JP2006128512A - Ceramic substrate for light emitting element - Google Patents

Ceramic substrate for light emitting element Download PDF

Info

Publication number
JP2006128512A
JP2006128512A JP2004317050A JP2004317050A JP2006128512A JP 2006128512 A JP2006128512 A JP 2006128512A JP 2004317050 A JP2004317050 A JP 2004317050A JP 2004317050 A JP2004317050 A JP 2004317050A JP 2006128512 A JP2006128512 A JP 2006128512A
Authority
JP
Japan
Prior art keywords
light emitting
substrate
emitting element
ceramic
substrate body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004317050A
Other languages
Japanese (ja)
Inventor
Kunihisa Hanai
邦壽 花井
Setsuo Yada
節男 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2004317050A priority Critical patent/JP2006128512A/en
Publication of JP2006128512A publication Critical patent/JP2006128512A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic substrate for a light emitting element which has a cooling function of high efficiency and, as a result, can effectively suppress the temperature rise of the element or a substrate even when it is used for illuminating, etc. <P>SOLUTION: The ceramic substrate 1 for the light emitting element includes a substrate body 1M in which a ceramic layer 15 and metal layers 24, 25 and 26 are alternately laminated. A metal pad 16 for carrying the element in which the energizing terminal of a light emitting element chip 4 to be carried is electrically connected is exposed and formed to the first main surface side of the substrate body 1M. And, metal surface conductors 24 and 25 for heat dissipation which function as a heat dissipation path within the light emitting chip 4 carried on the metal pad 16 for carrying the element are embedded at the position in the middle of the thickness direction of the substrate body 1M so that the surface shape state along the plate surface of the substrate body 1M is formed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、発光素子用セラミック基板及びそれを用いた照明モジュールに関する。   The present invention relates to a ceramic substrate for a light emitting element and an illumination module using the same.

特開2003−243717号公報JP 2003-243717 A 特開2002−246652号公報Japanese Patent Laid-Open No. 2002-246652 特開2001−223388号公報JP 2001-223388 A 特開2004−22895号公報Japanese Patent Laid-Open No. 2004-22895 特開2003−347600号公報JP 2003-347600 A

従来の半導体発光素子は、表示用などの小型素子が主要な用途を占めていたが、半導体素子が高い光変換効率を有し、発熱も少なく、また、蛍光ランプのように水銀を使用しないので環境保護上の観点においても望ましいことから、照明用光源として注目を集めている。特に、InGaAlN系の化合物を用いた高輝度の青色系発光素子が実現した背景を受け、光の三原色に相当する赤、緑、青の単色光をそれぞれ出力する発光素子を組み合わせて、種々の混合色(例えば白色)発光を可能とする発光素子が多数開発され、照明用として実用化されている。   Conventional semiconductor light emitting devices have been mainly used for small devices such as displays, but semiconductor devices have high light conversion efficiency, little heat generation, and mercury is not used like fluorescent lamps. It is also attracting attention as a light source for illumination because it is desirable from the viewpoint of environmental protection. In particular, in response to the realization of high-luminance blue light-emitting elements using InGaAlN-based compounds, various combinations of light-emitting elements that output red, green, and blue monochromatic light corresponding to the three primary colors of light are combined. Many light emitting elements capable of emitting light of color (for example, white) have been developed and put into practical use for illumination.

従来、発光素子の搭載基板は、高分子材料で絶縁層を構成したプリント基板が用いられることも多かった。しかし、照明用に発光素子を用いようとする場合、表示用等の一般の発光素子と比較してその通電電流レベルは非常に高く、長時間の連続点灯も考慮すると、その発熱が大きな問題となる。特に、小寸法の光源で遠方を照らし出す必要がある自動車のヘッドライトでは、光源への電流集中が著しく、使用時に光源周辺が非常に高温化しやすい問題がある。そこで、照明用での高発熱を考慮して、セラミック製の基板を用いることが検討されている(特許文献1〜5)。   Conventionally, a printed circuit board having an insulating layer made of a polymer material is often used as a mounting substrate for a light emitting element. However, when a light-emitting element is used for illumination, the energization current level is very high compared to a general light-emitting element for display, etc. Become. In particular, an automobile headlight that needs to illuminate a distant place with a small-sized light source has a problem that current concentration on the light source is remarkably high and the temperature around the light source tends to be very high during use. Therefore, in consideration of high heat generation for illumination, it has been studied to use a ceramic substrate (Patent Documents 1 to 5).

照明用としての長期間の寿命を確保するには、該発光素子が搭載される基板の放熱性を高めることが必要不可欠となる。セラミックの熱伝導率はそれ程良好ではなく、アルミナ等の比較的高熱伝導率のセラミックを使用したとしても、放熱特性の向上には限界がある。上記の特許文献には、発光素子の通電路を兼ねる金属薄層でセラミック基板表面を覆い、放熱効果を高める構造が開示されているが、熱伝導率が小さいセラミック基板本体の厚さ方向の熱伝導改善がなおざりにされているために、基板表層部をなす金属薄層に熱伝導の経路が偏るため熱抵抗が大きくなり、十分な放熱効果は期待できない。   In order to ensure a long life for illumination, it is essential to improve the heat dissipation of the substrate on which the light emitting element is mounted. The thermal conductivity of ceramic is not so good, and even if a ceramic with relatively high thermal conductivity such as alumina is used, there is a limit to improving the heat dissipation characteristics. The above patent document discloses a structure in which the surface of the ceramic substrate is covered with a thin metal layer that also serves as a current path of the light emitting element to enhance the heat dissipation effect. However, the heat in the thickness direction of the ceramic substrate main body with low thermal conductivity is disclosed. Since the conduction improvement is neglected, the heat conduction path is biased to the thin metal layer forming the surface layer of the substrate, so that the thermal resistance increases and a sufficient heat radiation effect cannot be expected.

本発明の課題は、効率の高い冷却機能を有し、ひいては照明用等に使用した場合も素子や基板の温度上昇を効果的に抑制できる発光素子用セラミック基板を提供することにある。   An object of the present invention is to provide a ceramic substrate for a light emitting device that has a highly efficient cooling function and can effectively suppress an increase in temperature of the device and the substrate even when used for illumination.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために、本発明の発光素子用セラミック基板は、セラミックからなる板状の基板本体と、基板本体の第一主表面側に露出する形で形成され、基板に搭載される発光素子チップのアノード又はカソードのいずれかが電気的に接続される素子搭載用金属パッドと、基板本体の板面に沿う面状形態をなすとともに、基板本体の厚さ方向の途中の位置に埋設されてなり、素子搭載用金属パッド上に搭載された発光素子チップの面内放熱路として機能する金属製の放熱用面導体とを備えたことを特徴とする。   In order to solve the above-described problems, a ceramic substrate for a light-emitting element according to the present invention is formed so as to be exposed on the first main surface side of a plate-shaped substrate body made of ceramic, and mounted on the substrate. The element mounting metal pad to which either the anode or the cathode of the element chip is electrically connected and a planar shape along the plate surface of the substrate body are embedded in the middle of the substrate body in the thickness direction. And a metal heat dissipating surface conductor that functions as an in-plane heat dissipating path of the light emitting element chip mounted on the element mounting metal pad.

また、本発明の照明モジュールは、上記本発明の発光素子用セラミック基板と、該発光素子用セラミック基板の素子搭載用金属パッド上に実装される照明用光源をなす発光素子とを備えたことを特徴とする。   The illumination module of the present invention includes the above-described ceramic substrate for a light-emitting element of the present invention, and a light-emitting element that constitutes a light source for illumination mounted on an element mounting metal pad of the ceramic substrate for a light-emitting element. Features.

