JP2006155844A - Perpendicular magnetic recording medium and its manufacturing method - Google Patents

Perpendicular magnetic recording medium and its manufacturing method Download PDF

Info

Publication number
JP2006155844A
JP2006155844A JP2004359868A JP2004359868A JP2006155844A JP 2006155844 A JP2006155844 A JP 2006155844A JP 2004359868 A JP2004359868 A JP 2004359868A JP 2004359868 A JP2004359868 A JP 2004359868A JP 2006155844 A JP2006155844 A JP 2006155844A
Authority
JP
Japan
Prior art keywords
layer
alloy
magnetic recording
intermediate layer
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004359868A
Other languages
Japanese (ja)
Inventor
Ikuko Takekuma
育子 武隈
Reiko Arai
礼子 荒井
Yoshiyuki Hirayama
義幸 平山
Yuzuru Hosoe
譲 細江
Tomio Iwasaki
富生 岩崎
Yoko Ogawa
陽子 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Priority to JP2004359868A priority Critical patent/JP2006155844A/en
Priority to US11/295,005 priority patent/US7641989B2/en
Publication of JP2006155844A publication Critical patent/JP2006155844A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a medium having a high media S/N ratio and excellent corrosion resistance. <P>SOLUTION: In the perpendicular magnetic recording medium at least comprising a soft-magnetic layer 13, a seed layer 14, an intermediate layer 15, a magnetic recording layer 16 and a protection layer 17 which are stacked over a substrate 11 in order, the magnetic recording layer has a granular structure which includes many columnar grains of CoCrPt alloy and a grain boundary layer containing an oxide, the seed layer is made of TaNi alloy or TaTi alloy and the intermediate layer is made of Ru or Ru alloy which contains ≥80 at.% Ru. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、大容量の情報記録が可能な磁気記録媒体及びその製造方法に係り、特に高密度磁気記録に好適な磁気記録媒体に関するものである。   The present invention relates to a magnetic recording medium capable of recording a large amount of information and a manufacturing method thereof, and more particularly to a magnetic recording medium suitable for high-density magnetic recording.

近年、パーソナルコンピュータのみならず家庭用の電気製品にも小型で大容量の磁気ディスク装置が搭載されるなど、磁気記憶装置の大容量化の要求は強く、記録密度の向上が求められている。これに対応すべく、磁気ヘッドや磁気記録媒体などの開発が精力的に行われている。しかしながら、現在実用化されている面内磁気記録方式を用いて記録密度を向上させることが困難となってきている。そこで面内磁気記録方式に代わる方式として垂直磁気記録が検討されている。垂直磁気記録の場合は隣接する磁化が向き合わないために高密度記録状態が安定であり、本質的に高密度記録に適した方式であると考えられる。また、単磁極型の記録ヘッドと、軟磁性下地層を有する二層垂直磁気記録媒体とを組み合わせることにより、記録効率を上げることができ、記録膜の保磁力増加に対応することも可能である。ただし、垂直磁気記録方式を用いて高密度記録を実現するためには、低ノイズでかつ熱減磁に強い垂直磁気記録媒体を開発する必要がある。   In recent years, there has been a strong demand for an increase in the capacity of a magnetic storage device, for example, a small-sized and large-capacity magnetic disk device is mounted not only in a personal computer but also in household electric products, and an improvement in recording density has been demanded. In order to cope with this, development of magnetic heads and magnetic recording media has been energetically performed. However, it has become difficult to improve the recording density using the in-plane magnetic recording method that is currently in practical use. Therefore, perpendicular magnetic recording has been studied as an alternative to in-plane magnetic recording. In the case of perpendicular magnetic recording, since the adjacent magnetizations do not face each other, the high-density recording state is stable, and it is considered that the system is essentially suitable for high-density recording. Also, by combining a single-pole type recording head and a double-layer perpendicular magnetic recording medium having a soft magnetic underlayer, it is possible to increase recording efficiency and cope with an increase in the coercive force of the recording film. . However, in order to realize high-density recording using the perpendicular magnetic recording method, it is necessary to develop a perpendicular magnetic recording medium that is low noise and resistant to thermal demagnetization.

垂直磁気記録媒体の記録層としては、面内磁気記録媒体で実用化されているCoCrPt系合金膜が従来から検討されている。CoCrPt系合金膜を用いて低ノイズ特性を得るためには、結晶粒界へのCr偏析を利用して磁性結晶粒子間の交換結合を低減して、磁化反転単位を小さくする必要がある。ところが、Cr量が不十分な場合は記録層の形成過程で粒子が互いに合体して肥大化し、あるいは粒子間の交換結合低減が不十分となり、低ノイズ特性を得ることができない。一方、Cr量を多くした場合には、粒子内に多くのCrが残留することにより磁性粒子の磁気異方性エネルギーが低下し、熱減磁に対する十分な耐性が得られない。   As a recording layer of a perpendicular magnetic recording medium, a CoCrPt-based alloy film that has been put to practical use in an in-plane magnetic recording medium has been conventionally studied. In order to obtain low noise characteristics using a CoCrPt-based alloy film, it is necessary to reduce exchange coupling between magnetic crystal grains by using Cr segregation to grain boundaries to reduce the magnetization reversal unit. However, when the amount of Cr is insufficient, the particles are coalesced and enlarged in the process of forming the recording layer, or the exchange coupling between the particles is insufficiently reduced, and low noise characteristics cannot be obtained. On the other hand, when the amount of Cr is increased, the magnetic anisotropy energy of the magnetic particles is lowered due to a large amount of Cr remaining in the particles, and sufficient resistance to thermal demagnetization cannot be obtained.

このような問題を克服して低ノイズ特性を得るために、例えば特開2003−178413号公報に示されているようにCoCrPt合金に酸化物を添加したグラニュラ型の記録層の検討が盛んに行われるようになってきた。このグラニュラ型の記録層を用いる場合には、磁性粒子を取り囲むように酸化物の粒界層を形成することにより磁性粒子間の交換結合を低減させるため、CoCrPt合金としてはCr濃度に関係なく高い磁気異方性エネルギーを有する材料を用いることができる。また、酸化物の粒界層は磁性粒子とは結晶的に不連続でかつある程度の厚みを有するため、記録層の形成過程での粒子同士の合体は起こり難い。したがって、CoCrPt合金に酸化物を添加したグラニュラ型の垂直磁気記録媒体は、低ノイズでかつ熱減磁に強い垂直磁気記録媒体の候補として注目されている。垂直磁気記録媒体のシード層及び中間層についてはこれまでにも幅広く検討されており、例えば特開2003−162807号公報には、シード層としてB,C,Al,Si,P,Ti,Zr,Hf,Cr,V,Nb,Ta,Ru,Rd,Pd,Pt,Cu,Ag,Au及びこれらと磁性金属であるFe,Co,Niとを組み合わせたNiAl,NiTaが開示されており、中間層としてCo,Cr,Pt,Pd,Rh及びRu合金が開示されている。また、酸化物グラニュラ型の垂直磁気記録媒体の中間層としてRuが適していることが、例えばIEEE Transactions on Magnetics, Vol.38, No.5, p.1976 (2002)に報告されている。またTaシード層によってRu中間層の結晶配向性を向上できることがIEEE Transactions on Magnetics, Vol.38, No.5, p.1979 (2002)に報告されている。   In order to overcome such problems and obtain low noise characteristics, for example, as shown in Japanese Patent Application Laid-Open No. 2003-178413, a granular type recording layer in which an oxide is added to a CoCrPt alloy has been actively studied. It has come to be. When this granular type recording layer is used, the exchange coupling between the magnetic particles is reduced by forming an oxide grain boundary layer so as to surround the magnetic particles, so that the CoCrPt alloy is high regardless of the Cr concentration. A material having magnetic anisotropy energy can be used. In addition, since the grain boundary layer of the oxide is discontinuous in crystal with the magnetic particles and has a certain thickness, it is difficult for the particles to coalesce in the formation process of the recording layer. Therefore, a granular type perpendicular magnetic recording medium in which an oxide is added to a CoCrPt alloy has attracted attention as a candidate for a perpendicular magnetic recording medium that has low noise and is resistant to thermal demagnetization. The seed layer and the intermediate layer of the perpendicular magnetic recording medium have been extensively studied so far. For example, in Japanese Patent Application Laid-Open No. 2003-162807, B, C, Al, Si, P, Ti, Zr, Hf, Cr, V, Nb, Ta, Ru, Rd, Pd, Pt, Cu, Ag, Au and NiAl, NiTa in which these are combined with magnetic metals Fe, Co, Ni are disclosed, and an intermediate layer is disclosed. Co, Cr, Pt, Pd, Rh and Ru alloys are disclosed. Further, it has been reported, for example, in IEEE Transactions on Magnetics, Vol. 38, No. 5, p. 1976 (2002) that Ru is suitable as an intermediate layer of an oxide granular type perpendicular magnetic recording medium. Further, it has been reported in IEEE Transactions on Magnetics, Vol. 38, No. 5, p. 1979 (2002) that the Ta seed layer can improve the crystal orientation of the Ru intermediate layer.

