JP2006049814A - Light emitting device and illumination system - Google Patents

Light emitting device and illumination system Download PDF

Info

Publication number
JP2006049814A
JP2006049814A JP2005085369A JP2005085369A JP2006049814A JP 2006049814 A JP2006049814 A JP 2006049814A JP 2005085369 A JP2005085369 A JP 2005085369A JP 2005085369 A JP2005085369 A JP 2005085369A JP 2006049814 A JP2006049814 A JP 2006049814A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
conversion layer
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005085369A
Other languages
Japanese (ja)
Inventor
Shingo Matsuura
真吾 松浦
Fumiaki Sekine
史明 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005085369A priority Critical patent/JP2006049814A/en
Priority to KR1020050056282A priority patent/KR100752586B1/en
Priority to CNB2005100791757A priority patent/CN100411207C/en
Priority to US11/168,887 priority patent/US20060034084A1/en
Priority to DE102005030128A priority patent/DE102005030128B4/en
Priority to TW094121703A priority patent/TWI267211B/en
Publication of JP2006049814A publication Critical patent/JP2006049814A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • H01L2224/48228Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item the bond pad being disposed in a recess of the surface of the item

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device which has high emitted light intensity and high brightness and is excellent in a light emitting efficiency. <P>SOLUTION: The light emitting device includes a base body 1 where the mounting portion 1a of a light emitting element 3 is formed on a main upside surface; a first frame-like reflecting component 2 which is fitted on the main upside surface of the base body 1 so as to surround the mounting portion 1a, and whose inside circumference is a light reflecting surface; a second reflecting component 4 which is fitted on the main upside surface of the base body so as to surround the first reflecting component 2, and whose inside circumference 4a is a light reflecting surface; the light emitting element 3 mounted on the mounting portion 1a; a transparent component 6 which is located inside the second reflecting component 4 so as to cover the light emitting element 3 and first reflecting component 2; and a first wavelength conversion layer 5 which converts the wavelength of light emitted from the light emitting element 3, and is located inside or on the surface of the transparent component 6 positioned above the light emitting element 3 at space from the first reflecting component 2 and the second reflecting component 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発光素子を収納して成る発光装置およびそれを用いた照明装置に関する。   The present invention relates to a light emitting device in which a light emitting element is accommodated and an illumination device using the same.

従来の発光装置を図18に示す。図18において、発光装置は、上面の中央部に発光素子13を載置するための載置部11aを有し、載置部11aおよびその周辺から発光装置の内外を電気的に導通接続するリード端子やメタライズ配線等からなる配線導体(図示せず)が形成された絶縁体からなる基体11と、基体11の上面に接着固定され、内周面12aが上側に向かうに伴って外側に広がるように傾斜しているとともに、内周面12aが発光素子13が発光する光を反射する反射面とされている枠状の反射部材12と、透明性部材に発光素子13が発光する光を波長変換する蛍光体(図示せず)を含有させて成る波長変換層15と、発光素子13を保護するため反射部材12の内側に充填された透光性部材16とから主に構成されている。   A conventional light emitting device is shown in FIG. In FIG. 18, the light emitting device has a mounting portion 11a for mounting the light emitting element 13 at the center of the upper surface, and leads that electrically connect the inside and outside of the light emitting device from the mounting portion 11a and its periphery. A base 11 made of an insulator on which a wiring conductor (not shown) made of terminals, metallized wiring, etc. is formed, and adhesively fixed to the upper surface of the base 11 so that the inner peripheral surface 12a spreads outward as it goes upward. And a frame-shaped reflecting member 12 whose inner peripheral surface 12a is a reflecting surface that reflects light emitted from the light emitting element 13, and wavelength conversion of light emitted from the light emitting element 13 on a transparent member The wavelength conversion layer 15 containing a fluorescent material (not shown) and a translucent member 16 filled inside the reflecting member 12 to protect the light emitting element 13 are mainly configured.

基体11は、酸化アルミニウム質焼結体(アルミナセラミックス)や窒化アルミニウム質焼結体,ムライト質焼結体,ガラスセラミックス等のセラミックス、またはエポキシ樹脂等の樹脂から成る。基体11がセラミックスから成る場合、その上面に配線導体がタングステン(W),モリブデン(Mo)−マンガン(Mn)等から成る金属ペーストを高温で焼成して形成される。また、基体11が樹脂から成る場合、銅(Cu)や鉄(Fe)−ニッケル(Ni)合金等から成るリード端子がモールド成型されて基体11の内部に設置固定される。   The substrate 11 is made of an aluminum oxide sintered body (alumina ceramic), an aluminum nitride sintered body, a mullite sintered body, ceramics such as glass ceramics, or a resin such as epoxy resin. When the substrate 11 is made of ceramic, the wiring conductor is formed on its upper surface by firing a metal paste made of tungsten (W), molybdenum (Mo) -manganese (Mn), etc. at a high temperature. When the base 11 is made of a resin, lead terminals made of copper (Cu), iron (Fe) -nickel (Ni) alloy, etc. are molded and fixed inside the base 11.

また、反射部材12は、アルミニウム(Al)やFe−Ni−コバルト(Co)合金等の金属、アルミナセラミックス等のセラミックスまたはエポキシ樹脂等の樹脂から成り、切削加工や金型成型、押し出し成型等の成形技術により形成される。   The reflecting member 12 is made of metal such as aluminum (Al) or Fe-Ni-cobalt (Co) alloy, ceramics such as alumina ceramics or resin such as epoxy resin, and is used for cutting, die molding, extrusion molding, etc. Formed by molding technique.

さらに、反射部材12は、内周面12aが発光素子13や波長変換層15からの光を反射する反射面とされており、この内周面12aは、Al等の金属が蒸着法やメッキ法により被着されることにより形成される。そして、反射部材12は、半田,銀(Ag)ロウ等のロウ材または樹脂接着材等の接合材により、載置部11aを内周面12aで取り囲むように基体11の上面に接合される。   Further, the reflecting member 12 has an inner peripheral surface 12a as a reflecting surface that reflects light from the light emitting element 13 and the wavelength conversion layer 15, and the inner peripheral surface 12a is made of a metal such as Al by vapor deposition or plating. It is formed by adhering. The reflecting member 12 is joined to the upper surface of the base 11 by a soldering material such as solder, silver (Ag) solder, or a joining material such as a resin adhesive so as to surround the mounting portion 11a with the inner peripheral surface 12a.

また、発光素子13は、例えば、液相成長法やMOCVD法等によりサファイア等の単結晶基板上に、ガリウム(Ga)−Al−窒素(N)、亜鉛(Zn)−硫黄(S)、Zn−セレン(Se)、珪素(Si)−炭素(C)、Ga−リン(P)、Ga−Al−砒素(As)、Al−インジウム(In)−Ga−P、In−Ga−N、Ga−N、Al−In−Ga−N等の発光層が形成される。発光素子13の構造としては、MIS接合やPN接合を有したホモ構造、ヘテロ構造あるいはダブルへテロ構成のものが挙げられる。また、発光素子13の発光波長は、発光層の材料やその混晶度によって紫外光から赤外光まで種々選択される。なお、発光素子13は、載置部11aの周辺に配置した配線導体と発光素子13の電極とをボンディングワイヤ(図示せず)を用いた方法や、発光素子13の電極を下側に設置して半田バンプにより接続するフリップチップボンディング方式を用いた方法等によって電気的に接続される。   The light-emitting element 13 is formed on a single crystal substrate such as sapphire by liquid phase growth method or MOCVD method, for example, gallium (Ga) -Al-nitrogen (N), zinc (Zn) -sulfur (S), Zn -Selenium (Se), Silicon (Si) -Carbon (C), Ga-Phosphorus (P), Ga-Al-Arsenic (As), Al-Indium (In) -Ga-P, In-Ga-N, Ga A light emitting layer such as -N or Al-In-Ga-N is formed. Examples of the structure of the light emitting element 13 include a homo structure having a MIS junction and a PN junction, a hetero structure, and a double hetero structure. Further, the emission wavelength of the light emitting element 13 is variously selected from ultraviolet light to infrared light depending on the material of the light emitting layer and the degree of mixed crystal thereof. Note that the light emitting element 13 has a method of using a bonding wire (not shown) for the wiring conductor arranged around the mounting portion 11a and the electrode of the light emitting element 13, or the electrode of the light emitting element 13 is installed on the lower side. Then, they are electrically connected by a method using a flip chip bonding method in which solder bumps are used for connection.

また、波長変換層15は、エポキシ樹脂やシリコーン樹脂等の透明性部材に蛍光体を含有し熱硬化させ板状に形成するとともに反射部材12の開口部を覆うことにより、発光素子13から放出された発光波長である可視光や紫外光を吸収し、他の長波長の光に変換して放射させることができる。従って、波長変換層15は、発光素子13から発光される光の発光波長や発光装置から放出される所望の光に応じて種々ものが用いられ、所望の波長スペクトルを有する光を取り出せる発光装置となし得る。また、発光装置は、発光素子13が発光した光と、蛍光体からの光とが補色関係にあるとき白色系の光を発光させることができる。   Further, the wavelength conversion layer 15 is emitted from the light emitting element 13 by containing a phosphor in a transparent member such as an epoxy resin or a silicone resin and thermosetting it to form a plate and covering the opening of the reflecting member 12. It can absorb visible light and ultraviolet light, which are the emission wavelengths, and convert it into other long-wavelength light for emission. Accordingly, various wavelength conversion layers 15 are used depending on the emission wavelength of the light emitted from the light emitting element 13 or the desired light emitted from the light emitting device, and the light emitting device can extract light having a desired wavelength spectrum. You can get none. The light emitting device can emit white light when the light emitted from the light emitting element 13 and the light from the phosphor are in a complementary color relationship.

なお、蛍光体は、例えば、セリウム(Ce)で付活されたイットリウム・アルミニウム・ガーネット系蛍光体、ペリレン系誘導体、銅(Cu)やAlで付活された硫化亜鉛カドミウム、マンガン(Mn)で付活された酸化マグネシウム、酸化チタンなど種々のものが挙げられる。これらの蛍光体は、1種類で用いてもよいし、2種類以上混合して用いてもよい。   The phosphor is, for example, yttrium / aluminum / garnet phosphor activated by cerium (Ce), perylene derivative, zinc cadmium sulfide or manganese (Mn) activated by copper (Cu) or Al. Examples include activated magnesium oxide and titanium oxide. These phosphors may be used alone or in combination of two or more.

さらに、透光性部材16は、エポキシ樹脂やシリコーン樹脂等の透明性部材を用いることで、発光素子13を保護すると共に、発光素子13と透明性部材との屈折率差を少なくすることにより、発光素子13内部に光が閉じ込められるのを抑制することができる。
特開2000-349346号公報
Furthermore, the translucent member 16 protects the light emitting element 13 by using a transparent member such as an epoxy resin or a silicone resin, and reduces the refractive index difference between the light emitting element 13 and the transparent member. It is possible to suppress light from being trapped inside the light emitting element 13.
JP 2000-349346 A

しかしながら、上記従来の発光装置においては、発光素子13から発光された光は波長変換層15中の蛍光体に吸収された後、蛍光体から波長の異なる蛍光があらゆる方向に放出される。この蛍光のうち一部のものは波長変換層15から上側に放出されて発光装置の放射光と成るものの、他の一部は波長変換層15から下方向に放出されたり、他の蛍光体に反射されて波長変換層15から下側に放出されたり、反射部材12の内周面12aや波長変換層15で反射を繰り返して発光装置内に閉じ込められたりすることとなり、発光装置の放射光強度や輝度を向上させることが困難であるという問題点を有していた。   However, in the above-described conventional light emitting device, the light emitted from the light emitting element 13 is absorbed by the phosphor in the wavelength conversion layer 15, and then fluorescence having different wavelengths is emitted from the phosphor in all directions. Some of this fluorescence is emitted upward from the wavelength conversion layer 15 and becomes the emitted light of the light emitting device, but the other part is emitted downward from the wavelength conversion layer 15 or other phosphors. The light is reflected and emitted downward from the wavelength conversion layer 15 or is repeatedly reflected on the inner peripheral surface 12a of the reflecting member 12 or the wavelength conversion layer 15 and confined in the light emitting device. In addition, there is a problem that it is difficult to improve brightness.

従って、本発明は上記従来の問題点に鑑みて完成されたものであり、その目的は、高い放射光強度および高輝度を有し、発光効率の良い発光装置を提供することである。   Accordingly, the present invention has been completed in view of the above-described conventional problems, and an object of the present invention is to provide a light emitting device having high radiated light intensity and high luminance and high luminous efficiency.

