JP4535666B2 - Perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium Download PDF

Info

Publication number
JP4535666B2
JP4535666B2 JP2002166191A JP2002166191A JP4535666B2 JP 4535666 B2 JP4535666 B2 JP 4535666B2 JP 2002166191 A JP2002166191 A JP 2002166191A JP 2002166191 A JP2002166191 A JP 2002166191A JP 4535666 B2 JP4535666 B2 JP 4535666B2
Authority
JP
Japan
Prior art keywords
magnetic recording
layer
underlayer
recording medium
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002166191A
Other languages
Japanese (ja)
Other versions
JP2004014014A (en
Inventor
俊司 竹野入
泰志 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2002166191A priority Critical patent/JP4535666B2/en
Publication of JP2004014014A publication Critical patent/JP2004014014A/en
Application granted granted Critical
Publication of JP4535666B2 publication Critical patent/JP4535666B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は各種磁気記録装置に搭載される垂直磁気記録媒体に関する。
【0002】
【従来の技術】
磁気記録の高密度化を実現する技術として、従来の長手磁気記録方式に代えて、垂直磁気記録方式が注目されつつある。垂直磁気記録方式による媒体(以下、「垂直磁気記録媒体」と称す)は、主に、ガラスなどの基体上に、磁気記録層を目的の方向に配向させるための下地層、硬質磁性材料の磁気記録層、および磁気記録層の表面を保護する保護膜が順次形成された概略構成を有する。垂直磁気記録媒体には、磁気記録層への記録に用いられる磁気ヘッドから発生する磁束を集中させる目的で、基体と下地層との間に軟磁性材料からなる裏打ち層を設けることもある。通常、軟磁性裏打ち層を持たない媒体を単層垂直磁気記録媒体、軟磁性裏打ち層を有する媒体を二層垂直磁気記録媒体と呼ぶ。さらに、磁気記録層の配向性の向上および結晶欠陥を抑制するために、下地層と磁気記録層の間に中間層を設ける場合もある。
【0003】
近年、磁気記録媒体において磁気記録をより高密度化する要望はますます高くなっている。垂直磁気記録媒体において磁気記録をより高密度化するためには、出力−ノイズ比(SNR)特性をより向上させることが必要である。すなわち、媒体の高密度記録化を達成するためには、媒体ノイズを低減化し、再生出力を向上させることが必要となる。
【0004】
再生出力の低下および媒体ノイズ増加の原因の1つに、磁気記録層の磁性の配向分散(配向のバラツキ)が大きくなることによる磁気記録層の配向性の悪化がある。垂直磁気記録媒体では磁気記録層の磁化容易軸を媒体面と垂直に配向させる必要があるが、該磁化容易軸の配向分散が大きくなると、垂直方向の磁束が低下するため再生出力が低下し、また記録ビットの遷移がシャープでなくなり媒体ノイズが増加する。したがって、垂直磁気記録媒体の高出力化・低ノイズ化のためには、磁気記録層の磁化容易軸の配向分散をできる限り小さくする必要がある。
【0005】
また、磁気記録層の結晶粒径の低減により、磁気記録媒体の低ノイズ化を図ることができる。磁気記録層の結晶粒径が大きくなると、ビットの遷移領域の形状がギザギザになり、遷移ノイズ(媒体ノイズ)が増加する。そのため、遷移ノイズを低下させるためには、磁気記録層の結晶粒径を低減し、ビットの遷移領域を直線的にすることが必要となる。
【0006】
さらに、面内磁気記録媒体と同様、垂直磁気記録媒体においても媒体の保磁力(Hc)を向上させることにより媒体の再生出力特性を向上させることができる。
【0007】
以上から、垂直磁気記録媒体において、磁気記録層の配向分散の低減(配向性の向上)、磁気記録層の結晶粒径の低減化、磁気記録層の保磁力向上により、媒体ノイズを低減化し、再生出力を向上させ、磁気記録の高密度化を実現することができる。
【0008】
【発明が解決しようとする課題】
磁気記録層の配向分散の低減化(磁気記録層の配向性向上)を図るためには、下地層(および中間層)の役割が重要となる。その理由は、(1)配向性が良好な下地層(および中間層)を用いることにより磁気記録層の配向性が改善され、さらに(2)下地層(および中間層)と磁気記録層との格子定数のマッチングを良くすることにより、下地層(または中間層)上に磁気記録層をエピタキシャル成長させることができ、その結果、良好な下地層−磁気記録層界面(中間層がある場合には中間層−磁気記録層界面の接合)となり、磁気特性の悪い磁気記録層における初期成長層の形成を抑制でき、磁気記録層の配向性が改善されるからである。
【0009】
また、磁気記録層の結晶粒径の低減化を図るためにも、下地層(および中間層)の役割が重要となる。その理由は、磁気記録層を下地層(および中間層)上にエピタキシャル成長させた場合、磁気記録層の結晶粒径が下地層(および中間層)の結晶粒径に従うため、下地層(および中間層)の結晶粒径を低減することにより、磁気記録層の結晶粒径を低減できるからである。
【0010】
従来、垂直磁気記録媒体における下地層としては、TiやTiCrなどのTi系合金が用いられてきた。その理由は、Ti系合金が、磁気記録層としてしばしば用いられるCo系合金と同じ結晶構造であるhcp(六方最密充填)構造をとり、Ti系合金とCo系合金の格子定数のマッチングも比較的良いために磁気記録層での磁化容易軸を適切な方位に配向(この場合はc軸配向)させることができると考えられるためである。しかしながら、Ti系合金から成る下地層上に磁気記録層を形成する場合、下地層のTi系合金が該下地層表面に吸着した酸素や水と反応して酸化物を作り易いため、磁気記録層の膜成長初期に磁気特性および配向性の悪いアモルファス層(初期成長層)を生じ、該アモルファス層の影響で磁気記録層の配向分散が大きくなり磁気記録層の配向性が悪化するという問題点があった。また、下地層中のTiが磁気記録層中のCoと相互拡散しやすいため、TiがCo中に拡散すると、上記と同様、磁気記録層においてアモルファス初期成長層を生じ、磁気記録層の配向性が悪化するという問題点もあった。したがって、下地層にTi系合金を用いた従来の垂直磁気記録媒体では、Ti系合金に起因する媒体ノイズの増加および再生出力特性の低減を享受していた。
【0011】
本発明者らは、上記課題を解決するために、非磁性NiFeCrの下地層を用いたり、NiFe、NiFeCr、NiFeNb、NiFeMo、またはNiFeNbMoから選択される軟磁性パーマロイ系材料を含む下地層とCoCr、CoCrB、Ru、またはPdから選択される非磁性材料を含む中間層とを用いること等により、磁気記録層の配向分散の低減化、磁気記録層における初期成長層の低減、あるいは磁気記録層の結晶粒の低減化して、Ti系合金を下地層に用いた従来の磁気記録垂直媒体よりも高再生出力化および媒体ノイズの低減化が達成できることを報告している(特願2001−162638号および特願2001−310628号)。
【0012】
本発明は、磁気記録層の配向分散の低減化、磁気記録層の結晶粒径の低減化、磁気記録層の保磁力の向上を図ることにより、本発明者らの上記特許出願の目的と同様、媒体ノイズを低減化し、再生出力特性を向上させた垂直磁気記録媒体を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明者は、上記課題を解決するために、非磁性基体上に下地層および磁気記録層を順次有する垂直記録媒体において、特に下地層、さらに中間層の構成について検討した結果、磁気記録層の配向分散の低減化、磁気記録層の結晶粒径の低減化、磁気記録層の保磁力の向上を図ることにより、従来の垂直磁気記録媒体よりも低ノイズ化され、高再生出力を有する垂直磁気記録媒体を作製できることが判明した。
【0014】
すなわち、本発明は、非磁性基体上に下地層と磁気記録層とを順次有する垂直記録媒体において、前記下地層が軟磁性を有するNiFeB、NiFeNbB、NiFeMoB、NiFeCrB、NiFeNbMoBからなる群から選択されるパーマロイ系材料を含むことを特徴とする垂直磁気記録媒体を提供する。
【0015】
前記本発明の垂直磁気記録媒体において、前記パーマロイ系材料中のFe含有率が12〜15at%であることが好ましい。
【0016】
前記本発明の垂直磁気記録媒体において、前記パーマロイ系材料が面心立方格子(fcc)構造であることが好ましい。
【0017】
前記本発明の垂直磁気記録媒体において、前記磁気記録層がCoおよびCrを含む合金を含むことが好ましい。
【0018】
前記本発明の垂直磁気記録媒体において、前記非磁性基体と前記下地層との間に軟磁性裏打ち層をさらに有することが好ましい。
【0019】
前記本発明の垂直磁気記録媒体において、前記下地層と前記磁気記録層との間に中間層をさらに有することが好ましい。
【0020】
前記本発明の垂直磁気記録媒体において、前記中間層が、純RuまたはRuにC、Cu、W、Mo、Cr、Ir、Pt、Re、Rh、Ta、およびVからなる群から選択される材料を少なくとも1種添加したRu基合金を含むことが好ましい。
【0021】
【発明の実施の形態】
以下、図面を用いて、本発明の垂直磁気記録媒体について説明する。
【0022】
