 0.989, and the standard error (SEC) was 3.06%, showing a very high correlation.

【0035】ここで例えば、第1波長として622n
m、第2波長として1018nmを選定すると、この検
量線の重相関係数は0.990、標準誤差は2.96%
となり、第1波長として626nm、第2波長として1
022nmを選定すると、この検量線の重相関係数は
0.986、標準誤差は3.42%となる。このように
第1波長、第2波長とも±2nmの範囲で変化させても
ほぼ同等の高い相関を得ることができ、係数について
も、K0=42.24〜77.33、K1=−225.
79〜−218.18、K2=676.81〜167
3.07の範囲内の値を用いれば、重相関係数0.98
6〜0.990、標準誤差2.96〜3.42%と、十
分高い相関を得ることができる。
Here, for example, the first wavelength is 622n
m, and 1018 nm is selected as the second wavelength, the multiple correlation coefficient of this calibration curve is 0.990, and the standard error is 2.96%.
Therefore, the first wavelength is 626 nm and the second wavelength is 1
When 022 nm is selected, the multiple correlation coefficient of this calibration curve is 0.986 and the standard error is 3.42%. In this way, even if the first wavelength and the second wavelength are both changed within a range of ± 2 nm, almost the same high correlation can be obtained, and the coefficients are K0 = 42.24 to 77.33 and K1 = -225.
79 to -218.18, K2 = 676.881 to 167.
If a value within the range of 3.07 is used, the multiple correlation coefficient is 0.98.
A sufficiently high correlation of 6 to 0.990 and standard error of 2.96 to 3.42% can be obtained.

【0036】こうして得られた牛肉のメトミオグロビン
形成割合の検量線を用いると、流通や小売り段階におい
て牛肉のメトミオグロビン形成割合を非破壊で短時間か
つ正確に測定できるようなる。メトミオグロビン形成割
合の増加は鮮度の低下を示すので、本発明の方法で測定
したメトミオグロビン形成割合が30%以上であれば牛
肉の鮮度が落ちていることを、メトミオグロビン形成割
合が30%以下であれば鮮度が良いことを判定すること
ができる。
By using the calibration curve of the rate of metmyoglobin formation in beef thus obtained, the rate of metmyoglobin formation in beef can be accurately measured in a short time in a non-destructive manner in the distribution and retail stages. Since an increase in the metmyoglobin formation rate indicates a decrease in freshness, if the metmyoglobin formation rate measured by the method of the present invention is 30% or more, it means that the freshness of the beef is low, and the metmyoglobin formation rate is 30% or less. If so, it can be determined that the freshness is good.

【0037】(3)脂質酸化度(TBARS)の検量線 牛肉の脂質酸化度(TBARS)の検量線における3種
の波長は以下のようにして選定したものである。図5
(a)は、TBARS値に対する各波長の単相関係数を
表す図である。この図から、各波長の変動に対して単相
関係数が安定している波長領域で、係数(K1)も安定
している波長を探し、620nmを第1波長として選択
した(牛肉の赤色度とメトミオグロビン形成割合の両第
1波長と同じ領域の波長が選択された。これは3形質が
互いに高い相関関係にあるためと考えられる)。図5
(b)は、第1波長を選択した後の第2番目の波長とT
BARS値との重相関係数を示す図である。この図か
ら、各波長の変動に対して重相関係数が安定している波
長領域で、係数(K2)も安定している波長を探し、第
2波長として978nmを選択した。図5(c)は、第
1及び第2波長を選択した後の第3番目の波長とTBA
RS値との重相関係数を示す図である。この図から、各
波長の変動に対して重相関係数が安定している波長領域
で、係数(K3)も安定している波長を探し、第3波長
として722nmを選択した。第1、第2及び第3波長
を選択した後の第4番目の波長とTBARS値との重相
関係数を示す図から、各波長の変動に対して重相関係数
が安定している波長領域で、係数(K4)も安定してい
る波長を探し、第4波長として496nmを選択した。
(3) Calibration curve of lipid oxidation degree (TBARS) Three kinds of wavelengths in the calibration curve of beef lipid oxidation degree (TBARS) are selected as follows. Figure 5
(A) is a figure showing the single correlation coefficient of each wavelength with respect to a TBARS value. From this figure, we searched for a wavelength in which the coefficient (K1) was stable in the wavelength region where the single correlation coefficient was stable with respect to changes in each wavelength, and selected 620 nm as the first wavelength (beef redness And the wavelength of metmyoglobin formation were both selected in the same region as the first wavelength (this is probably because the three traits have a high correlation with each other). Figure 5
(B) shows the second wavelength and T after the first wavelength is selected.
It is a figure which shows the multiple correlation coefficient with a BARS value. From this figure, in the wavelength region where the multiple correlation coefficient is stable with respect to fluctuations of each wavelength, a wavelength having a stable coefficient (K2) was searched for, and 978 nm was selected as the second wavelength. FIG. 5C shows the TBA and the third wavelength after selecting the first and second wavelengths.
It is a figure which shows the multiple correlation coefficient with RS value. From this figure, in the wavelength region where the multiple correlation coefficient is stable with respect to fluctuations of each wavelength, a wavelength having a stable coefficient (K3) was searched for, and 722 nm was selected as the third wavelength. From the figure showing the multiple correlation coefficient between the TBARS value and the fourth wavelength after selecting the first, second and third wavelengths, the wavelength at which the multiple correlation coefficient is stable with respect to variations in each wavelength In the region, a wavelength having a stable coefficient (K4) was searched for, and 496 nm was selected as the fourth wavelength.

【0038】以上4種の波長を説明変数として順次取り
入れた4種の検量線モデル(第1波長を用いた検量線、
第1及び第2波長を用いた検量線、第1、第2及び第3
波長を用いた検量線、第1、第2、第3及び第4波長を
用いた検量線)について、その精度評価を交差確認法に
より行い、検量線モデルの重相関係数の増加と交差確認
法による予測標準誤差の減少とを比較して、最少の説明
変数(波長数)でもって最も精度の良い検量線を検討し
た。結果を表3に示す。その結果、上記の第1、第2及
び第3波長を用いた検量線を選定した。
Four types of calibration curve models (calibration curve using the first wavelength,
Calibration curves using first and second wavelengths, first, second and third
For a calibration curve using wavelengths, a calibration curve using the first, second, third and fourth wavelengths), the accuracy evaluation is performed by the cross-validation method, and cross-validation is performed with an increase in the multiple correlation coefficient of the calibration curve model. The most accurate calibration curve with the fewest explanatory variables (number of wavelengths) was examined by comparing with the reduction of the standard error of prediction by the method. The results are shown in Table 3. As a result, a calibration curve using the above first, second and third wavelengths was selected.

【0039】[0039]

【表3】 [Table 3]

【0040】図6は、縦軸に本実施例の方法による測定
値をとり、横軸に常法による分析値をとって48のサン
プル毎の測定点をプロットしたものである。その結果、
両者の測定値間の重相関係数(R)は0.891、標準
誤差(SEC)は0.325mgMDA/kg肉と高い
相関関係を示した。
In FIG. 6, the vertical axis represents the measured value by the method of this embodiment, and the horizontal axis represents the analytical value by the conventional method, in which the measuring points for each of the 48 samples are plotted. as a result,
The multiple correlation coefficient (R) between both measured values was 0.891, and the standard error (SEC) was 0.325 mg MDA / kg, which showed a high correlation.

【0041】ここで例えば、第1波長として618n
m、第2波長として976nm、第3波長として720
nmを選定すると、この検量線の重相関係数は0.88
4、標準誤差は0.334mgMDA/kg肉となり、
第1波長として622nm、第2波長として980n
m、第3波長として724nmを選定すると、この検量
線の重相関係数は0.894、標準誤差は0.321m
gMDA/kg肉となる。このように第1波長、第2波
長、第3波長とも±2nmの範囲で変化させてもほぼ同
等の高い相関を得ることができ、係数についても、K0
=2.40〜2.90、K1=−9.78〜−8.9
9、K2=−17.77〜−16.42、K3=−5
3.52〜−30.78の範囲内の値を用いれば、重相
関係数0.884〜0.894、標準誤差0.321〜
0.334mgMDA/kg肉と、十分高い相関を得る
ことができる。
Here, for example, the first wavelength is 618n
m, the second wavelength is 976 nm, and the third wavelength is 720
When nm is selected, the multiple correlation coefficient of this calibration curve is 0.88.
4, the standard error is 0.334mg MDA / kg meat,
622 nm as the first wavelength and 980 n as the second wavelength
m and 724 nm is selected as the third wavelength, the multiple correlation coefficient of this calibration curve is 0.894 and the standard error is 0.321 m.
It becomes gMDA / kg meat. As described above, even if the first wavelength, the second wavelength, and the third wavelength are changed in the range of ± 2 nm, almost the same high correlation can be obtained, and the coefficient is K0.
= 2.40 to 2.90, K1 = -9.78 to -8.9.
9, K2 = -17.77 to -16.42, K3 = -5
If a value within the range of 3.52 to −30.78 is used, a multiple correlation coefficient of 0.884 to 0.894 and a standard error of 0.321 to
A sufficiently high correlation can be obtained with 0.334 mg MDA / kg meat.

【0042】こうして得られた牛肉の脂質酸化度(TB
ARS)の検量線を用いると、流通や小売り段階におい
て牛肉の脂質酸化度を非破壊で短時間かつ正確に測定で
きるようなる。TBARS値の増加は鮮度の低下を示す
ので、本発明の方法で測定したTBARS値が0.6m
gMDA/kg肉 以上であれば牛肉の鮮度が落ちてい
ることを、TBARS値が0.6mgMDA/kg肉
以下であれば鮮度が良いことを判定することができる。
The degree of lipid oxidation of the beef thus obtained (TB
Using the calibration curve of (ARS), it becomes possible to accurately measure the lipid oxidation degree of beef in a short period of time at the distribution and retail stages. Since an increase in TBARS value indicates a decrease in freshness, the TBARS value measured by the method of the present invention is 0.6 m.
If gMDA / kg meat or more, it means that the freshness of beef has deteriorated. TBARS value is 0.6 mg MDA / kg meat.
It can be determined that the freshness is good if it is below.