本発明の発光装置は、上側主面に発光素子の載置部が形成された基体と、該基体の上側主面に前記載置部を取り囲むように取着された、内周面が光反射面とされた枠状の第1の反射部材と、前記基体の上側主面に前記第1の反射部材を取り囲むように取着された、内周面が光反射面とされた枠状の第2の反射部材と、前記載置部に載置された前記発光素子と、前記第2の反射部材の内側に前記発光素子および前記第1の反射部材を覆うように設けられた透光性部材と、前記発光素子の上方に位置する前記透光性部材の内部または表面に前記第1および第2の反射部材と間隔を開けて設けられた、前記発光素子が発光する光の波長を変換する第1の波長変換層とを具備していることを特徴とする。   The light emitting device of the present invention has a base on which a light emitting element mounting portion is formed on the upper main surface, and an inner peripheral surface that is attached to the upper main surface of the base so as to surround the mounting portion. A frame-shaped first reflecting member formed into a surface, and a frame-shaped first reflecting member attached to the upper main surface of the base body so as to surround the first reflecting member and having an inner peripheral surface as a light reflecting surface And the light-emitting element placed on the placement portion, and a translucent member provided inside the second reflective member so as to cover the light-emitting element and the first reflective member And converting the wavelength of light emitted from the light emitting element, which is provided inside or on the surface of the translucent member located above the light emitting element and spaced from the first and second reflecting members. And a first wavelength conversion layer.

本発明の発光装置は、平板状の基体と、該基体の上側主面に接合され、上面に発光素子の載置部が形成されるとともに内周面が光反射面とされた側壁部が前記載置部を取り囲むように形成された第1の反射部材と、前記基体の上側主面に前記第1の反射部材を取り囲むように取着された、内周面が光反射面とされた枠状の第2の反射部材と、前記載置部に載置された前記発光素子と、前記第2の反射部材の内側に、前記発光素子および前記第1の反射部材を覆うように設けられた透光性部材と、前記発光素子の上方に位置する前記透光性部材の内部または表面に前記第1および第2の反射部材と間隔を開けて設けられた、前記発光素子が発光する光の波長を変換する第1の波長変換層とを具備していることを特徴とする。   The light emitting device of the present invention has a flat substrate and a side wall portion bonded to the upper main surface of the substrate and having a light emitting element mounting portion formed on the upper surface and an inner peripheral surface serving as a light reflecting surface. A first reflecting member formed so as to surround the mounting portion, and a frame attached to an upper main surface of the base so as to surround the first reflecting member and having an inner peripheral surface as a light reflecting surface Second reflective member, the light emitting element placed on the mounting portion, and the inner side of the second reflective member so as to cover the light emitting element and the first reflective member A light-transmitting member and light emitted from the light-emitting element, which is provided inside or on the surface of the light-transmitting member located above the light-emitting element and spaced from the first and second reflecting members. And a first wavelength conversion layer for converting a wavelength.

本発明の発光装置において、好ましくは、前記第2の反射部材は、その内周面の表面に前記発光素子が発光する光の波長を変換する第2の波長変換層が設けられていることを特徴とする。   In the light emitting device of the present invention, preferably, the second reflecting member is provided with a second wavelength conversion layer for converting a wavelength of light emitted from the light emitting element on a surface of an inner peripheral surface thereof. Features.

本発明の発光装置において、好ましくは、前記第2の波長変換層は、その厚さが上端部から下端部にかけて漸次厚くなるように設けられていることを特徴とする。   In the light emitting device of the present invention, preferably, the second wavelength conversion layer is provided so that the thickness thereof gradually increases from the upper end portion to the lower end portion.

本発明の発光装置において、好ましくは、第2の波長変換層は、前記発光素子が発光する光の波長を変換する蛍光体を含有して成り、該蛍光体の密度が上端部から下端部にかけて漸次高くなっていることを特徴とする。   In the light-emitting device of the present invention, preferably, the second wavelength conversion layer contains a phosphor that converts the wavelength of light emitted from the light-emitting element, and the density of the phosphor extends from the upper end to the lower end. It is characterized by gradually increasing.

本発明の発光装置において、好ましくは、前記第2の波長変換層は、その内側表面に複数の凹部または凸部が設けられていることを特徴とする。   In the light emitting device of the present invention, preferably, the second wavelength conversion layer is provided with a plurality of concave portions or convex portions on an inner surface thereof.

本発明の発光装置において、好ましくは、前記載置部は、高さが前記第1の反射部材の前記内周面の下端よりも高くなるように突出していることを特徴とする。   In the light-emitting device of the present invention, preferably, the mounting portion protrudes so that a height is higher than a lower end of the inner peripheral surface of the first reflecting member.

本発明の発光装置において、好ましくは、前記第1の波長変換層は、その外周部が前記発光素子の端部とその端部の反対側の前記第1の反射部材の前記内周面の上端とを通る直線よりも前記第2の反射部材側に位置していることを特徴とする。   In the light emitting device of the present invention, preferably, the first wavelength conversion layer has an outer peripheral portion at an upper end of the inner peripheral surface of the first reflecting member opposite to the end portion of the light emitting element. It is located in the said 2nd reflection member side rather than the straight line which passes through.

本発明の照明装置は、上記本発明の発光装置を所定の配置となるように設置したことを特徴とする。   The illuminating device of the present invention is characterized in that the light emitting device of the present invention is installed in a predetermined arrangement.

本発明の第一の発明である発光装置は、上側主面に発光素子の載置部が形成された基体と、基体の上側主面に載置部を取り囲むように取着された、内周面が光反射面とされた枠状の第1の反射部材と、基体の上側主面に第1の反射部材を取り囲むように取着された、内周面が光反射面とされた枠状の第2の反射部材と、載置部に載置された発光素子と、第2の反射部材の内側に発光素子および第1の反射部材を覆うように設けられた透光性部材と、発光素子の上方に位置する透光性部材の内部または表面に第1の反射部材および第2の反射部材と間隔を開けて設けられた、発光素子が発光する光の波長を変換する第1の波長変換層とを具備していることにより、発光素子から発光された光が第1の波長変換層で波長変換された後、第1の波長変換層から下側方向に放出された光を第2の反射部材で上側方向に反射させるとともに第1の波長変換層と第2の反射部材との隙間から発光装置外部へ第1の波長変換層を再度透過させることなく放出させることができる。その結果、第1の波長変換層から下側方向に放出された光が発光装置内に閉じ込められるのをきわめて有効に抑制することができ、放射光強度および輝度を高め、発光効率の高い発光装置とすることができる。   A light-emitting device according to a first aspect of the present invention includes a base having a light-emitting element mounting portion formed on an upper main surface, and an inner circumference attached to the upper main surface of the base so as to surround the mounting portion. A frame-shaped first reflecting member whose surface is a light reflecting surface and a frame shape whose inner peripheral surface is a light reflecting surface attached to the upper main surface of the base so as to surround the first reflecting member A second reflective member, a light emitting element placed on the placement portion, a translucent member provided inside the second reflective member so as to cover the light emitting element and the first reflective member, and light emission A first wavelength for converting the wavelength of light emitted by the light emitting element, which is provided inside or on the surface of the translucent member located above the element and spaced from the first reflecting member and the second reflecting member. The first wavelength after the light emitted from the light emitting element is wavelength-converted by the first wavelength conversion layer. The light emitted downward from the conversion layer is reflected upward by the second reflection member, and the first wavelength conversion layer is exposed to the outside of the light emitting device from the gap between the first wavelength conversion layer and the second reflection member. Can be released without allowing it to permeate again. As a result, the light emitted from the first wavelength conversion layer in the downward direction can be extremely effectively prevented from being confined in the light emitting device, and the emitted light intensity and luminance are increased, and the light emitting device has high luminous efficiency. It can be.

本発明の第二の発明である発光装置は、平板状の基体と、基体の上側主面に接合され、上面に発光素子の載置部が形成されるとともに内周面が光反射面とされた側壁部が載置部を取り囲むように形成された第1の反射部材と、基体の上側主面に第1の反射部材を取り囲むように取着された、内周面が光反射面とされた枠状の第2の反射部材と、載置部に載置された発光素子と、第2の反射部材の内側に、発光素子および第1の反射部材を覆うように設けられた透光性部材と、発光素子の上方に位置する透光性部材の内部または表面に第1の反射部材および第2の反射部材と間隔を開けて設けられた、発光素子が発光する光の波長を変換する第1の波長変換層とを具備していることにより、発光素子から発光された光が第1の波長変換層で波長変換された後、第1の波長変換層から下側方向に放出された光を第2の反射部材で上側方向に反射させるとともに第1の波長変換層と第2の反射部材との隙間から発光装置外部へ第1の波長変換層を再度透過させることなく放出させることができる。その結果、第1の波長変換層から下側方向に放出された光が発光装置内に閉じ込められるのをきわめて有効に抑制することができ、放射光強度および輝度を高め、発光効率の高い発光装置とすることができる。   A light emitting device according to a second aspect of the present invention is bonded to a flat substrate and an upper main surface of the substrate, a light emitting element mounting portion is formed on the upper surface, and an inner peripheral surface is a light reflecting surface. The first reflecting member formed so that the side wall portion surrounds the mounting portion, and the inner peripheral surface attached to the upper main surface of the base so as to surround the first reflecting member is the light reflecting surface. The frame-shaped second reflecting member, the light emitting element placed on the placing portion, and the translucency provided inside the second reflecting member so as to cover the light emitting element and the first reflecting member The wavelength of the light emitted from the light emitting element, which is provided in the interior or surface of the member and the translucent member located above the light emitting element and spaced from the first reflective member and the second reflective member, is converted. A first wavelength conversion layer, so that the light emitted from the light emitting element has a wavelength at the first wavelength conversion layer. After the conversion, the light emitted downward from the first wavelength conversion layer is reflected upward by the second reflecting member and emitted from the gap between the first wavelength converting layer and the second reflecting member. The first wavelength conversion layer can be emitted without being transmitted again to the outside of the device. As a result, the light emitted from the first wavelength conversion layer in the downward direction can be extremely effectively prevented from being confined in the light emitting device, and the emitted light intensity and luminance are increased, and the light emitting device has high luminous efficiency. It can be.

また、発光素子から発生した熱を載置部と一体化した側壁部に伝え易くすることができる。特に第1の反射部材が金属から成る場合には、熱は速やかに側壁部へ伝えられるとともに側壁部の外側面から良好に放散される。その結果、発光素子の温度上昇を抑制することができ、発光素子と第1の反射部材との熱膨張差により生じる接合部のクラックを抑制することができる。また、発光素子の熱を第1の反射部材の高さ方向だけでなく外周方向にも良好に移動させることができ、第1の反射部材の下面全面から基体に効率よく熱伝導させて発光素子および第1の反射部材の温度上昇をより有効に抑制でき、発光素子の作動を安定に維持するとともに第1の反射部材の内周面の熱変形を抑制することができる。よって長期にわたり、発光装置の安定した光特性を良好に維持し作動させることができる。   In addition, heat generated from the light emitting element can be easily transmitted to the side wall unit integrated with the mounting unit. In particular, when the first reflecting member is made of metal, heat is quickly transferred to the side wall portion and is well dissipated from the outer surface of the side wall portion. As a result, the temperature rise of the light emitting element can be suppressed, and cracks in the joint caused by the difference in thermal expansion between the light emitting element and the first reflecting member can be suppressed. Further, the heat of the light-emitting element can be favorably moved not only in the height direction of the first reflecting member but also in the outer peripheral direction, and the heat is efficiently conducted from the entire lower surface of the first reflecting member to the base, thereby the light-emitting element. In addition, the temperature increase of the first reflecting member can be more effectively suppressed, the operation of the light emitting element can be stably maintained, and thermal deformation of the inner peripheral surface of the first reflecting member can be suppressed. Therefore, stable light characteristics of the light emitting device can be maintained and operated over a long period of time.

また、上記本発明の発光装置において、好ましくは、第2の反射部材は、その内周面の表面に発光素子が発光する光の波長を変換する第2の波長変換層が設けられていることから、第1の波長変換層で波長変換されずに下側外方に反射された発光素子からの光を、第2の波長変換層で波長変換することにより、発光装置の放射光強度や輝度および発光効率を向上させることができる。   In the light emitting device of the present invention, preferably, the second reflecting member is provided with a second wavelength conversion layer for converting the wavelength of light emitted from the light emitting element on the inner peripheral surface thereof. From the light from the light emitting element that is reflected from the lower side without being wavelength-converted by the first wavelength conversion layer, the second wavelength conversion layer converts the wavelength of the light, and the emitted light intensity and luminance of the light-emitting device In addition, luminous efficiency can be improved.