図1は、本発明の一実施形態に係る垂直記録媒体の断面概略図である。該垂直磁気記録媒体は、非磁性基体1上に、軟磁性裏打ち層2、下地層3、中間層4、磁気記録層5、保護層6、及び液体潤滑材層7とを順次形成したものである。ただし、図1に示される垂直磁気記録媒体は本発明を例示したものであって、本発明をこれらの構成を有するものに限定するものではない。例えば、図1に示される垂直磁気記録媒体において、軟磁性裏打ち層2、中間層4、保護膜6、および液体潤滑材層7は任意選択であるが好適に設けることができる層である。
【0023】
非磁性基体1は、好ましくはNiPメッキを施したAl基体、強化ガラスおよび結晶化ガラスなどのガラス基体、単結晶シリコン基体、セラミックス基体、ポリカーボネート基体、高分子樹脂基体などの非金属基体とすることができるが、低価格と高剛性の観点から、ガラス基体またはセラミックス基体が好ましい。非磁性基体1の表面には研磨などの平滑化処理を行うことが望ましい。
【0024】
非磁性基体1と下地層3との間には軟磁性裏打ち層2を設けることが好ましい。軟磁性裏打ち層2は、磁気記録層への記録に用いられる磁気ヘッドが発生する磁束を集中させる機能を有し、その結果、媒体の磁気特性をさらに向上させることができる。軟磁性裏打ち層2の材料は、このような機能を発揮できる慣用の軟磁性材料を用いることができ、例えば結晶性のFeTaC、センダスト(FeSiAl)合金等、また非晶質のCo合金であるCoZrNb、CoTaZrなどを用いることができる。軟磁性裏打ち層2の膜厚は、記録に使用する磁気ヘッドの構造や特性によって最適値が変化するが、生産性との兼ね合いから、約10nm〜500nm以下であることが好ましい。
【0025】
下地層3は、磁気記録層の磁性を基体に対して垂直に配向させる機能を有し、下地層がないとランダムな方向に該磁性が配向してしまう。本発明の磁気記録媒体では、下地層3は、軟磁性を有するNiFeB、NiFeNbB、NiFeMoB、NiFeCrB、NiFeNbMoBからなる群から選択されるパーマロイ系材料を含む。下地層3に軟磁性材料を用いることにより、非磁性材料の場合と比較して、ヘッドと軟磁性層2との間の距離を短縮することができ、ヘッドの書き込み性能を向上できる。上記パーマロイ材料を用いたのは、パーマロイ系下地層材料の磁性の配向性が良好であるゆえ、下地層の上に形成される磁気記録層の磁性を基体に対して良好に垂直配向させることができること、これらのパーマロイ系下地層材料と磁気記録層材料との格子定数のマッチングが良くなることにより下地層上に磁気記録層をエピタキシャル成長させることができるゆえ、磁気特性の悪い磁気記録層の初期成長層の形成を抑制して磁気記録層の配向性が改善できること、さらに、これらの下地層材料の結晶粒径は小さいゆえ、下地層の結晶粒系に従って磁気記録層の結晶粒径を低減でき、遷移ノイズ(媒体ノイズ)を低減化することができるためである。なお、磁気記録層の磁化容易軸の配向分散低減により、結晶磁気異方性が向上する結果、磁気記録層の熱安定性が向上し、媒体の信頼性が向上する利点もある。
【0026】
上記軟磁性パーマロイ系材料中のFe含有量は、12〜15at%以下であることが好ましい。パーマロイ系材料中のFe含有量が12at%以上にすることにより、パーマロイ材料の飽和磁化の減少および磁歪の増加による軟磁気特性が低減するのを抑制して良好な磁気記録層の磁性の配向性を得ることができる一方、Fe含有量を15at%以下にすることにより、パーマロイ材料と磁気記録層材料との格子定数の良好なマッチングが得られることにより、中間層や磁気記録層の配向性を向上させ、磁気特性をより改善することができる。
【0027】
さらに、下地層3に含まれるパーマロイ系材料は面心立方格子(fcc)構造であることが好ましい。パーマロイ系下地層材料が面心立方格子(fcc)構造である場合、記録層5の構成材料の結晶配向を基板に対し垂直方向に良好に維持する。より詳細に説明すれば、例えば磁気記録層5の構成材料としてhcp構造をとるCo基合金を用いた場合、下地層3におけるfcc構造(111)面と磁気記録層5におけるhcp構造(002)面は原子配置が全く同じであるため、格子定数のマッチングが適当であれば、fcc構造(111)面上にhcp構造(002)面をエピタキシャルに成長させることができ、Co基合金の結晶配向をc軸方向に配向させることができる。hcp構造をとるRu系材料を含む中間層4を用いた場合にはより良好な配向性が得られる。また、磁気記録層5の構成材料がhcp構造以外の結晶構造(例えば、fcc構造)をとっても同様に良好な垂直磁性が得られる。一方、下地層3のパーマロイ材料が体心立方格子(bcc)構造やアモルファス構造をとると、磁気記録層5の結晶配向が低下し、磁気特性や記録・再生特性の低下を招いてしまう。なお、下地層3の膜厚としては、媒体ノイズの低減化および高再生出力を達成するのに好適な膜厚を適宜選択することができる。
【0028】
下地層3と磁気記録層5との間には中間層4を設けることが好ましい。中間層4は、磁気記録層の配向性を向上させ、磁気記録層の初期成長膜を抑制するという機能を有する。好適な中間層4の材料として、純RuまたはRuにC、Cu、W、Mo、Cr、Ir、Pt、Re、Rh、Ta、およびVからなる群から選択される材料を少なくとも1種添加したRu基合金を好適に用いることができる。これらのRuまたはRu基合金を含む中間層4が下地層3上に形成された場合、RuまたはRu基合金の配向性が良いゆえに、磁気記録層の配向性を向上させることができること、RuまたはRu基合金の中間層材料と磁気記録層材料とが格子定数のマッチングが良好であるゆえに、両者の接合が良好となり、磁気記録層における初期成長層の形成を抑制して、磁気記録層の配向性を向上させることができる。また、上記下地層3に含まれるパーマロイ材料の結晶粒径に従ってRuまたはRu基合金の結晶粒径を小さくできるゆえ、磁気記録層の結晶粒径を微細化して媒体ノイズの低減化を図ることができる。
【0029】
垂直磁気記録媒体では、ヘッドの記録磁界を確保してシャープな磁場分布を得るため、軟磁性裏打ち層と磁気記録層の間の非磁性層膜厚をできる限り薄くすることが求められる(ヘッドと軟磁性層の距離が広がると、磁束が広がり、記録されるトラックやビットが広がって、媒体の遷移ノイズの増加や記録分解能の低下といった問題が起こる)一方、軟磁性裏打ち層と磁気記録層とが接触すると、両者の相互作用により媒体ノイズが急増する。したがって、できる限り薄い膜厚で結晶性と配向性とを維持することが要求される。Ti系合金を用いた下地層を有する従来の垂直磁気記録媒体では、Ti系下地層の膜厚が非磁性層膜厚となるが、薄い膜厚で結晶性と配向性とを維持するのは実際には困難であるのに対し、本発明の垂直磁気記録媒体では、パーマロイ系下地層3およびRu系中間層4で磁気記録層5の配向性を制御でき、非磁性層であるRu系中間層4を薄膜化できるため、シャープなヘッド磁界を得ることができ、ヘッドの書き込み能力を確保できるとともに、媒体の遷移ノイズを低減化できる。また、下地層3に結晶性および配向性の良い上記のパーマロイ系材料を用いることで、中間層4の膜厚が薄くても、磁気記録層において優れた結晶性や配向性が得られる。なお、中間層の膜厚は媒体ノイズの低減化および高再生出力を達成するのに好適な膜厚を適宜選択することができ、3〜5nmとすることが好ましいがこれに限定するものではない。
【0030】
磁気記録層(磁性層)5は情報を記録する層であるが、垂直磁気記録媒体においては磁気記録層5を構成する材料の磁性が膜面に垂直方向に配向していることが垂直磁気記録媒体として用いるために必要である。磁気記録層5を構成する材料として、前述の機能を発揮する慣用の強磁性材料を用いることができるが、Co基合金を好適に用いることができ、より好ましくはCoCrPt、CoCrTa、CoCrPtB、CoCrPtNb、CoCrPtTaなどのCoおよびCrを含む合金材料や、CoPt−SiO、CoCrPt−SiO、CoPt−Crなどのグラニュラー材料を用いることができる。磁気記録層5の膜厚として、記録層5の膜厚が小さくなれば、媒体ノイズを低減化することができ、また記録再生のときに磁気ヘッドとの距離が狭くなり出力再生に好ましいが、記録層5の体積が減少して記録磁化状態の熱的安定化が悪くなるゆえ、5nm以上50nm以下とすることが好ましいが、これに限定するものではない。
【0031】
必要に応じて、磁気記録層5上に保護層6を形成することができる。保護膜15は、記録層を形成する磁性膜をヘッドの衝撃、外界の腐食性などの腐食から保護する機能を有する。このような機能を提供できる慣用のいかなる材料を用いてもよく、例えば、炭素、窒素含有炭素、水素含有炭素、酸化シリコン等を使用することができる。保護層6の膜厚は0.5〜5nmとするのが好ましい。
【0032】
また、必要に応じて、保護層6上に潤滑層7を形成することができる。潤滑層7は、ヘッドが媒体上を滑空する機能を高めたり、ヘッドのアンロード機構を用いないドライブでの運転停止時のヘッド吸着防止や耐環境特性向上という機能を有する。パーフルオロポリエーテル等のフッ素系液体潤滑剤など、上記機能を有する慣用の潤滑材を用いることができる。
【0033】
上述の通り、図1に示される垂直磁気記録媒体は本発明を例示したものであって、本発明をこれらの構成を有するものに限定するものではない。成膜される各層は単層でもあっても多層であってもよく、多層の場合は多層中の各層は異なる材料や膜厚であってもよいし、同じ材料や膜厚であってもよい。また、必要であれば、非磁性基体1と軟磁性裏打ち層2との間にシード層などの任意の層を加えることができる。シード層とは、配向性悪化の一因となる基体表面の凹凸を低減し、かつ保磁力を向上せしめる機能を有し、このような機能を有するTiまたはTaなどの慣用の材料を用いることができる。
【0034】
上記本発明の垂直磁気記録媒体の製造において、非磁性基体1の上に積層される各層は、磁気記録媒体の分野で通常用いられる種々の成膜技術によって形成することが可能である。軟磁性裏打ち層2、下地層3、中間層4、磁気記録層5、任意選択によるシード層、保護層6、および潤滑層7の形成には、例えばDCマグネトロンスパッタリング法、RFマグネトロンスパッタリング法、真空蒸着法を用いることができる。潤滑層7は、ディップ法、スピンコート法などの慣用の塗布方法等で形成することができる。