特開2003−178413号公報JP 2003-178413 A 特開2003−162807号公報Japanese Patent Laid-Open No. 2003-162807 IEEE Transactions on Magnetics, Vol.38, No.5, p.1976 (2002)IEEE Transactions on Magnetics, Vol.38, No.5, p.1976 (2002) IEEE Transactions on Magnetics, Vol.38, No.5, p.1979 (2002)IEEE Transactions on Magnetics, Vol.38, No.5, p.1979 (2002)

これまで酸化物グラニュラ型の垂直磁気記録媒体に関してノイズ特性や熱減磁特性は検討されてきたが、耐食性については十分な検討が行われてこなかった。そこで高い媒体S/Nが得られるTaシード層とRu中間層を用いた酸化物グラニュラ型の垂直磁気記録媒体に関して耐食性試験を行ったところ、数多くの腐食点が観察され耐食性に問題があることがわかった。中間層としてRuの代わりに、従来の面内磁気記録媒体の中間層としてよく知られている非磁性のCoCr合金を用いた場合には耐食性は改善されるが、媒体S/Nが大幅に低下した。つまり、従来知られている中間層材料とシード層材料の組み合わせでは、高い媒体S/Nと耐食性を両立することができないという問題があることが判明した。   So far, noise characteristics and thermal demagnetization characteristics have been studied for oxide granular type perpendicular magnetic recording media, but sufficient investigation has not been made on corrosion resistance. Therefore, when a corrosion resistance test was performed on an oxide granular type perpendicular magnetic recording medium using a Ta seed layer and a Ru intermediate layer, which can obtain a high medium S / N ratio, a number of corrosion points were observed and there was a problem with the corrosion resistance. all right. When a non-magnetic CoCr alloy well known as an intermediate layer of a conventional in-plane magnetic recording medium is used instead of Ru as an intermediate layer, the corrosion resistance is improved, but the medium S / N is greatly reduced. did. In other words, it has been found that there is a problem that a combination of a conventionally known intermediate layer material and seed layer material cannot achieve both high medium S / N and corrosion resistance.

本発明の目的は、CoCrPt合金に酸化物を添加したグラニュラ型記録層を有する垂直磁気記録媒体に関して、中間層とシード層の材料や構造の組み合わせを選ぶことよって媒体S/Nが高く、かつ耐食性に優れた媒体を実現することである。   The object of the present invention is to provide a perpendicular magnetic recording medium having a granular recording layer in which an oxide is added to a CoCrPt alloy, and by selecting a combination of the material and structure of the intermediate layer and the seed layer, the medium S / N is high and the corrosion resistance is high. It is to realize an excellent medium.

上述の目的を達成するために本発明の一つの特徴によれば、基板上に少なくとも軟磁性層、シード層、中間層、磁気記録層、保護層が順次積層されてなる垂直磁気記録媒体において、磁気記録層をCoCrPt合金からなる多数の柱状粒子と酸化物を含む粒界層によって構成されたグラニュラ構造とし、シード層をTaNi合金又はTaTi合金で構成し、中間層をRuあるいはRuを80at.%以上含有したRu合金によって構成する。本発明のグラニュラ型垂直磁気記録媒体は、TaNi合金又はTaTi合金からなるシード層とRuあるいはRu合金からなる中間層を組み合わせることによって高い媒体S/Nと優れた耐食性を実現する。このとき、シード層に接する中間層に結晶配向性の高いRuあるいはRu合金を用いることにより、さらに優れた耐食性を実現することができる。この垂直磁気記録媒体は、X線回折装置を用いて測定したRu(0002)回折のロッキングカーブの半値幅が4度以下であることを特徴とする。また、前記シード層としては、Niを20at.%以上80at.%以下含有するTaNi合金又はTiを10at.%以上40at.%以下含有するTaTi合金が好ましい。   In order to achieve the above object, according to one aspect of the present invention, in a perpendicular magnetic recording medium in which at least a soft magnetic layer, a seed layer, an intermediate layer, a magnetic recording layer, and a protective layer are sequentially stacked on a substrate. The magnetic recording layer has a granular structure composed of a large number of columnar grains made of a CoCrPt alloy and a grain boundary layer containing an oxide, the seed layer is composed of TaNi alloy or TaTi alloy, and the intermediate layer is made of Ru or Ru at 80 at.%. It is comprised by the Ru alloy contained above. The granular type perpendicular magnetic recording medium of the present invention achieves high medium S / N and excellent corrosion resistance by combining a seed layer made of TaNi alloy or TaTi alloy and an intermediate layer made of Ru or Ru alloy. At this time, further excellent corrosion resistance can be realized by using Ru or Ru alloy having high crystal orientation in the intermediate layer in contact with the seed layer. This perpendicular magnetic recording medium is characterized in that the full width at half maximum of a rocking curve of Ru (0002) diffraction measured using an X-ray diffractometer is 4 degrees or less. The seed layer is preferably a TaNi alloy containing 20 to 80 at.% Ni or a TaTi alloy containing 10 to 40 at.% Ti.

垂直磁気記録媒体の耐食性を改善するためには、媒体を構成するそれぞれの層に用いる材料として耐食性の優れた材料を用いることが有効であると考えられる。ところが、同等の耐食性を有する材料を用いても、媒体としての耐食性に大きな差異が生じることがわかった。詳細に検討を行った結果、各材料自体の耐食性だけでなく、むしろ材料の組み合わせが媒体の耐食性に影響を及ぼすことを見出した。材料間の電気化学的性質や密着性などが耐食性を決める重要な要素となっていると考えられる。さらに材料間の密着性に関しては、材料の組み合わせだけではなく、結晶性が重要な要素と考えられる。本発明はTaNi合金又はTaTi合金とRuの組み合わせにより優れた耐食性を実現することを特徴としており、さらにRuの結晶配向性を制御することが重要であることを見出したものである。   In order to improve the corrosion resistance of the perpendicular magnetic recording medium, it is considered effective to use a material having excellent corrosion resistance as a material used for each layer constituting the medium. However, it has been found that even when materials having equivalent corrosion resistance are used, a large difference occurs in the corrosion resistance as a medium. As a result of detailed examination, it was found that not only the corrosion resistance of each material itself but rather the combination of materials affects the corrosion resistance of the medium. The electrochemical properties and adhesion between materials are considered to be important factors that determine the corrosion resistance. Furthermore, regarding the adhesion between materials, not only the combination of materials but also crystallinity is considered as an important factor. The present invention is characterized in that excellent corrosion resistance is realized by a combination of TaNi alloy or TaTi alloy and Ru, and it has been found that it is important to control the crystal orientation of Ru.

一方、高い媒体S/Nを得るためには、記録層側の中間層の表面凹凸を大きくして磁気記録層の結晶粒界への酸化物の偏析を促進する必要がある。つまり、高い媒体S/Nと優れた耐食性を両立するためには、結晶配向性が良く表面凹凸の大きな中間層を用いる必要がある。このような中間層を実現するために、本発明の垂直磁気記録媒体の製造方法では、中間層を製造方法の異なる下部中間層と上部中間層を積層したRuあるいはRu合金から構成し、上部中間層を形成するときのガス圧を、下部中間層を形成するときのガス圧より高くする。下部中間層を形成するときのガス圧は、0.3Pa以上1Pa以下であることが望ましい。下部中間層と上部中間層を形成する際のガス圧を変化させる代わりに、製膜レートを変化させても同様の効果が得られ、その場合には下部中間層を上部中間層より高い製膜レートで形成する。また、下部中間層と上部中間層の形成時に、ガス圧と製膜レートの両方を変化させてもよい。   On the other hand, in order to obtain a high medium S / N, it is necessary to increase the surface unevenness of the intermediate layer on the recording layer side to promote the segregation of oxides on the crystal grain boundaries of the magnetic recording layer. That is, in order to achieve both high medium S / N and excellent corrosion resistance, it is necessary to use an intermediate layer having good crystal orientation and large surface irregularities. In order to realize such an intermediate layer, in the method for manufacturing a perpendicular magnetic recording medium according to the present invention, the intermediate layer is made of Ru or Ru alloy in which a lower intermediate layer and an upper intermediate layer different in manufacturing method are laminated, and an upper intermediate layer is formed. The gas pressure when forming the layer is made higher than the gas pressure when forming the lower intermediate layer. The gas pressure when forming the lower intermediate layer is desirably 0.3 Pa or more and 1 Pa or less. Instead of changing the gas pressure when forming the lower and upper intermediate layers, the same effect can be obtained by changing the film formation rate, in which case the lower intermediate layer is formed higher than the upper intermediate layer. Form at the rate. Further, both the gas pressure and the film forming rate may be changed when forming the lower intermediate layer and the upper intermediate layer.