【0043】〔実施の形態2〕豚肉 (1)赤色度(a*)の検量線 豚肉の赤色度(a*)の検量線における3種の波長は以
下のようにして選定したものである。図7(a)は、a
*に対する各波長の単相関係数を示す図である。この図
から、各波長の変動に対して単相関係数が安定している
波長領域で、係数(K1)も安定している波長を探し、
588nmを第1波長として選択した。図7(b)は、
第1波長を選択した後の第2番目の波長とa*との重相
関係数を示す図である。この図から、各波長の変動に対
して重相関係数が安定している波長領域で、係数(K
2)も安定している波長を探し、第2波長として688
nmを選択した(610〜700nmは赤色の波長範囲
である)。図7(c)は、第1及び第2波長を選択した
後の第3番目の波長とa*との重相関係数を示す図であ
る。この図から、各波長の変動に対して重相関係数が安
定している波長領域で、係数(K3)も安定している波
長を探し、第3波長として556nmを選択した。第
1、第2及び第3波長を選択した後の第4番目の波長と
a*との重相関係数を示す図から、各波長の変動に対し
て重相関係数が安定している波長領域で、係数(K4)
も安定している波長を探し、第4波長として950nm
を選択した。以上4種の波長を説明変数として順次取り
入れた4種の検量線モデル(第1波長を用いた検量線、
第1及び第2波長を用いた検量線、第1、第2及び第3
波長を用いた検量線、第1、第2、第3及び第4波長を
用いた検量線)について、その精度評価を交差確認法に
より行い、検量線モデルの重相関係数の増加と交差確認
法による予測標準誤差の減少とを比較して、最少の説明
変数(波長数)でもって最も精度の良い検量線を検討し
た。結果を表4に示す。その結果、上記の第1、第2及
び第3波長を用いた検量線を選定した。
[Embodiment 2] Pork (1) Redness (a *) calibration curve Three kinds of wavelengths in the redness (a *) calibration curve of pork are selected as follows. FIG. 7A shows a
It is a figure which shows the single correlation coefficient of each wavelength with respect to *. From this figure, find the wavelength where the coefficient (K1) is stable in the wavelength region where the single correlation coefficient is stable with respect to the fluctuation of each wavelength,
588 nm was selected as the first wavelength. FIG.7 (b) is
It is a figure which shows the multiple correlation coefficient of the 2nd wavelength and a * after selecting the 1st wavelength. From this figure, in the wavelength region where the multiple correlation coefficient is stable with respect to fluctuations of each wavelength, the coefficient (K
2) also searches for a stable wavelength, and sets 688 as the second wavelength.
nm was selected (610-700 nm is the red wavelength range). FIG.7 (c) is a figure which shows the multiple correlation coefficient of the 3rd wavelength and a * after selecting the 1st and 2nd wavelength. From this figure, in the wavelength region where the multiple correlation coefficient is stable with respect to fluctuations of each wavelength, a wavelength having a stable coefficient (K3) was searched for, and 556 nm was selected as the third wavelength. From the figure showing the multiple correlation coefficient of the fourth wavelength and a * after selecting the first, second and third wavelengths, the wavelength at which the multiple correlation coefficient is stable with respect to fluctuations of each wavelength In the area, coefficient (K4)
Also looking for a stable wavelength, 950 nm as the fourth wavelength
Was selected. 4 types of calibration curve models (calibration curves using the first wavelength,
Calibration curves using first and second wavelengths, first, second and third
For a calibration curve using wavelengths, a calibration curve using the first, second, third and fourth wavelengths), the accuracy evaluation is performed by the cross-validation method, and cross-validation is performed with an increase in the multiple correlation coefficient of the calibration curve model. The most accurate calibration curve with the fewest explanatory variables (number of wavelengths) was examined by comparing with the reduction of the standard error of prediction by the method. The results are shown in Table 4. As a result, a calibration curve using the above first, second and third wavelengths was selected.

【0044】[0044]

【表4】 [Table 4]

【0045】図8は、縦軸に本実施例の方法による測定
値をとり、横軸に常法による分析値をとって96のサン
プル毎の測定点をプロットしたものである。その結果、
両者の測定値間の重相関係数(R)は0.948、標準
誤差(SEC)は0.75と非常に高い相関関係を示し
た。
In FIG. 8, the vertical axis represents the measured value by the method of the present embodiment, and the horizontal axis represents the analytical value by the conventional method, in which 96 measuring points for each sample are plotted. as a result,
The multiple correlation coefficient (R) between both measured values was 0.948, and the standard error (SEC) was 0.75, showing a very high correlation.

【0046】ここで例えば、第1波長として586n
m、第2波長として686nm、第3波長として554
nmを選定すると、この検量線の重相関係数は0.94
8、標準誤差は0.76となり、第1波長として590
nm、第2波長として690nm、第3波長として55
8nmを選定すると、この検量線の重相関係数は0.9
34、標準誤差は0.85となる。このように第1波
長、第2波長、第3波長とも±2nmの範囲で変化させ
てもほぼ同等の高い相関を得ることができ、係数につい
ても、K0=−1.77〜−0.44、K1=−35.
67〜−26.95、K2=40.51〜46.07、
K3=−16.59〜−15.57の範囲内の値を用い
れば、重相関係数0.934〜0.948、標準誤差
0.75〜0.85と、十分高い相関を得ることができ
る。
Here, for example, the first wavelength is 586n.
m, the second wavelength is 686 nm, the third wavelength is 554
When nm is selected, the multiple correlation coefficient of this calibration curve is 0.94.
8. The standard error is 0.76, and the first wavelength is 590.
nm, the second wavelength is 690 nm, and the third wavelength is 55
When 8 nm is selected, the multiple correlation coefficient of this calibration curve is 0.9
34, and the standard error is 0.85. In this way, even if the first wavelength, the second wavelength, and the third wavelength are changed in the range of ± 2 nm, almost the same high correlation can be obtained, and the coefficient K0 = -1.77 to -0.44. , K1 = −35.
67 to -26.95, K2 = 40.51 to 46.07,
If a value within the range of K3 = -16.59 to -15.57 is used, a sufficiently high correlation with a multiple correlation coefficient of 0.934 to 0.948 and a standard error of 0.75 to 0.85 can be obtained. it can.

【0047】こうして得られた豚肉の赤色度(a*)の
検量線を用いると、流通や小売り段階において豚肉の赤
色度の変化を非破壊で短時間かつ正確に測定できるよう
なる。赤色度の低下は鮮度の低下を示すので、本発明の
方法で測定した赤色度が6以下であれば豚肉の鮮度が落
ちていることを、赤色度が6以上であれば鮮度が良いこ
とを判定することができる。
By using the calibration curve of the redness (a *) of pork thus obtained, the change in the redness of pork can be measured non-destructively and accurately in a short time in the distribution and retail stages. A decrease in redness indicates a decrease in freshness. Therefore, if the redness measured by the method of the present invention is 6 or less, it means that the pork is not fresh, and if the redness is 6 or more, the freshness is good. Can be determined.

【0048】(2)メトミオグロビン形成割合の検量線 豚肉のメトミオグロビン形成割合の検量線における3種
の波長は以下のようにして選定したものである。図9
(a)は、メトミオグロビン形成割合に対する各波長の
単相関係数を表す図である。この図から、各波長の変動
に対して単相関係数が安定している波長領域で、係数
(K1)も安定している波長を探し、616nmを第1
波長として選択した。図9(b)は、第1波長を選択し
た後の第2番目の波長とメトミオグロビン形成割合との
重相関係数を示す図である。この図から、各波長の変動
に対して重相関係数が安定している波長領域で、係数
(K2)も安定している波長を探し、第2波長として6
94nmを選択した。図9(c)は、第1及び第2波長
を選択した後の第3番目の波長とメトミオグロビン形成
割合との重相関係数を示す図である。この図から、各波
長の変動に対して重相関係数が安定している波長領域
で、係数(K3)も安定している波長を探し、第3波長
として744nmを選択した。第1、第2及び第3波長
を選択した後の第4番目の波長とメトミオグロビン形成
割合との重相関係数を示す図から、各波長の変動に対し
て重相関係数が安定している波長領域で、係数(K4)
も安定している波長を探し、第4波長として658nm
を選択した。以上4種の波長を説明変数として順次取り
入れた4種の検量線モデル(第1波長を用いた検量線、
第1及び第2波長を用いた検量線、第1、第2及び第3
波長を用いた検量線、第1、第2、第3及び第4波長を
用いた検量線)について、その精度評価を交差確認法に
より行い、検量線モデルの重相関係数の増加と交差確認
法による予測標準誤差の減少とを比較して、最少の説明
変数(波長数)でもって最も精度の良い検量線を検討し
た。結果を表5に示す。その結果、上記の第1、第2及
び第3波長を用いた検量線を選定した。
(2) Calibration curve for the rate of metmyoglobin formation The three wavelengths in the calibration curve for the rate of metmyoglobin formation of pork are selected as follows. Figure 9
(A) is a figure showing the single correlation coefficient of each wavelength with respect to the metmyoglobin formation rate. From this figure, in the wavelength region where the single correlation coefficient is stable with respect to the fluctuation of each wavelength, the wavelength where the coefficient (K1) is also stable is searched for, and 616 nm is set as the first wavelength.
Selected as wavelength. FIG. 9B is a diagram showing a multiple correlation coefficient between the second wavelength after selecting the first wavelength and the metmyoglobin formation rate. From this figure, in the wavelength region where the multiple correlation coefficient is stable with respect to the fluctuation of each wavelength, the wavelength where the coefficient (K2) is also stable is searched for, and the second wavelength is 6
94 nm was selected. FIG. 9C is a diagram showing a multiple correlation coefficient between the third wavelength and the metmyoglobin formation rate after selecting the first and second wavelengths. From this figure, a wavelength in which the coefficient (K3) is stable is searched for in the wavelength region in which the multiple correlation coefficient is stable with respect to fluctuations in each wavelength, and 744 nm is selected as the third wavelength. From the figure showing the multiple correlation coefficient between the fourth wavelength and the metmyoglobin formation rate after selecting the first, second and third wavelengths, it can be seen that the multiple correlation coefficient is stable with respect to variations in each wavelength. Coefficient (K4)
Also find a stable wavelength, 658nm as the fourth wavelength
Was selected. 4 types of calibration curve models (calibration curves using the first wavelength,
Calibration curves using first and second wavelengths, first, second and third
For a calibration curve using wavelengths, a calibration curve using the first, second, third and fourth wavelengths), the accuracy evaluation is performed by the cross-validation method, and cross-validation is performed with an increase in the multiple correlation coefficient of the calibration curve model. The most accurate calibration curve with the fewest explanatory variables (number of wavelengths) was examined by comparing with the reduction of the standard error of prediction by the method. The results are shown in Table 5. As a result, a calibration curve using the above first, second and third wavelengths was selected.