【0035】
【実施例】
以下に、本発明の垂直磁気記録媒体について実施例により詳細に説明するが、本発明はそれらに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
【0036】
(実施例1)
本実施例は、非磁性基体上に軟磁性NiFeB下地層、Ru中間層、CoCrPt磁気記録層、保護膜、および潤滑層を順次有する本発明に係る二層垂直磁気記録媒体に関する。具体的には、以下のようにして上記垂直磁気記録媒体を得た。
【0037】
非磁性基体として表面が平滑な化学強化ガラス基体(HOYA社製N−10ガラス基体)を用い、これを洗浄後スパッタ装置内に導入し、Co8Zr5Nbターゲットを用いてCoZrNb非晶質軟磁性裏打ち層を200nmの膜厚として成膜した。次に、軟磁性パーマロイ系合金であるNi12Fe6Bターゲットを用いてNiFeB下地層を3nmの膜厚として成膜した。続いて、ランプヒータを用いて基体表面温度が30℃になるように加熱を行なった後、Ruターゲットを用いて、Arガス圧4.0Pa下でRu中間層を5nmの膜厚として成膜した。続いて、Co20Cr10Ptターゲットを用いてCoCrPt磁気記録層を20nmの膜圧として成膜した。最後にカーボンターゲットを用いてカーボンからなる保護膜10nmを成膜後、媒体を真空装置から取り出した。ヒータ加熱およびRu中間層の成膜を除く上記成膜はすべてArガス圧0.67Pa下で行い、ヒータ加熱を除く上記成膜はDCマグネトロンスパッタリング法により行なった。その後、パーフルオロポリエーテルからなる液体潤滑材層2nmをディップ法により形成し、本発明に係る垂直磁気記録媒体とした。また、磁気特性を比較するために、膜厚が5nm、10nm、15nm、30nmであるNiFeB下地層を形成したことを除き、上記と同様にして、層構成が同じ本発明に係る二層垂直磁気記録媒体を製造した。
【0038】
(実施例2)
本実施例では、パーマロイ系軟磁性下地層をNiFeNbBとしたことを除き、実施例1と同様にして、本発明に係る二層垂直磁気記録媒体を製造した。なお、本実施例においても、磁気特性を比較するために、膜厚が3nm、5nm、10nm、15nm、30nmであるNiFeNbB下地層の膜厚を形成したことを除き、実施例1と同様にして、層構成が同じ各垂直磁気記録媒体を製造した。
【0039】
(比較例1)
本比較例では、パーマロイ系軟磁性下地層をNi17Fe4Nb1Moとしたことを除き、実施例1と同様にして、層構成が同じ二層垂直磁気記録媒体を製造した。本比較例においても、磁気特性を比較するために、膜厚が3nm、5nm、10nm、15nm、30nmであるNiFeNbMo下地層の膜厚を形成したことを除き、実施例1と同様にして、層構成が同じ各垂直磁気記録媒体を製造した。なお、Ni17Fe4Nb1Moを下地層とする該垂直磁気記録媒体は、特願2001−310628号で開示した本発明者による特許発明である。該垂直磁気記録媒体は、Ti系合金を下地層として用いた従来の垂直磁気記録媒体よりも媒体ノイズの低減化および高再生出力を達成したものである。
【0040】
上述のようにして得られた二層媒体について、磁気カー効果により保磁力Hcを、TEMにより結晶粒径を、X線回折装置を用いたロッキングカーブ法により配向分散(△θ50)を測定した。さらに、リード・ライトテスタを用いて、記録密度を変化させた場合のノイズを測定した。
【0041】
図2は、本発明および比較例に係る垂直磁気記録媒体の下地層膜厚を変化させたときの保磁力Hcの変化を示す。図中、四角(実線)が実施例1に係る垂直磁気記録媒体の下地層膜厚を変化させたときの保磁力Hcの変化を示し、丸(実線)が実施例2に係る垂直磁気記録媒体の下地層膜厚を変化させたときの保磁力Hcの変化を示し、菱形(点線)は比較例1に係る垂直磁気記録媒体の下地層膜厚を変化させたときの保磁力Hcの変化を示している。実施例1のNiFeB下地層を用いた媒体と比較例1のNiFeNbB下地層を使用した媒体のHcを比較すると、下地層膜厚3〜5nmにおいて実施例1の媒体の方が高いHcが得られていることが分かる。また、実施例2のNiFeNbB下地層を用いた媒体と比較例1の媒体を比較すると、下地層膜厚5nm以上において高いHcが得られていることが分かる。このように、下地層組成により最適な膜厚は変化するものの、実施例1および2の何れの場合にも比較例と比べて高いHcが得られた。
【0042】
表1は、上記実施例1、2および比較例1においてそれぞれ得られた本発明および比較例に係る垂直磁気記録媒体の保磁力Hc、結晶粒径、配向分散(△θ50)を示したものである。表中、媒体1はNi12Fe6Bから成り、かつ膜厚5nmである下地層を有する実施例1の垂直磁気記録媒体を示し、媒体2はNi12Fe6N3Bから成り、かつ膜厚5nmである下地層を有する実施例2の垂直磁気記録媒体を示し、媒体3はNi17Fe4Nb1Moから成り、かつ膜厚5nmである下地層を有する比較例1の垂直磁気記録媒体を示す。表1の結果より、いずれの媒体の保磁力(Hc)はほぼ同じであるが、本発明に係る垂直磁気記録媒体(媒体1および媒体2)では、比較例の垂直磁気記録媒体(媒体3)と比べて、△θ50に関しては改善されており、また、結晶粒径に関しても粒径の微細化が進んでいることが分かる。
【0043】
【表1】

Figure 0004535666
【0044】
図3は、表1中に示される本発明および比較例に係る垂直磁気記録媒体の媒体ノイズの線記録密度依存性を示す。図から明らかなように、本発明に係る垂直磁気記録媒体(媒体1および媒体2)は、比較例の垂直磁気記録媒体(媒体3)よりも低ノイズ化が達成されていることが分かる。この低ノイズ化には、配向性の向上(△θ50の低下)および結晶粒径の低減が寄与しているものと考えられる。
【0045】
表2は、上記実施例1および実施例2において得られた別の態様の本発明に係る垂直磁気記録媒体の保磁力Hc、結晶粒径、配向分散(△θ50)を示したものである。表中、媒体4はNi12Fe6Bから成り、かつ膜厚3nmである下地層を有する実施例1の垂直磁気記録媒体を示し、媒体5はNi12Fe6N3Bから成り、かつ膜厚10nmである下地層を有する実施例2の垂直磁気記録媒体を示す。表2の結果は、表1の結果と同様、本発明に係る垂直磁気記録媒体(媒体4および5)では良好な△θ50が得られ、結晶粒径の微細化が進んでいることが分かる。
【0046】
【表2】
Figure 0004535666
【0047】
図4は、表2に示される本発明に係る垂直磁気記録媒体および上記媒体3の媒体ノイズの線記録密度依存性を示す。図4から明らかなように、本発明に係る垂直磁気記録媒体(媒体4および媒体5)においても、比較例(媒体3)に比べ、良好な低ノイズ化が達成されていることが分かる。この低ノイズ化も、配向性の向上(△θ50の低下)および結晶粒径の低減が寄与しているものと考えられる。
【0048】
(実施例3)
本実施例は、非磁性基体上に軟磁性NiFeB下地層、Ru中間層、グラニュラー磁気記録層、保護膜、および潤滑層を順次有する本発明に係る二層垂直磁気記録媒体に関する。具体的には、以下のようにして上記垂直磁気記録媒体を得た。
【0049】
非磁性基体として表面が平滑な化学強化ガラス基板(HOYA社製N−10ガラス基板)を用い、これを洗浄後スパッタ装置内に導入し、Co8Zr5Nbターゲットを用いてCoZrNb非晶質軟磁性裏打ち層200nmを成膜した。次に、軟磁性パーマロイ系合金であるNi12Fe6Bターゲットを用いてNiFeB下地層を3nmの膜厚として成膜した。続いて、Ruターゲットを用いて、Arガス圧4.0Pa下でRu中間層5nmを成膜した。次に、92(Co8Cr16Pt)−8SiOターゲットを用いて、Arガス圧4.0Pa下でCoCrPt−SiOグラニュラー磁気記録層20nmを成膜した。最後にカーボンターゲットを用いてカーボンからなる保護膜10nmを成膜後、真空装置から取り出した。これらの成膜は全て室温下で行い、Ru中間層およびCoCrPt−SiOグラニュラー磁気記録層の成膜を除く上記成膜はArガス圧0.67Pa下で行った。また上記成膜は全てDCマグネトロンスパッタリング法により行なった。その後、パープルオロポリエーテルからなる液体潤滑材層2nmをディップ法により形成し、本発明に係る二層垂直磁気記録媒体(媒体6)を製造した。また、NiFeB下地層を5nmの膜厚として成膜したことを除き、上記と同様にして、本発明に係る二層垂直磁気記録媒体(媒体7)を製造した。
【0050】
(比較例2)
本比較例では、膜厚5nmのNi22Feから成る軟磁性下地層としたことを除き、実施例3と同様にして、二層垂直磁気記録媒体(媒体8)を製造した。
【0051】
上述のようにして得られた二層媒体について、磁気カー効果により保磁力Hcを、TEMにより結晶粒径を、X線回折装置を用いたロッキングカーブ法により配向分散(△θ50)を測定した。表3は、上記実施例3および比較例2においてそれぞれ得られた本発明および比較例に係る垂直磁気記録媒体の保磁力Hc、結晶粒径、配向分散(△θ50)を示したものである。表3から分かるように、B成分の添加により、本発明に係る垂直磁気記録媒体(媒体6および7)と比べて比較例の垂直磁気記録媒体(媒体8)では、保磁力は大きく向上し、△θ50に関しても改善され、粒径の微細化が進んでいることが分かる。このように、通常のCoCrPtのような加熱成膜を必要とする磁気記録層だけでなく、全ての層を非加熱で成膜する必要があるグラニュラー磁気記録層を有する媒体においても、本発明の下地層を用いることにより、保磁力の増大、配向性の向上、結晶粒径の微細化といった媒体の基本特性の向上が達成されることがわかった。
【0052】
【表3】
Figure 0004535666
【0053】
【発明の効果】