本発明によれば、酸化物グラニュラ型垂直磁気記録媒体において、RuあるいはRu合金からなる中間層と、TaNiあるいはTaTi合金からなるシード層の組み合わせを選択することによって媒体S/Nが高く、かつ耐食性に優れた媒体が実現できる。   According to the present invention, in an oxide granular type perpendicular magnetic recording medium, by selecting a combination of an intermediate layer made of Ru or Ru alloy and a seed layer made of TaNi or TaTi alloy, the medium S / N is high and the corrosion resistance is high. An excellent medium can be realized.

垂直磁気記録媒体を、ANELVA製スパッタ装置(C3010)を用いて作製した。このスパッタ装置は10個のプロセスチャンバと1個の基板導入チャンバから構成され、それぞれのチャンバは独立に排気されている。全てのチャンバの排気能力は6×10−6Pa以下である。 A perpendicular magnetic recording medium was manufactured using an ANELVA sputtering apparatus (C3010). This sputtering apparatus is composed of 10 process chambers and one substrate introduction chamber, and each chamber is evacuated independently. The exhaust capacity of all the chambers is 6 × 10 −6 Pa or less.

結晶粒の粒界幅は、透過電子顕微鏡によって磁気記録層の明視野像を観察することによって求めた。グラニュラ媒体の明視野像では、結晶粒の部分は回折強度が強いため暗いコントラストの部分として、酸化物からなる粒界の部分は回折強度が弱いため明るいコントラストの部分として観察される。隣接する結晶粒の重心位置を結ぶ線を引き、その線上の粒界部分の長さを求めることにより個々の粒界幅を求めた。100箇所以上の粒界について粒界幅を求め、これらを算術平均することで、平均粒界幅とした。   The grain boundary width of the crystal grains was determined by observing a bright field image of the magnetic recording layer with a transmission electron microscope. In the bright field image of the granular medium, the crystal grain portion is observed as a dark contrast portion because the diffraction intensity is strong, and the grain boundary portion made of oxide is observed as a bright contrast portion because the diffraction intensity is weak. The width of each grain boundary was obtained by drawing a line connecting the gravity center positions of adjacent crystal grains and obtaining the length of the grain boundary part on the line. The grain boundary width was obtained for 100 or more grain boundaries, and these were arithmetically averaged to obtain the average grain boundary width.

記録再生特性はスピンスタンドによって評価した。評価に用いたヘッドはシールドギャップ長55nm、トラック幅120nmの巨大磁気抵抗効果を利用した再生素子と、トラック幅170nmの単磁極書き込み素子からなる複合磁気ヘッドである。周速10m/s、スキュー角0度、磁気スペーシング約15nmの条件で再生出力とノイズを測定し、媒体S/Nは線記録密度1970fr/mmの信号を記録したときの孤立波再生出力と線記録密度23620fr/mmの信号を記録したときの積分ノイズの比として求めた。   The recording / reproduction characteristics were evaluated by a spin stand. The head used for the evaluation is a composite magnetic head composed of a reproducing element using a giant magnetoresistance effect with a shield gap length of 55 nm and a track width of 120 nm, and a single-pole writing element with a track width of 170 nm. Reproduction output and noise were measured under conditions of a peripheral speed of 10 m / s, a skew angle of 0 degree, and a magnetic spacing of about 15 nm, and the medium S / N was a solitary wave reproduction output when a signal having a linear recording density of 1970 fr / mm was recorded. It was determined as the ratio of integrated noise when a signal having a linear recording density of 23620 fr / mm was recorded.

耐食性の評価は以下の手順で行った。まず、温度60℃、相対湿度90%RH以上の高温多湿状態の条件下にサンプルを96時間放置する。次に、Optical Surface Analyzerを用いて半径14mmから25mmまでの範囲内における腐食点の数をカウントし、以下のようにランク付けした。カウント数が50未満のものをA、50以上200未満のものをB、200以上500未満のものをC、500以上のものをDとして評価した。実用的にはB以上のランクが望ましい。
以下、図面を参照して本発明の実施の形態について説明する。
The corrosion resistance was evaluated according to the following procedure. First, the sample is allowed to stand for 96 hours under conditions of a high temperature and high humidity state at a temperature of 60 ° C. and a relative humidity of 90% RH or higher. Next, the number of corrosion points within a radius of 14 mm to 25 mm was counted using an Optical Surface Analyzer, and ranked as follows. A sample having a count number of less than 50 was evaluated as A, a sample having a count of 50 or more and less than 200 was evaluated as B, a sample having a count of 200 or more and less than 500 was evaluated as C, and a sample having 500 or more was evaluated as D. In practice, a rank of B or higher is desirable.
Embodiments of the present invention will be described below with reference to the drawings.

図1−1に示すように、本実施例の垂直磁気記録媒体は、基板11上にプリコート層12、軟磁性層13、シード層14、中間層15、磁気記録層16、保護層17を順次積層した構造を有する。基板11には厚さ0.635mm、直径65mmのガラス基板を使用した。まず、Ni−37.5at.%Ta−10at.%Zrプリコート層12を形成し、その上に軟磁性層13として総膜厚100nmのCo−8at.%Ta−5at.%Zrを形成した。軟磁性層13はRuを介して2層を反強磁性的に結合させた構造を用いた。軟磁性層13を形成した後、シード層14、中間層15を形成し、その上にCo−17at.%Cr−14at.%Pt合金にSi酸化物を17.5vol.%添加した膜厚12.4nmの磁気記録層16、膜厚4nmのCN保護層17を形成した。スパッタガスとしてはArを使用し、磁気記録層を形成する際には酸素を20mPaの分圧で添加した。保護層17を形成する時は、製膜時のAr圧力0.6Paに対し窒素を50mPaの分圧で添加した。   As shown in FIG. 1A, in the perpendicular magnetic recording medium of this example, a precoat layer 12, a soft magnetic layer 13, a seed layer 14, an intermediate layer 15, a magnetic recording layer 16, and a protective layer 17 are sequentially formed on a substrate 11. It has a laminated structure. As the substrate 11, a glass substrate having a thickness of 0.635 mm and a diameter of 65 mm was used. First, a Ni-37.5 at.% Ta-10 at.% Zr precoat layer 12 was formed, and a Co-8 at.% Ta-5 at.% Zr having a total film thickness of 100 nm was formed thereon as a soft magnetic layer 13. The soft magnetic layer 13 has a structure in which two layers are antiferromagnetically coupled via Ru. After forming the soft magnetic layer 13, a seed layer 14 and an intermediate layer 15 are formed, and a film thickness 12 is obtained by adding 17.5vol.% Of Si oxide to a Co-17at.% Cr-14at.% Pt alloy thereon. A 4 nm magnetic recording layer 16 and a 4 nm thick CN protective layer 17 were formed. Ar was used as the sputtering gas, and oxygen was added at a partial pressure of 20 mPa when forming the magnetic recording layer. When forming the protective layer 17, nitrogen was added at a partial pressure of 50 mPa with respect to an Ar pressure of 0.6 Pa during film formation.

中間層とシード層の組み合わせが記録再生特性及び耐食性に及ぼす影響を調べる目的で、シード層と中間層材料が異なる様々なサンプルを作製した。いずれのサンプルもシード層と中間層の膜厚及び製膜条件は一定とした。シード層及び中間層の膜厚はそれぞれ1nm,16nmとし、シード層はArガス圧0.6Pa、製膜レート1nm/s、中間層はArガス圧2Pa、製膜レート0.3nm/sで形成した。作製したサンプルのシード層と中間層の材料、及び媒体S/Nと耐食性の評価結果を表1に示す。   In order to investigate the effect of the combination of the intermediate layer and the seed layer on the recording / reproducing characteristics and the corrosion resistance, various samples having different seed layer and intermediate layer materials were prepared. In all samples, the film thickness and film forming conditions of the seed layer and the intermediate layer were constant. The film thickness of the seed layer and the intermediate layer is 1 nm and 16 nm, respectively, the seed layer is formed with an Ar gas pressure of 0.6 Pa and a film formation rate of 1 nm / s, and the intermediate layer is formed with an Ar gas pressure of 2 Pa and a film formation rate of 0.3 nm / s. did. Table 1 shows the seed layer and intermediate layer materials, the medium S / N, and the corrosion resistance evaluation results of the prepared samples.