上記本発明の発光素子用セラミック基板によると、セラミックからなる基板本体の厚さ方向の途中の位置に金属製の放熱用面導体が埋設形成されている。基板本体はセラミック製なので熱伝導率が小さいが、金属製の放熱面導体が厚さ方向の途中の位置に介在することで、セラミックからなる基板本体が該放熱面導体によって複数層に分割され、個々の層は厚さ方向の熱拡散距離が縮小される。そして、埋設された放熱用面導体に熱流束が到達すれば、金属の熱伝導率は非常に良好なので、面内の熱拡散は速やかに進行できる。その結果、発光素子から発生する熱を、基板本体途中に位置する放熱用面導体で面内方向熱拡散を促進しつつ、これに隔てられた厚さの小さい個々のセラミック層を順次厚さ方向に拡散させることで、基板本体全体に渡って均一かつ良好な放熱特性を実現できる。特に、これを発光駆動に伴う発熱量が特に大きい照明用モジュールに適用すれば、照明を長時間点灯しつづけても光源となる発光素子の温度上昇が効果的に抑制され、寿命を向上することができる。   According to the ceramic substrate for a light emitting device of the present invention, the metal heat dissipating surface conductor is embedded in the middle of the thickness direction of the substrate body made of ceramic. Since the substrate body is made of ceramic, the thermal conductivity is small, but by interposing a metal heat dissipation surface conductor in the middle of the thickness direction, the substrate body made of ceramic is divided into a plurality of layers by the heat dissipation surface conductor, Individual layers have a reduced thermal diffusion distance in the thickness direction. If the heat flux reaches the buried heat dissipating surface conductor, the thermal conductivity of the metal is very good, so that in-plane heat diffusion can proceed quickly. As a result, heat generated from the light emitting element is promoted in the in-plane direction heat diffusion by the heat dissipating surface conductor located in the middle of the substrate body, and the individual ceramic layers having a small thickness are sequentially separated in the thickness direction. By diffusing into the substrate, uniform and good heat dissipation characteristics can be realized over the entire substrate body. In particular, if this is applied to a lighting module that generates a particularly large amount of heat generated by light emission driving, the temperature rise of the light emitting element as a light source can be effectively suppressed and the life can be improved even if the lighting is kept on for a long time. Can do.

以下、本発明の実施の形態を、図面を用いて説明する。図1は、本発明の発光素子用セラミック基板を用いた照明モジュールの一例を示す断面模式図であり、図2は平面模式図である。照明モジュール301の要部をなす発光素子用セラミック基板1は、セラミック層15と金属層24,25,26とが交互に積層された基板本体1Mを有する。セラミック層15は熱伝導率の比較的良好な酸化アルミニウムあるいは窒化アルミニウム等で構成される。他方、金属層24,25,26(及び16)は、これらのセラミックと同時焼成が可能なWやMoなどの高融点金属にて構成される。ただし、いずれも材質はこれらに限定されない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing an example of an illumination module using the ceramic substrate for light-emitting elements of the present invention, and FIG. 2 is a schematic plan view. The light emitting element ceramic substrate 1 that forms a main part of the illumination module 301 includes a substrate body 1M in which ceramic layers 15 and metal layers 24, 25, and 26 are alternately stacked. The ceramic layer 15 is made of aluminum oxide or aluminum nitride having a relatively good thermal conductivity. On the other hand, the metal layers 24, 25, and 26 (and 16) are made of a refractory metal such as W or Mo that can be fired simultaneously with these ceramics. However, the materials are not limited to these.

基板本体1Mの第一主表面側には、搭載される発光素子チップ4の通電端子が電気的に接続される素子搭載用金属パッド16が露出形成されている。そして、基板本体1Mの厚さ方向の途中の位置には、基板本体1Mの板面に沿う面状形態をなすとともに、素子搭載用金属パッド16上に搭載された発光素子チップ4の面内放熱路として機能する金属にて構成される放熱用面導体24,25が埋設されている。基板本体1Mはセラミックにて構成されるので熱伝導率が比較的小さいが、金属にて構成される放熱用面導体24,25がその厚さ方向の途中の位置に介在することで複数のセラミック層15に分割され、個々の層15は厚さ方向の熱拡散距離が縮小される。発光素子チップ4から発生する熱は、基板本体1Mの厚さ方向の途中に位置する放熱用面導体24,25で面内方向に熱拡散が促進され、かつ、これに隔てられた厚さの薄い個々のセラミック層15を順次厚さ方向に拡散させることで、基板本体1Mの全体に渡って均一かつ良好な放熱特性を実現でき、照明を長時間点灯しつづけても光源となる発光素子チップ4の温度上昇が効果的に抑制され、寿命を向上することができる。   On the first main surface side of the substrate body 1M, an element mounting metal pad 16 to which an energization terminal of the mounted light emitting element chip 4 is electrically connected is exposed. And in the middle of the thickness direction of the substrate body 1M, a planar shape is formed along the plate surface of the substrate body 1M, and in-plane heat dissipation of the light emitting element chip 4 mounted on the element mounting metal pad 16 is achieved. Heat dissipating surface conductors 24 and 25 made of metal functioning as a path are embedded. Since the substrate body 1M is made of ceramic, the thermal conductivity is relatively small. However, the heat dissipating surface conductors 24 and 25 made of metal intervene in the middle of the thickness direction so that a plurality of ceramics can be obtained. Divided into layers 15, the thermal diffusion distance in the thickness direction of each layer 15 is reduced. The heat generated from the light emitting element chip 4 is accelerated in the in-plane direction by the heat dissipating surface conductors 24 and 25 located in the middle of the substrate body 1M in the thickness direction, and has a thickness separated therefrom. The thin ceramic layers 15 are sequentially diffused in the thickness direction, so that uniform and good heat dissipation characteristics can be realized over the entire substrate body 1M, and the light emitting element chip that becomes a light source even when lighting is continued for a long time The temperature rise of 4 can be effectively suppressed and the life can be improved.

以下、さらに詳細に説明する。
基板本体1Mは、第二主表面を覆う形で裏面側面導体26が配置され、基板本体1Mを厚さ方向に貫通する形で素子搭載用金属パッド16と裏面側面導体26とを電気的に接続するとともに、素子搭載用金属パッド16上に搭載された発光素子チップ4の厚さ方向の放熱路として機能する放熱ビア導体27が形成されている。発熱源となる発光素子チップ4を搭載するための素子搭載用金属パッド16が、放熱ビア導体27により裏面側面導体26とを直結されることで、セラミック製の基板本体1Mは、その厚さ方向の放熱効率がさらに向上する。
This will be described in more detail below.
The substrate body 1M has a back side conductor 26 disposed so as to cover the second main surface, and electrically connects the element mounting metal pad 16 and the back side conductor 26 so as to penetrate the substrate body 1M in the thickness direction. In addition, a heat radiation via conductor 27 that functions as a heat radiation path in the thickness direction of the light emitting element chip 4 mounted on the element mounting metal pad 16 is formed. The element mounting metal pad 16 for mounting the light emitting element chip 4 serving as a heat generating source is directly connected to the back surface side conductor 26 by the heat radiating via conductor 27, so that the ceramic substrate body 1M has a thickness direction. The heat dissipation efficiency is further improved.