また、上記本発明の発光装置において、好ましくは、第2の波長変換層は、その厚さが上端部から下端部にかけて漸次厚くなるように設けられていることにより、透光性部材の上面と第2の波長変換層との距離が大きくなる第2の波長変換層の下端部にかけては、蛍光体から発生する光の量が漸次増加し、透光性部材の上面と第2の波長変換層との距離が小さくなる第2の波長変換層の上端部にかけては、蛍光体から発生する光の量が、下端部より漸次少なくなる。その結果、発光装置の光強度分布を中心部と周辺部とで均一にすることができるとともに色むらの発生を抑制することができる。   In the light emitting device of the present invention, preferably, the second wavelength conversion layer is provided so that its thickness gradually increases from the upper end portion to the lower end portion. The amount of light generated from the phosphor gradually increases toward the lower end of the second wavelength conversion layer where the distance from the second wavelength conversion layer increases, and the upper surface of the translucent member and the second wavelength conversion layer The amount of light generated from the phosphor gradually decreases from the lower end portion toward the upper end portion of the second wavelength conversion layer where the distance to the second wavelength conversion layer decreases. As a result, the light intensity distribution of the light emitting device can be made uniform between the central portion and the peripheral portion, and the occurrence of color unevenness can be suppressed.

また、上記本発明の発光装置において、好ましくは、第2の波長変換層は、発光素子が発光する光の波長を変換する蛍光体を含有して成り、蛍光体の密度が上端部から下端部にかけて漸次高くなっていることにより、透光性部材の上面と第2の波長変換層との距離が大きくなる第2の波長変換層の下端部にかけては、蛍光体から発生する光の量が漸次増加し、透光性部材の上面と第2の波長変換層との距離が小さくなる第2の波長変換層の上端部にかけては、蛍光体から発生する光の量が、下端部より漸次少なくなる。その結果、発光装置の光強度分布を中心部と周辺部とで均一にすることができるとともに色むらの発生を抑制することができる。   In the light emitting device of the present invention, preferably, the second wavelength conversion layer contains a phosphor that converts the wavelength of light emitted from the light emitting element, and the density of the phosphor is from the upper end to the lower end. The amount of light generated from the phosphor gradually increases toward the lower end of the second wavelength conversion layer where the distance between the upper surface of the translucent member and the second wavelength conversion layer increases. The amount of light generated from the phosphor gradually decreases from the lower end portion toward the upper end portion of the second wavelength conversion layer which increases and the distance between the upper surface of the translucent member and the second wavelength conversion layer decreases. . As a result, the light intensity distribution of the light emitting device can be made uniform between the central portion and the peripheral portion, and the occurrence of color unevenness can be suppressed.

さらに、第1の波長変換層で波長変換されずに下側外方に反射された発光素子の光を、密度を高めた蛍光体によって波長変換することにより、発光装置の放射光強度や輝度および発光効率が向上する。   Further, by converting the wavelength of the light emitted from the light emitting element that has not been wavelength-converted by the first wavelength conversion layer and is reflected outward by the phosphor having a higher density, the emitted light intensity and brightness of the light-emitting device and Luminous efficiency is improved.

また、上記本発明の発光装置において、好ましくは、第2の波長変換層は、その内側表面に複数の凹部または凸部が設けられていることから、発光素子から直接、または第1の反射部材の内周面による反射を介して第1の波長変換層に伝搬し、第1の波長変換層に含有された蛍光体で波長変換されずに下側外方に反射して第2の波長変換層に入射する光は、凹部または凸部によって第2の波長変換層内に入射しやすくなり、第2の波長変換層内の蛍光体によって波長変換される光が増加し、発光装置の放射光強度や輝度および発光効率が向上する。   In the light emitting device of the present invention, preferably, the second wavelength conversion layer is provided with a plurality of concave portions or convex portions on the inner surface thereof, so that it is directly from the light emitting element or the first reflecting member. The second wavelength conversion by propagating to the first wavelength conversion layer through the reflection by the inner peripheral surface of the light and reflecting to the lower outer side without wavelength conversion by the phosphor contained in the first wavelength conversion layer The light incident on the layer is easily incident on the second wavelength conversion layer due to the concave portion or the convex portion, the light whose wavelength is converted by the phosphor in the second wavelength conversion layer is increased, and the emitted light of the light emitting device Intensity, brightness, and luminous efficiency are improved.

また、複数の凹部または凸部によって第2の波長変換層の表面積が大きくなり、第2の波長変換層の表面に露出する蛍光体が多くなるので、第1の波長変換層に含有された蛍光体で波長変換されずに下側外方に反射した光によって第2の波長変換層の蛍光体が励起されやすくなり、第2の波長変換層の蛍光体によって波長変換される光が増加する。従って、発光装置の放射光強度や輝度および発光効率が向上する。   In addition, since the surface area of the second wavelength conversion layer is increased by the plurality of recesses or projections, and the phosphor exposed on the surface of the second wavelength conversion layer increases, the fluorescence contained in the first wavelength conversion layer The phosphor of the second wavelength conversion layer is likely to be excited by the light reflected outwardly without being wavelength-converted by the body, and the light that is wavelength-converted by the phosphor of the second wavelength conversion layer increases. Therefore, the radiated light intensity, luminance, and luminous efficiency of the light emitting device are improved.

本発明の発光装置は、好ましくは、上記発光装置において、載置部の高さが第1の反射部材の内周面の下端よりも高くなるように突出していることにより、発光素子から斜め下方向に発光された光を効率よく第1の反射部材の内周面で上方向に反射させることができ、発光素子からの光が第1の反射部材の内周面の下端によって発光装置の内部で閉じ込められることを抑制することができる。従って、発光装置は、発光素子から発生した光に対する第1の反射部材の内周面の光吸収損失を低減することができる。これにより、発光装置の放射光強度を向上させることができる。   The light emitting device of the present invention is preferably obliquely below the light emitting element by projecting so that the height of the mounting portion is higher than the lower end of the inner peripheral surface of the first reflecting member. The light emitted in the direction can be efficiently reflected upward by the inner peripheral surface of the first reflecting member, and the light from the light emitting element is inside the light emitting device by the lower end of the inner peripheral surface of the first reflecting member. It can suppress that it is confined by. Therefore, the light emitting device can reduce the light absorption loss of the inner peripheral surface of the first reflecting member with respect to the light generated from the light emitting element. Thereby, the emitted light intensity of a light-emitting device can be improved.

本発明の発光装置は、好ましくは、上記発光装置において、第1の波長変換層の外周部が発光素子の端部とその端部の反対側の第1の反射部材の内周面の上端とを通る直線よりも第2の反射部材側に位置していることにより、発光素子からの光が発光装置の外部へ直接放射されることを抑制することができる。その結果、発光装置から発光色や発光分布にムラがない光を照射することができる。   In the light emitting device of the present invention, preferably, in the above light emitting device, the outer peripheral portion of the first wavelength conversion layer is an end portion of the light emitting element and an upper end of the inner peripheral surface of the first reflecting member on the opposite side of the end portion. By being located on the second reflecting member side with respect to the straight line passing through the light, it is possible to suppress the light from the light emitting element from being directly emitted to the outside of the light emitting device. As a result, it is possible to irradiate light from the light emitting device with no unevenness in emission color or emission distribution.

本発明の照明装置は、上記本発明の発光装置を所定の配置となるように設置したことから、半導体から成る発光素子の電子の再結合による発光を利用した、従来の放電を用いた照明装置よりも低消費電力かつ長寿命な発光素子を光源として用いることが可能であり、この光源から発する光を効率的に外部へ照射できる小型の照明装置とすることができる。そして、効率的に低電力で動作させることができるために発光素子の温度上昇が小さくなる結果、発光素子から発生する光の中心波長の変動を抑制することができ、長期間にわたり安定した放射光強度かつ放射光角度(配光分布)で光を照射することができるとともに、照射面における色むらや照度分布の偏りが抑制された照明装置とすることができる。   The illuminating device of the present invention is a conventional illuminating device using discharge using light emission by recombination of electrons of a light emitting element made of a semiconductor because the light emitting device of the present invention is installed in a predetermined arrangement. In addition, a light-emitting element with lower power consumption and longer life can be used as a light source, and a small lighting device that can efficiently radiate light emitted from the light source to the outside can be obtained. Further, since the temperature rise of the light emitting element is reduced because it can be operated efficiently with low power, fluctuations in the center wavelength of the light generated from the light emitting element can be suppressed, and stable radiated light over a long period of time. While being able to irradiate light with an intensity and a radiated light angle (light distribution), it is possible to provide an illuminating device in which color unevenness and uneven illuminance distribution on the irradiated surface are suppressed.

また、本発明の発光装置を光源として所定の配置に設置するとともに、これらの発光装置の周囲に適当な形状に光学設計した反射治具や光学レンズ、光拡散板等を設置することにより、適当な配光分布の光を放射する照明装置とすることができる。   In addition, the light-emitting device of the present invention is installed in a predetermined arrangement as a light source, and a reflection jig, an optical lens, a light diffusing plate, etc. optically designed in an appropriate shape are installed around these light-emitting devices. It can be set as the illuminating device which radiates | emits the light of a simple light distribution.

本発明の第一の発明の発光装置について以下に詳細に説明する。図1は本発明の発光装置の実施の形態の一例を示す断面図である。この図において、1は基体、2は第1の反射部材、4は第2の反射部材、6は第2の反射部材の内側に充填される透光性部材、5は発光素子3の上方でかつ第1の反射部材2および第2の反射部材4と間隔を開けて透光性部材6の内部または表面(図1では内部)に配置され、発光素子3が発光する光を波長変換して蛍光を発生する第1の波長変換層であり、主としてこれらで発光素子3を収納するための発光装置が構成される。   The light-emitting device according to the first aspect of the present invention will be described in detail below. FIG. 1 is a cross-sectional view showing an example of an embodiment of a light emitting device of the present invention. In this figure, 1 is a base, 2 is a first reflecting member, 4 is a second reflecting member, 6 is a translucent member filled inside the second reflecting member, and 5 is above the light emitting element 3. And it arrange | positions in the inside or surface (in FIG. 1 inside) of the translucent member 6 at intervals with the 1st reflective member 2 and the 2nd reflective member 4, and wavelength-converts the light which the light emitting element 3 light-emits. This is a first wavelength conversion layer that generates fluorescence, and a light-emitting device for mainly housing the light-emitting element 3 is constituted by these.

基体1は、アルミナセラミックスや窒化アルミニウム質焼結体,ムライト質焼結体,ガラスセラミックス等のセラミックス、Fe−Ni−Co合金やCu−W等の金属、または、エポキシ樹脂等の樹脂から成り、発光素子3が載置される載置部1aが基体1の上面に形成されている。   The substrate 1 is made of alumina ceramic, aluminum nitride sintered body, mullite sintered body, ceramic such as glass ceramic, metal such as Fe—Ni—Co alloy or Cu—W, or resin such as epoxy resin, A placement portion 1 a on which the light emitting element 3 is placed is formed on the upper surface of the base 1.