以上述べたように、本発明によれば、配向性および結晶粒径微細化に優れた軟磁性パーマロイ系材料を下地層として用い、配向性および接合性に優れたRuまたはRu基合金材料を中間層として用いたことにより、磁気記録層の保磁力が増大し、磁化容易軸の配向分散が低減されると同時に、磁気記録層の結晶粒径が低減される。その結果、垂直磁気記録媒体の再生出力を増大させ、媒体ノイズを低減することができる。また、磁気記録層の磁化容易軸の配向分散低減により、結晶磁気異方性が向上する結果、磁気記録層の熱安定性が向上し、媒体の信頼性が向上する。
【図面の簡単な説明】
【図1】本発明に係る二層垂直磁気記録媒体の概略図である。
【図2】本発明および比較例に係る垂直磁気記録媒体の下地層膜厚を変化させたときの保磁力Hcの変化を示す図である。
【図3】本発明および比較例に係る二層垂直磁気記録媒体における媒体ノイズの線記録密度依存性を示す図である。
【図4】本発明および比較例に係る二層垂直磁気記録媒体における媒体ノイズの線記録密度依存性を示す図である。
【符号の説明】
1 非磁性基体
2 軟磁性裏打ち層
3 下地層
4 中間層
5 磁気記録層
6 保護膜
7 液体潤滑材層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a perpendicular magnetic recording medium mounted on various magnetic recording apparatuses.
[0002]
[Prior art]
As a technique for realizing a high density magnetic recording, a perpendicular magnetic recording system is drawing attention in place of the conventional longitudinal magnetic recording system. A medium using a perpendicular magnetic recording system (hereinafter referred to as “perpendicular magnetic recording medium”) is mainly an underlayer for orienting a magnetic recording layer in a desired direction on a substrate such as glass, and a magnetic material of a hard magnetic material. It has a schematic configuration in which a recording layer and a protective film for protecting the surface of the magnetic recording layer are sequentially formed. In a perpendicular magnetic recording medium, a backing layer made of a soft magnetic material may be provided between a base and an underlayer for the purpose of concentrating magnetic flux generated from a magnetic head used for recording on the magnetic recording layer. Usually, a medium having no soft magnetic backing layer is called a single-layer perpendicular magnetic recording medium, and a medium having a soft magnetic backing layer is called a two-layer perpendicular magnetic recording medium. Further, in order to improve the orientation of the magnetic recording layer and suppress crystal defects, an intermediate layer may be provided between the underlayer and the magnetic recording layer.
[0003]
In recent years, there has been an increasing demand for higher density magnetic recording in magnetic recording media. In order to increase the density of magnetic recording in a perpendicular magnetic recording medium, it is necessary to further improve the output-noise ratio (SNR) characteristics. That is, in order to achieve high density recording of the medium, it is necessary to reduce the medium noise and improve the reproduction output.
[0004]
One cause of a decrease in reproduction output and an increase in medium noise is a deterioration in the orientation of the magnetic recording layer due to an increase in magnetic orientation dispersion (orientation variation) of the magnetic recording layer. In a perpendicular magnetic recording medium, it is necessary to orient the easy axis of magnetization of the magnetic recording layer perpendicularly to the medium surface, but when the orientation dispersion of the easy axis of magnetization increases, the magnetic flux in the perpendicular direction decreases and the reproduction output decreases. Also, recording bit transitions are not sharp and medium noise increases. Therefore, in order to increase the output and the noise of the perpendicular magnetic recording medium, it is necessary to reduce the orientation dispersion of the easy axis of the magnetic recording layer as much as possible.
[0005]
Further, the noise of the magnetic recording medium can be reduced by reducing the crystal grain size of the magnetic recording layer. As the crystal grain size of the magnetic recording layer increases, the shape of the bit transition region becomes jagged and transition noise (medium noise) increases. Therefore, in order to reduce the transition noise, it is necessary to reduce the crystal grain size of the magnetic recording layer and make the bit transition region linear.
[0006]
Further, similarly to the in-plane magnetic recording medium, the reproduction output characteristic of the medium can be improved by improving the coercive force (Hc) of the perpendicular magnetic recording medium.
[0007]
From the above, in the perpendicular magnetic recording medium, by reducing the orientation dispersion of the magnetic recording layer (improving orientation), reducing the crystal grain size of the magnetic recording layer, and improving the coercive force of the magnetic recording layer, the medium noise is reduced, The reproduction output can be improved, and the magnetic recording density can be increased.