この構造は、発光素子チップ4がアノードとカソードの一方が第一主表面に、他方が第二主表面に形成され、該第二主表面にて素子搭載用金属パッド16上に実装される場合に特に有効である。この構造であると、発光素子チップ4はチップ主表面法線方向に通電され、発光駆動のシンク電流をより大きく取りやすくなり、照明用の大電流面発光駆動に有利となる。そして、上記の構造では通電経路をなす放熱ビア導体27が、その大きなシンク電流の向きに一致する形で配置されるので、基板内での余分な抵抗発熱も小さくなる効果も加わって、大電流が流れるにも拘わらず発熱による温度上昇が一層生じ難くなる。上記の効果を高めるには、放熱ビア導体27を発光素子チップ4の直下に配置すること、あるいは放熱ビア導体27を、発光素子チップ4を取り囲む形で複数配置することが有効である。   In this structure, the light-emitting element chip 4 is formed on one of the anode and the cathode on the first main surface and the other on the second main surface, and mounted on the element mounting metal pad 16 on the second main surface. Is particularly effective. With this structure, the light emitting element chip 4 is energized in the normal direction of the chip main surface, and it becomes easier to obtain a sink current for light emission driving, which is advantageous for large current surface light emission driving for illumination. In the above structure, the heat dissipation via conductor 27 that forms the energization path is arranged so as to coincide with the direction of the large sink current, so that the effect of reducing the excessive resistance heat generation in the substrate is also added. Despite the flow of heat, the temperature rise due to heat generation becomes even less likely to occur. In order to enhance the above effect, it is effective to dispose the heat dissipation via conductors 27 immediately below the light emitting element chip 4 or to dispose a plurality of heat dissipating via conductors 27 so as to surround the light emitting element chip 4.

図1においては、発光素子チップ4の第一主表面が光取り出し面とされ、その一部領域を覆う形でアノード又はカソードとなる光取り出し側電極19が形成されている。他方、発光素子チップ4の第二主表面は全面が裏面電極20に覆われており、Agペースト等の導電性接着材18により素子搭載用金属パッド16上に接着されている。また、基板本体1Mを厚さ方向に貫通する形で導電経路形成用ビア8が配置され、その基板第一主表面側の端部に一体化されたパッド8aに対し、光取り出し側電極19が通電用ワイヤWを介して接続されている。導電経路形成用ビア8には、各セラミック層15間の境界位置に対応して接続用パッド8bが配置され、各面導体24,25,26とは隙間9hにより絶縁分離されている。上記構造により、基板本体1Mの第二主表面側において発光素子チップ4の裏面側は裏面側面導体26に、光取り出し面側は導電経路形成用ビア8の端子パッド8cに各々導通する形となる。なお、発光素子チップ4は、基板本体1Mの第一主表面とともにエポキシ樹脂等からなる透明樹脂モールド1cにより覆われている。   In FIG. 1, the first main surface of the light emitting element chip 4 is a light extraction surface, and a light extraction side electrode 19 serving as an anode or a cathode is formed so as to cover a partial region thereof. On the other hand, the entire surface of the second main surface of the light emitting element chip 4 is covered with the back electrode 20, and is adhered onto the element mounting metal pad 16 with a conductive adhesive 18 such as Ag paste. In addition, a conductive path forming via 8 is disposed so as to penetrate the substrate body 1M in the thickness direction, and the light extraction side electrode 19 is provided to the pad 8a integrated at the end portion on the first main surface side of the substrate. They are connected via a current-carrying wire W. In the conductive path forming via 8, connection pads 8 b are arranged corresponding to the boundary positions between the ceramic layers 15, and are insulated from the surface conductors 24, 25, and 26 by gaps 9 h. With the above structure, on the second main surface side of the substrate body 1M, the back surface side of the light emitting element chip 4 is electrically connected to the back surface conductor 26, and the light extraction surface side is electrically connected to the terminal pad 8c of the conductive path forming via 8. . The light emitting element chip 4 is covered with a transparent resin mold 1c made of an epoxy resin or the like together with the first main surface of the substrate body 1M.

図1においては、放熱用面導体は、素子搭載用金属パッド16よりも基板本体1Mの第二主表面側に位置するように埋設された第1種放熱用面導体25を有する。基板本体1Mの厚さ方向において、素子搭載用金属パッド16よりも深い位置に第1種放熱用面導体25を埋設することで、発光素子チップ4よりも下側に位置する基板本体部分が複数のセラミック層15,15に分割され、基板厚さ方向の放熱効果がさらに高められる。この効果は、図2に示すように、該第1種放熱用面導体25を、素子搭載用金属パッド16上に搭載される発光素子チップ4の投影領域を包含するように、該発光素子チップ4よりも大面積に形成した場合に著しい。なお、図1では第1種放熱用面導体25を一層のみ設けているが、これを複数層設けてもよい。   In FIG. 1, the heat dissipating surface conductor includes a first type heat dissipating surface conductor 25 embedded so as to be located on the second main surface side of the substrate body 1M with respect to the element mounting metal pad 16. By embedding the first type heat radiation surface conductor 25 at a position deeper than the element mounting metal pad 16 in the thickness direction of the substrate body 1M, a plurality of substrate body portions positioned below the light emitting element chip 4 are provided. The ceramic layers 15 and 15 are further divided to further enhance the heat dissipation effect in the substrate thickness direction. As shown in FIG. 2, the effect is that the first type heat radiation surface conductor 25 includes the projection area of the light emitting element chip 4 mounted on the element mounting metal pad 16. It is remarkable when it is formed in a larger area than 4. In FIG. 1, only one layer of the first type heat radiation surface conductor 25 is provided, but a plurality of layers may be provided.

また、図1の実施形態では、第1種放熱用面導体25と素子搭載用金属パッド16とが、前述の放熱ビア導体27により接続されている。この構造により、第1種放熱用面導体25による面内の熱拡散効果と、放熱ビア導体27による厚さ方向の熱拡散効果とが組み合さって放熱が三次元的に進行し、発光素子チップ4や基板1の温度上昇を極めて効果的に抑制できる。本実施形態では、素子搭載用金属パッド16は発光素子チップ4よりも大面積に形成され、第1種放熱用面導体25は該素子搭載用金属パッド16よりも大面積に形成されている。素子搭載用金属パッド16を発光素子チップ4よりも大面積に形成することで、発光素子チップ4の該素子搭載用金属パッド16への(導電性接着材による)実装がより容易となる。また、発光素子チップ4の搭載面における該素子搭載用金属パッド16自身による面内熱拡散効果も高められ、さらに、複数本の放熱ビア導体27を配置する構造を考慮する上でも有利に作用する。   In the embodiment of FIG. 1, the first type heat radiation surface conductor 25 and the element mounting metal pad 16 are connected by the heat radiation via conductor 27 described above. With this structure, the in-plane heat diffusion effect by the first type heat radiation surface conductor 25 and the heat diffusion effect in the thickness direction by the heat radiation via conductor 27 are combined, and heat radiation proceeds three-dimensionally, and the light emitting element chip 4 and the temperature rise of the board | substrate 1 can be suppressed very effectively. In the present embodiment, the element mounting metal pad 16 is formed in a larger area than the light emitting element chip 4, and the first type heat radiation surface conductor 25 is formed in a larger area than the element mounting metal pad 16. By forming the element mounting metal pad 16 in a larger area than the light emitting element chip 4, it becomes easier to mount the light emitting element chip 4 on the element mounting metal pad 16 (using a conductive adhesive). Further, the in-plane thermal diffusion effect by the element mounting metal pad 16 itself on the mounting surface of the light emitting element chip 4 is enhanced, and further, it works advantageously in considering a structure in which a plurality of heat dissipation via conductors 27 are arranged. .

次に、図1のセラミック基板1においては、基板本体1Mの第一主表面に開口するとともに、該基板本体1Mの厚さ方向の途中位置に底面が位置するように素子搭載切欠き部14が形成され、素子搭載用金属パッド16が該素子搭載切欠き部14の底面上に形成されている。発光素子チップ4を素子搭載切欠き部14の底面に実装することにより、発光素子チップ4の側面に向う発光光束を、素子搭載切欠き部14の内側面で反射させることができ、基板主表面側への照明光の指向性を高めることができる。この場合、素子搭載切欠き部14の内周縁に沿って、開口部から底面に向けて縮径する形態の反射面を有する反射金属部6を形成しておくと、特にこの効果が著しくなる。   Next, in the ceramic substrate 1 of FIG. 1, the element mounting notch portion 14 is opened to the first main surface of the substrate body 1M and the bottom surface is located in the middle of the substrate body 1M in the thickness direction. The element mounting metal pad 16 is formed on the bottom surface of the element mounting notch 14. By mounting the light emitting element chip 4 on the bottom surface of the element mounting notch portion 14, the luminous flux directed toward the side surface of the light emitting element chip 4 can be reflected by the inner side surface of the element mounting notch portion 14. The directivity of the illumination light to the side can be increased. In this case, when the reflective metal portion 6 having a reflective surface with a diameter reduced from the opening portion toward the bottom surface is formed along the inner peripheral edge of the element mounting notch portion 14, this effect is particularly remarkable.