【0049】[0049]

【表5】 [Table 5]

【0050】図10は、縦軸に本実施例の方法による測
定値をとり、横軸に常法による分析値をとって96のサ
ンプル毎の測定点をプロットしたものである。その結
果、両者の測定値間の重相関係数(R)は0.965、
標準誤差(SEC)は4.50%と非常に高い相関関係
を示した。
In FIG. 10, the vertical axis represents the measured value by the method of this embodiment, and the horizontal axis represents the analytical value by the conventional method, in which 96 measurement points for each sample are plotted. As a result, the multiple correlation coefficient (R) between both measured values was 0.965,
The standard error (SEC) was 4.50%, which was a very high correlation.

【0051】ここで例えば、第1波長として614n
m、第2波長として692nm、第3波長として742
nmを選定すると、この検量線の重相関係数は0.96
5、標準誤差は4.51%となり、第1波長として61
8nm、第2波長として696nm、第3波長として7
46nmを選定すると、この検量線の重相関係数は0.
956、標準誤差は5.03%となる。このように第1
波長、第2波長、第3波長とも±2nmの範囲で変化さ
せてもほぼ同等の高い相関を得ることができ、係数につ
いても、K0=51.28〜61.10、K1=−20
4.22〜−191.43、K2=381.67〜44
5.55、K3=613.28〜1901.96の範囲
内の値を用いれば、重相関係数0.956〜0.96
5、標準誤差4.50〜5.03%と、十分高い相関を
得ることができる。
Here, for example, the first wavelength is 614n
m, the second wavelength is 692 nm, the third wavelength is 742
When nm is selected, the multiple correlation coefficient of this calibration curve is 0.96.
5. The standard error is 4.51%, which is 61 as the first wavelength.
8 nm, second wavelength is 696 nm, third wavelength is 7
When 46 nm is selected, the multiple correlation coefficient of this calibration curve is 0.
956, the standard error is 5.03%. Like this first
Even if the wavelength, the second wavelength, and the third wavelength are changed in a range of ± 2 nm, almost the same high correlation can be obtained, and the coefficients are K0 = 51.28 to 61.10 and K1 = -20.
4.22--191.43, K2 = 381.67-44
If a value within the range of 5.55, K3 = 613.28 to 1901.96 is used, the multiple correlation coefficient is 0.956 to 0.96.
5, a sufficiently high correlation with a standard error of 4.50 to 5.03% can be obtained.

【0052】こうして得られた豚肉のメトミオグロビン
形成割合の検量線を用いると、流通や小売り段階におい
て豚肉のメトミオグロビン形成割合を非破壊で短時間か
つ正確に測定できるようなる。メトミオグロビン形成割
合の増加は鮮度の低下を示すので、本発明の方法で測定
したメトミオグロビン形成割合が60%以上であれば豚
肉の鮮度が落ちていることを、メトミオグロビン形成割
合が60%以下であれば鮮度が良いことを判定すること
ができる。
By using the calibration curve of the rate of metmyoglobin formation in pork thus obtained, the rate of metmyoglobin formation in pork can be measured non-destructively and accurately in a distribution or retail stage. Since an increase in the metmyoglobin formation rate indicates a decrease in freshness, if the metmyoglobin formation rate measured by the method of the present invention is 60% or more, it means that the pork freshness is low, and the metmyoglobin formation rate is 60% or less. If so, it can be determined that the freshness is good.

【0053】(3)脂質酸化度(TBARS)の検量線 豚肉の脂質酸化度(TBARS)の検量線における4種
の波長は以下のようにして選定したものである。図11
(a)は、TBARS値に対する各波長の単相関係数を
表す図である。この図から、各波長の変動に対して単相
関係数が安定している波長領域で、係数(K1)も安定
している波長を探し、604nmを第1波長として選択
した。図11(b)は、第1波長を選択した後の第2番
目の波長とTBARS値との重相関係数を示す図であ
る。この図から、各波長の変動に対して重相関係数が安
定している波長領域で、係数(K2)も安定している波
長を探し、第2波長として934nmを選択した。図1
1(c)は、第1及び第2波長を選択した後の第3番目
の波長とTBARS値との重相関係数を示す図である。
この図から、各波長の変動に対して重相関係数が安定し
ている波長領域で、係数(K3)も安定している波長を
探し、第3波長として480nmを選択した。図11
(d)は、第1、第2及び第3波長を選択した後の第4
番目の波長とTBARS値との重相関係数を示す図であ
る。この図から、各波長の変動に対して重相関係数が安
定している波長領域で、係数(K4)も安定している波
長を探し、第4波長として748nmを選択した。
(3) Calibration curve of lipid oxidation degree (TBARS) The four kinds of wavelengths in the calibration curve of lipid oxidation degree (TBARS) of pork are selected as follows. Figure 11
(A) is a figure showing the single correlation coefficient of each wavelength with respect to a TBARS value. From this figure, a wavelength in which the coefficient (K1) is stable is searched for in a wavelength region in which the single correlation coefficient is stable with respect to fluctuations in each wavelength, and 604 nm is selected as the first wavelength. FIG. 11B is a diagram showing a multiple correlation coefficient between the second wavelength after selecting the first wavelength and the TBARS value. From this figure, in the wavelength region where the multiple correlation coefficient is stable with respect to fluctuations of each wavelength, a wavelength having a stable coefficient (K2) was searched for, and 934 nm was selected as the second wavelength. Figure 1
FIG. 1 (c) is a diagram showing a multiple correlation coefficient between the TBARS value and the third wavelength after selecting the first and second wavelengths.
From this figure, a wavelength in which the coefficient (K3) is stable is searched for in the wavelength region in which the multiple correlation coefficient is stable with respect to changes in each wavelength, and 480 nm is selected as the third wavelength. Figure 11
(D) shows the fourth wavelength after selecting the first, second and third wavelengths.
It is a figure which shows the multiple correlation coefficient of the th wavelength and TBARS value. From this figure, a wavelength in which the coefficient (K4) is stable is searched for in the wavelength region in which the multiple correlation coefficient is stable with respect to fluctuations in each wavelength, and 748 nm is selected as the fourth wavelength.

【0054】以上4種の波長を説明変数として順次取り
入れた4種の検量線モデル(第1波長を用いた検量線、
第1及び第2波長を用いた検量線、第1、第2及び第3
波長を用いた検量線、第1、第2、第3及び第4波長を
用いた検量線)について、その精度評価を交差確認法に
より行い、検量線モデルの重相関係数の増加と交差確認
法による予測標準誤差の減少とを比較して、最少の説明
変数(波長数)でもって最も精度の良い検量線を検討し
た。結果を表6に示す。その結果、上記の第1、第2、
第3及び第4波長を用いた検量線を選定した。
The above-mentioned four calibration curve models (calibration curve using the first wavelength,
Calibration curves using first and second wavelengths, first, second and third
For a calibration curve using wavelengths, a calibration curve using the first, second, third and fourth wavelengths), the accuracy evaluation is performed by the cross-validation method, and cross-validation is performed with an increase in the multiple correlation coefficient of the calibration curve model. The most accurate calibration curve with the fewest explanatory variables (number of wavelengths) was examined by comparing with the reduction of the standard error of prediction by the method. The results are shown in Table 6. As a result, the above first, second,
A calibration curve using the third and fourth wavelengths was selected.

【0055】[0055]

【表6】 [Table 6]

【0056】図12は、縦軸に本実施例の方法による測
定値をとり、横軸に常法による分析値をとって96のサ
ンプル毎の測定点をプロットしたものである。その結
果、両者の測定値間の重相関係数(R)は0.840、
標準誤差(SEC)は0.106mgMDA/kg肉と
高い相関関係を示した。
In FIG. 12, the vertical axis represents the measured value by the method of this embodiment, and the horizontal axis represents the analytical value by the conventional method, in which the measuring points for each of the 96 samples are plotted. As a result, the multiple correlation coefficient (R) between both measured values was 0.840,
The standard error (SEC) was highly correlated with 0.106 mg MDA / kg meat.

【0057】ここで例えば、第1波長として602n
m、第2波長として932nm、第3波長として478
nm、第4波長として746nmを選定すると、この検
量線の重相関係数は0.821、標準誤差は0.112
mgMDA/kg肉となり、第1波長として606n
m、第2波長として936nm、第3波長として482
nm、第4波長として750nmを選定すると、この検
量線の重相関係数は0.817、標準誤差は0.113
mgMDA/kg肉となる。このように第1波長、第2
波長、第3波長、第4波長とも±2nmの範囲で変化さ
せてもほぼ同等の高い相関を得ることができ、係数につ
いても、K0=1.05〜1.21、K1=−2.53
〜−2.31、K2=−6.41〜−3.95、K3=
−0.42〜−0.11、K4=10.04〜19.8
5の範囲内の値を用いれば、重相関係数は0.817〜
0.840、標準誤差0.106〜0.113mgMD
A/kg肉と、十分高い相関を得ることができる。
Here, for example, the first wavelength is 602n
m, the second wavelength is 932 nm, and the third wavelength is 478.
nm and 746 nm as the fourth wavelength, the multiple correlation coefficient of this calibration curve is 0.821 and the standard error is 0.112.
mg MDA / kg meat, 606n as the first wavelength
m, the second wavelength is 936 nm, and the third wavelength is 482.
nm, and when 750 nm is selected as the fourth wavelength, the multiple correlation coefficient of this calibration curve is 0.817 and the standard error is 0.113.
It becomes mg MDA / kg meat. In this way, the first wavelength, the second
Even if the wavelength, the third wavelength, and the fourth wavelength are changed within a range of ± 2 nm, almost the same high correlation can be obtained, and the coefficients are K0 = 1.05 to 1.21 and K1 = −2.53.
~ -2.31, K2 = -6.41 to -3.95, K3 =
-0.42 to -0.11, K4 = 10.04 to 19.8
If a value within the range of 5 is used, the multiple correlation coefficient is 0.817-
0.840, standard error 0.106 to 0.113 mg MD
A sufficiently high correlation with A / kg meat can be obtained.

【0058】こうして得られた豚肉の脂質酸化度(TB
ARS)の検量線を用いると、流通や小売り段階におい
て豚肉の脂質酸化度を非破壊で短時間かつ正確に測定で
きるようなる。TBARS値の増加は鮮度の低下を示す
ので、本発明の方法で測定したTBARS値が0.6m
gMDA/kg肉 以上であれば豚肉の鮮度が落ちてい
ることを、TBARS値が0.6mgMDA/kg肉
以下であれば鮮度が良いことを判定することができる。
The degree of lipid oxidation of the pork thus obtained (TB
Using the calibration curve of (ARS), it becomes possible to accurately measure the lipid oxidation degree of pork in a short time in a distribution or retail stage. Since an increase in TBARS value indicates a decrease in freshness, the TBARS value measured by the method of the present invention is 0.6 m.
If gMDA / kg meat or more, pork is not fresh, TBARS value is 0.6 mg MDA / kg meat
It can be determined that the freshness is good if it is below.