また、基体1は、上面に第1の反射部材2が載置部1aを取り囲むように、第2の反射部材4が第1の反射部材2を取り囲むように、半田,Agロウ等のロウ材やエポキシ樹脂等の接着剤等の接合材により取着される。第1の反射部材2は、発光素子3の周囲に所望の面精度(例えば、発光装置の縦断面において、発光素子3を間に挟んで発光素子3の両側に設けられた光反射面が対称になっている状態)で内周面(以下、第1の内周面という)2aが設けられるように取着され、第2の反射部材4は、第1の反射部材2の周囲に所望の面精度で第2の内周面4aが設けられるように取着される。これにより、第1の波長変換層5の上面および側面の蛍光のみだけではなく、第1の波長変換層5の下面からの蛍光についても第2の反射部材4の内周面(以下、第2の内周面という)4aにより反射させ、発光装置の外部へ効率よく光を出力することができる。この結果、発光装置は、高い放射光強度および高輝度を有し、発光効率を向上させることができるとともに、発光素子3からの光を第1の内周面2aで第1の波長変換層5に対して均一にむらなく反射させることにより、発光装置から出力される光の色むらが抑制される。   In addition, the base 1 has a brazing material such as solder or Ag brazing so that the first reflecting member 2 surrounds the mounting portion 1 a on the upper surface, and the second reflecting member 4 surrounds the first reflecting member 2. Or a bonding material such as an adhesive such as epoxy resin. The first reflecting member 2 has a desired surface accuracy around the light emitting element 3 (for example, in the longitudinal section of the light emitting device, the light reflecting surfaces provided on both sides of the light emitting element 3 with the light emitting element 3 in between are symmetrical. The second reflecting member 4 is attached around the first reflecting member 2 so that an inner peripheral surface (hereinafter referred to as a first inner peripheral surface) 2a is provided. It is attached so that the second inner peripheral surface 4a is provided with surface accuracy. Thereby, not only the fluorescence on the upper surface and the side surface of the first wavelength conversion layer 5 but also the fluorescence from the lower surface of the first wavelength conversion layer 5, the inner peripheral surface of the second reflecting member 4 (hereinafter referred to as the second surface). The light can be efficiently output to the outside of the light emitting device. As a result, the light-emitting device has high radiated light intensity and high luminance, can improve the light emission efficiency, and light from the light-emitting element 3 is transmitted to the first wavelength conversion layer 5 on the first inner peripheral surface 2a. Therefore, the uneven color of light output from the light emitting device is suppressed.

なお、第2の反射部材4は、その第2の内周面4aの断面形状が凹曲面であることが好ましい。その結果、第1の波長変換層5から下方向に放射される蛍光が、第2の内周面4aによって高い指向性を持った光として上方向に反射され、発光装置の外部に放射される。従って、これらの発光装置は、照射面に対して効率よく光を照射することができる照明装置として最適である。   In addition, as for the 2nd reflection member 4, it is preferable that the cross-sectional shape of the 2nd internal peripheral surface 4a is a concave curved surface. As a result, the fluorescence emitted downward from the first wavelength conversion layer 5 is reflected upward as light having high directivity by the second inner peripheral surface 4a, and is emitted outside the light emitting device. . Therefore, these light-emitting devices are optimal as illumination devices that can efficiently irradiate light onto the irradiation surface.

また、第1の反射部材2と第2の反射部材4は、第1の反射部材2と第2の反射部材4とが一体的に金型成型や切削加工によって作製されてもよい。これにより、発光素子3の熱が、第1の反射部材2と第2の反射部材4を介してより発光装置全体に放散されるとともに発光装置の放熱面積が増加することにより、発光素子3の温度上昇が抑制される。   Moreover, the 1st reflective member 2 and the 2nd reflective member 4 may produce the 1st reflective member 2 and the 2nd reflective member 4 integrally by die shaping | molding or cutting. Thereby, the heat of the light emitting element 3 is dissipated to the whole light emitting device through the first reflecting member 2 and the second reflecting member 4, and the heat radiation area of the light emitting device is increased, so that Temperature rise is suppressed.

また、載置部1aは、図5に示すように高さが第1の反射部材2の第1の内周面2aの下端よりも高くなるように突出しているのが好ましい。これにより、発光素子3から斜め下方向に発光された光が効率よく第1の内周面2aで上方向に反射され第1の波長変換層5に伝搬されることから、第1の波長変換層5で波長変換される発光素子3の光が増加して発光装置の放射強度が向上する。   Moreover, it is preferable that the mounting portion 1a protrudes so that the height is higher than the lower end of the first inner peripheral surface 2a of the first reflecting member 2 as shown in FIG. As a result, the light emitted obliquely downward from the light emitting element 3 is efficiently reflected upward on the first inner peripheral surface 2a and propagated to the first wavelength conversion layer 5, so that the first wavelength conversion is performed. The light of the light emitting element 3 whose wavelength is converted by the layer 5 is increased, and the radiation intensity of the light emitting device is improved.

このような突出した載置部1aは、その周囲を研磨や切削加工、エッチング等で除去することにより、または、基体1および載置部1aと成るセラミックグリーンシートを積層して焼成一体化することにより、基体1の上面より突出して形成される。または、基体1の上面に別の部材が、接着剤等で取着され形成されてもよい。例えば、アルミナセラミックスや窒化アルミニウム質焼結体,ムライト質焼結体,ガラスセラミックス等のセラミックス、Fe−Ni−Co合金やCu−W等の金属、または、エポキシ樹脂等の樹脂から成る部材が、基体1の上面にロウ材や接着剤等の接合材により取着されることによって設けることもできる。   Such a protruding mounting portion 1a can be integrally fired by removing the periphery thereof by polishing, cutting, etching, or the like, or by laminating the ceramic green sheets to be the base 1 and the mounting portion 1a. Thus, it is formed so as to protrude from the upper surface of the substrate 1. Alternatively, another member may be formed on the upper surface of the substrate 1 by being attached with an adhesive or the like. For example, members made of ceramics such as alumina ceramics, aluminum nitride sintered bodies, mullite sintered bodies, glass ceramics, metals such as Fe-Ni-Co alloys and Cu-W, or resins such as epoxy resins, It can also be provided by being attached to the upper surface of the substrate 1 with a bonding material such as a brazing material or an adhesive.

また、載置部1aは、図6に示すようにその側面が下側に行くに伴って外側に拡がるように傾斜しているのが好ましい。これにより、熱硬化前の液状の透光性部材6が第2の反射部材4の内側に充填される際に、突出した載置部1aと基体1上面または第1の内周面2aの下端部との間の角部に空気層が形成されることを有効に防止できる。さらに、発光素子3から発光された光が、突出した載置部1aの側面で上方および第1の内周面2aの方向に良好に反射され、発光装置の放射強度をより向上させることができる。さらにまた、発光素子3で生じた熱が、載置部1aを介して効率よく基体1側に拡散され伝達することにより、発光素子3の温度上昇がより有効に抑制される。   Moreover, as shown in FIG. 6, it is preferable that the mounting part 1a is inclined so that its side surface expands outward as it goes downward. Thereby, when the liquid translucent member 6 before thermosetting is filled inside the second reflecting member 4, the protruding mounting portion 1a and the upper surface of the base 1 or the lower end of the first inner peripheral surface 2a It is possible to effectively prevent an air layer from being formed at the corner between the two. Further, the light emitted from the light emitting element 3 is favorably reflected upward and in the direction of the first inner peripheral surface 2a by the side surface of the protruding mounting portion 1a, and the radiation intensity of the light emitting device can be further improved. . Furthermore, the heat generated in the light emitting element 3 is efficiently diffused and transmitted to the base 1 side via the mounting portion 1a, so that the temperature rise of the light emitting element 3 is more effectively suppressed.

さらに、載置部1aは、発光素子3が電気的に接続されるための配線導体(図示せず)が形成されている。この配線導体が基体1の内部に形成された配線層(図示せず)を介して発光装置の外表面に導出されて外部電気回路基板に接続されることにより、発光素子3と外部電気回路とが電気的に接続されることとなる。   Further, the mounting portion 1a is formed with a wiring conductor (not shown) for electrically connecting the light emitting element 3. The wiring conductor is led to the outer surface of the light emitting device through a wiring layer (not shown) formed inside the base 1 and connected to the external electric circuit board, whereby the light emitting element 3 and the external electric circuit are connected. Are electrically connected.

なお、第1の反射部材2および第2の反射部材4は、Al,Ag,Au,白金(Pt),チタン(Ti),クロム(Cr),Cu等の高反射率の金属に対して切削加工や金型成形等を行なうことにより形成される。あるいは、第1の反射部材2および第2の反射部材4が、セラミックスや樹脂等の絶縁体からなる場合(第1の反射部材2、および第2の反射部材4が金属の場合も含む)、第1の内周面2aおよび第2の内周面4aにはメッキや蒸着等によりAl,Ag,Au,白金(Pt),チタン(Ti),クロム(Cr),Cu等の高反射率の金属薄膜が形成されてもよい。また、第1の内周面2aおよび第2の内周面4aがAgやCu等の酸化により変色し易い金属からなる場合、その表面に、例えば厚さ1〜10μm程度のNiメッキ層と厚さ0.1〜3μm程度のAuメッキ層とが電解メッキ法や無電解メッキ法により順次被着されているのが良い。これにより、第1の内周面2aおよび第2の内周面4aの耐腐食性が向上するとともに、反射率の劣化が抑制される。   The first reflecting member 2 and the second reflecting member 4 are cut with respect to a metal having high reflectivity such as Al, Ag, Au, platinum (Pt), titanium (Ti), chromium (Cr), and Cu. It is formed by performing processing, mold forming, or the like. Or when the 1st reflective member 2 and the 2nd reflective member 4 consist of insulators, such as ceramics and resin (Including the case where the 1st reflective member 2 and the 2nd reflective member 4 are metal), The first inner peripheral surface 2a and the second inner peripheral surface 4a have high reflectivity such as Al, Ag, Au, platinum (Pt), titanium (Ti), chromium (Cr), Cu, etc. by plating or vapor deposition. A metal thin film may be formed. Further, when the first inner peripheral surface 2a and the second inner peripheral surface 4a are made of a metal that is easily discolored by oxidation of Ag, Cu or the like, a Ni plating layer with a thickness of, for example, about 1 to 10 μm is formed on the surface. It is preferable that an Au plating layer having a thickness of about 0.1 to 3 μm is sequentially deposited by an electrolytic plating method or an electroless plating method. Thereby, the corrosion resistance of the first inner peripheral surface 2a and the second inner peripheral surface 4a is improved, and the deterioration of the reflectance is suppressed.

さらに、第1の内周面2aおよび第2の内周面4aの算術平均粗さRaは、0.004〜4μmであるのが良く、これにより、発光素子3からの光や第1の波長変換層5からの蛍光を良好に反射し得る。Raが4μmを超えると、発光素子3および第1の波長変換層5の光が均一に反射されず、発光装置の内部で乱反射し光損失が増加する。一方、0.004μm未満では、そのような面を安定かつ効率よく形成することが困難となる傾向にある。   Further, the arithmetic average roughness Ra of the first inner peripheral surface 2a and the second inner peripheral surface 4a is preferably 0.004 to 4 μm, whereby the light from the light emitting element 3 and the first wavelength conversion layer The fluorescence from 5 can be reflected well. When Ra exceeds 4 μm, the light from the light emitting element 3 and the first wavelength conversion layer 5 is not reflected uniformly, and diffusely reflects inside the light emitting device, increasing the optical loss. On the other hand, if it is less than 0.004 μm, it tends to be difficult to form such a surface stably and efficiently.

また、第1の反射部材2は外周面の断面形状を湾曲形状に変更したり、第1の反射部材2と第2の反射部材の間に複数の反射部材を用いたりしてもなんら支障はない。   Moreover, even if the 1st reflection member 2 changes the cross-sectional shape of an outer peripheral surface into a curved shape, or it uses a some reflection member between the 1st reflection member 2 and the 2nd reflection member, there will be no trouble. Absent.

なお、第1の反射部材2の上面と第1の波長変換層5の下面との距離は0.5〜3mmであるのがよい。0.5mm未満であると、第1の波長変換層5から下側方向に放出された蛍光を第1の反射部材2の外側の第2の反射部材4に反射させ難くなり、放射効率を向上させるのが困難になる。また、3mmを超えると、第1の波長変換層5と第1の反射部材2との隙間から発光素子3からの光が第1の波長変換層5を透過せずに直接外部に放射されやすくなり、放射光の色むらや強度むらが生じやすくなる。   The distance between the upper surface of the first reflecting member 2 and the lower surface of the first wavelength conversion layer 5 is preferably 0.5 to 3 mm. If it is less than 0.5 mm, it becomes difficult to reflect the fluorescence emitted downward from the first wavelength conversion layer 5 to the second reflecting member 4 outside the first reflecting member 2, thereby improving the radiation efficiency. It becomes difficult. In addition, if it exceeds 3 mm, light from the light emitting element 3 is easily emitted directly to the outside without passing through the first wavelength conversion layer 5 from the gap between the first wavelength conversion layer 5 and the first reflecting member 2. Therefore, uneven color and uneven intensity of the emitted light are likely to occur.