Figure 2006155844
Figure 2006155844

まず、媒体S/Nに着目すると、中間層としてRuあるいはRu合金を用いたサンプル1−9〜16は中間層としてTiあるいはCoCr合金を用いたサンプル1−1〜8に比べて格段に高い媒体S/Nが得られている。透過電子顕微鏡を用いてサンプル1−2の磁気記録層の結晶粒界幅を求めると0.4nmであった。一方、最も高い媒体S/Nが得られているサンプル1−14の結晶粒界幅は1.1nmであり、サンプル1−2に比べて大幅に結晶粒界幅が増加していた。サンプル1−1、1−3〜8についても結晶粒界幅を求めたところ、媒体S/Nが低いサンプル1−1〜8ではいずれも結晶粒界幅は0.5nm以下であった。このように、CoCrPt合金に酸化物を添加したグラニュラ型の磁気記録層を有する垂直磁気記録媒体において、高い媒体S/Nを得るためには、酸化物からなる結晶粒界の幅を大きくする必要があり、これを実現する中間層としてRuあるいはRu合金が適している。   First, focusing on the medium S / N, samples 1-9 to 16 using Ru or Ru alloy as the intermediate layer are much higher than samples 1-1 to 8 using Ti or CoCr alloy as the intermediate layer. S / N is obtained. The crystal grain boundary width of the magnetic recording layer of Sample 1-2 was determined to be 0.4 nm using a transmission electron microscope. On the other hand, the grain boundary width of Sample 1-14 from which the highest medium S / N was obtained was 1.1 nm, and the grain boundary width was significantly increased as compared with Sample 1-2. When the grain boundary widths of Samples 1-1 and 1-3 to 8 were also obtained, the grain boundary widths of Samples 1-1 to 8 having a low medium S / N were 0.5 nm or less. Thus, in a perpendicular magnetic recording medium having a granular type magnetic recording layer in which an oxide is added to a CoCrPt alloy, in order to obtain a high medium S / N, it is necessary to increase the width of the crystal grain boundary made of the oxide. Ru or Ru alloy is suitable as an intermediate layer for realizing this.

次に、耐食性評価の結果に着目する。中間層としてTiあるいはCoCr合金を用いたサンプル1−1〜8に関しては、シード層がない場合に比較的良好な耐食性を示しているが、TaあるいはTa合金をシード層に用いた場合の耐食性は良くない。いずれにしても、先に述べたように媒体S/Nが低いために耐食性と高いS/Nを両立できていないことが問題である。一方、高い媒体S/Nが得られていているRuあるいはRu合金を中間層に用いたサンプル1−9〜16に関しては、シード層による耐食性ランクのバラツキが大きい。シード層にTaを用いたサンプル1−10や1−14は高い媒体S/Nが得られているにもかかわらず耐食性がDランクと非常に悪い。Taシード層はRu中間層の結晶配向性を向上させ、高い媒体S/Nを得る上では非常に有効であるが、Ru中間層と組み合わせた場合に、耐食性に問題があることがわかった。これに対して、TaにNi又はTiを添加したTa−62.5at.%Ni合金又はTa−15at.%Ti合金をシード層として用いた場合がサンプル1−11、12及び1−15、16である。TaNi合金又はTaTi合金シード層とRu又はRu合金中間層とを組み合わせることによって、Taシード層の場合と同様に高い媒体S/Nを維持しながら、Bランク以上の優れた耐食性を得ることができた。シード層のTaにNiやTiを添加することにより、Ru中間層との界面における結晶の整合性を改善することができ、その結果シード層と中間層の密着性が向上し、耐食性も向上したと考えられる。   Next, attention is focused on the results of the corrosion resistance evaluation. Samples 1-1 to 8 using Ti or CoCr alloy as the intermediate layer show relatively good corrosion resistance when there is no seed layer, but the corrosion resistance when Ta or Ta alloy is used as the seed layer is Not good. In any case, since the medium S / N is low as described above, it is a problem that the corrosion resistance and the high S / N cannot be achieved at the same time. On the other hand, with respect to Samples 1-9 to 16 using Ru or Ru alloy for which a high medium S / N is obtained as the intermediate layer, the variation in the corrosion resistance rank due to the seed layer is large. Samples 1-10 and 1-14 using Ta for the seed layer have a very low corrosion resistance of rank D, although a high medium S / N ratio is obtained. The Ta seed layer is very effective in improving the crystal orientation of the Ru intermediate layer and obtaining a high medium S / N, but it has been found that there is a problem in corrosion resistance when combined with the Ru intermediate layer. On the other hand, when the Ta-62.5 at.% Ni alloy or Ta-15 at.% Ti alloy with Ni or Ti added to Ta is used as the seed layer, Samples 1-11, 12 and 1-15, 16 It is. By combining the TaNi alloy or TaTi alloy seed layer and the Ru or Ru alloy intermediate layer, it is possible to obtain excellent corrosion resistance of rank B or higher while maintaining a high medium S / N as in the case of the Ta seed layer. It was. By adding Ni or Ti to Ta of the seed layer, the crystal matching at the interface with the Ru intermediate layer can be improved. As a result, the adhesion between the seed layer and the intermediate layer is improved, and the corrosion resistance is also improved. it is conceivable that.

実施例1ではCo−17at.%Cr−14at.%Pt合金にSi酸化物を17.5vol.%添加した磁気記録層を用いたが、Si酸化物の添加量を15vol.%,20vol.%に変化させた場合やCoCrPt合金の組成が異なるCo−15at.%Cr−14at.%Pt,Co−19at.%Cr−14at.%Pt,Co−17at.%Cr−16at.%Ptを用いた場合も実施例1と同様の傾向が得られた。また、磁気記録層に添加する酸化物として様々な材料を検討した結果、Si酸化物以外にAl酸化物、Ti酸化物、Ta酸化物、B酸化物において実施例1と同様の傾向がみられた。酸化物が安定に生成されやすく、1nm程度の幅の結晶粒界を形成するのに適した材料が磁気記録層に添加された場合に、本発明の効果が顕著に現れる。   In Example 1, a magnetic recording layer in which 17.5 vol.% Of Si oxide was added to a Co-17 at.% Cr-14 at.% Pt alloy was used, but the addition amount of Si oxide was 15 vol. Co-15 at.% Cr-14 at.% Pt, Co-19 at.% Cr-14 at.% Pt, Co-17 at.% Cr-16 at.% Pt were used. In this case, the same tendency as in Example 1 was obtained. Further, as a result of examining various materials as oxides added to the magnetic recording layer, the same tendency as in Example 1 was observed in Al oxide, Ti oxide, Ta oxide, and B oxide in addition to Si oxide. It was. The effect of the present invention is remarkably exhibited when a material suitable for forming a crystal grain boundary having a width of about 1 nm is added to the magnetic recording layer so that an oxide is easily generated.

表2に、分子動力学シミュレーションを用いて中間層とシード層の界面(表2では界面1と記す)及びシード層と軟磁性層の界面(表2では界面2と記す)の剥離強度を計算した結果を示す。計算では中間層をRu、軟磁性層をCo−8at.%Ta−5at.%Zrとし、シード層の材料を変化させた。計算はJournal of Materials Research Vol. 16, pp.1789-1794(2001)に開示されている方法で行った。   Table 2 calculates the peel strength at the interface between the intermediate layer and the seed layer (referred to as interface 1 in Table 2) and the interface between the seed layer and the soft magnetic layer (referred to as interface 2 in Table 2) using molecular dynamics simulation. The results are shown. In the calculation, the seed layer material was changed by setting the intermediate layer to Ru and the soft magnetic layer to Co-8 at.% Ta-5 at.% Zr. The calculation was performed by the method disclosed in Journal of Materials Research Vol. 16, pp.1789-1794 (2001).

Figure 2006155844
Figure 2006155844

シード層としてTa−62.5at.%NiあるいはTa−25at.%Tiを用いた場合、いずれの界面においても剥離エネルギーがTaシード層を用いた場合に比べて2倍近く増加した。このシミュレーション結果から、TaNiシード層及びTaTiシード層を用いることによって軟磁性層及びRu中間層との界面における剥離強度が増加し、耐食性が向上したと考えられる。   When Ta-62.5 at.% Ni or Ta-25 at.% Ti was used as the seed layer, the peeling energy increased almost twice as compared with the case where the Ta seed layer was used at any interface. From this simulation result, it is considered that the use of the TaNi seed layer and the TaTi seed layer increases the peel strength at the interface with the soft magnetic layer and the Ru intermediate layer, thereby improving the corrosion resistance.

サンプル2−1〜4の垂直磁気記録媒体は、中間層の製造方法以外は実施例1のサンプル1−15と同じ膜構成及び製膜条件で作製した。サンプル2−1及び2−2は図1−1に示した構成、サンプル2−3及び2−4は図1−2に示した構成である。図1−2は中間層15以外、全て図1−1と同じ構成であり、中間層15の代わりに下部中間層18、上部中間層19を積層した構成である。   The perpendicular magnetic recording media of Samples 2-1 to 4 were manufactured with the same film configuration and film forming conditions as Sample 1-15 of Example 1 except for the method of manufacturing the intermediate layer. Samples 2-1 and 2-2 have the configuration shown in FIG. 1-1, and samples 2-3 and 2-4 have the configuration shown in FIG. 1-2. 1-2 has the same configuration as that of FIG. 1-1 except for the intermediate layer 15, and has a configuration in which a lower intermediate layer 18 and an upper intermediate layer 19 are laminated instead of the intermediate layer 15. FIG.