【0059】〔実施の形態3〕鶏肉 (1)赤色度(a*)の検量線 鶏肉の赤色度(a*)の検量線における3種の波長は以
下のようにして選定したものである。図13(a)は、
a*に対する各波長の単相関係数を示す図である。この
図から、各波長の変動に対して単相関係数が安定してい
る波長領域で、係数(K1)も安定している波長を探
し、576nmを第1波長として選択した。図13
(b)は、第1波長を選択した後の第2番目の波長とa
*との重相関係数を示す図である。この図から、各波長
の変動に対して重相関係数が安定している波長領域で、
係数(K2)も安定している波長を探し、第2波長とし
て462nmを選択した。図13(c)は、第1及び第
2波長を選択した後の第3番目の波長とa*との重相関
係数を示す図である。この図から、各波長の変動に対し
て重相関係数が安定している波長領域で、係数(K3)
も安定している波長を探し、第3波長として1018n
mを選択した。第1、第2及び第3波長を選択した後の
第4番目の波長とa*との重相関係数を示す図から、各
波長の変動に対して重相関係数が安定している波長領域
で、係数(K4)も安定している波長を探し、第4波長
として738nmを選択した。以上4種の波長を説明変
数として順次取り入れた4種の検量線モデル(第1波長
を用いた検量線、第1及び第2波長を用いた検量線、第
1、第2及び第3波長を用いた検量線、第1、第2、第
3及び第4波長を用いた検量線)について、その精度評
価を交差確認法により行い、検量線モデルの重相関係数
の増加と交差確認法による予測標準誤差の減少とを比較
して、最少の説明変数(波長数)でもって最も精度の良
い検量線を検討した。結果を表7に示す。その結果、上
記の第1、第2及び第3波長を用いた検量線を選定し
た。
[Embodiment 3] Chicken (1) Standard curve of redness (a *) The three kinds of wavelengths in the calibration curve of redness (a *) of chicken are selected as follows. FIG. 13A shows
It is a figure which shows the single correlation coefficient of each wavelength with respect to a *. From this figure, a wavelength in which the coefficient (K1) is stable is searched for in a wavelength region in which the single correlation coefficient is stable with respect to fluctuations in each wavelength, and 576 nm is selected as the first wavelength. FIG.
(B) is the second wavelength after selecting the first wavelength and a
It is a figure which shows the multiple correlation coefficient with *. From this figure, in the wavelength region where the multiple correlation coefficient is stable with respect to fluctuations of each wavelength
A wavelength having a stable coefficient (K2) was searched for, and 462 nm was selected as the second wavelength. FIG. 13C is a diagram showing a multiple correlation coefficient between the third wavelength and a * after selecting the first and second wavelengths. From this figure, coefficient (K3)
Also looking for a stable wavelength, 1018n as the third wavelength
m was selected. From the figure showing the multiple correlation coefficient of the fourth wavelength and a * after selecting the first, second and third wavelengths, the wavelength at which the multiple correlation coefficient is stable with respect to fluctuations of each wavelength In the region, a wavelength having a stable coefficient (K4) was searched for, and 738 nm was selected as the fourth wavelength. The four types of calibration curve models that sequentially incorporate the above four types of wavelengths as explanatory variables (the calibration line using the first wavelength, the calibration line using the first and second wavelengths, the first, second and third wavelengths For the calibration curve used, the calibration curve using the first, second, third, and fourth wavelengths), the accuracy is evaluated by the cross-validation method, and the increase of the multiple correlation coefficient of the calibration curve model and the cross-validation method are used. The most accurate calibration curve with the least explanatory variables (number of wavelengths) was examined by comparing with the decrease of the prediction standard error. The results are shown in Table 7. As a result, a calibration curve using the above first, second and third wavelengths was selected.

【0060】[0060]

【表7】 [Table 7]

【0061】図14は、縦軸に本実施例の方法による測
定値をとり、横軸に常法による分析値をとって24のサ
ンプル毎の測定点をプロットしたものである。その結
果、両者の測定値間の重相関係数(R)は0.869、
標準誤差(SEC)は0.43と高い相関関係を示し
た。
In FIG. 14, the vertical axis represents the measured value by the method of this embodiment and the horizontal axis represents the analytical value by the conventional method, and the 24 measured points for each sample are plotted. As a result, the multiple correlation coefficient (R) between both measured values was 0.869,
The standard error (SEC) was 0.43, indicating a high correlation.

【0062】ここで例えば、第1波長として574n
m、第2波長として460nm、第3波長として101
6nmを選定すると、この検量線の重相関係数は0.8
44、標準誤差は0.46となり、第1波長として57
8nm、第2波長として464nm、第3波長として1
020nmを選定すると、この検量線の重相関係数は
0.869、標準誤差は0.43となる。このように第
1波長、第2波長、第3波長とも±2nmの範囲で変化
させてもほぼ同等の高い相関を得ることができ、係数に
ついても、K0=3.87〜4.73、K1=−31.
48〜−18.47、K2=−14.70〜−12.4
3、K3=167.13〜395.84の範囲内の値を
用いれば、重相関係数0.844〜0.869、標準誤
差0.43〜0.46と、十分高い相関を得ることがで
きる。
Here, for example, the first wavelength is 574n.
m, the second wavelength is 460 nm, the third wavelength is 101
When 6 nm is selected, the multiple correlation coefficient of this calibration curve is 0.8
44, the standard error is 0.46, and the first wavelength is 57.
8 nm, second wavelength is 464 nm, third wavelength is 1
When 020 nm is selected, the multiple correlation coefficient of this calibration curve is 0.869 and the standard error is 0.43. As described above, even if the first wavelength, the second wavelength, and the third wavelength are changed in the range of ± 2 nm, substantially the same high correlation can be obtained, and the coefficients are K0 = 3.87 to 4.73 and K1. = -31.
48 to -18.47, K2 = -14.70 to -12.4
3, K3 = 167.13 to 395.84 is used, it is possible to obtain a sufficiently high correlation with a multiple correlation coefficient of 0.844 to 0.869 and a standard error of 0.43 to 0.46. it can.

【0063】こうして得られた鶏肉の赤色度(a*)の
検量線を用いると、流通や小売り段階において鶏肉の赤
色度の変化を非破壊で短時間かつ正確に測定できるよう
なる。赤色度の低下は鮮度の低下を示すので、本発明の
方法で測定した赤色度が3以下であれば鶏肉の鮮度が落
ちていることを、赤色度が3以上であれば鮮度が良いこ
とを判定することができる。
By using the calibration curve of the redness (a *) of chicken thus obtained, it becomes possible to accurately and nondestructively measure the change in redness of chicken in a distribution or retail stage in a short time. Since a decrease in redness indicates a decrease in freshness, if the redness measured by the method of the present invention is 3 or less, the freshness of chicken is low, and if the redness is 3 or more, the freshness is good. Can be determined.

【0064】(2)メトミオグロビン形成割合の検量線 鶏肉のメトミオグロビン形成割合の検量線における3種
の波長は以下のようにして選定したものである。図15
(a)は、メトミオグロビン形成割合に対する各波長の
単相関係数を表す図である。この図から、各波長の変動
に対して単相関係数が安定している波長領域で、係数
(K1)も安定している波長を探し、618nmを第1
波長として選択した(豚肉のメトミオグロビン形成割合
の第1波長と同じ領域の波長が選択された)。図15
(b)は、第1波長を選択した後の第2番目の波長とメ
トミオグロビン形成割合との重相関係数を示す図であ
る。この図から、各波長の変動に対して重相関係数が安
定している波長領域で、係数(K2)も安定している波
長を探し、第2波長として998nmを選択した。図1
5(c)は、第1及び第2波長を選択した後の第3番目
の波長とメトミオグロビン形成割合との重相関係数を示
す図である。この図から、各波長の変動に対して重相関
係数が安定している波長領域で、係数(K3)も安定し
ている波長を探し、第3波長として832nmを選択し
た。第1、第2及び第3波長を選択した後の第4番目の
波長とメトミオグロビン形成割合との重相関係数を示す
図から、各波長の変動に対して重相関係数が安定してい
る波長領域で、係数(K4)も安定している波長を探
し、第4波長として538nmを選択した。以上4種の
波長を説明変数として順次取り入れた4種の検量線モデ
ル(第1波長を用いた検量線、第1及び第2波長を用い
た検量線、第1、第2及び第3波長を用いた検量線、第
1、第2、第3及び第4波長を用いた検量線)につい
て、その精度評価を交差確認法により行い、検量線モデ
ルの重相関係数の増加と交差確認法による予測標準誤差
の減少とを比較して、最少の説明変数(波長数)でもっ
て最も精度の良い検量線を検討した。結果を表8に示
す。その結果、上記の第1、第2及び第3波長を用いた
検量線を選定した。
(2) Calibration curve of metmyoglobin formation rate The three wavelengths in the calibration curve of metmyoglobin formation rate of chicken are selected as follows. Figure 15
(A) is a figure showing the single correlation coefficient of each wavelength with respect to the metmyoglobin formation rate. From this figure, in the wavelength region in which the single correlation coefficient is stable with respect to fluctuations in each wavelength, the wavelength in which the coefficient (K1) is also stable is searched for, and 618 nm is set as the first wavelength.
The wavelength was selected (the wavelength in the same region as the first wavelength of the metmyoglobin formation rate of pork was selected). Figure 15
(B) is a figure which shows the multiple correlation coefficient of the 2nd wavelength after selecting the 1st wavelength, and the metmyoglobin formation rate. From this figure, in the wavelength region where the multiple correlation coefficient is stable with respect to fluctuations of each wavelength, a wavelength having a stable coefficient (K2) was searched for, and 998 nm was selected as the second wavelength. Figure 1
FIG. 5C is a diagram showing a multiple correlation coefficient between the third wavelength after selecting the first and second wavelengths and the metmyoglobin formation rate. From this figure, in the wavelength region where the multiple correlation coefficient is stable with respect to fluctuations of each wavelength, a wavelength having a stable coefficient (K3) was searched for, and 832 nm was selected as the third wavelength. From the figure showing the multiple correlation coefficient between the fourth wavelength and the metmyoglobin formation rate after selecting the first, second and third wavelengths, it can be seen that the multiple correlation coefficient is stable with respect to variations in each wavelength. In the existing wavelength region, a wavelength having a stable coefficient (K4) was searched for, and 538 nm was selected as the fourth wavelength. The four types of calibration curve models that sequentially incorporate the above four types of wavelengths as explanatory variables (the calibration line using the first wavelength, the calibration line using the first and second wavelengths, the first, second and third wavelengths For the calibration curve used, the calibration curve using the first, second, third, and fourth wavelengths), the accuracy is evaluated by the cross-validation method, and the increase of the multiple correlation coefficient of the calibration curve model and the cross-validation method are used. The most accurate calibration curve with the least explanatory variables (number of wavelengths) was examined by comparing with the decrease of the prediction standard error. The results are shown in Table 8. As a result, a calibration curve using the above first, second and third wavelengths was selected.