上記のような素子搭載切欠き部14を設けることで、放熱用面導体は、基板本体1M部に対し、素子搭載切欠き部14の周囲において底面の延長上に埋設された第2種放熱用面導体24を有するものとすることができる。これにより、発光素子チップ4の搭載面内での熱拡散効果を高めることができる。   By providing the element mounting notch 14 as described above, the heat dissipating surface conductor is a second type heat dissipating material embedded on the extension of the bottom surface around the element mounting notch 14 with respect to the board body 1M. It may have a surface conductor 24. Thereby, the thermal diffusion effect within the mounting surface of the light emitting element chip 4 can be enhanced.

図1の実施形態では、素子搭載切欠き部14の底面外周縁を覆う底面メタライズ層24Pと、素子搭載切欠き部14の内側面を覆う側面メタライズ層7とが形成され、反射金属部6はそれら底面メタライズ層24Pと側面メタライズ層7とにまたがるろう材フィレット部(例えばAg系ろう材あるいはCu系ろう材で構成され、表面には反射率を高めるためのAgメッキが施される)6にて形成することができる。このようにすると、底面メタライズ層24Pと側面メタライズ層7とが作る凹状部のエッジに沿ってろう材を流し込むことで反射金属部6を簡単に形成できる。また、反射金属部6をなすフィレットの内周面がテーパ面(あるいは凹R面)となり、発光素子チップ4の側面から放出される発光光束を、基板主表面法線方向に反射する効果が高められ、照明光の指向性がより向上する。   In the embodiment of FIG. 1, a bottom metallized layer 24P that covers the outer periphery of the bottom surface of the element mounting notch 14 and a side metallized layer 7 that covers the inner surface of the element mounting notch 14 are formed. A brazing filler fillet portion (for example, composed of an Ag-based brazing material or a Cu-based brazing material, and Ag plating for increasing the reflectance is applied to the surface) 6 straddling the bottom surface metallization layer 24P and the side surface metallization layer 7 Can be formed. In this case, the reflective metal portion 6 can be easily formed by pouring the brazing material along the edge of the concave portion formed by the bottom surface metallized layer 24P and the side surface metallized layer 7. Further, the inner peripheral surface of the fillet forming the reflective metal portion 6 becomes a tapered surface (or a concave R surface), and the effect of reflecting the emitted light beam emitted from the side surface of the light emitting element chip 4 in the normal direction of the substrate main surface is enhanced. The directivity of the illumination light is further improved.

図2に示すように、素子搭載切欠き部14の底面上にて、素子搭載用金属パッド16と底面メタライズ層24Pとの間には、下地となるセラミック層を露出させる形でろう材ストップ隙間部17が形成されている。底面メタライズ層24Pと側面メタライズ層7とが作る凹状部にろう材を流し込んだ際に、ろう材ストップ隙間部17はろう材が素子搭載用金属パッド16側に流れ込むことを防止し、ひいては反射金属部6をなすフィレットの角度θを規定する役割を果たす。発光素子チップ4の側面から放出される発光光束を、基板主表面法線方向に反射する効果は、該角度θが30°以上60°以下(例えば45°)に調整された場合に顕著である。   As shown in FIG. 2, on the bottom surface of the element mounting notch 14, the brazing filler metal stop gap is formed between the element mounting metal pad 16 and the bottom metallized layer 24P so as to expose the ceramic layer as a base. A portion 17 is formed. When the brazing material is poured into the concave portion formed by the bottom surface metallization layer 24P and the side surface metallization layer 7, the brazing material stop gap portion 17 prevents the brazing material from flowing into the element mounting metal pad 16 side, thereby reflecting metal. It plays the role of defining the angle θ of the fillet forming part 6. The effect of reflecting the luminous flux emitted from the side surface of the light emitting element chip 4 in the normal direction of the main surface of the substrate is remarkable when the angle θ is adjusted to 30 ° or more and 60 ° or less (for example, 45 °). .

なお、前述の第2種放熱用面導体24は、その内縁部が素子搭載切欠き部14の側面よりも内側に延出させることができる。これにより、該延出部により底面メタライズ層24Pを形成することができ、第2種放熱用面導体24と底面メタライズ層24Pとを一括形成できるので工程の簡略化に寄与する。また、底面メタライズ層24P上に、熱容量の大きくかつ高熱伝導率の反射金属部6(フィレット)が搭載され、これが面内熱拡散経路を担う第2種放熱用面導体24と直結されるので、放熱効果の改善にも寄与する。また、図1のセラミック基板1の構成では、結果的に第1種放熱用面導体25との第2種放熱用面導体24との双方を備えることとなり、放熱効果が一層高められている。   In addition, the inner edge part of the above-described second type heat radiation surface conductor 24 can be extended inward from the side surface of the element mounting notch part 14. Thereby, the bottom metallized layer 24P can be formed by the extended portion, and the second-type heat radiation surface conductor 24 and the bottom metallized layer 24P can be collectively formed, which contributes to simplification of the process. Further, on the bottom metallized layer 24P, a reflective metal portion 6 (fillet) having a large heat capacity and high thermal conductivity is mounted, and this is directly connected to the second type heat radiation surface conductor 24 that carries the in-plane heat diffusion path. It also contributes to the improvement of heat dissipation effect. Moreover, in the structure of the ceramic substrate 1 of FIG. 1, as a result, both the 1st type heat radiation surface conductor 25 and the 2nd type heat radiation surface conductor 24 are provided, and the heat radiation effect is further enhanced.

図3は、図1の照明モジュール301の、製造工程の一例を示すものである。まず、工程1に示すように、セラミック層15(図1)となるべきセラミックグリーンシート115を用意する。該セラミックグリーンシート115は、セラミック誘電体層の原料セラミック粉末に溶剤(アセトン、メチルエチルケトン、ジアセトン、メチルイソブチルケトン、ベンゼン、ブロムクロロメタン、エタノール、ブタノール、プロパノール、トルエン、キシレンなど)、結合剤(アクリル系樹脂(例えば、ポリアクリル酸エステル、ポリメチルメタクリレート)、セルロースアセテートブチレート、ポリエチレン、ポリビニルアルコール、ポリビニルブチラールなど)、可塑剤(ブチルベンジルフタレート、ジブチルフタレート、ジメチルフタレート、フタル酸エステル、ポリエチレングリコール誘導体、トリクレゾールホスフェートなど)、解膠剤(脂肪酸(グリセリントリオレートなど)、界面活性剤(ベンゼンスルホン酸など)、湿潤剤(アルキルアリルポリエーテルアルコール、ポリエチレングリコールエチルエーテル、ニチルフェニルグリコール、ポリオキシエチレンエステルなど)などの添加剤を配合して混練し、周知のドクターブレード法等によりシート状に成形したものである。該セラミックグリーンシート115には、ビア導体を配置するための貫通孔108h,127hを、ドリリング、パンチングあるいはレーザー穿孔により予め形成しておく。   FIG. 3 shows an example of a manufacturing process of the illumination module 301 of FIG. First, as shown in step 1, a ceramic green sheet 115 to be the ceramic layer 15 (FIG. 1) is prepared. The ceramic green sheet 115 is prepared by adding a solvent (acetone, methyl ethyl ketone, diacetone, methyl isobutyl ketone, benzene, bromochloromethane, ethanol, butanol, propanol, toluene, xylene, etc.), binder (acrylic) to the raw ceramic powder of the ceramic dielectric layer. Resin (for example, polyacrylic acid ester, polymethyl methacrylate), cellulose acetate butyrate, polyethylene, polyvinyl alcohol, polyvinyl butyral, etc.), plasticizer (butyl benzyl phthalate, dibutyl phthalate, dimethyl phthalate, phthalic acid ester, polyethylene glycol derivative) , Tricresol phosphate, etc.), peptizer (fatty acid (glycerin trioleate, etc.), surfactant (benzenesulfonic acid, etc.), wet Additives such as (alkyl allyl polyether alcohol, polyethylene glycol ethyl ether, nithyl phenyl glycol, polyoxyethylene ester, etc.) are blended and kneaded, and formed into a sheet by a known doctor blade method or the like. In the ceramic green sheet 115, through holes 108h and 127h for arranging via conductors are formed in advance by drilling, punching or laser drilling.