図2−1〜4にサンプル2−1〜4の製造方法をそれぞれ示す。サンプル2−1及び2−2は1つの製膜プロセスで中間層を形成するのに対し、サンプル2−3及び2−4では下部中間層と上部中間層で製膜プロセスを変化させた。サンプル2−1,2−2の中間層膜厚は16nmとした。サンプル2−3,2−4の上部中間層及び下部中間層の膜厚はそれぞれ8nmとした。   FIGS. 2-1 to 4 show production methods of Samples 2-1 to -4, respectively. In Samples 2-1 and 2-2, the intermediate layer was formed by one film forming process, whereas in Samples 2-3 and 2-4, the film forming process was changed between the lower intermediate layer and the upper intermediate layer. Samples 2-1 and 2-2 had an intermediate layer thickness of 16 nm. The thicknesses of the upper and lower intermediate layers of Samples 2-3 and 2-4 were 8 nm, respectively.

表3に、それぞれのサンプルのシード層材料、製造方法の図番、透過電子顕微鏡を用いて求めた磁気記録層の結晶粒界幅、X線回折装置を用いて測定したRu(0002)回折のロッキングカーブの半値幅Δθ50、媒体S/N、及び耐食性の評価結果を示す。 Table 3 shows the seed layer material of each sample, the drawing number of the manufacturing method, the grain boundary width of the magnetic recording layer obtained using a transmission electron microscope, and the Ru (0002) diffraction measured using an X-ray diffractometer. The half-value width Δθ 50 of the rocking curve, the medium S / N, and the evaluation results of the corrosion resistance are shown.

Figure 2006155844
Figure 2006155844

まず耐食性の結果に着目すると、いずれも同じ中間層とシード層の材料を用いているにもかかわらず、耐食性の評価結果に差異が現れた。Δθ50が小さく、Ru中間層の結晶配向性が良いサンプル2−2,2−4でAランクの高い耐食性が得られている。 First, paying attention to the results of the corrosion resistance, there was a difference in the evaluation results of the corrosion resistance in spite of using the same intermediate layer and seed layer materials. Samples 2-2 and 2-4, which have a small Δθ 50 and good crystal orientation of the Ru intermediate layer, have high corrosion resistance of A rank.

サンプル2−1と同じ膜構成で中間層の製膜プロセスを変化させたサンプルを作製し、Ru(0002)回折のロッキングカーブの半値幅Δθ50と耐食性の関係を調べた結果を図3に示す。Δθ50が4度以下の高い結晶配向性を示す場合にAランク以上の非常に優れた耐食性が得られた。つまり、耐食性を向上させるためには膜の材料の組み合わせだけではなく、結晶配向性も重要であることがわかった。 FIG. 3 shows the result of examining the relationship between the half-value width Δθ 50 of the rocking curve of Ru (0002) diffraction and the corrosion resistance by preparing a sample with the same film configuration as that of Sample 2-1 and changing the film forming process of the intermediate layer. . When Δθ 50 shows a high crystal orientation of 4 degrees or less, very excellent corrosion resistance of rank A or higher was obtained. In other words, it was found that not only the combination of film materials but also the crystal orientation is important for improving the corrosion resistance.

次に媒体S/Nに着目すると、磁気記録層に接する中間層や上部中間層を低ガス圧雰囲気中で形成したサンプル2−2や2−3では、磁気記録層の結晶粒界幅が狭く媒体S/Nが低い。これは低ガス圧雰囲気中で製膜した中間層は表面に凹凸がつきにくいために、磁気記録層の結晶粒界への酸化物の偏析が起こりにくいことが原因と考えられる。これらの結果より、高い媒体S/Nと優れた耐食性を両立するためには、シード層に接する中間層は結晶配向性が高く、記録層に接する中間層は表面凹凸を大きくする必要がある。   Next, focusing on the medium S / N, in the samples 2-2 and 2-3 in which the intermediate layer and the upper intermediate layer in contact with the magnetic recording layer are formed in a low gas pressure atmosphere, the grain boundary width of the magnetic recording layer is narrow. Medium S / N is low. This is presumably because the intermediate layer formed in a low gas pressure atmosphere is less prone to irregularities on the surface, and therefore segregation of oxides to the crystal grain boundaries of the magnetic recording layer hardly occurs. From these results, in order to achieve both high medium S / N and excellent corrosion resistance, the intermediate layer in contact with the seed layer has high crystal orientation, and the intermediate layer in contact with the recording layer needs to have large surface irregularities.

このような特徴を持つ中間層を実現するためには、サンプル2−4のように中間層が製造方法の異なる下部中間層と上部中間層により構成され、かつ下部中間層が低ガス圧雰囲気中で製膜され高い結晶配向性を示す膜である必要がある。つまりTa−62.5at.%Niシード層とRu中間層の組み合わせ、かつ図2−4に示した製造方法を用いれば高い媒体S/NとAランクの優れた耐食性を両立できることがわかった。   In order to realize the intermediate layer having such characteristics, as shown in Sample 2-4, the intermediate layer is composed of a lower intermediate layer and an upper intermediate layer having different manufacturing methods, and the lower intermediate layer is in a low gas pressure atmosphere. It is necessary to be a film that is formed with a high crystal orientation. That is, it has been found that high medium S / N and excellent A-rank corrosion resistance can be achieved by using a combination of a Ta-62.5 at.% Ni seed layer and a Ru intermediate layer and the manufacturing method shown in FIG.

サンプル2−5はシード層の材料以外はサンプル2−4と同じ膜構成であり、サンプル2−4と同じ製造方法を用いて作製した。シード層としてはTa−15at.%Tiを用いた。サンプル2−4と同様、Ta−15at.%Tiシード層とRu中間層を組み合わせ、かつ図2−4に示した製造方法を用いれば、高い媒体S/NとAランクの優れた耐食性を両立できることがわかった。中間層としてRuの代わりにRu−5at.%TiやRu−10at.%Co、Ru−15vol.%SiOを用いた場合にも同様の結果が得られた。 Sample 2-5 has the same film configuration as sample 2-4 except for the material of the seed layer, and was manufactured using the same manufacturing method as sample 2-4. Ta-15 at.% Ti was used as the seed layer. Similar to sample 2-4, combining a Ta-15at.% Ti seed layer and a Ru intermediate layer and using the manufacturing method shown in FIG. 2-4 provides both high medium S / N and excellent A rank corrosion resistance. I knew it was possible. Similar results were obtained when Ru-5 at.% Ti, Ru-10 at.% Co, or Ru-15 vol.% SiO 2 was used as the intermediate layer instead of Ru.

サンプル2−4と同じ膜構成で下部中間層を形成するときのガス圧を変化させたサンプルを作製し、ガス圧とRu(0002)回折のロッキングカーブの半値幅Δθ50の値の関係を調べた結果を図4に示す。ガス圧が1Pa以下の時に、Δθ50が4度以下の値を示した。Δθ50が4度以下のときに優れた耐食性を示すこと、及び安定した放電が得られるには0.3Pa以上のガス圧が必要であることから、下部中間層を0.3Pa以上1Pa以下のガス圧で形成することが望ましい。また、高い媒体S/Nを得るためには上部中間層は下部中間層より高いガス圧雰囲気中で形成する必要があり、上部中間層形成時のガス圧は下部中間層の2倍以上にすることが望ましい。 A sample with the same film configuration as sample 2-4 and with the gas pressure changed when forming the lower intermediate layer was prepared, and the relationship between the gas pressure and the value of the half-value width Δθ 50 of the rocking curve of Ru (0002) diffraction was investigated. The results are shown in FIG. When the gas pressure was 1 Pa or less, Δθ 50 showed a value of 4 degrees or less. Since the excellent corrosion resistance is exhibited when Δθ 50 is 4 degrees or less, and a gas pressure of 0.3 Pa or more is necessary to obtain a stable discharge, the lower intermediate layer is 0.3 Pa or more and 1 Pa or less. It is desirable to form with gas pressure. Further, in order to obtain a high medium S / N, the upper intermediate layer needs to be formed in a gas pressure atmosphere higher than that of the lower intermediate layer, and the gas pressure at the time of forming the upper intermediate layer should be more than twice that of the lower intermediate layer It is desirable.