[0008]
[Problems to be solved by the invention]
In order to reduce the orientation dispersion of the magnetic recording layer (improve the orientation of the magnetic recording layer), the role of the underlayer (and the intermediate layer) is important. The reason is that (1) the orientation of the magnetic recording layer is improved by using an underlayer (and intermediate layer) having good orientation, and (2) the underlayer (and intermediate layer) and the magnetic recording layer are By improving the matching of the lattice constant, the magnetic recording layer can be epitaxially grown on the underlayer (or intermediate layer), and as a result, a good underlayer-magnetic recording layer interface (if there is an intermediate layer, an intermediate layer) This is because the formation of the initial growth layer in the magnetic recording layer having poor magnetic properties can be suppressed, and the orientation of the magnetic recording layer is improved.
[0009]
Also, the role of the underlayer (and the intermediate layer) is important in order to reduce the crystal grain size of the magnetic recording layer. The reason is that when the magnetic recording layer is epitaxially grown on the underlayer (and the intermediate layer), the crystal grain size of the magnetic recording layer follows the crystal grain size of the underlayer (and the intermediate layer). This is because the crystal grain size of the magnetic recording layer can be reduced.
[0010]
Conventionally, Ti-based alloys such as Ti and TiCr have been used as an underlayer in a perpendicular magnetic recording medium. The reason is that the Ti-based alloy has an hcp (hexagonal close-packed) structure, which is the same crystal structure as the Co-based alloy often used as a magnetic recording layer, and the lattice constant matching between the Ti-based alloy and the Co-based alloy is also compared. This is because it is considered that the easy axis of magnetization in the magnetic recording layer can be oriented in an appropriate orientation (in this case, c-axis orientation). However, when a magnetic recording layer is formed on an underlayer composed of a Ti-based alloy, the Ti-based alloy of the underlayer easily reacts with oxygen or water adsorbed on the surface of the underlayer, so that an oxide is formed. An amorphous layer (initial growth layer) with poor magnetic properties and orientation is formed in the early stage of film growth, and the orientation dispersion of the magnetic recording layer is increased due to the influence of the amorphous layer, which deteriorates the orientation of the magnetic recording layer. there were. In addition, since Ti in the underlayer easily interdiffuses with Co in the magnetic recording layer, when Ti diffuses into Co, an amorphous initial growth layer is formed in the magnetic recording layer as described above, and the orientation of the magnetic recording layer There was also the problem of worsening. Therefore, a conventional perpendicular magnetic recording medium using a Ti-based alloy for the underlayer enjoys an increase in medium noise and a reduction in reproduction output characteristics caused by the Ti-based alloy.
[0011]
In order to solve the above problems, the present inventors use a nonmagnetic NiFeCr underlayer, or an underlayer containing a soft magnetic permalloy-based material selected from NiFe, NiFeCr, NiFeNb, NiFeMo, or NiFeNbMo and CoCr, By using an intermediate layer containing a nonmagnetic material selected from CoCrB, Ru, or Pd, the orientation dispersion of the magnetic recording layer is reduced, the initial growth layer in the magnetic recording layer is reduced, or the crystal of the magnetic recording layer is crystallized. It has been reported that the reduction in grain size can achieve higher reproduction output and lower medium noise than conventional magnetic recording perpendicular media using a Ti-based alloy for the underlayer (Japanese Patent Application No. 2001-162638 and Japanese Patent Application No. 2001-162638). Application 2001-310628).
[0012]
The present invention is the same as the object of the above-mentioned patent application of the present inventors by reducing the orientation dispersion of the magnetic recording layer, reducing the crystal grain size of the magnetic recording layer, and improving the coercive force of the magnetic recording layer. Another object of the present invention is to provide a perpendicular magnetic recording medium with reduced medium noise and improved reproduction output characteristics.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventor has examined the configuration of the underlayer and the intermediate layer in the perpendicular recording medium having the underlayer and the magnetic recording layer sequentially on the nonmagnetic substrate. By reducing the orientation dispersion, reducing the crystal grain size of the magnetic recording layer, and improving the coercive force of the magnetic recording layer, the perpendicular magnetism has lower noise and higher reproduction output than conventional perpendicular magnetic recording media. It has been found that a recording medium can be produced.
[0014]
That is, the present invention is a perpendicular recording medium having a base layer and a magnetic recording layer sequentially on a nonmagnetic substrate, wherein the base layer is selected from the group consisting of NiFeB, NiFeNbB, NiFeMoB, NiFeCrB, and NiFeNbMoB having soft magnetism. A perpendicular magnetic recording medium comprising a permalloy material is provided.
[0015]
In the perpendicular magnetic recording medium of the present invention, the Fe content in the permalloy material is preferably 12 to 15 at%.
[0016]
In the perpendicular magnetic recording medium of the present invention, the permalloy material preferably has a face-centered cubic lattice (fcc) structure.
[0017]
In the perpendicular magnetic recording medium of the present invention, the magnetic recording layer preferably contains an alloy containing Co and Cr.
[0018]
The perpendicular magnetic recording medium of the present invention preferably further comprises a soft magnetic backing layer between the nonmagnetic substrate and the underlayer.
[0019]
The perpendicular magnetic recording medium of the present invention preferably further includes an intermediate layer between the underlayer and the magnetic recording layer.
[0020]
In the perpendicular magnetic recording medium of the present invention, the intermediate layer is selected from the group consisting of pure Ru or Ru, C, Cu, W, Mo, Cr, Ir, Pt, Re, Rh, Ta, and V. It is preferable to include a Ru-based alloy to which at least one kind is added.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the perpendicular magnetic recording medium of the present invention will be described with reference to the drawings.
[0022]
FIG. 1 is a schematic cross-sectional view of a perpendicular recording medium according to an embodiment of the present invention. The perpendicular magnetic recording medium is formed by sequentially forming a soft magnetic backing layer 2, an underlayer 3, an intermediate layer 4, a magnetic recording layer 5, a protective layer 6, and a liquid lubricant layer 7 on a nonmagnetic substrate 1. is there. However, the perpendicular magnetic recording medium shown in FIG. 1 exemplifies the present invention, and the present invention is not limited to those having these configurations. For example, in the perpendicular magnetic recording medium shown in FIG. 1, the soft magnetic backing layer 2, the intermediate layer 4, the protective film 6, and the liquid lubricant layer 7 are optional layers that can be suitably provided.
[0023]
The non-magnetic substrate 1 is preferably a non-metallic substrate such as an Al substrate plated with NiP, a glass substrate such as tempered glass or crystallized glass, a single crystal silicon substrate, a ceramic substrate, a polycarbonate substrate, or a polymer resin substrate. However, a glass substrate or a ceramic substrate is preferable from the viewpoint of low cost and high rigidity. It is desirable to perform a smoothing process such as polishing on the surface of the nonmagnetic substrate 1.
[0024]
A soft magnetic backing layer 2 is preferably provided between the nonmagnetic substrate 1 and the underlayer 3. The soft magnetic backing layer 2 has a function of concentrating the magnetic flux generated by the magnetic head used for recording on the magnetic recording layer, and as a result, the magnetic properties of the medium can be further improved. As the material of the soft magnetic underlayer 2, a conventional soft magnetic material capable of exhibiting such a function can be used. For example, crystalline FeTaC, Sendust (FeSiAl) alloy, or CoZrNb which is an amorphous Co alloy. CoTaZr or the like can be used. The optimum value of the thickness of the soft magnetic backing layer 2 varies depending on the structure and characteristics of the magnetic head used for recording, but is preferably about 10 nm to 500 nm or less in view of productivity.
[0025]
The underlayer 3 has a function of orienting the magnetism of the magnetic recording layer perpendicularly to the substrate, and without the underlayer, the magnetism is oriented in a random direction. In the magnetic recording medium of the present invention, the underlayer 3 includes a permalloy material selected from the group consisting of NiFeB, NiFeNbB, NiFeMoB, NiFeCrB, and NiFeNbMoB having soft magnetism. By using a soft magnetic material for the underlayer 3, the distance between the head and the soft magnetic layer 2 can be shortened compared to the case of a nonmagnetic material, and the write performance of the head can be improved. The above-mentioned permalloy material is used because the magnetic orientation of the permalloy-based underlayer material is good, so that the magnetism of the magnetic recording layer formed on the underlayer can be satisfactorily oriented perpendicular to the substrate. The magnetic recording layer can be epitaxially grown on the underlayer by improving the lattice constant matching between the permalloy-based underlayer material and the magnetic recording layer material, so that the initial growth of the magnetic recording layer with poor magnetic properties can be achieved. It is possible to improve the orientation of the magnetic recording layer by suppressing the formation of the layer, and furthermore, because the crystal grain size of these underlayer materials is small, the crystal grain size of the magnetic recording layer can be reduced according to the crystal system of the underlayer, This is because transition noise (medium noise) can be reduced. Note that, by reducing the orientation dispersion of the easy axis of magnetization of the magnetic recording layer, the magnetocrystalline anisotropy is improved. As a result, the thermal stability of the magnetic recording layer is improved and the reliability of the medium is improved.