【0065】[0065]

【表8】 [Table 8]

【0066】図16は、縦軸に本実施例の方法による測
定値をとり、横軸に常法による分析値をとって24のサ
ンプル毎の測定点をプロットしたものである。その結
果、両者の測定値間の重相関係数(R)は0.972、
標準誤差(SEC)は2.44%と非常に高い相関関係
を示した。
In FIG. 16, the ordinate represents the measured value by the method of this embodiment and the abscissa represents the analytical value by the conventional method, and the measured points for each of the 24 samples are plotted. As a result, the multiple correlation coefficient (R) between both measured values was 0.972,
The standard error (SEC) was 2.44%, which is a very high correlation.

【0067】ここで例えば、第1波長として616n
m、第2波長として996nm、第3波長として830
nmを選定すると、この検量線の重相関係数は0.97
1、標準誤差は2.49%となり、第1波長として62
0nm、第2波長として1000nm、第3波長として
834nmを選定すると、この検量線の重相関係数は
0.954、標準誤差は3.12%となる。このように
第1波長、第2波長、第3波長とも±2nmの範囲で変
化させてもほぼ同等の高い相関を得ることができ、係数
についても、K0=30.31〜38.76、K1=−
343.08〜−278.65、K2=−1065.7
3〜−895.98、K3=−5067.40〜−37
53.50の範囲内の値を用いれば、重相関係数0.9
54〜0.972、標準誤差2.44〜3.12%と、
十分高い相関を得ることができる。
Here, for example, the first wavelength is 616n
m, the second wavelength is 996 nm, the third wavelength is 830
When nm is selected, the multiple correlation coefficient of this calibration curve is 0.97.
1, the standard error is 2.49%, 62 as the first wavelength
When 0 nm, the second wavelength is 1000 nm, and the third wavelength is 834 nm, the multiple correlation coefficient of this calibration curve is 0.954 and the standard error is 3.12%. In this way, even if the first wavelength, the second wavelength, and the third wavelength are changed in the range of ± 2 nm, almost the same high correlation can be obtained, and the coefficients K0 = 30.31 to 38.76, K1. =-
343.08 to -278.65, K2 = -1065.7.
3 to -895.98, K3 = -5067.40 to -37.
If a value within the range of 53.50 is used, the multiple correlation coefficient is 0.9.
54 to 0.972, standard error 2.44 to 3.12%,
A sufficiently high correlation can be obtained.

【0068】こうして得られた鶏肉のメトミオグロビン
形成割合の検量線を用いると、流通や小売り段階におい
て鶏肉のメトミオグロビン形成割合を非破壊で短時間か
つ正確に測定できるようなる。メトミオグロビン形成割
合の増加は鮮度の低下を示すので、本発明の方法で測定
したメトミオグロビン形成割合が50%以上であれば鶏
肉の鮮度が落ちていることを、メトミオグロビン形成割
合が50%以下であれば鮮度が良いことを判定すること
ができる。
By using the calibration curve of the rate of metmyoglobin formation of chicken thus obtained, the rate of metmyoglobin formation of chicken can be accurately measured in a short time in a non-destructive manner at the distribution or retail stage. Since an increase in the metmyoglobin formation rate indicates a decrease in freshness, if the metmyoglobin formation rate measured by the method of the present invention is 50% or more, it means that the chicken's freshness is low, and the metmyoglobin formation rate is 50% or less. If so, it can be determined that the freshness is good.

【0069】(3)脂質酸化度(TBARS)の検量線 鶏肉の脂質酸化度(TBARS)の検量線における3種
の波長は以下のようにして選定したものである。図17
(a)は、TBARS値に対する各波長の単相関係数を
表す図である。この図から、各波長の変動に対して単相
関係数が安定している波長領域で、係数(K1)も安定
している波長を探し、626nmを第1波長として選択
した。図17(b)は、第1波長を選択した後の第2番
目の波長とTBARS値との重相関係数を示す図であ
る。この図から、各波長の変動に対して重相関係数が安
定している波長領域で、係数(K2)も安定している波
長を探し、第2波長として552nmを選択した。図1
7(c)は、第1及び第2波長を選択した後の第3番目
の波長とTBARS値との重相関係数を示す図である。
この図から、各波長の変動に対して重相関係数が安定し
ている波長領域で、係数(K3)も安定している波長を
探し、第3波長として832nmを選択した。第1、第
2及び第3波長を選択した後の第4番目の波長とTBA
RS値との重相関係数を示す図から、各波長の変動に対
して重相関係数が安定している波長領域で、係数(K
4)も安定している波長を探し、第4波長として670
nmを選択した。以上4種の波長を説明変数として順次
取り入れた4種の検量線モデル(第1波長を用いた検量
線、第1及び第2波長を用いた検量線、第1、第2及び
第3波長を用いた検量線、第1、第2、第3及び第4波
長を用いた検量線)について、その精度評価を交差確認
法により行い、検量線モデルの重相関係数の増加と交差
確認法による予測標準誤差の減少とを比較して、最少の
説明変数(波長数)でもって最も精度の良い検量線を検
討した。結果を表9に示す。その結果、上記の第1、第
2及び第3波長を用いた検量線を選定した。
(3) Calibration curve of lipid oxidation degree (TBARS) Three kinds of wavelengths in the calibration curve of lipid oxidation degree (TBARS) of chicken are selected as follows. FIG. 17
(A) is a figure showing the single correlation coefficient of each wavelength with respect to a TBARS value. From this figure, a wavelength in which the coefficient (K1) is stable is searched for in a wavelength region in which the single correlation coefficient is stable with respect to changes in each wavelength, and 626 nm is selected as the first wavelength. FIG.17 (b) is a figure which shows the multiple correlation coefficient of the 2nd wavelength after selecting a 1st wavelength, and a TBARS value. From this figure, a wavelength in which the coefficient (K2) is stable is searched for in the wavelength region in which the multiple correlation coefficient is stable with respect to variations in each wavelength, and 552 nm is selected as the second wavelength. Figure 1
FIG. 7C is a diagram showing a multiple correlation coefficient between the TBARS value and the third wavelength after selecting the first and second wavelengths.
From this figure, in the wavelength region where the multiple correlation coefficient is stable with respect to fluctuations of each wavelength, a wavelength having a stable coefficient (K3) was searched for, and 832 nm was selected as the third wavelength. TBA with 4th wavelength after selecting 1st, 2nd and 3rd wavelength
From the figure showing the multiple correlation coefficient with the RS value, the coefficient (K
4) also searches for a stable wavelength, and sets 670 as the fourth wavelength.
nm was selected. The four types of calibration curve models that sequentially incorporate the above four types of wavelengths as explanatory variables (the calibration line using the first wavelength, the calibration line using the first and second wavelengths, the first, second and third wavelengths For the calibration curve used, the calibration curve using the first, second, third, and fourth wavelengths), the accuracy is evaluated by the cross-validation method, and the increase of the multiple correlation coefficient of the calibration curve model and the cross-validation method are used. The most accurate calibration curve with the least explanatory variables (number of wavelengths) was examined by comparing with the decrease of the prediction standard error. The results are shown in Table 9. As a result, a calibration curve using the above first, second and third wavelengths was selected.

【0070】[0070]

【表9】 [Table 9]

【0071】図18は、縦軸に本実施例の方法による測
定値をとり、横軸に常法による分析値をとって24のサ
ンプル毎の測定点をプロットしたものである。その結
果、両者の測定値間の重相関係数(R)は0.669、
標準誤差(SEC)は0.330mgMDA/kg肉と
少し低い相関関係を示した。
In FIG. 18, the vertical axis represents the measured value by the method of this embodiment and the horizontal axis represents the analytical value by the ordinary method, and the measurement points for each of the 24 samples are plotted. As a result, the multiple correlation coefficient (R) between both measured values was 0.669,
Standard error (SEC) showed a slightly lower correlation with 0.330 mg MDA / kg meat.

【0072】ここで例えば、第1波長として624n
m、第2波長として550nm、第3波長として830
nmを選定すると、この検量線の重相関係数は0.69
6、標準誤差は0.319mgMDA/kg肉となり、
第1波長として628nm、第2波長として554n
m、第3波長として834nmを選定すると、この検量
線の重相関係数は0.615、標準誤差は0.350m
gMDA/kg肉となる。このように第1波長、第2波
長、第3波長とも±2nmの範囲で変化させてもほぼ同
等の高い相関を得ることができ、係数についても、K0
=−1.43〜0.29、K1=−22.34〜−1
7.11、K2=−15.55〜−9.53、K3=3
92.02〜456.21の範囲内の値を用いれば、重
相関係数0.615〜0.696、標準誤差0.319
〜0.350mgMDA/kg肉と、十分高い相関を得
ることができる。
Here, for example, the first wavelength is 624n.
m, the second wavelength is 550 nm, the third wavelength is 830
When nm is selected, the multiple correlation coefficient of this calibration curve is 0.69.
6. The standard error is 0.319mg MDA / kg meat,
628 nm as the first wavelength and 554n as the second wavelength
m and 834 nm is selected as the third wavelength, the multiple correlation coefficient of this calibration curve is 0.615 and the standard error is 0.350 m.
It becomes gMDA / kg meat. As described above, even if the first wavelength, the second wavelength, and the third wavelength are changed in the range of ± 2 nm, almost the same high correlation can be obtained, and the coefficient is K0.
= -1.43 to 0.29, K1 = -22.34 to -1
7.11, K2 = -15.55 to -9.53, K3 = 3
If a value within the range of 92.02 to 456.21 is used, the multiple correlation coefficient is 0.615 to 0.696 and the standard error is 0.319.
A sufficiently high correlation can be obtained with ~ 0.350 mg MDA / kg meat.