まず、工程1に示すように、貫通孔108h,127hを金属ペーストで充填し、ビア導体パターン127とする。そして、工程2に示すように、上記のセラミックグリーンシート115の第二主表面に、裏面側面導体26及び端子パッド8cとなる金属パターン126,108cを形成する。配線層金属パターン126は、金属粉末のペーストを用いて公知のスクリーン印刷法により形成される。金属粉末のペーストは、金属粉末に、エチルセルロース等の有機バインダと、ブチルカルビトール等の有機溶剤を適度な粘度が得られるように配合・調整したものである。また、上記のセラミックグリーンシート115の第一主表面に、第2種放熱用面導体25(及び底面メタライズ層24P)ならびに接続用パッド8bとなる金属パターン125(124P),108bを印刷形成する。セラミックグリーンシート115の第一主表面及び第二主表面の印刷の順序は反転できる。   First, as shown in step 1, the through holes 108h and 127h are filled with a metal paste to form a via conductor pattern 127. Then, as shown in step 2, the metal patterns 126 and 108c to be the back side conductor 26 and the terminal pad 8c are formed on the second main surface of the ceramic green sheet 115 described above. The wiring layer metal pattern 126 is formed by a known screen printing method using a metal powder paste. The metal powder paste is prepared by blending and adjusting a metal powder with an organic binder such as ethyl cellulose and an organic solvent such as butyl carbitol so as to obtain an appropriate viscosity. Further, the second main heat dissipating surface conductor 25 (and the bottom metallized layer 24P) and the metal patterns 125 (124P) and 108b to be the connection pads 8b are formed on the first main surface of the ceramic green sheet 115 by printing. The printing order of the first main surface and the second main surface of the ceramic green sheet 115 can be reversed.

次いで、工程3に示すように、その上に、別のセラミックグリーンシート115を重ね、第1種放熱用面導体24及び素子搭載用金属パッド16となる金属パターン124,16を同様に印刷形成する。そして、工程4に示すように、さらに別のセラミックグリーンシート115には、素子搭載切欠き部14となる貫通孔107を形成し、内面に側面メタライズ層7となる金属パターン107を塗布形成する。また、パッド8aとなる金属パターン108aも形成し、積層体の最上層となるようにこれも重ね合わせる。上記のグリーン積層体を焼成した後、さらに反射金属部6を形成する。そして、発光素子チップ4を実装し、ワイヤWをボンディングした後、樹脂モールド1cを形成して図1の照明モジュール301が完成する。   Next, as shown in step 3, another ceramic green sheet 115 is overlaid thereon, and the metal patterns 124 and 16 to be the first type heat radiation surface conductor 24 and the element mounting metal pad 16 are similarly printed and formed. . Then, as shown in step 4, a further ceramic green sheet 115 is formed with a through hole 107 to be the element mounting notch 14 and a metal pattern 107 to be the side metallized layer 7 on the inner surface. In addition, a metal pattern 108a to be the pad 8a is also formed, and is superposed so as to be the uppermost layer of the stacked body. After firing the green laminate, a reflective metal portion 6 is further formed. And after mounting the light emitting element chip | tip 4 and bonding the wire W, the resin mold 1c is formed and the illumination module 301 of FIG. 1 is completed.

以下、本発明の発光素子用セラミック基板の、種々の変形例について説明する。なお、図1の発光素子用セラミック基板1との共通部分には同一の符号を付与して詳細な説明は省略する。まず、図4のセラミック基板50は、図1のセラミック基板1から第2種放熱用面導体24を省略したものに相当する(逆に、第1種放熱用面導体25を省略した構成とすることもできる)。   Hereinafter, various modifications of the ceramic substrate for a light emitting device of the present invention will be described. In addition, the same code | symbol is provided to a common part with the ceramic substrate 1 for light emitting elements of FIG. 1, and detailed description is abbreviate | omitted. First, the ceramic substrate 50 of FIG. 4 corresponds to the ceramic substrate 1 of FIG. 1 in which the second type heat radiation surface conductor 24 is omitted (in contrast, the first type heat radiation surface conductor 25 is omitted). Can also).

図5のセラミック基板51は、基板本体1Mの厚さ方向への投影関係において、第1種放熱用面導体25と第2種放熱用面導体24との間に重なり領域が形成されており、その重なり領域にて第1種放熱用面導体25と第2種放熱用面導体24とを接続する補助放熱ビア導体227が形成されている。補助放熱ビア導体227により、第1種放熱用面導体25と第2種放熱用面導体24とをつなぐ厚さ方向の放熱路が形成され、基板全体の放熱効果が高められる。図5では、素子搭載用金属パッド16と第1種放熱用面導体25とをつなぐ放熱ビア導体27を省略しているが、図中に一点鎖線(図2と同様の配置形態)で示すように、該放熱ビア導体27も合せて設けることが可能であり、この場合は基板の厚さ方向の放熱効果がより一層高められる。なお、第1種放熱用面導体25と第2種放熱用面導体24との重なり領域は、素子搭載用金属パッド16の外側に形成される形となっている。   The ceramic substrate 51 of FIG. 5 has an overlapping region formed between the first type heat radiation surface conductor 25 and the second type heat radiation surface conductor 24 in the projection relationship in the thickness direction of the substrate body 1M. An auxiliary heat radiation via conductor 227 that connects the first type heat radiation surface conductor 25 and the second type heat radiation surface conductor 24 is formed in the overlapping region. The auxiliary heat radiation via conductor 227 forms a heat radiation path in the thickness direction that connects the first type heat radiation surface conductor 25 and the second type heat radiation surface conductor 24, thereby enhancing the heat radiation effect of the entire substrate. In FIG. 5, the heat radiating via conductor 27 that connects the element mounting metal pad 16 and the first type heat radiating surface conductor 25 is omitted, but as shown by a one-dot chain line (the same arrangement form as FIG. 2). Further, the heat radiating via conductor 27 can be provided together. In this case, the heat radiation effect in the thickness direction of the substrate is further enhanced. The overlapping region of the first type heat radiation surface conductor 25 and the second type heat radiation surface conductor 24 is formed outside the element mounting metal pad 16.