[0026]
The Fe content in the soft magnetic permalloy material is preferably 12 to 15 at% or less. When the Fe content in the permalloy material is set to 12 at% or more, the magnetic orientation of the magnetic recording layer is suppressed by suppressing the decrease in the soft magnetic properties due to the decrease in saturation magnetization and the increase in magnetostriction in the permalloy material. On the other hand, by making the Fe content 15 at% or less, a good matching of the lattice constant between the permalloy material and the magnetic recording layer material can be obtained, so that the orientation of the intermediate layer and the magnetic recording layer can be improved. The magnetic properties can be improved.
[0027]
Furthermore, it is preferable that the permalloy material contained in the underlayer 3 has a face-centered cubic lattice (fcc) structure. When the permalloy-based underlayer material has a face-centered cubic lattice (fcc) structure, the crystal orientation of the constituent material of the recording layer 5 is favorably maintained in the direction perpendicular to the substrate. More specifically, for example, when a Co-based alloy having an hcp structure is used as a constituent material of the magnetic recording layer 5, the fcc structure (111) plane in the underlayer 3 and the hcp structure (002) plane in the magnetic recording layer 5 are used. Since the atomic arrangements are the same, if the lattice constant matching is appropriate, the hcp structure (002) plane can be epitaxially grown on the fcc structure (111) plane, and the crystal orientation of the Co-based alloy can be changed. It can be oriented in the c-axis direction. When the intermediate layer 4 containing a Ru-based material having an hcp structure is used, better orientation can be obtained. Even if the constituent material of the magnetic recording layer 5 has a crystal structure other than the hcp structure (for example, fcc structure), good perpendicular magnetism can be obtained similarly. On the other hand, when the permalloy material of the underlayer 3 has a body-centered cubic lattice (bcc) structure or an amorphous structure, the crystal orientation of the magnetic recording layer 5 is lowered, leading to deterioration of magnetic characteristics and recording / reproducing characteristics. As the film thickness of the underlayer 3, a film thickness suitable for reducing medium noise and achieving high reproduction output can be appropriately selected.
[0028]
An intermediate layer 4 is preferably provided between the underlayer 3 and the magnetic recording layer 5. The intermediate layer 4 has a function of improving the orientation of the magnetic recording layer and suppressing the initial growth film of the magnetic recording layer. As a suitable material for the intermediate layer 4, at least one material selected from the group consisting of C, Cu, W, Mo, Cr, Ir, Pt, Re, Rh, Ta, and V is added to pure Ru or Ru. A Ru-based alloy can be preferably used. When the intermediate layer 4 containing these Ru or Ru-based alloys is formed on the underlayer 3, the orientation of the magnetic recording layer can be improved because the orientation of the Ru or Ru-based alloys is good. Since the matching of the lattice constant between the intermediate layer material of the Ru-based alloy and the magnetic recording layer material is good, the bonding between them is good, and the formation of the initial growth layer in the magnetic recording layer is suppressed, and the orientation of the magnetic recording layer Can be improved. In addition, since the crystal grain size of Ru or Ru-based alloy can be reduced according to the crystal grain size of the permalloy material contained in the underlayer 3, the crystal noise of the magnetic recording layer can be reduced to reduce the medium noise. it can.
[0029]
In the perpendicular magnetic recording medium, in order to secure the recording magnetic field of the head and obtain a sharp magnetic field distribution, it is required to make the nonmagnetic layer thickness between the soft magnetic underlayer and the magnetic recording layer as thin as possible (the head and When the distance of the soft magnetic layer increases, the magnetic flux increases, the tracks and bits to be recorded increase, and problems such as an increase in transition noise of the medium and a decrease in recording resolution occur). On the other hand, the soft magnetic underlayer and the magnetic recording layer When they come into contact with each other, the medium noise increases rapidly due to the interaction between the two. Therefore, it is required to maintain crystallinity and orientation with the smallest possible film thickness. In a conventional perpendicular magnetic recording medium having a base layer using a Ti-based alloy, the film thickness of the Ti-based base layer is a non-magnetic layer thickness. In contrast, in the perpendicular magnetic recording medium according to the present invention, the orientation of the magnetic recording layer 5 can be controlled by the permalloy-based underlayer 3 and the Ru-based intermediate layer 4, and the Ru-based intermediate layer, which is a nonmagnetic layer, is difficult. Since the layer 4 can be made thin, a sharp head magnetic field can be obtained, the writing ability of the head can be secured, and the transition noise of the medium can be reduced. Further, by using the above-described permalloy material having good crystallinity and orientation for the underlayer 3, excellent crystallinity and orientation can be obtained in the magnetic recording layer even when the intermediate layer 4 is thin. In addition, the film thickness of the intermediate layer can be appropriately selected to reduce the medium noise and achieve high reproduction output, and is preferably 3 to 5 nm, but is not limited thereto. .
[0030]
The magnetic recording layer (magnetic layer) 5 is a layer for recording information. In a perpendicular magnetic recording medium, the magnetic property of the material constituting the magnetic recording layer 5 is oriented perpendicularly to the film surface. Necessary for use as a medium. As the material constituting the magnetic recording layer 5, a conventional ferromagnetic material that exhibits the above-described function can be used, but a Co-based alloy can be preferably used, and more preferably, CoCrPt, CoCrTa, CoCrPtB, CoCrPtNb, Alloy materials containing Co and Cr, such as CoCrPtTa, CoPt-SiO 2 CoCrPt-SiO 2 CoPt-Cr 2 O 3 A granular material such as can be used. As the film thickness of the magnetic recording layer 5, if the film thickness of the recording layer 5 is small, medium noise can be reduced, and the distance from the magnetic head becomes narrow during recording and reproduction, which is preferable for output reproduction. Since the volume of the recording layer 5 is reduced and the thermal stabilization of the recording magnetization state is deteriorated, the thickness is preferably 5 nm or more and 50 nm or less, but is not limited thereto.
[0031]
A protective layer 6 can be formed on the magnetic recording layer 5 as necessary. The protective film 15 has a function of protecting the magnetic film forming the recording layer from corrosion such as head impact and external corrosiveness. Any conventional material that can provide such a function may be used. For example, carbon, nitrogen-containing carbon, hydrogen-containing carbon, silicon oxide, or the like can be used. The thickness of the protective layer 6 is preferably 0.5 to 5 nm.
[0032]
Moreover, the lubricating layer 7 can be formed on the protective layer 6 as needed. The lubricating layer 7 has functions of enhancing the function of the head to glide over the medium, and preventing head adsorption and improving environmental resistance characteristics when the operation is stopped in a drive that does not use the head unloading mechanism. Conventional lubricants having the above functions, such as fluorine-based liquid lubricants such as perfluoropolyether, can be used.
[0033]
As described above, the perpendicular magnetic recording medium shown in FIG. 1 exemplifies the present invention, and the present invention is not limited to those having these configurations. Each layer to be formed may be a single layer or multiple layers. In the case of multiple layers, each layer in the multilayer may be a different material or film thickness, or may be the same material or film thickness. . If necessary, an optional layer such as a seed layer can be added between the nonmagnetic substrate 1 and the soft magnetic backing layer 2. The seed layer has a function of reducing unevenness on the surface of the substrate that contributes to deterioration of orientation and improving the coercive force, and a conventional material such as Ti or Ta having such a function is used. it can.
[0034]
In the production of the perpendicular magnetic recording medium of the present invention, each layer laminated on the nonmagnetic substrate 1 can be formed by various film forming techniques usually used in the field of magnetic recording media. For forming the soft magnetic backing layer 2, the underlayer 3, the intermediate layer 4, the magnetic recording layer 5, the optional seed layer, the protective layer 6, and the lubricating layer 7, for example, a DC magnetron sputtering method, an RF magnetron sputtering method, a vacuum An evaporation method can be used. The lubricating layer 7 can be formed by a conventional coating method such as a dipping method or a spin coating method.
[0035]
【Example】
The perpendicular magnetic recording medium of the present invention will be described in detail below with reference to examples, but the present invention is not limited thereto, and it goes without saying that various modifications can be made without departing from the scope of the present invention. .
[0036]
Example 1
This example relates to a two-layer perpendicular magnetic recording medium according to the present invention, which has a soft magnetic NiFeB underlayer, a Ru intermediate layer, a CoCrPt magnetic recording layer, a protective film, and a lubricating layer in this order on a nonmagnetic substrate. Specifically, the perpendicular magnetic recording medium was obtained as follows.