【0073】こうして得られた鶏肉の脂質酸化度(TB
ARS)の検量線を用いると、流通や小売り段階におい
て鶏肉の脂質酸化度を非破壊で短時間かつ正確に測定で
きるようなる。TBARS値の増加は鮮度の低下を示す
ので、本発明の方法で測定したTBARS値が0.6m
gMDA/kg肉 以上であれば鶏肉の鮮度が落ちてい
ることを、TBARS値が0.6mgMDA/kg肉
以下であれば鮮度が良いことを判定することができる。
The degree of lipid oxidation of the chicken thus obtained (TB
When the calibration curve of ARS) is used, the lipid oxidation degree of chicken can be measured non-destructively and in a short time in the distribution and retail stages. Since an increase in TBARS value indicates a decrease in freshness, the TBARS value measured by the method of the present invention is 0.6 m.
If gMDA / kg meat or more, it means that the freshness of chicken has deteriorated. TBARS value is 0.6 mg MDA / kg meat.
It can be determined that the freshness is good if it is below.

【0074】[0074]

【発明の効果】本実施例の検量線によって得られる測定
値について、例えば牛肉であれば赤色度(a*)は16
以下、メトミオグロビン形成割合は30%以上、TBA
RS値は0.6mgMDA/kg肉以上のいずれかであ
れば牛肉の鮮度が落ちていることを判定することがで
き、また赤色度(a*)は16以上で、メトミオグロビ
ン形成割合は30%以下で、TBARS値は0.6mg
MDA/kg肉以下であれば牛肉の鮮度が良いことを判
定することができる。本発明を用いることにより、食肉
の赤色度、退色割合、脂質酸化度を非破壊で短時間(約
10秒)かつ正確にわかるので、流通および販売時にお
いて食肉の鮮度の客観的な評価に役立つ。
EFFECTS OF THE INVENTION Regarding the measurement values obtained by the calibration curve of this embodiment, for example, beef has a redness (a *) of 16
Below, metmyoglobin formation rate is more than 30%, TBA
If the RS value is 0.6 mg MDA / kg meat or more, it can be determined that the freshness of the beef has deteriorated, the redness (a *) is 16 or more, and the metmyoglobin formation rate is 30%. Below, TBARS value is 0.6 mg
If MDA / kg meat or less, it can be judged that the freshness of beef is good. By using the present invention, the redness, discoloration rate, and lipid oxidation degree of meat can be accurately determined in a short time (about 10 seconds) in a nondestructive manner, which is useful for objective evaluation of freshness of meat during distribution and sale. .

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は牛肉の赤色度(a*)に対する第1波
長の単相関係数を表す図、(b)は第2波長の重相関係
数を表す図、(c)は第3波長の重相関係数を表す図。
1A is a diagram showing a single correlation coefficient of a first wavelength with respect to redness (a *) of beef, FIG. 1B is a diagram showing a multiple correlation coefficient of a second wavelength, and FIG. The figure showing the multiple correlation coefficient of 3 wavelengths.

【図2】本発明の方法による牛肉の赤色度(a*)の分
析値と常法による分析値との関係図。
FIG. 2 is a diagram showing the relationship between the analysis value of redness (a *) of beef by the method of the present invention and the analysis value by a conventional method.

【図3】(a)は牛肉のメトミオグロビン形成割合に対
する第1波長の単相関係数を表す図、(b)は第2波長
の重相関係数を表す図。
FIG. 3A is a diagram showing a single correlation coefficient at a first wavelength with respect to the beet's metmyoglobin formation ratio, and FIG. 3B is a diagram showing a multiple correlation coefficient at a second wavelength.

【図4】本発明の方法による牛肉のメトミオグロビン形
成割合の分析値と常法による分析値との関係図。
FIG. 4 is a diagram showing the relationship between the analysis value of the metmyoglobin formation rate of beef by the method of the present invention and the analysis value by the conventional method.

【図5】(a)は牛肉の脂質酸化度(TBARS)に対
する第1波長の単相関係数を表す図、(b)は第2波長
の重相関係数を表す図、(c)は第3波長の重相関係数
を表す図。
5A is a diagram showing a single correlation coefficient at a first wavelength with respect to beef lipid oxidation degree (TBARS), FIG. 5B is a diagram showing a multiple correlation coefficient at a second wavelength, and FIG. The figure showing the multiple correlation coefficient of 3 wavelengths.

【図6】本発明の方法による牛肉の脂質酸化度(TBA
RS)の分析値と常法による分析値との関係図。
FIG. 6: Lipid oxidation degree (TBA) of beef according to the method of the present invention.
FIG. 4 is a diagram showing the relationship between the analysis value of (RS) and the analysis value obtained by a conventional method.

【図7】(a)豚肉の赤色度(a*)に対する第1波長
の単相関係数を表す図、(b)は第2波長の重相関係数
を表す図、(c)は第3波長の重相関係数を表す図。
7A is a diagram showing a single correlation coefficient at a first wavelength with respect to redness (a *) of pork, FIG. 7B is a diagram showing a multiple correlation coefficient at a second wavelength, and FIG. The figure showing the multiple correlation coefficient of wavelength.

【図8】本発明の方法による豚肉の赤色度(a*)の分
析値と常法による分析値との関係図。
FIG. 8 is a diagram showing the relationship between the analysis value of pork redness (a *) according to the method of the present invention and the analysis value according to a conventional method.

【図9】(a)は豚肉のメトミオグロビン形成割合に対
する第1波長の単相関係数を表す図、(b)は第2波長
の重相関係数を表す図、(c)は第3波長の重相関係数
を表す図。
9A is a diagram showing a single correlation coefficient at a first wavelength with respect to a metmyoglobin formation rate of pork, FIG. 9B is a diagram showing a multiple correlation coefficient at a second wavelength, and FIG. 9C is a third wavelength. The figure showing the multiple correlation coefficient of.

【図10】本発明の方法による豚肉のメトミオグロビン
形成割合の分析値と常法による分析値との関係図。
FIG. 10 is a diagram showing the relation between the analysis value of the metmyoglobin formation rate of pork by the method of the present invention and the analysis value by the conventional method.

【図11】(a)は豚肉の脂質酸化度(TBARS)に
対する第1波長の単相関係数を表す図、(b)は第2波
長の重相関係数を表す図、(c)は第3波長の重相関係
数を表す図、(d)は第4波長の重相関係数を表す図。
11A is a diagram showing a single correlation coefficient at a first wavelength with respect to a lipid oxidation degree (TBARS) of pork, FIG. 11B is a diagram showing a multiple correlation coefficient at a second wavelength, and FIG. The figure showing the multiple correlation coefficient of 3 wavelengths, (d) is a figure showing the multiple correlation coefficient of a 4th wavelength.

【図12】本発明の方法による豚肉の脂質酸化度(TB
ARS)の分析値と常法による分析値との関係図。
FIG. 12: Degree of lipid oxidation of pork (TB) by the method of the present invention
FIG. 4 is a diagram showing the relationship between the analysis value of ARS) and the analysis value by the conventional method.

【図13】(a)は鶏肉の赤色度(a*)に対する第1
波長の単相関係数を表す図、(b)は第2波長の重相関
係数を表す図、(c)は第3波長の重相関係数を表す
図。
FIG. 13 (a) is the first with respect to the redness (a *) of chicken.
The figure showing the single correlation coefficient of a wavelength, (b) the figure showing the multiple correlation coefficient of the 2nd wavelength, (c) the figure showing the multiple correlation coefficient of the 3rd wavelength.

【図14】本発明の方法による鶏肉の赤色度(a*)の
分析値と常法による分析値との関係図。
FIG. 14 is a diagram showing the relationship between the analysis value of redness (a *) of chicken meat by the method of the present invention and the analysis value by the conventional method.

【図15】(a)は鶏肉のメトミオグロビン形成割合に
対する第1波長の単相関係数を表す図、(b)は第2波
長の重相関係数を表す図、(c)は第3波長の重相関係
数を表す図。
15A is a diagram showing a single correlation coefficient at a first wavelength with respect to a metmyoglobin formation rate of chicken, FIG. 15B is a diagram showing a multiple correlation coefficient at a second wavelength, and FIG. 15C is a third wavelength. The figure showing the multiple correlation coefficient of.

【図16】本発明の方法による鶏肉のメトミオグロビン
形成割合の分析値と常法による分析値との関係図。
FIG. 16 is a diagram showing the relationship between the analysis value of the metmyoglobin formation rate of chicken meat by the method of the present invention and the analysis value by the conventional method.

【図17】(a)は鶏肉の脂質酸化度(TBARS)に
対する第1波長の単相関係数を表す図、(b)は第2波
長の重相関係数を表す図、(c)は第3波長の重相関係
数を表す図。
FIG. 17 (a) is a diagram showing a single correlation coefficient of a first wavelength with respect to a lipid oxidation degree (TBARS) of chicken, (b) is a diagram showing a multiple correlation coefficient of a second wavelength, and (c) is a diagram. The figure showing the multiple correlation coefficient of 3 wavelengths.

【図18】本発明の方法による鶏肉の脂質酸化度(TB
ARS)の分析値と常法による分析値との関係図。
FIG. 18: Degree of lipid oxidation (TB) of chicken according to the method of the present invention
FIG. 4 is a diagram showing the relationship between the analysis value of ARS) and the analysis value by the conventional method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 斉 茨城県つくば市吾妻1丁目17番地1号403 棟1212号 Fターム(参考) 2G059 AA03 BB11 EE01 EE02 EE12 EE13 HH01 HH02 HH06 MM01 MM02 MM12    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hitoshi Murakami             1-17, Azuma, Tsukuba, Ibaraki 403             Building 1212 F term (reference) 2G059 AA03 BB11 EE01 EE02 EE12                       EE13 HH01 HH02 HH06 MM01                       MM02 MM12