サンプル2−6はサンプル2−4と同じ膜構成であり、製造方法のみ異なるサンプルである。サンプル2−6は図2−5に示した製造方法を用いて作製した。下部中間層と上部中間層の形成する際のガス圧を変化させる代わりに製膜レートを変化させた。低い製膜レートで形成した場合、高ガス圧雰囲気中で形成することと同様の効果が得られ、表面凹凸がつきやすく結晶配向性が劣化する。一方、高い製膜レートで形成した場合、低ガス圧雰囲気中で形成することと同様の効果が得られ、表面凹凸がつきにくいが結晶配向性が向上する。サンプル2−6は、下部中間層を高い製膜レートで形成し、上部中間層を低い製膜レートで形成した。サンプル2−6でもサンプル2−4と同様、高い媒体S/NとAランクの優れた耐食性を両立することができた。中間層としてRuの代わりにRu−5at.%TiやRu−10at.%Co、Ru−15vol.%SiOを用いた場合、シード層としてTa−15at.%Tiを用いた場合にも同様の結果が得られた。 Sample 2-6 has the same film configuration as sample 2-4, and is a sample that differs only in the manufacturing method. Sample 2-6 was produced using the production method shown in FIG. Instead of changing the gas pressure when forming the lower intermediate layer and the upper intermediate layer, the film forming rate was changed. When the film is formed at a low film formation rate, the same effect as that formed in a high gas pressure atmosphere can be obtained, and surface irregularities are easily formed and the crystal orientation is deteriorated. On the other hand, when the film is formed at a high film formation rate, the same effect as that formed in a low gas pressure atmosphere can be obtained, and the crystal orientation is improved although the surface unevenness is hardly formed. In Sample 2-6, the lower intermediate layer was formed at a high film formation rate, and the upper intermediate layer was formed at a low film formation rate. In sample 2-6, as in sample 2-4, both high medium S / N and excellent A-rank corrosion resistance could be achieved. Intermediate layer as Ru Instead Ru-5at.% Ti and Ru-10at.% Co in the case of using a Ru-15vol.% SiO 2, the same even when using a Ta-15at.% Ti as a seed layer Results were obtained.

サンプル2−7はサンプル2−4と同じ膜構成であり、製造方法のみ異なるサンプルである。サンプル2−7は、図2−6に示した製造方法を用いて作製した。サンプル2−7は、上部中間層を下部中間層より高いガス圧雰囲気中かつ低い製膜レートで形成した。サンプル2−7でもサンプル2−4と同等の媒体S/NとAランクの耐食性が得られた。中間層としてRu−5at.%TiやRu−10at.%Co、Ru−15vol.%SiOを用いた場合、シード層としてTa−15at.%Tiを用いた場合にも同様の結果が得られた。 Sample 2-7 has the same film configuration as sample 2-4, and is a sample that differs only in the manufacturing method. Sample 2-7 was produced using the production method shown in FIGS. In Sample 2-7, the upper intermediate layer was formed in a higher gas pressure atmosphere than the lower intermediate layer and at a lower film formation rate. In sample 2-7, medium S / N and A rank corrosion resistance equivalent to sample 2-4 were obtained. Similar results are obtained when Ru-5 at.% Ti, Ru-10 at.% Co, Ru-15 vol.% SiO 2 is used as the intermediate layer, and Ta-15 at.% Ti is used as the seed layer. It was.

実施例3の垂直磁気記録媒体は、シード層の材料以外は実施例2のサンプル2−4と同じ膜構成及び製膜条件で作製した。実施例3ではシード層のTaNi合金の組成を変化させた。図5(a)にシード層の組成と腐食点のカウント数の関係、図5(b)にシード層の組成と媒体S/Nの関係を示す。TaNi合金がNiを20at.%以上含有する場合にAランク以上の優れた耐食性が得られ、Niを80at.%以下含有する場合に高い媒体S/Nが得られた。中間層としてRuの代わりにRu−5at.%TiやRu−10at.%Co、Ru−15vol.%SiOを用いた場合にも同様の結果が得られた。 The perpendicular magnetic recording medium of Example 3 was manufactured with the same film configuration and film forming conditions as Sample 2-4 of Example 2 except for the material of the seed layer. In Example 3, the composition of the TaNi alloy in the seed layer was changed. FIG. 5A shows the relationship between the composition of the seed layer and the count number of corrosion points, and FIG. 5B shows the relationship between the composition of the seed layer and the medium S / N. When the TaNi alloy contains 20 at.% Or more of Ni, excellent corrosion resistance of rank A or higher was obtained, and when Ni contained 80 at.% Or less, a high medium S / N was obtained. Similar results were obtained when Ru-5 at.% Ti, Ru-10 at.% Co, or Ru-15 vol.% SiO 2 was used as the intermediate layer instead of Ru.

以上の結果より、RuあるいはRu合金中間層と組み合わせて高い媒体S/Nと優れた耐食性を実現するためには、シード層のTaNi合金がNiを20at.%以上80at.%以下含有することが望ましい。   From the above results, in order to realize a high medium S / N and excellent corrosion resistance in combination with Ru or a Ru alloy intermediate layer, the seed layer TaNi alloy contains 20 at.% Or more and 80 at.% Or less of Ni. desirable.

実施例4の垂直磁気記録媒体は、シード層の材料以外は実施例2のサンプル2−4と同じ膜構成及び製膜条件で作製した。実施例4ではシード層としてTaTi合金を用い、その組成を変化させた。図6(a)にシード層の組成と腐食点のカウント数の関係、図6(b)にシード層の組成と媒体S/Nの関係を示す。TaTi合金がTiを10at.%以上含有する場合にAランク以上の優れた耐食性が得られ、Tiを40at.%以下含有する場合に高い媒体S/Nが得られた。中間層としてRuの代わりにRu−5at.%TiやRu−10at.%Co、Ru−15vol.%SiOを用いた場合にも同様の結果が得られた。 The perpendicular magnetic recording medium of Example 4 was manufactured with the same film configuration and film forming conditions as Sample 2-4 of Example 2 except for the material of the seed layer. In Example 4, a TaTi alloy was used as a seed layer, and the composition was changed. FIG. 6A shows the relationship between the composition of the seed layer and the count number of corrosion points, and FIG. 6B shows the relationship between the composition of the seed layer and the medium S / N. When the TaTi alloy contains 10 at.% Or more of Ti, excellent corrosion resistance of rank A or higher was obtained, and when Ti contained 40 at.% Or less, a high medium S / N was obtained. Similar results were obtained when Ru-5 at.% Ti, Ru-10 at.% Co, or Ru-15 vol.% SiO 2 was used as the intermediate layer instead of Ru.

以上の結果より、RuあるいはRu合金中間層と組み合わせて高い媒体S/Nと優れた耐食性を実現するためには、シード層のTaTi合金がTiを10at.%以上40at.%以下含有することが望ましい。   From the above results, in order to realize high medium S / N and excellent corrosion resistance in combination with the Ru or Ru alloy intermediate layer, the TaTi alloy of the seed layer contains 10 at.% Or more and 40 at.% Or less of Ti. desirable.

実施例5の垂直磁気記録媒体は、中間層の材料以外は実施例1のサンプル1−15と同じ膜構成及び製膜条件で作製した。すなわち、シード層としてTa−62.5at.%Ni合金を用いた。ただし、実施例5では中間層としてRuCo合金を用い、その組成を変化させた。作製したサンプルの中間層の材料、及び媒体S/Nと耐食性の評価結果を表4に示す。サンプル5−1〜3では高い媒体S/NとBランク以上の耐食性を示しているが、中間層のCoの含有量が20at.%を超えるサンプル5−4及び5−5では媒体S/Nが低下し、耐食性もCランクに下がった。中間層としてRu−Ti、Ru−SiOを用いた場合、シード層としてTa−15at.%Tiを用いた場合にも同様の結果が得られた。 The perpendicular magnetic recording medium of Example 5 was manufactured with the same film configuration and film forming conditions as Sample 1-15 of Example 1 except for the material of the intermediate layer. That is, a Ta-62.5 at.% Ni alloy was used as the seed layer. However, in Example 5, a RuCo alloy was used as the intermediate layer, and its composition was changed. Table 4 shows the material of the intermediate layer of the produced sample, and the evaluation results of the medium S / N and the corrosion resistance. Samples 5-1 to 5-1 exhibit high medium S / N and corrosion resistance higher than B rank, but samples 5-4 and 5-5 in which the Co content in the intermediate layer exceeds 20 at.% Are medium S / N. The corrosion resistance decreased to C rank. Similar results were obtained when Ru—Ti and Ru—SiO 2 were used as the intermediate layer and Ta-15 at.% Ti was used as the seed layer.

Figure 2006155844
Figure 2006155844

以上の結果より、酸化物グラニュラ型垂直磁気記録媒体において高い媒体S/Nと耐食性を両立するためには、中間層はRuを主体とするRu合金である必要があり、Ruの含有量は80at.%以上であることが望ましい。   From the above results, in order to achieve both high medium S / N and corrosion resistance in an oxide granular type perpendicular magnetic recording medium, the intermediate layer needs to be a Ru alloy mainly composed of Ru, and the content of Ru is 80 at. It is desirable that it be at least.