図6に示すセラミック基板52は、放熱用面導体224に対し第一主表面側に隣接するセラミック層215と第二主表面側に隣接するセラミック層15とが異なる材質のセラミックからなり、放熱用面導体224は、それら異材質のセラミック層215,15をろう付け接合するろう材層とされている。セラミック基板52をなす複数のセラミック層215,15を異材質セラミックで構成しようとした場合、材質の異なるセラミックは焼成温度や収縮率が異なるため、同時焼成することは一般には難しい。そこで、上記のように、放熱用面導体224を境界として、材質の異なる各セラミック層215,15をそれぞれ別焼成した後、図7に示すように両者をろう材224sにより接合し、そのろう材層を放熱用面導体224とすることで、異材質のセラミック層215,15を含むセラミック基板52を容易に実現できる。   The ceramic substrate 52 shown in FIG. 6 is made of a ceramic made of different materials in the ceramic layer 215 adjacent to the first main surface side and the ceramic layer 15 adjacent to the second main surface side with respect to the heat dissipating surface conductor 224. The surface conductor 224 is a brazing material layer for brazing and joining these different ceramic layers 215 and 15. When a plurality of ceramic layers 215 and 15 forming the ceramic substrate 52 are made of different materials, it is generally difficult to perform simultaneous firing because different ceramics have different firing temperatures and shrinkage rates. Thus, as described above, the ceramic layers 215 and 15 of different materials are separately fired with the heat radiation surface conductor 224 as a boundary, and then bonded together with a brazing material 224s as shown in FIG. By using the heat dissipating surface conductor 224 as the layer, the ceramic substrate 52 including the ceramic layers 215 and 15 of different materials can be easily realized.

この場合、異なる材質のセラミック層215,15の一方15を素子搭載用金属パッド16の第二主表面側に隣接配置し、当該セラミック層15が他のセラミック層よりも熱伝導率の大きいセラミック(例えば、セラミック層215を酸化アルミニウム、セラミック層15を窒化アルミニウムで形成した場合)にて構成すれば、基板全体の放熱効果をより高めることができ、また、基板全体を高価な窒化アルミニウムで構成場合するよりも、材料コストを削減することができる。   In this case, one of the ceramic layers 215, 15 of different materials is disposed adjacent to the second main surface side of the element mounting metal pad 16, and the ceramic layer 15 is a ceramic having a higher thermal conductivity than the other ceramic layers ( For example, when the ceramic layer 215 is made of aluminum oxide and the ceramic layer 15 is made of aluminum nitride, the heat dissipation effect of the entire substrate can be further enhanced, and the entire substrate is made of expensive aluminum nitride. Rather than doing so, material costs can be reduced.

図8のセラミック基板53は、図2のセラミック基板1とは異なる構造の発光素子チップ204が搭載されることを前提としている。この発光素子チップ204は、チップの第一主表面に電極が形成されず、第二主表面側にアノード端子204Aとカソード端子204Cを形成した構造になっている。アノード端子204Aは素子搭載用金属パッド16に、カソード端子204Cは、素子搭載用金属パッド16から電気的に絶縁された補助パッド8tにそれぞれ半田付け等により面実装されている。   The ceramic substrate 53 of FIG. 8 is premised on mounting a light emitting element chip 204 having a structure different from that of the ceramic substrate 1 of FIG. The light emitting element chip 204 has a structure in which no electrode is formed on the first main surface of the chip, and an anode terminal 204A and a cathode terminal 204C are formed on the second main surface side. The anode terminal 204A and the cathode terminal 204C are surface-mounted by soldering or the like on the element mounting metal pad 16 and the auxiliary pad 8t electrically insulated from the element mounting metal pad 16, respectively.

具体的には、図9に示すように、素子搭載用金属パッド16の一部が切り欠かれ、その切欠き部8i内に、導電経路形成用ビア8に導通するパッド8aと、該パッド8aに一端が導通し、他端に補助パッド8tが形成されたリード部8lが形成されている。また、基板本体1Mには素子搭載切欠き部が形成されず、その平坦な第一主表面の全面が素子搭載用金属パッド16をなす面導体により覆われている。そして、発光素子チップ204からの発光光束を反射させる反射鏡150が基板本体1Mに対して別アセンブリされている。   Specifically, as shown in FIG. 9, a part of the element mounting metal pad 16 is cut out, and a pad 8a conducting to the conductive path forming via 8 is formed in the cutout portion 8i, and the pad 8a. A lead portion 8l is formed in which one end is conductive and the other end is formed with an auxiliary pad 8t. In addition, no element mounting notch is formed in the substrate body 1M, and the entire flat first main surface is covered with a surface conductor forming the element mounting metal pad 16. A reflecting mirror 150 that reflects the luminous flux from the light emitting element chip 204 is separately assembled to the substrate body 1M.

上記のようなセラミック基板50〜53を用いた照明モジュール301は、自動車用ヘッドランプの光源として利用することができる。   The illumination module 301 using the ceramic substrates 50 to 53 as described above can be used as a light source of an automobile headlamp.

本発明の発光素子用セラミック基板の第一実施形態を示す断面模式図。The cross-sectional schematic diagram which shows 1st embodiment of the ceramic substrate for light emitting elements of this invention. 図1の平面図。The top view of FIG. 図1の発光素子用セラミック基板の製造方法を示す工程説明図。Process explanatory drawing which shows the manufacturing method of the ceramic substrate for light emitting elements of FIG. 本発明の発光素子用セラミック基板の第二実施形態を示す断面模式図。The cross-sectional schematic diagram which shows 2nd embodiment of the ceramic substrate for light emitting elements of this invention. 本発明の発光素子用セラミック基板の第三実施形態を示す断面模式図。The cross-sectional schematic diagram which shows 3rd embodiment of the ceramic substrate for light emitting elements of this invention. 本発明の発光素子用セラミック基板の第四実施形態を示す断面模式図。The cross-sectional schematic diagram which shows 4th embodiment of the ceramic substrate for light emitting elements of this invention. 図6の発光素子用セラミック基板の製造方法を示す工程説明図。Process explanatory drawing which shows the manufacturing method of the ceramic substrate for light emitting elements of FIG. 本発明の発光素子用セラミック基板の第五実施形態を示す断面模式図。The cross-sectional schematic diagram which shows 5th embodiment of the ceramic substrate for light emitting elements of this invention. 図8の平面図。The top view of FIG.

符号の説明Explanation of symbols

1,50〜53 発光素子用セラミック基板
1M 基板本体
4 発光素子チップ
6 反射金属部
7 側面メタライズ層
14 素子搭載切欠き部
15,215 セラミック層
16 素子搭載用金属パッド
17 ろう材ストップ隙間部
24,25 放熱用面導体
25 第1種放熱用面導体
24 第2種放熱用面導体
24P 底面メタライズ層
26 裏面側面導体
27 放熱ビア導体
DESCRIPTION OF SYMBOLS 1,50-53 Ceramic substrate for light emitting elements 1M Substrate body 4 Light emitting element chip 6 Reflective metal part 7 Side metallization layer 14 Element mounting notch part 15,215 Ceramic layer 16 Metal pad for element mounting 17 Brazing material stop gap part 24, 25 Radiation surface conductor 25 Type 1 radiation surface conductor 24 Type 2 radiation surface conductor 24P Bottom metallization layer 26 Back side conductor 27 Radiation via conductor

Claims (2)