[0037]
A chemically strengthened glass substrate (N-10 glass substrate manufactured by HOYA) having a smooth surface is used as a nonmagnetic substrate, and this is introduced into a sputtering apparatus after cleaning, and a CoZrNb amorphous soft magnetic backing layer is formed using a Co8Zr5Nb target. The film was formed to a thickness of 200 nm. Next, a NiFeB underlayer was formed to a thickness of 3 nm using a Ni12Fe6B target, which is a soft magnetic permalloy alloy. Subsequently, after heating the substrate surface temperature to 30 ° C. using a lamp heater, a Ru intermediate layer was formed to a thickness of 5 nm under an Ar gas pressure of 4.0 Pa using a Ru target. . Subsequently, a CoCrPt magnetic recording layer was formed at a film pressure of 20 nm using a Co20Cr10Pt target. Finally, after forming a protective film 10 nm made of carbon using a carbon target, the medium was taken out from the vacuum apparatus. All the film formations except the heater heating and the Ru intermediate layer film formation were performed under Ar gas pressure of 0.67 Pa, and the film formations excluding the heater heating were performed by DC magnetron sputtering. Thereafter, a liquid lubricant layer 2 nm made of perfluoropolyether was formed by a dip method to obtain a perpendicular magnetic recording medium according to the present invention. Further, in order to compare the magnetic characteristics, the two-layered perpendicular magnetic layer according to the present invention having the same layer structure is formed in the same manner as described above except that a NiFeB underlayer having a film thickness of 5 nm, 10 nm, 15 nm, and 30 nm is formed. A recording medium was manufactured.
[0038]
(Example 2)
In this example, a two-layer perpendicular magnetic recording medium according to the present invention was manufactured in the same manner as in Example 1 except that the permalloy-based soft magnetic underlayer was NiFeNbB. Also in this example, in order to compare the magnetic characteristics, the film thickness of the NiFeNbB underlayer having a film thickness of 3 nm, 5 nm, 10 nm, 15 nm, and 30 nm was formed in the same manner as in Example 1. Each perpendicular magnetic recording medium having the same layer structure was manufactured.
[0039]
(Comparative Example 1)
In this comparative example, a two-layer perpendicular magnetic recording medium having the same layer configuration was manufactured in the same manner as in Example 1 except that the permalloy-based soft magnetic underlayer was Ni17Fe4Nb1Mo. Also in this comparative example, in order to compare the magnetic characteristics, a layer was formed in the same manner as in Example 1 except that the film thickness of the NiFeNbMo underlayer having a film thickness of 3 nm, 5 nm, 10 nm, 15 nm, and 30 nm was formed. Each perpendicular magnetic recording medium having the same configuration was manufactured. The perpendicular magnetic recording medium having Ni17Fe4Nb1Mo as an underlayer is a patented invention disclosed by the inventor disclosed in Japanese Patent Application No. 2001-310628. The perpendicular magnetic recording medium achieves a reduction in medium noise and higher reproduction output than conventional perpendicular magnetic recording media using a Ti-based alloy as an underlayer.
[0040]
For the double-layer medium obtained as described above, the coercive force Hc is obtained by the magnetic Kerr effect, the crystal grain size is obtained by TEM, and the orientation dispersion (Δθ is obtained by the rocking curve method using an X-ray diffractometer. 50 ) Was measured. Furthermore, noise was measured when the recording density was changed using a read / write tester.
[0041]
FIG. 2 shows changes in the coercive force Hc when the thickness of the underlayer of the perpendicular magnetic recording medium according to the present invention and the comparative example is changed. In the figure, a square (solid line) indicates a change in the coercive force Hc when the underlayer thickness of the perpendicular magnetic recording medium according to the first embodiment is changed, and a circle (solid line) indicates the perpendicular magnetic recording medium according to the second embodiment. The change in coercive force Hc when the underlayer film thickness is changed is shown, and the rhombus (dotted line) shows the change in coercivity Hc when the underlayer film thickness of the perpendicular magnetic recording medium according to Comparative Example 1 is changed. Show. When the Hc of the medium using the NiFeB underlayer of Example 1 and the medium using the NiFeNbB underlayer of Comparative Example 1 are compared, the medium of Example 1 has a higher Hc at an underlayer film thickness of 3 to 5 nm. I understand that. Further, when the medium using the NiFeNbB underlayer of Example 2 and the medium of Comparative Example 1 are compared, it can be seen that high Hc is obtained when the underlayer thickness is 5 nm or more. As described above, although the optimum film thickness varies depending on the underlayer composition, a higher Hc was obtained in each of Examples 1 and 2 than in the comparative example.
[0042]
Table 1 shows the coercive force Hc, crystal grain size, orientation dispersion (Δθ) of the perpendicular magnetic recording media according to the present invention and the comparative example obtained in Examples 1 and 2 and Comparative Example 1, respectively. 50 ). In the table, medium 1 shows the perpendicular magnetic recording medium of Example 1 made of Ni12Fe6B and having an underlayer having a thickness of 5 nm, and medium 2 is an embodiment made of Ni12Fe6N3B and having an underlayer having a thickness of 5 nm. 2 shows a perpendicular magnetic recording medium of Comparative Example 1 having a base layer made of Ni17Fe4Nb1Mo and having a thickness of 5 nm. From the results of Table 1, the coercive force (Hc) of any medium is substantially the same, but the perpendicular magnetic recording medium (medium 1 and medium 2) according to the present invention is the perpendicular magnetic recording medium (medium 3) of the comparative example. △ θ compared to 50 It can be seen that the grain size has been improved, and the crystal grain size has been refined.
[0043]
[Table 1]
Figure 0004535666
[0044]
FIG. 3 shows the linear recording density dependence of the medium noise of the perpendicular magnetic recording media according to the present invention and the comparative example shown in Table 1. As can be seen from the figure, the perpendicular magnetic recording media (medium 1 and medium 2) according to the present invention achieve a lower noise than the perpendicular magnetic recording medium (medium 3) of the comparative example. In order to reduce the noise, the orientation is improved (Δθ 50 And the reduction of the crystal grain size are considered to contribute.
[0045]
Table 2 shows the coercive force Hc, crystal grain size, orientation dispersion (Δθ) of the perpendicular magnetic recording medium according to the present invention of another embodiment obtained in Examples 1 and 2 above. 50 ). In the table, medium 4 represents the perpendicular magnetic recording medium of Example 1 having a foundation layer made of Ni12Fe6B and having a film thickness of 3 nm, and medium 5 is an embodiment having a foundation layer made of Ni12Fe6N3B and having a film thickness of 10 nm. 2 shows a perpendicular magnetic recording medium. Similar to the results in Table 1, the results in Table 2 are good Δθ for the perpendicular magnetic recording media (Media 4 and 5) according to the present invention. 50 It can be seen that the crystal grain size is becoming finer.
[0046]
[Table 2]
Figure 0004535666
[0047]
FIG. 4 shows the linear recording density dependence of the medium noise of the perpendicular magnetic recording medium according to the present invention shown in Table 2 and the medium 3 described above. As is apparent from FIG. 4, it can be seen that also in the perpendicular magnetic recording medium (medium 4 and medium 5) according to the present invention, a favorable noise reduction is achieved as compared with the comparative example (medium 3). This low noise also improves the orientation (△ θ 50 And the reduction of the crystal grain size are considered to contribute.
[0048]
(Example 3)
This example relates to a two-layer perpendicular magnetic recording medium according to the present invention, which has a soft magnetic NiFeB underlayer, a Ru intermediate layer, a granular magnetic recording layer, a protective film, and a lubricating layer in this order on a nonmagnetic substrate. Specifically, the perpendicular magnetic recording medium was obtained as follows.
[0049]
A chemically tempered glass substrate (N-10 glass substrate manufactured by HOYA) having a smooth surface is used as the nonmagnetic substrate, and this is introduced into the sputtering apparatus after cleaning, and a CoZrNb amorphous soft magnetic backing layer 200 nm using a Co8Zr5Nb target. Was deposited. Next, a NiFeB underlayer was formed to a thickness of 3 nm using a Ni12Fe6B target, which is a soft magnetic permalloy alloy. Subsequently, a Ru intermediate layer of 5 nm was formed under an Ar gas pressure of 4.0 Pa using a Ru target. Next, 92 (Co8Cr16Pt) -8SiO 2 Using a target, CoCrPt-SiO under Ar gas pressure of 4.0 Pa 2 A granular magnetic recording layer of 20 nm was formed. Finally, a protective film 10 nm made of carbon was formed using a carbon target, and then taken out from the vacuum apparatus. All of these films are formed at room temperature, Ru intermediate layer and CoCrPt-SiO 2 The above film formation except for the formation of the granular magnetic recording layer was performed under an Ar gas pressure of 0.67 Pa. Moreover, all the said film-forming was performed by DC magnetron sputtering method. Thereafter, a liquid lubricant layer 2 nm composed of purple olopolyether was formed by a dip method to produce a double-layer perpendicular magnetic recording medium (medium 6) according to the present invention. Further, a two-layer perpendicular magnetic recording medium (medium 7) according to the present invention was manufactured in the same manner as described above except that the NiFeB underlayer was formed to a thickness of 5 nm.