実施例6の垂直磁気記録媒体は、軟磁性層の組成、及び、シード層の組成と膜厚以外は実施例2のサンプル2−4と同じ膜構成及び製膜条件で作製した。実施例6では軟磁性層としてCo−5at.%Nb−10at.%Zrを用いた。作製したサンプルのシード層の組成、膜厚、及び媒体S/Nと耐食性の評価結果を表5に示す。シード層が無いサンプル6−1(比較例)はサンプル6−2〜14に比べて最も耐食性も悪く媒体S/Nも低い。一方、シード層を有するサンプル6−2〜14を比較すると、シード層の膜厚が1nm以上のサンプルでAランクの耐食性を示し、シード層の膜厚が1nm以上5nm以下のサンプルで特に高い媒体S/Nが得られた。ここでシード層が5nmより厚いサンプルで媒体S/Nが劣化しているのは、シード層の膜厚増加によって記録効率が低下したことが原因と考えられる。中間層としてRuの代わりにRu−5at.%TiやRu−10at.%Co、Ru−15vol.%SiOを用いた場合、シード層としてTa−55at.%Ni、Ta−10at.%Tiを用いた場合にも同様の結果が得られた。 The perpendicular magnetic recording medium of Example 6 was manufactured with the same film configuration and film forming conditions as Sample 2-4 of Example 2 except for the composition of the soft magnetic layer and the composition and thickness of the seed layer. In Example 6, Co-5 at.% Nb-10 at.% Zr was used as the soft magnetic layer. Table 5 shows the composition of the seed layer of the prepared sample, the film thickness, and the evaluation results of the medium S / N and the corrosion resistance. Sample 6-1 without a seed layer (comparative example) has the worst corrosion resistance and low medium S / N compared to samples 6-2 to 14. On the other hand, when the samples 6-2 to 14 having the seed layer are compared, a medium having a seed layer thickness of 1 nm or more shows A-rank corrosion resistance, and a sample layer having a seed layer thickness of 1 nm to 5 nm is particularly high. S / N was obtained. Here, the reason why the medium S / N is deteriorated in a sample having a seed layer thicker than 5 nm is considered to be caused by a decrease in recording efficiency due to an increase in the thickness of the seed layer. Ru-5at instead of Ru as the intermediate layer.% Ti and Ru-10at.% Co, the case of using a Ru-15vol.% SiO 2, Ta-55at.% Ni as a seed layer, a Ta-10at.% Ti Similar results were obtained when used.

Figure 2006155844
Figure 2006155844

以上の結果より、酸化物グラニュラ型垂直磁気記録媒体において高い媒体S/Nと優れた耐食性を両立するためには、TaNi合金またはTaTi合金からなるシード層の膜厚が1nm以上5nm以下であることが望ましい。   From the above results, in order to achieve both high medium S / N and excellent corrosion resistance in oxide granular type perpendicular magnetic recording media, the thickness of the seed layer made of TaNi alloy or TaTi alloy is 1 nm or more and 5 nm or less. Is desirable.

本発明による垂直磁気記録媒体の構造を示す図。1 is a diagram showing the structure of a perpendicular magnetic recording medium according to the present invention. 本発明による垂直磁気記録媒体の構造を示す図。1 is a diagram showing the structure of a perpendicular magnetic recording medium according to the present invention. 垂直磁気記録媒体の製造方法を示す図。The figure which shows the manufacturing method of a perpendicular magnetic recording medium. 垂直磁気記録媒体の製造方法を示す図。The figure which shows the manufacturing method of a perpendicular magnetic recording medium. 垂直磁気記録媒体の製造方法を示す図。The figure which shows the manufacturing method of a perpendicular magnetic recording medium. 垂直磁気記録媒体の製造方法を示す図。The figure which shows the manufacturing method of a perpendicular magnetic recording medium. 垂直磁気記録媒体の製造方法を示す図。The figure which shows the manufacturing method of a perpendicular magnetic recording medium. 垂直磁気記録媒体の製造方法を示す図。The figure which shows the manufacturing method of a perpendicular magnetic recording medium. Ru(0002)回折のロッキングカーブの半値幅Δθ50と腐食点の数の関係を示す図。The figure which shows the relationship between the half value width (DELTA) (theta) 50 of the rocking curve of Ru (0002) diffraction, and the number of corrosion points. 下部中間層を形成する際のArガス圧とRu(0002)回折のロッキングカーブの半値幅Δθ50の値の関係を示す図。The figure which shows the relationship between the Ar gas pressure at the time of forming a lower intermediate | middle layer, and the value of half value width (DELTA) (theta) 50 of the rocking curve of Ru (0002) diffraction. 垂直磁気記録媒体のTaNiシード層におけるNi含有量と腐食点の数及び媒体S/Nの関係を示す図。The figure which shows the relationship between Ni content in the TaNi seed layer of a perpendicular magnetic recording medium, the number of corrosion points, and medium S / N. 垂直磁気記録媒体のTaTiシード層におけるTi含有量と腐食点の数及び媒体S/Nの関係を示す図。The figure which shows the relationship of Ti content in the TaTi seed layer of a perpendicular magnetic recording medium, the number of corrosion points, and medium S / N.

符号の説明Explanation of symbols

11…基板、12…プリコート層、13…軟磁性層、14…シード層、15…中間層、16…磁気記録層、17…保護層、18…下部中間層、19…上部中間層 DESCRIPTION OF SYMBOLS 11 ... Substrate, 12 ... Precoat layer, 13 ... Soft magnetic layer, 14 ... Seed layer, 15 ... Intermediate layer, 16 ... Magnetic recording layer, 17 ... Protective layer, 18 ... Lower intermediate layer, 19 ... Upper intermediate layer

Claims (13)