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 保存中の牛肉の透過反射率を測定して波
長620±2nmにおけるlog(1/透過反射率)の2次
微分値X1、波長744±2nmにおけるlog(1/透過
反射率)の2次微分値X2、波長590±2nmにおけ
るlog(1/透過反射率)の2次微分値X3を求め、次の
検量線によって得られる赤色度Yに基づいて保存中の牛
肉の鮮度を判定することを特徴とする食肉の鮮度判定方
法。 Y=K0+K1X1+K2X2+K3X3 (K0=2.55〜7.47、K1=77.30〜9
8.96、K2=303.10〜513.63、K3=
42.72〜52.93)
1. The transmission reflectance of beef during storage is measured, and the second derivative X1 of the log (1 / transmission reflectance) at a wavelength of 620 ± 2 nm and the log (1 / transmission reflectance) at a wavelength of 744 ± 2 nm. 2nd derivative value of X2 and 2nd derivative value of log (1 / transmissivity) X3 at wavelength of 590 ± 2nm are calculated, and freshness of beef in storage is judged based on redness Y obtained by the following calibration curve. A method for determining freshness of meat, characterized by: Y = K0 + K1X1 + K2X2 + K3X3 (K0 = 2.55 to 7.47, K1 = 77.30 to 9)
8.96, K2 = 303.10-513.63, K3 =
42.72 to 52.93)
【請求項2】 保存中の牛肉の透過反射率を測定して波
長624±2nmにおけるlog(1/透過反射率)の2次
微分値X1、波長1020±2nmにおけるlog(1/透
過反射率)の2次微分値X2を求め、次の検量線によっ
て得られるメトミオグロビン形成割合Yに基づいて保存
中の牛肉の鮮度を判定することを特徴とする食肉の鮮度
判定方法。 Y=K0+K1X1+K2X2 (K0=42.24〜77.33、K1=−225.7
9〜−218.18、K2=676.81〜1673.
07)
2. The transmission reflectance of beef during storage is measured, and the second derivative X1 of the log (1 / transmission reflectance) at a wavelength of 624 ± 2 nm and the log (1 / transmission reflectance) at a wavelength of 1020 ± 2 nm. The method for determining the freshness of meat is characterized in that the freshness of beef under storage is determined based on the metmyoglobin formation rate Y obtained by the following calibration curve. Y = K0 + K1X1 + K2X2 (K0 = 42.24 to 77.33, K1 = -225.7)
9-218.18, K2 = 676.881-1673.
07)
【請求項3】 保存中の牛肉の透過反射率を測定して波
長620±2nmにおけるlog(1/透過反射率)の2次
微分値X1、波長978±2nmにおけるlog(1/透過
反射率)の2次微分値X2、波長722±2nmにおけ
るlog(1/透過反射率)の2次微分値X3を求め、次の
検量線によって得られる脂質酸化度(TBARS)Yに
基づいて保存中の牛肉の鮮度を判定することを特徴とす
る食肉の鮮度判定方法。 Y=K0+K1X1+K2X2+K3X3 (K0=2.40〜2.90、K1=−9.78〜−
8.99、K2=−17.77〜−16.42、K3=
−53.52〜−30.78)
3. The transmission reflectance of beef during storage is measured, and the second derivative X1 of the log (1 / transmission reflectance) at a wavelength of 620 ± 2 nm and the log (1 / transmission reflectance) at a wavelength of 978 ± 2 nm. Second-order derivative value X2, log (1 / transmissivity / reflectance) second-order derivative value X3 at a wavelength of 722 ± 2 nm, and based on the lipid oxidation degree (TBARS) Y obtained from the following calibration curve, beef stored. A method for determining freshness of meat, characterized by determining freshness of meat. Y = K0 + K1X1 + K2X2 + K3X3 (K0 = 2.40 to 2.90, K1 = −9.78 to −
8.99, K2 = -17.77 to -16.42, K3 =
-53.52--30.78)
【請求項4】 保存中の豚肉の透過反射率を測定して波
長588±2nmにおけるlog(1/透過反射率)の2次
微分値X1、波長688±2nmにおけるlog(1/透過
反射率)の2次微分値X2、波長556±2nmにおけ
るlog(1/透過反射率)の2次微分値X3を求め、次の
検量線によって得られる赤色度Yに基づいて保存中の豚
肉の鮮度を判定することを特徴とする食肉の鮮度判定方
法。 Y=K0+K1X1+K2X2+K3X3 (K0=−1.77〜−0.44、K1=−35.67
〜−26.95、K2=40.51〜46.07、K3
=−16.59〜−15.57)
4. The transmission reflectance of pork during storage is measured, and the second derivative X1 of the log (1 / transmission reflectance) at a wavelength of 588 ± 2 nm and the log (1 / transmission reflectance) at a wavelength of 688 ± 2 nm. 2nd derivative value of X2 and 2nd derivative value of log (1 / transmissivity / reflectance) at wavelength 556 ± 2nm are calculated, and the freshness of the stored pork is judged based on the redness Y obtained by the following calibration curve. A method for determining freshness of meat, characterized by: Y = K0 + K1X1 + K2X2 + K3X3 (K0 = -1.77 to -0.44, K1 = -35.67
~ -26.95, K2 = 40.51 to 46.07, K3
= -16.59 to -15.57)
【請求項5】 保存中の豚肉の透過反射率を測定して波
長616±2nmにおけるlog(1/透過反射率)の2次
微分値X1、波長694±2nmにおけるlog(1/透過
反射率)の2次微分値X2、波長744±2nmにおけ
るlog(1/透過反射率)の2次微分値X3を求め、次の
検量線によって得られるメトミオグロビン形成割合Yに
基づいて保存中の豚肉の鮮度を判定することを特徴とす
る食肉の鮮度判定方法。 Y=K0+K1X1+K2X2+K3X3 (K0=51.28〜61.10、K1=−204.2
2〜−191.43、K2=381.67〜445.5
5、K3=613.28〜1901.96)
5. The transmission reflectance of the stored pork is measured, and the second derivative X1 of the log (1 / transmission reflectance) at a wavelength of 616 ± 2 nm and the log (1 / transmission reflectance) at a wavelength of 694 ± 2 nm. The second-order derivative value X2 and the second-order derivative value X3 of the log (1 / transmissivity / reflectance) at a wavelength of 744 ± 2 nm are calculated, and the freshness of the stored pork is stored based on the metmyoglobin formation rate Y obtained by the following calibration curve. A method for determining freshness of meat, characterized by determining. Y = K0 + K1X1 + K2X2 + K3X3 (K0 = 51.28 to 61.10, K1 = −204.2)
2--191.43, K2 = 381.67-445.5.
5, K3 = 613.28 to 1901.96)
【請求項6】 保存中の豚肉の透過反射率を測定して波
長604±2nmにおけるlog(1/透過反射率)の2次
微分値X1、波長934±2nmにおけるlog(1/透過
反射率)の2次微分値X2、波長480±2nmにおけ
るlog(1/透過反射率)の2次微分値X3、波長748
±2nmにおけるlog(1/透過反射率)の2次微分値X
4を求め、次の検量線によって得られる脂質酸化度(T
BARS)Yに基づいて保存中の豚肉の鮮度を判定する
ことを特徴とする食肉の鮮度判定方法。 Y=K0+K1X1+K2X2+K3X3+K4X4 (K0=1.05〜1.21、K1=−2.53〜−
2.31、K2=−6.41〜−3.95、K3=−
0.42〜−0.11、K4=10.04〜19.8
5)
6. The transmission reflectance of pork during storage is measured to obtain a second derivative X1 of log (1 / transmission reflectance) at a wavelength of 604 ± 2 nm and log (1 / transmission reflectance) at a wavelength of 934 ± 2 nm. Second derivative value X2, second derivative value X3 of log (1 / transmissivity) at wavelength 480 ± 2 nm, wavelength 748
Second derivative of log (1 / transmissivity) at ± 2 nm
4 is obtained, and the lipid oxidation degree (T
A method for determining freshness of meat, comprising determining the freshness of stored pork based on BARS) Y. Y = K0 + K1X1 + K2X2 + K3X3 + K4X4 (K0 = 1.05 to 1.21, K1 = −2.53 to −
2.31, K2 = -6.41 to -3.95, K3 =-
0.42 to -0.11, K4 = 10.04 to 19.8
5)
【請求項7】 保存中の鶏肉の透過反射率を測定して波
長576±2nmにおけるlog(1/透過反射率)の2次
微分値X1、波長462±2nmにおけるlog(1/透過
反射率)の2次微分値X2、波長1018±2nmにお
けるlog(1/透過反射率)の2次微分値X3を求め、次
の検量線によって得られる赤色度Yに基づいて保存中の
鶏肉の鮮度を判定することを特徴とする食肉の鮮度判定
方法。 Y=K0+K1X1+K2X2+K3X3 (K0=3.87〜4.73、K1=−31.48〜−
18.47、K2=−14.70〜−12.43、K3
=167.13〜395.84)
7. The transmission reflectance of chicken meat during storage is measured, and the second derivative X1 of the log (1 / transmission reflectance) at a wavelength of 576 ± 2 nm and the log (1 / transmission reflectance) at a wavelength of 462 ± 2 nm. 2nd derivative value X2, and second derivative value X3 of log (1 / transmissivity / reflectance) at a wavelength of 1018 ± 2nm are determined, and the freshness of the stored chicken is determined based on the redness Y obtained by the following calibration curve. A method for determining freshness of meat, characterized by: Y = K0 + K1X1 + K2X2 + K3X3 (K0 = 3.87 to 4.73, K1 = −31.48 to −
18.47, K2 = -14.70 to -12.43, K3
= 167.13 to 395.84)
【請求項8】 保存中の鶏肉の透過反射率を測定して波
長618±2nmにおけるlog(1/透過反射率)の2次
微分値X1、波長998±2nmにおけるlog(1/透過
反射率)の2次微分値X2、波長832±2nmにおけ
るlog(1/透過反射率)の2次微分値X3を求め、次の
検量線によって得られるメトミオグロビン形成割合Yに
基づいて保存中の鶏肉の鮮度を判定することを特徴とす
る食肉の鮮度判定方法。 Y=K0+K1X1+K2X2+K3X3 (K0=30.31〜38.76、K1=−343.0
8〜−278.65、K2=−1065.73〜−89
5.98、K3=−5067.40〜−3753.5
0)
8. The transmission reflectance of chicken meat during storage is measured, and the second derivative X1 of the log (1 / transmission reflectance) at a wavelength of 618 ± 2 nm and the log (1 / transmission reflectance) at a wavelength of 998 ± 2 nm. The second-order derivative value X2 and the second-order derivative value X3 of the log (1 / transmissivity / reflectance) at a wavelength of 832 ± 2 nm are calculated, and the freshness of the chicken meat is stored based on the metmyoglobin formation rate Y obtained by the following calibration curve. A method for determining freshness of meat, characterized by determining. Y = K0 + K1X1 + K2X2 + K3X3 (K0 = 30.31 to 38.76, K1 = -343.0
8 to -278.65, K2 = -1065.73 to -89.
5.98, K3 = -5067.40 to -3753.5
0)
【請求項9】 保存中の鶏肉の透過反射率を測定して波
長626±2nmにおけるlog(1/透過反射率)の2次
微分値X1、波長552±2nmにおけるlog(1/透過
反射率)の2次微分値X2、波長832±2nmにおけ
るlog(1/透過反射率)の2次微分値X3を求め、次の
検量線によって得られる脂質酸化度(TBARS)Yに
基づいて保存中の鶏肉の鮮度を判定することを特徴とす
る食肉の鮮度判定方法。 Y=K0+K1X1+K2X2+K3X3 (K0=−1.43〜0.29、K1=−22.34〜
−17.11、K2=−15.55〜−9.53、K3
=392.02〜456.21)
9. The transmission reflectance of chicken meat during storage is measured, and the second derivative X1 of the log (1 / transmission reflectance) at a wavelength of 626 ± 2 nm and the log (1 / transmission reflectance) at a wavelength of 552 ± 2 nm. The second-order derivative value X2 and the second-order derivative value X3 of the log (1 / transmissivity / reflectance) at a wavelength of 832 ± 2 nm are obtained, and the chicken meat is stored based on the lipid oxidation degree (TBARS) Y obtained by the following calibration curve. A method for determining freshness of meat, characterized by determining freshness of meat. Y = K0 + K1X1 + K2X2 + K3X3 (K0 = −1.43 to 0.29, K1 = −22.34 to
-17.11, K2 = -15.55 to -9.53, K3
= 392.02 to 456.21)
JP2001311912A 2001-10-09 2001-10-09 Decision method for freshness of meat Pending JP2003121351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001311912A JP2003121351A (en) 2001-10-09 2001-10-09 Decision method for freshness of meat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001311912A JP2003121351A (en) 2001-10-09 2001-10-09 Decision method for freshness of meat