セラミックからなる板状の基板本体と、前記基板本体の第一主表面側に露出する形で形成され、基板に搭載される発光素子チップの通電端子が電気的に接続される素子搭載用金属パッドと、前記基板本体の板面に沿う面状形態をなすとともに、前記基板本体の厚さ方向の途中の位置に埋設されてなり、前記素子搭載用金属パッド上に搭載された前記発光素子チップの面内放熱路として機能する金属製の放熱用面導体とを備えたことを特徴とする発光素子用セラミック基板。 A plate-like substrate body made of ceramic, and an element mounting metal pad formed so as to be exposed on the first main surface side of the substrate body, and electrically connected to energization terminals of light emitting element chips mounted on the substrate And forming a planar shape along the plate surface of the substrate body, embedded in a position in the middle of the thickness of the substrate body, and the light emitting element chip mounted on the element mounting metal pad A ceramic substrate for a light emitting device, comprising: a metal heat dissipating surface conductor that functions as an in-plane heat dissipation path. 前記基板本体の第二主表面を覆う形で裏面側面導体が配置され、前記基板本体を厚さ方向に貫通する形で前記素子搭載用金属パッドと前記裏面側面導体とを電気的に接続するとともに、前記素子搭載用金属パッド上に搭載された前記発光素子チップの厚さ方向の放熱路として機能する放熱ビア導体が形成されてなる請求項1記載の発光素子用セラミック基板。
A back side conductor is disposed so as to cover the second main surface of the substrate body, and the element mounting metal pad and the back side conductor are electrically connected so as to penetrate the substrate body in the thickness direction. The ceramic substrate for light emitting elements according to claim 1, wherein a heat dissipation via conductor functioning as a heat dissipation path in the thickness direction of the light emitting element chip mounted on the element mounting metal pad is formed.
JP2004317050A 2004-10-29 2004-10-29 Ceramic substrate for light emitting element Pending JP2006128512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004317050A JP2006128512A (en) 2004-10-29 2004-10-29 Ceramic substrate for light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004317050A JP2006128512A (en) 2004-10-29 2004-10-29 Ceramic substrate for light emitting element

Publications (1)

Publication Number Publication Date
JP2006128512A true JP2006128512A (en) 2006-05-18

Family

ID=36722861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004317050A Pending JP2006128512A (en) 2004-10-29 2004-10-29 Ceramic substrate for light emitting element

Country Status (1)

Country Link
JP (1) JP2006128512A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147889A (en) * 2004-11-19 2006-06-08 Stanley Electric Co Ltd Surface-mounting led
JP2008034748A (en) * 2006-07-31 2008-02-14 Matsushita Electric Works Ltd Light-emitting apparatus
WO2008054670A1 (en) * 2006-10-31 2008-05-08 Cree, Inc. Integrated heat spreaders for leds and related assemblies
JP2008124088A (en) * 2006-11-09 2008-05-29 Akita Denshi Systems:Kk Light emitting diode device, and method for manufacturing the same
JP2008147270A (en) * 2006-12-07 2008-06-26 Nichia Chem Ind Ltd Light-emitting device and its manufacturing method
JP2008172113A (en) * 2007-01-15 2008-07-24 Ngk Spark Plug Co Ltd Wiring substrate
JP2008288487A (en) * 2007-05-21 2008-11-27 Citizen Electronics Co Ltd Surface-mounted light emitting diode
JP2009033088A (en) * 2007-06-29 2009-02-12 Sharp Corp Semiconductor light-emitting device, method for producing the same, and led illuminating apparatus using the same
WO2009028812A3 (en) * 2007-08-28 2009-04-23 Lg Innotek Co Ltd Light emitting device
JP2009111346A (en) * 2007-10-31 2009-05-21 Cree Inc Led array, and method for manufacturing same
JP2009141318A (en) * 2007-07-30 2009-06-25 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Led light source with thermal conductivity improved
JP2009206216A (en) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd Light-emitting apparatus
WO2009129947A1 (en) * 2008-04-25 2009-10-29 Alcan Technology & Management Ltd. Device comprising a multilayer board and light-emitting diodes
JP2009545863A (en) * 2006-08-04 2009-12-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Thin film semiconductor component and component combination
JP2010056460A (en) * 2008-08-29 2010-03-11 Kyocera Corp Substrate for light-emitting device, light-emitting device using substrate for light-emitting device, and lighting system using light-emitting device
JP2010129728A (en) * 2008-11-27 2010-06-10 Kyocera Corp Light-emitting device, and lighting system using the same
JP2010129727A (en) * 2008-11-27 2010-06-10 Kyocera Corp Light-emitting lamp, and lighting system using the same
JP2010183117A (en) * 2004-06-11 2010-08-19 Ngk Spark Plug Co Ltd Multiple patterning wiring board, and method of manufacturing the same
JP2010283253A (en) * 2009-06-08 2010-12-16 Hitachi Kyowa Engineering Co Ltd Light-emitting device and substrate for light-emitting device
WO2011077900A1 (en) * 2009-12-22 2011-06-30 シャープ株式会社 Light emitting diode element, light source device, surface light source illumination device, and liquid crystal display device
JP2012508969A (en) * 2008-11-13 2012-04-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Surface mountable device
JP2012160528A (en) * 2011-01-31 2012-08-23 Nikkiso Co Ltd Semiconductor package
WO2012124473A1 (en) * 2011-03-15 2012-09-20 京セラ株式会社 Light emitting device
US8511851B2 (en) 2009-12-21 2013-08-20 Cree, Inc. High CRI adjustable color temperature lighting devices
US8598809B2 (en) 2009-08-19 2013-12-03 Cree, Inc. White light color changing solid state lighting and methods
USD700584S1 (en) 2011-07-06 2014-03-04 Cree, Inc. LED component
US8698171B2 (en) 2005-01-10 2014-04-15 Cree, Inc. Solid state lighting component
JP2014517528A (en) * 2011-06-01 2014-07-17 ソウル セミコンダクター カンパニー リミテッド Light emitting diode assembly
US9142720B2 (en) 2007-01-29 2015-09-22 Osram Opto Semiconductors Gmbh Thin-film light emitting diode chip and method for producing a thin-film light emitting diode chip
US9335006B2 (en) 2006-04-18 2016-05-10 Cree, Inc. Saturated yellow phosphor converted LED and blue converted red LED
AT14934U1 (en) * 2014-06-24 2016-08-15 Zumtobel Lighting Gmbh Arrangement for emitting light with LED and carrier element
US9425172B2 (en) 2008-10-24 2016-08-23 Cree, Inc. Light emitter array
US9786811B2 (en) 2011-02-04 2017-10-10 Cree, Inc. Tilted emission LED array
CN107249287A (en) * 2017-07-27 2017-10-13 维沃移动通信有限公司 A kind of electronic building brick and electronic equipment
US9793247B2 (en) 2005-01-10 2017-10-17 Cree, Inc. Solid state lighting component
CN108269743A (en) * 2018-01-04 2018-07-10 河北中瓷电子科技有限公司 Step-like aluminium nitride ceramics block preparation method and step-like aluminium nitride ceramics block
JP2018186284A (en) * 2011-08-22 2018-11-22 エルジー イノテック カンパニー リミテッド Uv light light-emitting element package
WO2019034562A1 (en) * 2017-08-14 2019-02-21 Tdk Electronics Ag Led module
JP2019040956A (en) * 2017-08-23 2019-03-14 スタンレー電気株式会社 Semiconductor light-emitting device
US10842016B2 (en) 2011-07-06 2020-11-17 Cree, Inc. Compact optically efficient solid state light source with integrated thermal management
US11791442B2 (en) 2007-10-31 2023-10-17 Creeled, Inc. Light emitting diode package and method for fabricating same