また、発光素子3は、基体1に形成された配線導体にワイヤボンディングや、発光素子3の電極を下側にして半田バンプにより接続するフリップチップボンディング方式を用いて電気的に接続される。好ましくは、フリップチップボンディング方式により接続するのがよい。これにより、配線導体を発光素子3の直下に設けることができるため、発光素子3の周辺の基体1の上面に配線導体を設けるためのスペースを設ける必要がなくなる。よって、発光素子3から発光された光がこの基体1の配線導体のスペースで吸収されて放射光強度が低下するのを有効に抑制することができる。   The light emitting element 3 is electrically connected to the wiring conductor formed on the substrate 1 by wire bonding or a flip chip bonding method in which the electrodes of the light emitting element 3 are connected to each other by solder bumps. Preferably, the connection is made by a flip chip bonding method. Thereby, since the wiring conductor can be provided immediately below the light emitting element 3, it is not necessary to provide a space for providing the wiring conductor on the upper surface of the base 1 around the light emitting element 3. Therefore, it is possible to effectively suppress the light emitted from the light emitting element 3 from being absorbed in the space of the wiring conductor of the base body 1 and the radiation light intensity from being lowered.

この配線導体は、例えば、W,Mo,Cu,Ag等の金属粉末のメタライズ層を形成することによって、Fe−Ni−Co合金等のリード端子を埋設することによって、または、配線導体が形成された絶縁体から成る入出力端子を基体1に設けた貫通孔に嵌着接合させることによって設けられる。   This wiring conductor is formed by, for example, forming a metallized layer of a metal powder such as W, Mo, Cu, Ag, or by burying a lead terminal such as an Fe-Ni-Co alloy, or by forming a wiring conductor. An input / output terminal made of an insulating material is provided by being fitted and joined to a through hole provided in the base 1.

なお、配線導体の露出する表面には、NiやAu等の耐食性に優れる金属を1〜20μm程度の厚さで被着させておくのが良く、配線導体の酸化腐食を有効に防止し得るともに、発光素子3と配線導体との接続を強固にし得る。従って、配線導体の露出表面には、例えば、厚さ1〜10μm程度のNiメッキ層と厚さ0.1〜3μm程度のAuメッキ層とが電解メッキ法や無電解メッキ法により順次被着されているのがより好ましい。   It should be noted that the exposed surface of the wiring conductor should be coated with a metal having excellent corrosion resistance, such as Ni or Au, with a thickness of about 1 to 20 μm, which can effectively prevent oxidative corrosion of the wiring conductor. The connection between the light emitting element 3 and the wiring conductor can be strengthened. Therefore, for example, a Ni plating layer having a thickness of about 1 to 10 μm and an Au plating layer having a thickness of about 0.1 to 3 μm are sequentially deposited on the exposed surface of the wiring conductor by an electrolytic plating method or an electroless plating method. Is more preferable.

また、透光性部材6は、エポキシ樹脂やシリコーン樹脂等の透明樹脂や透光性ガラスから成り、発光素子3および必要に応じて第1の波長変換層5を被覆するとともに第1の反射部材2および第2の反射部材4の内部に充填される。これにより、発光素子3および第1の波長変換層5の内側と外側との屈折率差が小さくなり、発光素子3および第1の波長変換層5から光をより多く取り出すことができる。さらに、透光性部材6が、第1の波長変換層5を構成する透明部材と同じ材料から成る場合、発光装置からの発光が向上し、放射光強度や輝度を著しく向上できる。   The translucent member 6 is made of a transparent resin such as epoxy resin or silicone resin, or translucent glass, and covers the light emitting element 3 and, if necessary, the first wavelength conversion layer 5 and the first reflective member. 2 and the inside of the second reflecting member 4 are filled. Thereby, the difference in refractive index between the inside and outside of the light emitting element 3 and the first wavelength conversion layer 5 is reduced, and more light can be extracted from the light emitting element 3 and the first wavelength conversion layer 5. Furthermore, when the translucent member 6 is made of the same material as the transparent member constituting the first wavelength conversion layer 5, light emission from the light emitting device is improved, and the emitted light intensity and luminance can be remarkably improved.

また、第1の波長変換層5は、発光素子3からの光を波長変換することのできる蛍光体と、エポキシ樹脂やシリコーン樹脂、ガラス等の透明部材とから成り、例えば、あらかじめ膜や板状に成型され、オーブン等で熱硬化されて形成される。そして、第1の波長変換層5は、発光素子3の上方でかつ第1の反射部材2と第2の反射部材4の一部を覆うように配置することで、発光素子3から直接照射される光や第1の反射部材2で反射された光が蛍光体により波長変換され所望の波長スペクトルを有する光が取り出される。   The first wavelength conversion layer 5 includes a phosphor that can convert the wavelength of light from the light emitting element 3 and a transparent member such as an epoxy resin, a silicone resin, or glass. And is cured by an oven or the like. The first wavelength conversion layer 5 is disposed directly above the light emitting element 3 and covers a part of the first reflecting member 2 and the second reflecting member 4 so that the first wavelength converting layer 5 is directly irradiated from the light emitting element 3. And the light reflected by the first reflecting member 2 are wavelength-converted by the phosphor and light having a desired wavelength spectrum is extracted.

さらに、第1の波長変換層5は、図2に示すように発光素子3の上方でかつ透光性部材6の表面に、第1の反射部材2および第2の反射部材4と間隔を設けて配置されてもよい。その場合、第1の波長変換層5から発光される光が発光装置の外部に放射されやすくなり、発光装置の発光効率を向上させることができるとともに放射光強度および輝度を向上させることができる。   Further, as shown in FIG. 2, the first wavelength conversion layer 5 is provided above the light emitting element 3 and on the surface of the translucent member 6 so as to be spaced from the first reflecting member 2 and the second reflecting member 4. May be arranged. In that case, the light emitted from the first wavelength conversion layer 5 is easily radiated to the outside of the light emitting device, so that the light emission efficiency of the light emitting device can be improved and the emitted light intensity and luminance can be improved.

また、第1の波長変換層5は図7に示すように、その外周部が発光素子3の端部とその端部の反対側の第1の反射部材2の内周面2aの上端とを通る直線よりも第2の反射部材4側に位置していることが好ましい。これにより、発光素子3からの光が発光装置の外部へ直接放射されることを抑制することができる。その結果、発光装置から発光色や発光分布にムラがない光を照射することができる。   Further, as shown in FIG. 7, the first wavelength conversion layer 5 has an outer peripheral portion that is an end portion of the light emitting element 3 and an upper end of the inner peripheral surface 2a of the first reflecting member 2 opposite to the end portion. It is preferable that the second reflection member 4 is located on the side of the straight line passing through. Thereby, it can suppress that the light from the light emitting element 3 is radiated | emitted directly outside the light-emitting device. As a result, it is possible to irradiate light from the light emitting device with no unevenness in emission color or emission distribution.

さらに、第1の波長変換層5は図8に示すように、その断面形状が発光素子3側に凸の曲面になっていることが好ましい。その結果、第1の波長変換層5の下面から発せられる蛍光が第2の反射部材4の第2の内周面4aに一様に照射されることにより、第2の内周面4aからの反射光の色ムラが抑制される。従って、発光装置の光学特性を向上することができる。   Further, as shown in FIG. 8, the first wavelength conversion layer 5 preferably has a cross-sectional shape that is a convex curved surface toward the light emitting element 3 side. As a result, the fluorescence emitted from the lower surface of the first wavelength conversion layer 5 is uniformly applied to the second inner peripheral surface 4a of the second reflecting member 4, thereby causing the second inner peripheral surface 4a to emit light. Color unevenness of reflected light is suppressed. Accordingly, the optical characteristics of the light emitting device can be improved.

また、第1の波長変換層5は図9に示すように、その断面形状が発光素子3側に凸の曲面で、発光素子3の発光強度分布に対して強度が増すほど第1の波長変換層5の厚みが増す比例関係を持つ厚みになっていることが好ましい。その結果、第1の波長変換層5の上面からの発光についても、外部に一様に照射される。したがって、発光装置は配光分布のズレや色ムラが抑制された光を外部へ照射することができる。   Further, as shown in FIG. 9, the first wavelength conversion layer 5 has a curved surface that is convex toward the light emitting element 3, and the first wavelength conversion layer 5 increases in intensity with respect to the light emission intensity distribution of the light emitting element 3. It is preferable that the thickness of the layer 5 has a proportional relationship in which the thickness increases. As a result, light emitted from the upper surface of the first wavelength conversion layer 5 is also uniformly irradiated to the outside. Therefore, the light emitting device can irradiate the outside with light in which the deviation of the light distribution and the color unevenness are suppressed.

また、透光性部材6は、図10に示すように第1の反射部材2と第2の反射部材4の内側を異なる透光性材料で充填してもよい。即ち、第1の反射部材2の内側でかつ上端まで充填された透明部材7と、第2の反射部材4の内側に充填した透光性部材6において、透明部材7の屈折率が透光性部材6より低い場合、発光素子3または第1の内周面2aで反射された光が透明部材7と透光性部材6との界面で全反射されることなく透光性部材6内に伝搬するとともに、第1の波長変換層5の下方向に放射された蛍光の一部が、透明部材7と透光性部材6との界面で全反射され、発光装置の外部に放射される。また、透明部材7の屈折率が透光性部材6より高い場合、発光素子3からの光や第1の内周面2aで反射された光が透明部材7と透光性部材6との界面を透過する際に生じる反射損失が抑制される。なお、透光性部材6と透明部材7については、発光装置の放射光強度が最大と成るように屈折率差や透過率を考慮して選定することができる。   Further, the translucent member 6 may be filled with different translucent materials inside the first reflecting member 2 and the second reflecting member 4 as shown in FIG. That is, in the transparent member 7 filled to the upper end inside the first reflecting member 2 and the translucent member 6 filled inside the second reflecting member 4, the refractive index of the transparent member 7 is translucent. When lower than the member 6, the light reflected by the light emitting element 3 or the first inner peripheral surface 2 a propagates into the translucent member 6 without being totally reflected at the interface between the transparent member 7 and the translucent member 6. At the same time, a part of the fluorescence emitted downward from the first wavelength conversion layer 5 is totally reflected at the interface between the transparent member 7 and the translucent member 6 and emitted outside the light emitting device. When the refractive index of the transparent member 7 is higher than that of the translucent member 6, the light from the light emitting element 3 or the light reflected by the first inner peripheral surface 2 a is an interface between the transparent member 7 and the translucent member 6. The reflection loss that occurs when the light passes through is suppressed. The translucent member 6 and the transparent member 7 can be selected in consideration of the refractive index difference and the transmittance so that the emitted light intensity of the light emitting device is maximized.

次に本発明の第二の発明について説明する。なお、本発明の第二の発明において、第1の反射部材2に載置部2bが形成されていること以外は上記第一の発明と同じであり、詳細な説明は省略する。   Next, the second invention of the present invention will be described. In addition, in 2nd invention of this invention, it is the same as said 1st invention except the mounting part 2b being formed in the 1st reflection member 2, and detailed description is abbreviate | omitted.

第1の反射部材2は、図3(a)に示すように上面に発光素子3を載置する載置部2bが形成されるとともに、載置部2bを取り囲む、内周面が光反射面とされた側壁部2cを有し、基体1上面の中央部に取着される。さらに、第1の反射部材2の外周部には、第2の内周面4aが光反射面とされた側壁部4cを有する枠状の第2の反射部材4が基体1上面の外周部に取着される。そして、第2の反射部材4の内側には、発光素子3と第1の反射部材2とを覆うように透光性部材6が充填されるとともに、発光素子3の上方でかつ透光性部材6の内部または表面には、第1の反射部材2および第2の反射部材4との間隔を設けて、発光素子3が発光する光を波長変換する第1の波長変換層5が配置される。   As shown in FIG. 3A, the first reflecting member 2 has a mounting portion 2b on which the light emitting element 3 is mounted on the upper surface, and an inner peripheral surface that surrounds the mounting portion 2b is a light reflecting surface. The side wall portion 2c is attached to the central portion of the upper surface of the base body 1. Further, a frame-like second reflecting member 4 having a side wall portion 4c in which the second inner peripheral surface 4a is a light reflecting surface is formed on the outer peripheral portion of the upper surface of the base 1 at the outer peripheral portion of the first reflecting member 2. To be attached. The inside of the second reflecting member 4 is filled with a translucent member 6 so as to cover the light emitting element 3 and the first reflecting member 2, and above the light emitting element 3 and the translucent member. A first wavelength conversion layer 5 that converts the wavelength of light emitted from the light emitting element 3 is disposed inside or on the surface of the light emitting element 3 with a space between the first reflecting member 2 and the second reflecting member 4. .