Publications (1)

Publication Number Publication Date
JP2003121351A true JP2003121351A (en) 2003-04-23

Family

ID=19130654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001311912A Pending JP2003121351A (en) 2001-10-09 2001-10-09 Decision method for freshness of meat

Country Status (1)

Country Link
JP (1) JP2003121351A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064630A (en) * 2004-08-30 2006-03-09 National Agriculture & Bio-Oriented Research Organization Method of predicting meat color maintaining days for beef by measuring antioxidation ability
JP2006064629A (en) * 2004-08-30 2006-03-09 National Agriculture & Bio-Oriented Research Organization Method of predicting meat color maintaining days for beef based on discoloration rate by rapid oxidation
JP2010210355A (en) * 2009-03-09 2010-09-24 Kobe Univ Method and apparatus for nondestructive measurement of component of vegetable etc. using near-infrared spectroscopy
CN102507459A (en) * 2011-11-23 2012-06-20 中国农业大学 Method and system for quick lossless evaluation on freshness of fresh beef
JP2012198054A (en) * 2011-03-18 2012-10-18 Tokyo Univ Of Marine Science & Technology Metmyoglobin ratio measuring method for meat or fish, and quality evaluating method
CN103344577A (en) * 2013-07-12 2013-10-09 中国农业大学 Non-destructive detection method for freshness of livestock meat based on multispectral imaging technology
CN103712948A (en) * 2013-12-05 2014-04-09 中国肉类食品综合研究中心 Rapid nondestructive test method for content of volatile basic nitrogen in raw and fresh mutton
CN104049068A (en) * 2014-06-06 2014-09-17 中国肉类食品综合研究中心 Nondestructive determining device and determining method for freshness of fresh livestock meat
CN104089891A (en) * 2014-03-31 2014-10-08 浙江工商大学 Beef freshness detection system and method
CN104949931A (en) * 2015-06-11 2015-09-30 南阳师范学院 Rapid lossless fresh pork shelf life evaluation method and detecting system
CN105548062A (en) * 2015-12-21 2016-05-04 中国肉类食品综合研究中心 A multi-index rapid nondestructive synchronous detection method for fresh beef
JP2016520832A (en) * 2013-05-08 2016-07-14 フレッシュディテクト ゲーエムベーハー Measuring device for measuring the surface layer of an object to be measured, especially food
CN106153576A (en) * 2016-07-28 2016-11-23 华南理工大学 Based on Near-infrared Double wave band than the method for fast prediction Frozen Pork storage time
CN108254324A (en) * 2017-12-18 2018-07-06 中国农业大学 A kind of crab meat Method for Detecting Freshness of Milled and device
CN109033616A (en) * 2018-07-24 2018-12-18 西华大学 A method of prediction Frozen Pork quality comparison in storage
CN111272682A (en) * 2020-03-03 2020-06-12 渤海大学 Color comparison card for evaluating freshness of sugar-smoked meat product and preparation method and application thereof
JP2020520464A (en) * 2017-05-16 2020-07-09 エムイーキュー・プローブ・ピーティーワイ・リミテッド Method and system for assessing the quality of meat products

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064630A (en) * 2004-08-30 2006-03-09 National Agriculture & Bio-Oriented Research Organization Method of predicting meat color maintaining days for beef by measuring antioxidation ability
JP2006064629A (en) * 2004-08-30 2006-03-09 National Agriculture & Bio-Oriented Research Organization Method of predicting meat color maintaining days for beef based on discoloration rate by rapid oxidation
JP4534035B2 (en) * 2004-08-30 2010-09-01 独立行政法人農業・食品産業技術総合研究機構 A method for predicting the meat color retention days of beef from the speed of discoloration due to rapid oxidation
JP4543233B2 (en) * 2004-08-30 2010-09-15 独立行政法人農業・食品産業技術総合研究機構 Prediction method of meat color retention days of beef by measuring antioxidant capacity
JP2010210355A (en) * 2009-03-09 2010-09-24 Kobe Univ Method and apparatus for nondestructive measurement of component of vegetable etc. using near-infrared spectroscopy
JP2012198054A (en) * 2011-03-18 2012-10-18 Tokyo Univ Of Marine Science & Technology Metmyoglobin ratio measuring method for meat or fish, and quality evaluating method
CN102507459A (en) * 2011-11-23 2012-06-20 中国农业大学 Method and system for quick lossless evaluation on freshness of fresh beef
JP2016520832A (en) * 2013-05-08 2016-07-14 フレッシュディテクト ゲーエムベーハー Measuring device for measuring the surface layer of an object to be measured, especially food
CN103344577A (en) * 2013-07-12 2013-10-09 中国农业大学 Non-destructive detection method for freshness of livestock meat based on multispectral imaging technology
CN103344577B (en) * 2013-07-12 2016-04-06 中国农业大学 A kind of poultry meat freshness nondistructive detecting method based on multi-optical spectrum imaging technology
CN103712948A (en) * 2013-12-05 2014-04-09 中国肉类食品综合研究中心 Rapid nondestructive test method for content of volatile basic nitrogen in raw and fresh mutton
CN104089891A (en) * 2014-03-31 2014-10-08 浙江工商大学 Beef freshness detection system and method
CN104049068A (en) * 2014-06-06 2014-09-17 中国肉类食品综合研究中心 Nondestructive determining device and determining method for freshness of fresh livestock meat
CN104049068B (en) * 2014-06-06 2015-11-18 中国肉类食品综合研究中心 The non-destructive determination device of fresh poultry meat freshness and assay method
CN104949931A (en) * 2015-06-11 2015-09-30 南阳师范学院 Rapid lossless fresh pork shelf life evaluation method and detecting system
CN105548062A (en) * 2015-12-21 2016-05-04 中国肉类食品综合研究中心 A multi-index rapid nondestructive synchronous detection method for fresh beef
CN106153576A (en) * 2016-07-28 2016-11-23 华南理工大学 Based on Near-infrared Double wave band than the method for fast prediction Frozen Pork storage time
JP2020520464A (en) * 2017-05-16 2020-07-09 エムイーキュー・プローブ・ピーティーワイ・リミテッド Method and system for assessing the quality of meat products
US11519862B2 (en) 2017-05-16 2022-12-06 MEQ Probe Pty Ltd Methods and systems for assessing quality of a meat product
CN108254324A (en) * 2017-12-18 2018-07-06 中国农业大学 A kind of crab meat Method for Detecting Freshness of Milled and device
CN109033616A (en) * 2018-07-24 2018-12-18 西华大学 A method of prediction Frozen Pork quality comparison in storage
CN109033616B (en) * 2018-07-24 2023-02-10 西华大学 Method for predicting quality change of frozen pork in storage process
CN111272682A (en) * 2020-03-03 2020-06-12 渤海大学 Color comparison card for evaluating freshness of sugar-smoked meat product and preparation method and application thereof

Similar Documents

Publication Publication Date Title
ElMasry et al. Chemical-free assessment and mapping of major constituents in beef using hyperspectral imaging
JP2003121351A (en) Decision method for freshness of meat
Sun et al. How to predict the sugariness and hardness of melons: A near-infrared hyperspectral imaging method
Swatland A review of meat spectrophotometry (300 to 800 nm)
Cheng et al. Suitability of hyperspectral imaging for rapid evaluation of thiobarbituric acid (TBA) value in grass carp (Ctenopharyngodon idella) fillet
Prieto et al. On-line application of visible and near infrared reflectance spectroscopy to predict chemical–physical and sensory characteristics of beef quality
Yang et al. Combination of spectral and textural information of hyperspectral imaging for the prediction of the moisture content and storage time of cooked beef
Morsy et al. Robust linear and non-linear models of NIR spectroscopy for detection and quantification of adulterants in fresh and frozen-thawed minced beef
Kamruzzaman et al. Introduction to hyperspectral imaging technology
Cocchi et al. Durum wheat adulteration detection by NIR spectroscopy multivariate calibration
Ritthiruangdej et al. Non-destructive and rapid analysis of chemical compositions in Thai steamed pork sausages by near-infrared spectroscopy
Kamruzzaman et al. Hyperspectral imaging in tandem with multivariate analysis and image processing for non-invasive detection and visualization of pork adulteration in minced beef
Wan et al. Feature wavelength selection and model development for rapid determination of myoglobin content in nitrite-cured mutton using hyperspectral imaging
Cheng et al. Non-destructive assessment of the myoglobin content of Tan sheep using hyperspectral imaging
Xing et al. Use of visible spectroscopy for quality classification of intact pork meat
Cozzolino et al. Relationship between sensory analysis and near infrared spectroscopy in Australian Riesling and Chardonnay wines
Baardseth et al. A comparison of CIE (1976) L* a* b* values obtained from two different instruments on several food commodities
dos Santos et al. Application of Fourier-transform infrared spectroscopy for the determination of chloride and sulfate in wines
Fowler et al. Preliminary investigation for the prediction of intramuscular fat content of lamb in-situ using a hand-held NIR spectroscopic device
JP4686714B2 (en) Meat optical freshness identification method and apparatus
Heo et al. Prediction of moisture content in steamed and dried purple sweet potato using hyperspectral imaging analysis
AU2007212825B2 (en) Method of calculating quality parameters of foodstuffs
JP3663373B2 (en) Meat property inspection method and apparatus for red fish
Nishino et al. Dual-beam spectral measurement improves accuracy of nondestructive identification of internal rot in onion bulbs
Svensson et al. EEM fluorescence spectroscopy as a fast method to assess the brine composition of salted herring

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050118