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183117A (en) * 2004-06-11 2010-08-19 Ngk Spark Plug Co Ltd Multiple patterning wiring board, and method of manufacturing the same
JP2006147889A (en) * 2004-11-19 2006-06-08 Stanley Electric Co Ltd Surface-mounting led
US9076940B2 (en) 2005-01-10 2015-07-07 Cree, Inc. Solid state lighting component
US9793247B2 (en) 2005-01-10 2017-10-17 Cree, Inc. Solid state lighting component
US8698171B2 (en) 2005-01-10 2014-04-15 Cree, Inc. Solid state lighting component
US9335006B2 (en) 2006-04-18 2016-05-10 Cree, Inc. Saturated yellow phosphor converted LED and blue converted red LED
JP2008034748A (en) * 2006-07-31 2008-02-14 Matsushita Electric Works Ltd Light-emitting apparatus
US8872330B2 (en) 2006-08-04 2014-10-28 Osram Opto Semiconductors Gmbh Thin-film semiconductor component and component assembly
JP2009545863A (en) * 2006-08-04 2009-12-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Thin film semiconductor component and component combination
JP2012119712A (en) * 2006-10-31 2012-06-21 Cree Inc Integrated heat spreaders for leds and related assemblies
WO2008054670A1 (en) * 2006-10-31 2008-05-08 Cree, Inc. Integrated heat spreaders for leds and related assemblies
US7808013B2 (en) 2006-10-31 2010-10-05 Cree, Inc. Integrated heat spreaders for light emitting devices (LEDs) and related assemblies
JP2010508655A (en) * 2006-10-31 2010-03-18 クリー インコーポレイテッド Integrated heat spreader for LED and related assemblies
JP2008124088A (en) * 2006-11-09 2008-05-29 Akita Denshi Systems:Kk Light emitting diode device, and method for manufacturing the same
US10295147B2 (en) 2006-11-09 2019-05-21 Cree, Inc. LED array and method for fabricating same
JP2008147270A (en) * 2006-12-07 2008-06-26 Nichia Chem Ind Ltd Light-emitting device and its manufacturing method
JP2008172113A (en) * 2007-01-15 2008-07-24 Ngk Spark Plug Co Ltd Wiring substrate
US9142720B2 (en) 2007-01-29 2015-09-22 Osram Opto Semiconductors Gmbh Thin-film light emitting diode chip and method for producing a thin-film light emitting diode chip
JP2008288487A (en) * 2007-05-21 2008-11-27 Citizen Electronics Co Ltd Surface-mounted light emitting diode
JP2009033088A (en) * 2007-06-29 2009-02-12 Sharp Corp Semiconductor light-emitting device, method for producing the same, and led illuminating apparatus using the same
JP2013102207A (en) * 2007-07-30 2013-05-23 Intellectual Discovery Co Ltd Led light source having improved heat conductivity
JP2009141318A (en) * 2007-07-30 2009-06-25 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Led light source with thermal conductivity improved
US8759846B2 (en) 2007-08-28 2014-06-24 Lg Innotek Co., Ltd. Light emitting device
WO2009028812A3 (en) * 2007-08-28 2009-04-23 Lg Innotek Co Ltd Light emitting device
JP2009111346A (en) * 2007-10-31 2009-05-21 Cree Inc Led array, and method for manufacturing same
US11791442B2 (en) 2007-10-31 2023-10-17 Creeled, Inc. Light emitting diode package and method for fabricating same
JP2009206216A (en) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd Light-emitting apparatus
WO2009129947A1 (en) * 2008-04-25 2009-10-29 Alcan Technology & Management Ltd. Device comprising a multilayer board and light-emitting diodes
JP2010056460A (en) * 2008-08-29 2010-03-11 Kyocera Corp Substrate for light-emitting device, light-emitting device using substrate for light-emitting device, and lighting system using light-emitting device
US9484329B2 (en) 2008-10-24 2016-11-01 Cree, Inc. Light emitter array layout for color mixing
US9425172B2 (en) 2008-10-24 2016-08-23 Cree, Inc. Light emitter array
JP2012508969A (en) * 2008-11-13 2012-04-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Surface mountable device
US8642902B2 (en) 2008-11-13 2014-02-04 Osram Opto Semiconductors Gmbh Surface mountable device
JP2010129727A (en) * 2008-11-27 2010-06-10 Kyocera Corp Light-emitting lamp, and lighting system using the same
JP2010129728A (en) * 2008-11-27 2010-06-10 Kyocera Corp Light-emitting device, and lighting system using the same
JP2010283253A (en) * 2009-06-08 2010-12-16 Hitachi Kyowa Engineering Co Ltd Light-emitting device and substrate for light-emitting device
US8598809B2 (en) 2009-08-19 2013-12-03 Cree, Inc. White light color changing solid state lighting and methods
US8511851B2 (en) 2009-12-21 2013-08-20 Cree, Inc. High CRI adjustable color temperature lighting devices
WO2011077900A1 (en) * 2009-12-22 2011-06-30 シャープ株式会社 Light emitting diode element, light source device, surface light source illumination device, and liquid crystal display device
US8902382B2 (en) 2009-12-22 2014-12-02 Sharp Kabushiki Kaisha Light emitting diode element, light source device, surface light source illumination device, and liquid crystal display device
JP2012160528A (en) * 2011-01-31 2012-08-23 Nikkiso Co Ltd Semiconductor package
US9786811B2 (en) 2011-02-04 2017-10-10 Cree, Inc. Tilted emission LED array
WO2012124473A1 (en) * 2011-03-15 2012-09-20 京セラ株式会社 Light emitting device
JP2014517528A (en) * 2011-06-01 2014-07-17 ソウル セミコンダクター カンパニー リミテッド Light emitting diode assembly
USD700584S1 (en) 2011-07-06 2014-03-04 Cree, Inc. LED component
US10842016B2 (en) 2011-07-06 2020-11-17 Cree, Inc. Compact optically efficient solid state light source with integrated thermal management
JP2018186284A (en) * 2011-08-22 2018-11-22 エルジー イノテック カンパニー リミテッド Uv light light-emitting element package
AT14934U1 (en) * 2014-06-24 2016-08-15 Zumtobel Lighting Gmbh Arrangement for emitting light with LED and carrier element
CN107249287A (en) * 2017-07-27 2017-10-13 维沃移动通信有限公司 A kind of electronic building brick and electronic equipment
WO2019034562A1 (en) * 2017-08-14 2019-02-21 Tdk Electronics Ag Led module
CN110945653A (en) * 2017-08-14 2020-03-31 Tdk电子股份有限公司 LED module
JP2020530665A (en) * 2017-08-14 2020-10-22 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフトTdk Electronics Ag LED module
US11417583B2 (en) 2017-08-14 2022-08-16 Tdk Electronics Ag LED module
JP2019040956A (en) * 2017-08-23 2019-03-14 スタンレー電気株式会社 Semiconductor light-emitting device
JP7048228B2 (en) 2017-08-23 2022-04-05 スタンレー電気株式会社 Semiconductor light emitting device
CN108269743A (en) * 2018-01-04 2018-07-10 河北中瓷电子科技有限公司 Step-like aluminium nitride ceramics block preparation method and step-like aluminium nitride ceramics block

Similar Documents

Publication Publication Date Title
JP2006128512A (en) Ceramic substrate for light emitting element
JP2006128511A (en) Ceramic substrate for light emitting element
EP2398072B1 (en) Semiconductor light-emitting device
JP4675906B2 (en) Light-emitting element mounting substrate, light-emitting element storage package, light-emitting device, and lighting device
US20110175548A1 (en) Lighting apparatus
JP2007281468A (en) Led package having anodized insulation layers, and its manufacturing method
JP2010219562A (en) Illumination apparatus
JPWO2005031882A1 (en) Light emitting device
TW200828635A (en) Light emitting device, its manufacturing method and its mounted substrate
JP2007234846A (en) Ceramic package for light-emitting element
JP4986608B2 (en) Light emitting device and lighting device
JP2006049814A (en) Light emitting device and illumination system
JP2006196565A (en) Package for housing light-emitting device
JP2004311467A (en) Package for light emitting device, light emitting device
JP2008085302A (en) Illumination apparatus
JP2008078401A (en) Lighting device
JP2009038184A (en) Semiconductor light emitting device, light source device, and surface light emitting device
US20090154176A1 (en) Electronic component and method for manufacturing same
JP4650436B2 (en) Light emitting device and manufacturing method thereof
JP4978053B2 (en) Light emitting device and lighting device
JP2006237285A (en) Semiconductor light emitting device
JP2007266222A (en) Substrate for loading light emitting element, package for storing light emitting element, light emitting device and light system
JP6224449B2 (en) Light-emitting element mounting substrate and light-emitting device including the same
JP2005210056A (en) Led ceramic package
JP2005243738A (en) Accommodating light-emitting device and package therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091026