これにより、発光素子3から発光された光が第1の波長変換層5で波長変換された後、第1の波長変換層5から下側方向に放出された光を第2の反射部材4で上側方向に反射させるとともに第1の波長変換層5と第2の反射部材4との隙間から発光装置外部へ第1の波長変換層5を再度透過させることなく放出させることができる。その結果、第1の波長変換層5から下側方向に放出された光が発光装置内に閉じ込められるのをきわめて有効に抑制することができ、放射光強度および輝度を高め、発光効率の高い発光装置とすることができる。   Thereby, after the light emitted from the light emitting element 3 is wavelength-converted by the first wavelength conversion layer 5, the light emitted downward from the first wavelength conversion layer 5 is reflected by the second reflecting member 4. While reflecting in the upward direction, the first wavelength conversion layer 5 can be emitted from the gap between the first wavelength conversion layer 5 and the second reflection member 4 to the outside of the light emitting device without being transmitted again. As a result, light emitted downward from the first wavelength conversion layer 5 can be extremely effectively prevented from being confined in the light emitting device, and the emitted light intensity and luminance are increased, and light emission with high luminous efficiency is achieved. It can be a device.

また、発光素子3から発生した熱を載置部2bと一体化した側壁部2cに伝え易くすることができる。特に第1の反射部材2が金属から成る場合には、熱は速やかに側壁部へ伝えられるとともに側壁部2cの外側面から良好に放散される。その結果、発光素子3の温度上昇を抑制することができ、発光素子3と第1の反射部材2との熱膨張差により生じる接合部のクラックを抑制することができる。また、発光素子3の熱を第1の反射部材2の高さ方向だけでなく外周方向にも良好に移動させることができ、第1の反射部材2の下面全面から基体1に効率よく熱伝導させて発光素子3および第1の反射部材2の温度上昇をより有効に抑制でき、発光素子3の作動を安定に維持するとともに第1の反射部材2の内周面の熱変形を抑制することができる。よって長期にわたり、発光装置の安定した光特性を良好に維持し作動させることができる。   Further, the heat generated from the light emitting element 3 can be easily transferred to the side wall portion 2c integrated with the placement portion 2b. In particular, when the first reflecting member 2 is made of metal, heat is quickly transferred to the side wall portion and is well dissipated from the outer surface of the side wall portion 2c. As a result, the temperature rise of the light emitting element 3 can be suppressed, and cracks in the joint caused by the difference in thermal expansion between the light emitting element 3 and the first reflecting member 2 can be suppressed. In addition, the heat of the light emitting element 3 can be favorably moved not only in the height direction of the first reflecting member 2 but also in the outer peripheral direction, so that heat can be efficiently conducted from the entire lower surface of the first reflecting member 2 to the base 1. Thus, the temperature rise of the light emitting element 3 and the first reflecting member 2 can be more effectively suppressed, the operation of the light emitting element 3 can be stably maintained, and the thermal deformation of the inner peripheral surface of the first reflecting member 2 can be suppressed. Can do. Therefore, stable light characteristics of the light emitting device can be maintained and operated over a long period of time.

なお、発光素子3は、図3(b)に示すように載置部2bを取り囲む内周面2aに形成された貫通孔2dを挿通して基体1に形成された配線導体(図示せず)とボンディングワイヤ8によって電気的に接続され、電力供給が行なわれる。   Note that the light emitting element 3 has a wiring conductor (not shown) formed in the base body 1 through the through hole 2d formed in the inner peripheral surface 2a surrounding the mounting portion 2b as shown in FIG. Are electrically connected by the bonding wire 8 to supply power.

また、第1の反射部材2と第2の反射部材4は、図4に示すように、第1の反射部材2と第2の反射部材4とが一体的に金型成型や切削加工によって作製されてもよい。これにより、発光素子3の熱が、第1の反射部材2と第2の反射部材4を介してより発光装置全体に放散されるとともに発光装置の放熱面積が増加することにより、発光素子3の温度上昇が抑制される
また、本発明の第一の発明における図5または図6に示される形態と同様に、載置部2bがその周囲の第1の反射部材2の内周面である側壁部2cの下端よりも高くなるように突出していてもよく、発光素子3から斜め下方向に発光された光が効率よく側壁部2cで上方向に反射され第1の波長変換層5に伝搬されることから、第1の波長変換層5で波長変換される発光素子3の光が増加して発光装置の放射強度が向上する。
Further, as shown in FIG. 4, the first reflecting member 2 and the second reflecting member 4 are produced by integrally molding the first reflecting member 2 and the second reflecting member 4 by molding or cutting. May be. Thereby, the heat of the light emitting element 3 is dissipated to the whole light emitting device through the first reflecting member 2 and the second reflecting member 4, and the heat radiation area of the light emitting device is increased, so that The temperature rise is suppressed. Similarly to the embodiment shown in FIG. 5 or 6 in the first invention of the present invention, the side wall on which the mounting portion 2b is the inner peripheral surface of the first reflecting member 2 around it. It may protrude so as to be higher than the lower end of the portion 2c, and the light emitted obliquely downward from the light emitting element 3 is efficiently reflected upward by the side wall portion 2c and propagated to the first wavelength conversion layer 5. Therefore, the light of the light emitting element 3 that is wavelength-converted by the first wavelength conversion layer 5 is increased and the radiation intensity of the light emitting device is improved.

また、第2の反射部材4は、図11に示すように、第2の内周面4aの表面に発光素子3が発光する光の波長を変換する第2の波長変換層4bが設けられていることが好ましい。即ち、発光素子3から直接、または第1の内周面2aによる反射を介して第1の波長変換層5に伝搬するとともに、第1の波長変換層5に含有された蛍光体で波長変換されずに下側外方に反射した光は、第2の内周面4aに形成された第2の波長変換層4bに到達して波長変換される。そして、この波長変換された光は、第2の波長変換層4bから上方に放射されるとともに、第1の波長変換層5と第2の反射部材4との間から透光性部材6の上面を介して発光装置の外部に放射される。その結果、発光装置は、第1の波長変換層5で波長変換されずに下側外方に反射する発光素子の光も第2の波長変換層4bで波長変換することにより、発光装置の放射光強度や輝度および発光効率を向上させることができる。   Further, as shown in FIG. 11, the second reflecting member 4 is provided with a second wavelength conversion layer 4b for converting the wavelength of light emitted from the light emitting element 3 on the surface of the second inner peripheral surface 4a. Preferably it is. That is, the light propagates to the first wavelength conversion layer 5 directly from the light emitting element 3 or through reflection by the first inner peripheral surface 2a, and is wavelength-converted by the phosphor contained in the first wavelength conversion layer 5. Instead, the light reflected outwardly from the lower side reaches the second wavelength conversion layer 4b formed on the second inner peripheral surface 4a and is wavelength-converted. The wavelength-converted light is radiated upward from the second wavelength conversion layer 4 b and the upper surface of the translucent member 6 from between the first wavelength conversion layer 5 and the second reflection member 4. Is emitted to the outside of the light emitting device. As a result, the light emitting device emits light from the light emitting device by converting the light of the light emitting element which is not wavelength-converted by the first wavelength conversion layer 5 and is reflected outwardly by the second wavelength conversion layer 4b. Light intensity, brightness, and luminous efficiency can be improved.

なお、第2の波長変換層4bから第2の内周面4a側へ出射される光は、光反射面とされた第2の内周面4aで反射して再び第2の波長変換層4b側に戻される。   The light emitted from the second wavelength conversion layer 4b to the second inner peripheral surface 4a is reflected by the second inner peripheral surface 4a, which is a light reflecting surface, and again the second wavelength conversion layer 4b. Back to the side.

また、第2の波長変換層4bは、図12に示すように、その厚さが上端部から下端部にかけて漸次厚くなるように設けられているのが好ましい。これにより、透光性部材6の上面と第2の波長変換層4bとの距離が大きくなる第2の波長変換層4bの下端部にかけては、第2の波長変換層4bが漸次厚くなっていることにより、蛍光体から発生する光の量が漸次増加する。また、透光性部材6の上面と第2の波長変換層4bとの距離が小さくなる第2の波長変換層4bの上端部にかけては、第2の波長変換層が漸次薄くなっていることにより、蛍光体から発生する光の量が下端側より漸次少なくなる。その結果、発光装置から上方に放射される光の強度分布を中心部と周辺部とで均一にすることができるとともに色むらの発生を抑制することができる。   Further, as shown in FIG. 12, the second wavelength conversion layer 4b is preferably provided so that its thickness gradually increases from the upper end to the lower end. As a result, the second wavelength conversion layer 4b is gradually thicker toward the lower end of the second wavelength conversion layer 4b where the distance between the upper surface of the translucent member 6 and the second wavelength conversion layer 4b increases. As a result, the amount of light generated from the phosphor gradually increases. In addition, the second wavelength conversion layer is gradually thinned toward the upper end of the second wavelength conversion layer 4b where the distance between the upper surface of the translucent member 6 and the second wavelength conversion layer 4b is reduced. The amount of light generated from the phosphor gradually decreases from the lower end side. As a result, the intensity distribution of light emitted upward from the light emitting device can be made uniform between the central portion and the peripheral portion, and color unevenness can be suppressed.

また、第2の波長変換層4bは、蛍光体の密度が上端部から下端部にかけて漸次高くなっているのがよい。これにより、透光性部材6の上面と第2の波長変換層4bとの距離が大きくなる第2の波長変換層4bの下端部にかけては、第2の波長変換層4bの蛍光体の密度が漸次高くなっていることにより、蛍光体から発生する光の量が漸次増加する。また、透光性部材6の上面と第2の波長変換層4bとの距離が小さくなる第2の波長変換層4bの上端部にかけては、第2の波長変換層4bの蛍光体の密度が下端部より漸次小さくなっていることにより、蛍光体から発生する光の量が、下端部より漸次少なくなる。その結果、発光装置から上方に放射される光の強度分布を中心部と周辺部とで均一にすることができるとともに色むらの発生を抑制することができる。   In the second wavelength conversion layer 4b, it is preferable that the density of the phosphor gradually increases from the upper end to the lower end. Thereby, the density of the phosphor of the second wavelength conversion layer 4b is increased toward the lower end of the second wavelength conversion layer 4b where the distance between the upper surface of the translucent member 6 and the second wavelength conversion layer 4b increases. By gradually increasing, the amount of light generated from the phosphor gradually increases. Moreover, the density of the phosphor of the second wavelength conversion layer 4b is lower at the upper end of the second wavelength conversion layer 4b where the distance between the upper surface of the translucent member 6 and the second wavelength conversion layer 4b becomes smaller. By being gradually smaller than the portion, the amount of light generated from the phosphor gradually decreases from the lower end portion. As a result, the intensity distribution of light emitted upward from the light emitting device can be made uniform between the central portion and the peripheral portion, and color unevenness can be suppressed.

さらに、第2の波長変換層4bは、その内側表面に複数の凹部または凸部が設けられていることが好ましい。即ち、図13に示すように、第2の波長変換層4bの表面に複数の凹部または凸部を設けることにより、第2の波長変換層4bの表面積が増加する。これによって、第2の波長変換層4bの表面に露出する蛍光体が多くなるので、発光素子3から直接、または第1の内周面2aによる反射を介して第1の波長変換層5に伝搬するとともに、第1の波長変換層5に含有された蛍光体で波長変換されずに下側外方に反射された光は、第2の波長変換層4bの表面に露出する蛍光体に照射されて蛍光体を励起し、蛍光に波長変換されやすくなる。その結果、蛍光体からの蛍光の量が増加するとともに第2の波長変換部材4bから効率よく蛍光が放出され、発光装置の放射光強度や輝度および発光効率が向上する。   Further, the second wavelength conversion layer 4b is preferably provided with a plurality of concave portions or convex portions on the inner surface thereof. That is, as shown in FIG. 13, by providing a plurality of concave portions or convex portions on the surface of the second wavelength conversion layer 4b, the surface area of the second wavelength conversion layer 4b increases. As a result, the amount of phosphor exposed on the surface of the second wavelength conversion layer 4b increases, so that it propagates to the first wavelength conversion layer 5 directly from the light emitting element 3 or through reflection by the first inner peripheral surface 2a. In addition, the light reflected by the phosphor contained in the first wavelength conversion layer 5 without being wavelength-converted outward is irradiated onto the phosphor exposed on the surface of the second wavelength conversion layer 4b. Thus, the phosphor is excited and is easily wavelength-converted to fluorescence. As a result, the amount of fluorescence from the phosphor increases and the fluorescence is efficiently emitted from the second wavelength conversion member 4b, so that the emitted light intensity, luminance, and luminous efficiency of the light emitting device are improved.