[0050]
(Comparative Example 2)
In this comparative example, a double-layer perpendicular magnetic recording medium (medium 8) was manufactured in the same manner as in Example 3 except that a soft magnetic underlayer made of Ni22Fe having a thickness of 5 nm was used.
[0051]
For the double-layer medium obtained as described above, the coercive force Hc is obtained by the magnetic Kerr effect, the crystal grain size is obtained by TEM, and the orientation dispersion (Δθ is obtained by the rocking curve method using an X-ray diffractometer. 50 ) Was measured. Table 3 shows the coercive force Hc, crystal grain size, orientation dispersion (Δθ) of the perpendicular magnetic recording media according to the present invention and the comparative example obtained in Example 3 and Comparative Example 2, respectively. 50 ). As can be seen from Table 3, the coercivity is greatly improved in the comparative perpendicular magnetic recording medium (medium 8) compared to the perpendicular magnetic recording media (medium 6 and 7) according to the present invention by the addition of the B component. △ θ 50 It can also be seen that the particle size is improved and the particle size is being refined. As described above, not only a magnetic recording layer that requires heating film formation, such as ordinary CoCrPt, but also a medium having a granular magnetic recording layer in which all layers need to be formed without heating. It has been found that by using the underlayer, the basic characteristics of the medium can be improved, such as an increase in coercive force, an improvement in orientation, and a refinement of the crystal grain size.
[0052]
[Table 3]
Figure 0004535666
[0053]
【The invention's effect】
As described above, according to the present invention, a soft magnetic permalloy material excellent in orientation and crystal grain size refinement is used as an underlayer, and a Ru or Ru-based alloy material excellent in orientation and bondability is used as an intermediate layer. By using it as a layer, the coercive force of the magnetic recording layer is increased, the orientation dispersion of the easy axis of magnetization is reduced, and at the same time the crystal grain size of the magnetic recording layer is reduced. As a result, the reproduction output of the perpendicular magnetic recording medium can be increased and the medium noise can be reduced. In addition, by reducing the orientation dispersion of the easy axis of magnetization of the magnetic recording layer, the magnetocrystalline anisotropy is improved. As a result, the thermal stability of the magnetic recording layer is improved and the reliability of the medium is improved.
[Brief description of the drawings]
FIG. 1 is a schematic view of a two-layer perpendicular magnetic recording medium according to the present invention.
FIG. 2 is a diagram showing a change in coercive force Hc when the underlayer film thickness of the perpendicular magnetic recording medium according to the present invention and a comparative example is changed.
FIG. 3 is a diagram showing the linear recording density dependence of medium noise in two-layer perpendicular magnetic recording media according to the present invention and comparative examples.
FIG. 4 is a diagram showing the linear recording density dependence of medium noise in a double-layered perpendicular magnetic recording medium according to the present invention and a comparative example.
[Explanation of symbols]
1 Non-magnetic substrate
2 Soft magnetic backing layer
3 Underlayer
4 middle class
5 Magnetic recording layer
6 Protective film
7 Liquid lubricant layer

Claims (7)

非磁性基体上に下地層と磁気記録層とを順次有する垂直記録媒体において、前記下地層が軟磁性を有するNiFeB、NiFeNbB、NiFeMoB、NiFeCrB、NiFeNbMoBからなる群から選択されるパーマロイ系材料を含むことを特徴とする垂直磁気記録媒体。In a perpendicular recording medium having an underlayer and a magnetic recording layer sequentially on a nonmagnetic substrate, the underlayer includes a permalloy material selected from the group consisting of NiFeB, NiFeNbB, NiFeMoB, NiFeCrB, and NiFeNbMoB having soft magnetism. A perpendicular magnetic recording medium. 前記パーマロイ系材料中のFe含有率が12〜15at%であることを特徴とする請求項1に記載の垂直磁気記録媒体。The perpendicular magnetic recording medium according to claim 1, wherein an Fe content in the permalloy material is 12 to 15 at%. 前記パーマロイ系材料が面心立方格子(fcc)構造であることを特徴とする請求項1または2に記載の垂直磁気記録媒体。The perpendicular magnetic recording medium according to claim 1, wherein the permalloy material has a face-centered cubic lattice (fcc) structure. 前記磁気記録層がCoおよびCrを含む合金を含むことを特徴とする請求項1から3のいずれか1項に記載の垂直磁気記録媒体。The perpendicular magnetic recording medium according to claim 1, wherein the magnetic recording layer includes an alloy containing Co and Cr. 前記非磁性基体と前記下地層との間に軟磁性裏打ち層をさらに有することを特徴とする請求項1から4のいずれか1項に記載の垂直磁気記録媒体。5. The perpendicular magnetic recording medium according to claim 1, further comprising a soft magnetic backing layer between the nonmagnetic substrate and the underlayer. 前記下地層と前記磁気記録層との間に中間層をさらに有することを特徴とする請求項1から5のいずれか1項に記載の垂直磁気記録媒体。6. The perpendicular magnetic recording medium according to claim 1, further comprising an intermediate layer between the underlayer and the magnetic recording layer. 前記中間層が、純RuまたはRuにC、Cu、W、Mo、Cr、Ir、Pt、Re、Rh、Ta、およびVからなる群から選択される材料を少なくとも1種添加したRu基合金を含むことを特徴とする請求項に記載の垂直磁気記録媒体。The intermediate layer is made of Ru-based alloy in which at least one material selected from the group consisting of C, Cu, W, Mo, Cr, Ir, Pt, Re, Rh, Ta, and V is added to pure Ru or Ru. The perpendicular magnetic recording medium according to claim 6 , further comprising:
JP2002166191A 2002-06-06 2002-06-06 Perpendicular magnetic recording medium Expired - Lifetime JP4535666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002166191A JP4535666B2 (en) 2002-06-06 2002-06-06 Perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002166191A JP4535666B2 (en) 2002-06-06 2002-06-06 Perpendicular magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2004014014A JP2004014014A (en) 2004-01-15
JP4535666B2 true JP4535666B2 (en) 2010-09-01

Family

ID=30433845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002166191A Expired - Lifetime JP4535666B2 (en) 2002-06-06 2002-06-06 Perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JP4535666B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4864391B2 (en) * 2004-09-06 2012-02-01 昭和電工株式会社 Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
US7833640B2 (en) 2005-08-19 2010-11-16 Hitachi Global Storage Technologies Netherlands B.V. Intermediate tri-layer structure for perpendicular recording media
KR100773546B1 (en) 2006-03-09 2007-11-07 삼성전자주식회사 Magnetic recording media

Also Published As

Publication number Publication date
JP2004014014A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
US8431257B2 (en) Perpendicular magnetic recording medium
US7235314B2 (en) Inter layers for perpendicular recording media
JP4761224B2 (en) Perpendicular magnetic recording medium
JP4380577B2 (en) Perpendicular magnetic recording medium
JP3755449B2 (en) Perpendicular magnetic recording medium
JP4379817B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording apparatus
JP2009116930A (en) Vertical magnetic recording medium and magnetic recording and reproducing device using the same
JP2007035139A (en) Vertical magnetic recording medium and magnetic recording and reproducing apparatus
JP4707265B2 (en) Perpendicular magnetic recording medium
JP2012252746A (en) Perpendicular magnetic recording medium and method for producing the same
JPWO2009014205A1 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP4534711B2 (en) Perpendicular magnetic recording medium
JP4557880B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
US9190095B2 (en) Interlayer comprising chromium-containing alloy
US20140313615A1 (en) Apparatus comprising magnetically soft underlayer
JP5569213B2 (en) Perpendicular magnetic recording medium
JP2006302426A (en) Perpendicular magnetic recording medium and its manufacturing method
JP5782819B2 (en) Perpendicular magnetic recording medium
US7919201B2 (en) Method of making a multilayered magnetic structure
JP4214472B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4535666B2 (en) Perpendicular magnetic recording medium
JP4478834B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP2006179133A (en) Magnetic recording medium and magnetic storage device using the same
JP3588039B2 (en) Magnetic recording medium and magnetic recording / reproducing device
JP2005302109A (en) Manufacturing method of multilayer film vertical magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4535666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term