基板上に少なくとも軟磁性層、シード層、中間層、磁気記録層、保護層が順次積層されてなる垂直磁気記録媒体であって、
前記シード層がTaNi合金又はTaTi合金からなり、前記中間層がRu又はRu合金からなることを特徴とする垂直磁気記録媒体。
A perpendicular magnetic recording medium in which at least a soft magnetic layer, a seed layer, an intermediate layer, a magnetic recording layer, and a protective layer are sequentially laminated on a substrate,
The perpendicular magnetic recording medium according to claim 1, wherein the seed layer is made of TaNi alloy or TaTi alloy, and the intermediate layer is made of Ru or Ru alloy.
請求項1に記載の垂直磁気記録媒体において、X線回折装置を用いて測定したRu(0002)回折のロッキングカーブの半値幅が4度以下であることを特徴とする垂直磁気記録媒体。   2. The perpendicular magnetic recording medium according to claim 1, wherein a half width of a rocking curve of Ru (0002) diffraction measured with an X-ray diffractometer is 4 degrees or less. 請求項2に記載の垂直磁気記録媒体において、前記シード層がNiを20at.%以上80at.%以下含有するTaNi合金からなることを特徴とする垂直磁気記録媒体。   3. The perpendicular magnetic recording medium according to claim 2, wherein the seed layer is made of a TaNi alloy containing Ni at 20 at.% Or more and 80 at.% Or less. 請求項2に記載の垂直磁気記録媒体において、前記シード層がTiを10at.%以上40at.%以下含有するTaTi合金からなることを特徴とする垂直磁気記録媒体。   3. The perpendicular magnetic recording medium according to claim 2, wherein the seed layer is made of a TaTi alloy containing Ti at 10 to 40 at.%. 請求項2に記載の垂直磁気記録媒体において、前記中間層がRuを80at.%以上含有するRu又はRu合金からなることを特徴とする垂直磁気記録媒体。   3. The perpendicular magnetic recording medium according to claim 2, wherein the intermediate layer is made of Ru or a Ru alloy containing 80 at.% Or more of Ru. 請求項2に記載の垂直磁気記録媒体において、前記磁気記録層がCoCrPt合金からなる多数の柱状粒子と酸化物を含む粒界層によって構成されたグラニュラ構造を有していることを特徴とする垂直磁気記録媒体。   3. The perpendicular magnetic recording medium according to claim 2, wherein the magnetic recording layer has a granular structure composed of a number of columnar grains made of a CoCrPt alloy and a grain boundary layer containing an oxide. Magnetic recording medium. 基板と、
前記基板上に形成された軟磁性層と、
前記軟磁性層上に形成されたTaNi合金又はTaTi合金からなるシード層と、
前記シード層上に第1のガス圧により製膜されたRuあるいはRuに金属を添加した合金からなる下部中間層と、
前記下部中間層上に前記第1のガス圧よりも高い第2のガス圧により製膜されたRuあるいはRu合金からなる上部中間層と、
前記上部中間層上に形成された、CoCrPt合金からなる多数の柱状粒子と酸化物を含む粒界層によって構成されたグラニュラ構造を有する磁気記録層と
を備えることを特徴とする垂直磁気記録媒体。
A substrate,
A soft magnetic layer formed on the substrate;
A seed layer made of TaNi alloy or TaTi alloy formed on the soft magnetic layer;
A lower intermediate layer made of Ru or an alloy obtained by adding a metal to Ru formed on the seed layer by a first gas pressure;
An upper intermediate layer made of Ru or Ru alloy formed on the lower intermediate layer by a second gas pressure higher than the first gas pressure;
A perpendicular magnetic recording medium comprising: a magnetic recording layer having a granular structure formed of a large number of columnar particles made of a CoCrPt alloy and a grain boundary layer containing an oxide formed on the upper intermediate layer.
基板と、
前記基板上に形成された軟磁性層と、
前記軟磁性層上に形成されたTaNi合金又はTaTi合金からなるシード層と、
前記シード層上に第1の製膜レートで製膜されたRuあるいはRuに金属を添加した合金からなる下部中間層と、
前記下部中間層上に前記第1の製膜レートよりも低い第2の製膜レートで製膜されたRuあるいはRu合金からなる上部中間層と、
前記上部中間層上に形成された、CoCrPt合金からなる多数の柱状粒子と酸化物を含む粒界層によって構成されたグラニュラ構造を有する磁気記録層と
を備えることを特徴とする垂直磁気記録媒体。
A substrate,
A soft magnetic layer formed on the substrate;
A seed layer made of TaNi alloy or TaTi alloy formed on the soft magnetic layer;
A lower intermediate layer made of Ru or an alloy obtained by adding a metal to Ru formed on the seed layer at a first deposition rate;
An upper intermediate layer made of Ru or Ru alloy formed on the lower intermediate layer at a second film formation rate lower than the first film formation rate;
A perpendicular magnetic recording medium comprising: a magnetic recording layer having a granular structure formed of a large number of columnar particles made of a CoCrPt alloy and a grain boundary layer containing an oxide formed on the upper intermediate layer.
基板上に軟磁性層を形成するステップと、
前記軟磁性層上にTaNi合金又はTaTi合金からなるシード層を形成するステップと、
前記シード層上にRuあるいはRuに金属を添加した合金からなる下部中間層を第1のガス圧で形成するステップと、
前記下部中間層上にRuあるいはRu合金からなる上部中間層を前記第1のガス圧よりも高い第2のガス圧で形成するステップと、
前記上部中間層上にCoCrPt合金からなる多数の柱状粒子と酸化物を含む粒界層によって構成されたグラニュラ構造を有する磁気記録層を形成するステップと
を有することを特徴とする垂直磁気記録媒体の製造方法。
Forming a soft magnetic layer on the substrate;
Forming a seed layer made of TaNi alloy or TaTi alloy on the soft magnetic layer;
Forming a lower intermediate layer made of Ru or an alloy obtained by adding a metal to Ru at the first gas pressure on the seed layer;
Forming an upper intermediate layer made of Ru or a Ru alloy on the lower intermediate layer at a second gas pressure higher than the first gas pressure;
Forming a magnetic recording layer having a granular structure composed of a large number of columnar grains made of a CoCrPt alloy and a grain boundary layer containing an oxide on the upper intermediate layer. Production method.
基板上に軟磁性層を形成するステップと、
前記軟磁性層上にTaNi合金又はTaTi合金からなるシード層を形成するステップと、
前記シード層上にRuあるいはRuに金属を添加した合金からなる下部中間層を第1の製膜レートで形成するステップと、
前記下部中間層上にRuあるいはRu合金からなる上部中間層を前記第1の製膜レートより低い第2の製膜レートで形成するステップと、
前記上部中間層上にCoCrPt合金からなる多数の柱状粒子と酸化物を含む粒界層によって構成されたグラニュラ構造を有する磁気記録層を形成するステップと
を有することを特徴とする垂直磁気記録媒体の製造方法。
Forming a soft magnetic layer on the substrate;
Forming a seed layer made of TaNi alloy or TaTi alloy on the soft magnetic layer;
Forming a lower intermediate layer made of Ru or an alloy obtained by adding a metal to Ru on the seed layer at a first deposition rate;
Forming an upper intermediate layer made of Ru or Ru alloy on the lower intermediate layer at a second film formation rate lower than the first film formation rate;
Forming a magnetic recording layer having a granular structure composed of a plurality of columnar grains made of a CoCrPt alloy and a grain boundary layer containing an oxide on the upper intermediate layer. Production method.
請求項1記載の垂直磁気記録媒体において、前記シード層は膜厚が1〜5nmであることを特徴とする垂直磁気記録媒体。   2. The perpendicular magnetic recording medium according to claim 1, wherein the seed layer has a thickness of 1 to 5 nm. 請求項7記載の垂直磁気記録媒体において、前記シード層は膜厚が1〜5nmであることを特徴とする垂直磁気記録媒体。   8. The perpendicular magnetic recording medium according to claim 7, wherein the seed layer has a thickness of 1 to 5 nm. 請求項8記載の垂直磁気記録媒体において、前記シード層は膜厚が1〜5nmであることを特徴とする垂直磁気記録媒体。   9. The perpendicular magnetic recording medium according to claim 8, wherein the seed layer has a thickness of 1 to 5 nm.
JP2004359868A 2004-10-25 2004-12-13 Perpendicular magnetic recording medium and its manufacturing method Pending JP2006155844A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004359868A JP2006155844A (en) 2004-10-25 2004-12-13 Perpendicular magnetic recording medium and its manufacturing method
US11/295,005 US7641989B2 (en) 2004-12-13 2005-12-05 Perpendicular magnetic recording medium for high density recording and manufacturing of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004309994 2004-10-25
JP2004359868A JP2006155844A (en) 2004-10-25 2004-12-13 Perpendicular magnetic recording medium and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006155844A true JP2006155844A (en) 2006-06-15

Family

ID=36633918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004359868A Pending JP2006155844A (en) 2004-10-25 2004-12-13 Perpendicular magnetic recording medium and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006155844A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276915A (en) * 2007-03-30 2008-11-13 Hoya Corp Magnetic recording medium
JP2010238273A (en) * 2009-03-30 2010-10-21 Hoya Corp Method for manufacturing perpendicular magnetic recording medium
JP2011141940A (en) * 2010-01-08 2011-07-21 Wd Media Singapore Pte Ltd Perpendicular magnetic recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276915A (en) * 2007-03-30 2008-11-13 Hoya Corp Magnetic recording medium
US8142916B2 (en) 2007-03-30 2012-03-27 WD Media (Singapore) Pte, Ltd Magnetic recording medium
JP2010238273A (en) * 2009-03-30 2010-10-21 Hoya Corp Method for manufacturing perpendicular magnetic recording medium
JP2011141940A (en) * 2010-01-08 2011-07-21 Wd Media Singapore Pte Ltd Perpendicular magnetic recording medium

Similar Documents

Publication Publication Date Title
JP4499044B2 (en) Perpendicular magnetic recording medium and magnetic storage device using the same
US7235314B2 (en) Inter layers for perpendicular recording media
US7641989B2 (en) Perpendicular magnetic recording medium for high density recording and manufacturing of the same
US8390956B2 (en) Perpendicular magnetic recording medium having FCC seed layers
JP4380577B2 (en) Perpendicular magnetic recording medium
JP2008123626A (en) Perpendicular magnetic recording medium and magnetic storage apparatus using the same
JPWO2007129687A1 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP4527645B2 (en) Perpendicular magnetic recording medium
JPWO2009014205A1 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
US20090042062A1 (en) Interlayer design for magnetic media
US7550211B2 (en) Magnetic recording medium and magnetic recording and reproducing device
US20140186658A1 (en) Interlayer comprising chromium-containing alloy
JP2001344740A (en) Magnetic recording medium and magnetic storage device
JP4611847B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
US20060051623A1 (en) Magnetic material for non-reactive process of granular perpendicular recording application
US7534507B2 (en) Perpendicular magnetic recording medium for high density magnetic recording and manufacturing of the same
US20100079911A1 (en) Magnetic recording medium, process for producing same, and magnetic recording reproducing apparatus using the magnetic recording medium
US7919201B2 (en) Method of making a multilayered magnetic structure
US20060076233A1 (en) Magnetic recording medium and method for production thereof
JP5126674B2 (en) Perpendicular magnetic recording medium
US8071228B2 (en) Perpendicular magnetic recording medium
WO2003083842A1 (en) Vertical magnetic recording medium, magnetic recorder having same, vertical magnetic recording medium manufacturing method, and vertical magnetic recording medium manufacturing apparatus
JP3588039B2 (en) Magnetic recording medium and magnetic recording / reproducing device
JP2006155844A (en) Perpendicular magnetic recording medium and its manufacturing method
JP4535666B2 (en) Perpendicular magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602