また、発光素子3から直接、または第1の内周面2aによる反射を介して第1の波長変換層5に伝搬し、第1の波長変換層5に含有された蛍光体で波長変換されずに下方に反射するとともに、第2の波長変換層4bの表面に対して平行に近い鈍角で入射する光は、凹部または凸部の側面に対しては直角に近い鋭角で入射することとなり、反射されることなく第2の波長変換層4b内に伝搬される。その結果、透光性部材5から第2の波長変換層4bに入射する入射光が増加し、すなわち透光性部材と第2の波長変換層との界面における透過率が増加し、第2の波長変換層4b内の蛍光体によって波長変換される光が増加するので、発光装置の放射光強度や輝度および発光効率が向上する。   Further, the light propagates to the first wavelength conversion layer 5 directly from the light emitting element 3 or through reflection by the first inner peripheral surface 2a and is not wavelength-converted by the phosphor contained in the first wavelength conversion layer 5. The light that is reflected downward and incident at an obtuse angle that is nearly parallel to the surface of the second wavelength conversion layer 4b is incident at an acute angle that is close to a right angle with respect to the side surface of the concave or convex portion. The light is propagated into the second wavelength conversion layer 4b without being transmitted. As a result, the incident light incident on the second wavelength conversion layer 4b from the translucent member 5 increases, that is, the transmittance at the interface between the translucent member and the second wavelength conversion layer increases, and the second Since the light whose wavelength is converted by the phosphor in the wavelength conversion layer 4b increases, the emitted light intensity, luminance, and luminous efficiency of the light emitting device are improved.

次に、本発明の発光装置は、1個のものを所定の配置となるように設置したことにより、または複数個のものを、例えば、格子状や千鳥状,放射状,複数の発光装置から成る、円状や多角形状の発光装置群を同心状に複数群形成したもの等の所定の配置となるように設置したことにより、本発明の照明装置とすることができる。これにより、半導体から成る発光素子3の電子の再結合による発光を利用した、従来の放電を用いた照明装置よりも低消費電力かつ長寿命な発光素子3を光源として用いることが可能であり、この光源から発する光を効率的に外部へ照射できる発熱の少ない小型の照明装置とすることができる。そして、効率的に低電力で動作させることができる結果、発光素子3の発熱量が少なく、発光素子3から発生する光の中心波長の変動を抑制することができ、長期間にわたり安定した放射光強度かつ放射光角度(配光分布)で光を照射することができるとともに、照射面における色むらや照度分布の偏りが抑制された照明装置とすることができる。   Next, the light emitting device of the present invention is configured by arranging one device in a predetermined arrangement, or a plurality of light emitting devices, for example, a lattice shape, a staggered shape, a radial shape, or a plurality of light emitting devices. The lighting device of the present invention can be obtained by installing the light emitting device groups in a circular shape or a polygonal shape so as to have a predetermined arrangement such as a plurality of concentric groups. Thereby, it is possible to use the light-emitting element 3 having lower power consumption and longer life as a light source than a conventional lighting device using discharge, which utilizes light emission by recombination of electrons of the light-emitting element 3 made of a semiconductor. A small illuminating device with less heat generation that can efficiently radiate light emitted from the light source to the outside can be obtained. As a result of being able to operate efficiently with low power, the amount of heat generated by the light emitting element 3 is small, fluctuations in the center wavelength of the light generated from the light emitting element 3 can be suppressed, and stable radiated light over a long period of time. While being able to irradiate light with an intensity and a radiated light angle (light distribution), it is possible to provide an illuminating device in which color unevenness and uneven illuminance distribution on the irradiated surface are suppressed.

また、本発明の発光装置を光源として所定の配置に設置するとともに、これらの発光装置の周囲に任意の形状に光学設計した反射治具や光学レンズ、光拡散板等を設置することにより、任意の配光分布の光を放射できる照明装置とすることができる。   In addition, the light emitting device of the present invention is installed in a predetermined arrangement as a light source, and by installing a reflection jig, an optical lens, a light diffusing plate, etc. optically designed in an arbitrary shape around these light emitting devices, It can be set as the illuminating device which can radiate | emit the light of this light distribution.

例えば、図14,図15に示す平面図,断面図のように複数個の発光装置101が発光装置駆動回路基板102に複数列に配置され、発光装置101の周囲に任意の形状に光学設計した反射治具9が設置されて成る照明装置の場合、隣接する一列上に配置された複数個の発光装置101において、隣り合う発光装置101との間隔が最短に成らないような配置、いわゆる千鳥状とすることが好ましい。即ち、発光装置101が格子状に配置される際には、光源となる発光装置101が直線上に配列されることによりグレアが強くなり、このような照明装置が人の視覚に入ってくることにより、不快感や目の障害を起こしやすくなるのに対し、千鳥状とすることにより、グレアが抑制され人間の目に対する不快感や目に及ぼす障害を低減することができる。さらに、隣り合う発光装置101間の距離が長くなることにより、隣接する発光装置101間の熱的な干渉が有効に抑制され、発光装置101が実装された発光装置駆動回路基板102内における熱のこもりが抑制され、発光装置101の外部に効率よく熱が放散される。その結果、人の目に対しても障害の小さい長期間にわたり光学特性の安定した長寿命の照明装置を作製することができる。   For example, a plurality of light emitting devices 101 are arranged in a plurality of rows on the light emitting device driving circuit board 102 as shown in the plan view and the cross-sectional view shown in FIGS. In the case of an illuminating device in which the reflecting jig 9 is installed, in a plurality of light emitting devices 101 arranged on one adjacent row, an arrangement in which the interval between the adjacent light emitting devices 101 is not shortest, a so-called staggered pattern It is preferable that That is, when the light emitting devices 101 are arranged in a grid, the glare is strengthened by arranging the light emitting devices 101 as light sources on a straight line, and such a lighting device enters human vision. Thus, discomfort and eye damage are likely to occur, but by forming a staggered pattern, glare is suppressed and discomfort and damage to the eyes of the human eye can be reduced. Furthermore, since the distance between adjacent light emitting devices 101 is increased, thermal interference between adjacent light emitting devices 101 is effectively suppressed, and heat in the light emitting device driving circuit board 102 on which the light emitting devices 101 are mounted is reduced. Clouding is suppressed, and heat is efficiently dissipated to the outside of the light emitting device 101. As a result, it is possible to manufacture a long-life lighting device with stable optical characteristics over a long period of time with little obstacles to human eyes.

また、照明装置が、図16,図17に示す平面図,断面図のような発光装置駆動回路基板102上に複数の発光装置101から成る円状や多角形状の発光装置101群を、同心状に複数群形成した照明装置の場合、1つの円状や多角形状の発光装置101群における発光装置101の配置数を照明装置の中央側より外周側ほど多くすることが好ましい。これにより、発光装置101同士の間隔を適度に保ちながら発光装置101をより多く配置することができ、照明装置の照度をより向上させることができる。また、照明装置の中央部の発光装置101の密度を低くして発光装置駆動回路基板102の中央部における熱のこもりを抑制することができる。よって、発光装置駆動回路基板102内における温度分布が一様となり、照明装置を設置した外部電気回路基板やヒートシンクに効率よく熱が伝達され、発光装置101の温度上昇を抑制することができる。その結果、発光装置101は長期間にわたり安定して動作することができるとともに長寿命の照明装置を作製することができる。   Further, the lighting device is a concentric arrangement of a circular or polygonal light emitting device 101 group composed of a plurality of light emitting devices 101 on the light emitting device drive circuit board 102 as shown in the plan view and the sectional view shown in FIGS. In the case of the illuminating device formed in a plurality of groups, it is preferable that the number of the light emitting devices 101 in one circular or polygonal light emitting device 101 group is increased from the central side of the illuminating device to the outer peripheral side. Thereby, it is possible to arrange more light emitting devices 101 while maintaining an appropriate interval between the light emitting devices 101, and it is possible to further improve the illuminance of the lighting device. In addition, the density of the light emitting device 101 in the central portion of the lighting device can be reduced to suppress heat accumulation in the central portion of the light emitting device driving circuit board 102. Therefore, the temperature distribution in the light emitting device driving circuit board 102 becomes uniform, heat is efficiently transmitted to the external electric circuit board and the heat sink on which the lighting device is installed, and the temperature rise of the light emitting device 101 can be suppressed. As a result, the light-emitting device 101 can operate stably over a long period of time, and a long-life lighting device can be manufactured.

このような照明装置としては、例えば、室内や室外で用いられる、一般照明用器具、シャンデリア用照明器具、住宅用照明器具、オフィス用照明器具、店装,展示用照明器具、街路用照明器具、誘導灯器具および信号装置、舞台およびスタジオ用の照明器具、広告灯、照明用ポール、水中照明用ライト、ストロボ用ライト、スポットライト、電柱等に埋め込む防犯用照明、非常用照明器具、懐中電灯、電光掲示板等や、調光器、自動点滅器、ディスプレイ等のバックライト、動画装置、装飾品、照光式スイッチ、光センサ、医療用ライト、車載ライト等が挙げられる。   Examples of such lighting devices include general lighting fixtures, chandelier lighting fixtures, residential lighting fixtures, office lighting fixtures, store lighting, display lighting fixtures, street lighting fixtures, used indoors and outdoors. Guide lights and signaling devices, stage and studio lighting, advertising lights, lighting poles, underwater lighting, strobe lights, spotlights, security lights embedded in power poles, emergency lighting, flashlights, Examples include electronic bulletin boards and the like, backlights for dimmers, automatic flashers, displays and the like, moving image devices, ornaments, illuminated switches, optical sensors, medical lights, in-vehicle lights, and the like.

なお、本発明は以上の実施の形態の例に限定されず、本発明の要旨を逸脱しない範囲内であれば種々の変更を行なうことは何等支障ない。   In addition, this invention is not limited to the example of the above embodiment, If it is in the range which does not deviate from the summary of this invention, it will not interfere at all.

例えば、放射強度の向上のために基体1に発光素子3を複数設けてしても良い。また、第1の内周面2aおよび第2の内周面4aの角度や、第2の内周面4aの上端から透光性部材6の上面までの距離を任意に調整することも可能であり、これにより、補色域を設けることによりさらに良好な演色性を得ることができる。   For example, a plurality of light emitting elements 3 may be provided on the base 1 in order to improve the radiation intensity. It is also possible to arbitrarily adjust the angles of the first inner peripheral surface 2a and the second inner peripheral surface 4a and the distance from the upper end of the second inner peripheral surface 4a to the upper surface of the translucent member 6. With this, it is possible to obtain better color rendering by providing a complementary color gamut.

また、本発明の照明装置は、複数個の発光装置101を所定の配置となるように設置したものだけでなく、1個の発光装置101を所定の配置となるように設置したものでもよい。   Further, the lighting device of the present invention is not limited to one in which a plurality of light emitting devices 101 are installed in a predetermined arrangement, but may be one in which one light emitting device 101 is installed in a predetermined arrangement.

本発明の発光装置について以下に実施例を示す。まず、基体1となるアルミナセラミックスから成る基体1を準備した。なお、基体1は載置部1aが突出するように一体的に形成されており、載置部1aの上面と載置部1a以外の部位の基体1の上面とを平行にした。   Examples of the light emitting device of the present invention are shown below. First, a substrate 1 made of alumina ceramic to be the substrate 1 was prepared. The base 1 is integrally formed so that the mounting portion 1a protrudes, and the upper surface of the mounting portion 1a and the upper surface of the base 1 other than the mounting portion 1a are made parallel.

基体1は、幅17mm×奥行き17mm×厚さ0.5mmの直方体の上面中央部に幅0.35mm×奥行き0.35mm×厚さ0.15mmの直方体の載置部1aが形成されたものであった。   The base body 1 has a rectangular parallelepiped mounting portion 1a having a width of 0.35 mm, a depth of 0.35 mm, and a thickness of 0.15 mm formed at the center of the upper surface of a rectangular parallelepiped having a width of 17 mm, a depth of 17 mm, and a thickness of 0.5 mm.

また、載置部1aの発光素子3が搭載される部位に、発光素子3と外部電気回路基板とを基体1の内部に形成した内部配線を介して電気的に接続するための配線導体を形成した。配線導体は、Mo−Mn粉末からなるメタライズ層により直径が0.1mmの円形パッドに成形され、その表面には厚さ3μmのNiメッキ層と厚さ2μmのAuメッキ層とが順次被着された。また、基体1内部の内部配線は、貫通導体から成る電気接続部、いわゆるスルーホールによって形成された。このスルーホールについても配線導体と同様にMo−Mn粉末からなるメタライズ導体で成形された。   In addition, a wiring conductor for electrically connecting the light emitting element 3 and the external electric circuit board through an internal wiring formed inside the base body 1 is formed at a portion where the light emitting element 3 of the mounting portion 1a is mounted. did. The wiring conductor was formed into a circular pad having a diameter of 0.1 mm by a metallized layer made of Mo—Mn powder, and a Ni plating layer having a thickness of 3 μm and an Au plating layer having a thickness of 2 μm were sequentially deposited on the surface thereof. . Further, the internal wiring inside the base body 1 was formed by an electrical connection portion made of a through conductor, that is, a so-called through hole. This through hole was also formed with a metallized conductor made of Mo-Mn powder in the same manner as the wiring conductor.

また、第1の反射部材2は、第1の内周面2aの最上端の直径が2.7mmで高さが1.5mmであり、第1の内周面2aの下端の高さ(基体1上面に接合される下面から第1の内周面2aの傾斜面の下辺までの高さ)が0.1mmであった。さらに、基体1の上側主面に直交する断面における第1の内周面2aの形状が、第1の内周面2aの下端からの高さをZ、内寸法の半径をrとしたときに
=(cr )/[1+{1−(1+k)c }1/2]
で表される曲面とし、定数kを−1.053、曲率cを1.818とした。また、第1の内周面2aの算術平均粗さRaは、0.1μmとした。
The first reflecting member 2 has a diameter of the uppermost end of the first inner peripheral surface 2a of 2.7 mm and a height of 1.5 mm, and the lower end of the first inner peripheral surface 2a (the upper surface of the base 1). The height from the lower surface joined to the lower side of the inclined surface of the first inner peripheral surface 2a) was 0.1 mm. Further, the shape of the first inner peripheral surface 2a in the cross section orthogonal to the upper main surface of the base body 1 is such that the height from the lower end of the first inner peripheral surface 2a is Z 1 and the radius of the inner dimension is r 1 . Sometimes Z 1 = (cr 1 2 ) / [1+ {1- (1 + k) c 2 r 1 2 } 1/2 ]
The constant k is -1.053, and the curvature c is 1.818. The arithmetic average roughness Ra of the first inner peripheral surface 2a was 0.1 μm.

また、第2の反射部材4は、第2の内周面4aの最上端の直径が16.1mmで高さが3.5mmであり、第2の内周面4aの下端の高さ(基体1上面に接合される下面から第2の内周面4aの傾斜面の下辺までの高さ)が0.18mmであった。さらに、基体1の上側主面に直交する断面における第2の内周面4aの形状が、第2の内周面4aの下端からの高さをZ、内寸法の半径をrとしたときに
=(cr )/[1+{1−(1+k)c }1/2]
で表される曲面とし、定数kを−2.3、曲率cを0.143とした。また、第2の内周面4aの算術平均粗さRaは、0.1μmとした。
The second reflecting member 4 has a diameter of the uppermost end of the second inner peripheral surface 4a of 16.1 mm and a height of 3.5 mm. The height of the lower end of the second inner peripheral surface 4a (the upper surface of the base 1) The height from the lower surface joined to the lower side of the inclined surface of the second inner peripheral surface 4a) was 0.18 mm. Further, the shape of the second inner peripheral surface 4a in the cross section orthogonal to the upper main surface of the substrate 1 is such that the height from the lower end of the second inner peripheral surface 4a is Z 2 and the radius of the inner dimension is r 2 . Sometimes Z 2 = (cr 2 2 ) / [1+ {1- (1 + k) c 2 r 2 2 } 1/2 ]
The constant k is -2.3 and the curvature c is 0.143. The arithmetic average roughness Ra of the second inner peripheral surface 4a was 0.1 μm.

次に、基体1上面に形成された配線導体にAu−Snバンプを設けておき、このAu−Snバンプを介して発光素子3を配線導体に接合するとともに、第1の反射部材2を載置部1aを取り囲むように、第2の反射部材4を第1の反射部材2を取り囲むように基体1の外周部に樹脂接着剤で接合した。   Next, an Au—Sn bump is provided on the wiring conductor formed on the upper surface of the substrate 1, and the light emitting element 3 is bonded to the wiring conductor via the Au—Sn bump, and the first reflecting member 2 is mounted. The second reflecting member 4 was joined to the outer periphery of the base 1 with a resin adhesive so as to surround the first reflecting member 2 so as to surround the portion 1a.

そして、ディスペンサーを用いて、透明なシリコーン樹脂から成る透光性部材6を第1の反射部材2、および第2の反射部材4の内部に注入し、オーブンで熱硬化した。   And using the dispenser, the translucent member 6 which consists of a transparent silicone resin was inject | poured into the inside of the 1st reflective member 2 and the 2nd reflective member 4, and was thermosetted in oven.

さらに、透光性部材6には、発光素子3の光により励起され、赤色発光、緑色発光、青色発光を行なう3種類の蛍光体を含有した、直径が5mm、厚みが0.9mmの板状の第1の波長変換層5を発光素子3から高さ2.5mmの位置に第1の反射部材2を覆うように設置した。   Further, the translucent member 6 is a plate having a diameter of 5 mm and a thickness of 0.9 mm, which contains three kinds of phosphors that are excited by the light of the light emitting element 3 and emit red light, green light, and blue light. The 1st wavelength conversion layer 5 was installed in the position of height 2.5mm from the light emitting element 3 so that the 1st reflective member 2 might be covered.

その後、第1の波長変換層5上にディスペンサーを用いて透光性部材6を被覆し、オーブンで熱硬化した。   Thereafter, the translucent member 6 was coated on the first wavelength conversion layer 5 using a dispenser, and thermally cured in an oven.

また、比較用の発光装置として、図18に示すような構造について上記同様な発光装置とをそれぞれ作製した。   Further, as comparative light-emitting devices, light-emitting devices similar to those described above with respect to the structure shown in FIG. 18 were produced.

このようにして作製した発光装置について、それぞれ20mAの電流を印加し、点灯させて全光束量を測定した。その結果、図18の構造の比較例としての発光装置の発光効率は8.5(lm/W)であったのに対し、外形寸法は同様で図1の構造の発光装置の発光効率は27(lm/W)であった。本発明の発光装置によって、発光効率において3.2倍もの効果が得られることが判明し、本発明の発光装置の優位性を確認することを確認できた。   With respect to the light-emitting devices thus manufactured, a current of 20 mA was applied to each of the light-emitting devices so that the light-emitting devices were turned on to measure the total luminous flux. As a result, the luminous efficiency of the light emitting device as a comparative example of the structure of FIG. 18 was 8.5 (lm / W), whereas the outer dimensions were the same, and the luminous efficiency of the light emitting device of the structure of FIG. / W). It has been found that the light emitting device of the present invention can provide an effect as much as 3.2 times in luminous efficiency, confirming the superiority of the light emitting device of the present invention.

なお、本発明は以上の実施の形態の例および実施例に限定されず、本発明の要旨を逸脱しない範囲内であれば種々の変更を行なうことは何等支障ない。   It should be noted that the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the scope of the present invention.

本発明の第一の発明の発光装置の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the light-emitting device of 1st invention of this invention. 本発明の第一の発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of 1st invention of this invention. (a)(b)はそれぞれ、本発明の第二の発明の発光装置の実施の形態の一例を示す、異なる位置における断面図である。(A) (b) is sectional drawing in a different position which shows an example of embodiment of the light-emitting device of 2nd invention of this invention, respectively. 本発明の第二の発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of 2nd invention of this invention. 本発明の第一または第二の発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of 1st or 2nd invention of this invention. 本発明の第一または第二の発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of 1st or 2nd invention of this invention. 本発明の第一または第二の発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of 1st or 2nd invention of this invention. 本発明の第一または第二の発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of 1st or 2nd invention of this invention. 本発明の第一または第二の発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of 1st or 2nd invention of this invention. 本発明の第一または第二の発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of 1st or 2nd invention of this invention. 本発明の第一または第二の発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of 1st or 2nd invention of this invention. 本発明の第一または第二の発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of 1st or 2nd invention of this invention. 本発明の第一または第二の発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of 1st or 2nd invention of this invention. 本発明の照明装置の実施の形態の一例を示す平面図である。It is a top view which shows an example of embodiment of the illuminating device of this invention. 図14の照明装置の断面図である。FIG. 15 is a cross-sectional view of the lighting device of FIG. 本発明の照明装置の実施の形態の他の例を示す平面図である。It is a top view which shows the other example of embodiment of the illuminating device of this invention. 図16の照明装置の断面図である。FIG. 17 is a cross-sectional view of the illumination device of FIG. 従来の発光装置の断面図である。It is sectional drawing of the conventional light-emitting device.

符号の説明Explanation of symbols

1:基体
1a:載置部
2:第1の反射部材
3:発光素子
4:第2の反射部材
4b:第2の波長変換層
5:第1の波長変換層
6:透光性部材
1: Base 1a: Placement part 2: First reflecting member 3: Light emitting element
4: 2nd reflective member 4b: 2nd wavelength conversion layer 5: 1st wavelength conversion layer 6: Translucent member

Claims (9)

上側主面に発光素子の載置部が形成された基体と、該基体の上側主面に前記載置部を取り囲むように取着された、内周面が光反射面とされた枠状の第1の反射部材と、前記基体の上側主面に前記第1の反射部材を取り囲むように取着された、内周面が光反射面とされた枠状の第2の反射部材と、前記載置部に載置された前記発光素子と、前記第2の反射部材の内側に前記発光素子および前記第1の反射部材を覆うように設けられた透光性部材と、前記発光素子の上方に位置する前記透光性部材の内部または表面に前記第1および第2の反射部材と間隔を開けて設けられた、前記発光素子が発光する光の波長を変換する第1の波長変換層とを具備していることを特徴とする発光装置。 A base having a light emitting element mounting portion formed on the upper main surface, and a frame-like shape in which the inner peripheral surface is a light reflecting surface attached to the upper main surface of the base so as to surround the mounting portion. A first reflecting member, a frame-like second reflecting member attached to an upper main surface of the base so as to surround the first reflecting member, and having an inner peripheral surface as a light reflecting surface; The light-emitting element placed on the placement unit, a translucent member provided inside the second reflective member so as to cover the light-emitting element and the first reflective member, and above the light-emitting element A first wavelength conversion layer for converting a wavelength of light emitted from the light emitting element, which is provided inside or on the surface of the translucent member located at a distance from the first and second reflecting members; A light-emitting device comprising: 平板状の基体と、該基体の上側主面に接合され、上面に発光素子の載置部が形成されるとともに内周面が光反射面とされた側壁部が前記載置部を取り囲むように形成された第1の反射部材と、前記基体の上側主面に前記第1の反射部材を取り囲むように取着された、内周面が光反射面とされた枠状の第2の反射部材と、前記載置部に載置された前記発光素子と、前記第2の反射部材の内側に、前記発光素子および前記第1の反射部材を覆うように設けられた透光性部材と、前記発光素子の上方に位置する前記透光性部材の内部または表面に前記第1および第2の反射部材と間隔を開けて設けられた、前記発光素子が発光する光の波長を変換する第1の波長変換層とを具備していることを特徴とする発光装置。 A flat substrate and a side wall portion which is bonded to the upper main surface of the substrate and has a light emitting element mounting portion formed on the upper surface and whose inner peripheral surface is a light reflecting surface surround the mounting portion. The formed first reflecting member, and a frame-like second reflecting member attached to the upper main surface of the base so as to surround the first reflecting member and having an inner peripheral surface as a light reflecting surface And the light-emitting element placed on the mounting portion, the translucent member provided inside the second reflective member so as to cover the light-emitting element and the first reflective member, and A first light for converting the wavelength of light emitted from the light emitting element, which is provided inside or on the surface of the translucent member located above the light emitting element and spaced from the first and second reflecting members. A light emitting device comprising a wavelength conversion layer. 前記第2の反射部材は、その内周面の表面に前記発光素子が発光する光の波長を変換する第2の波長変換層が設けられていることを特徴とする請求項1または請求項2に記載の発光装置。 The second reflection member is provided with a second wavelength conversion layer for converting a wavelength of light emitted from the light emitting element on a surface of an inner peripheral surface of the second reflection member. The light emitting device according to 1. 前記第2の波長変換層は、その厚さが上端部から下端部にかけて漸次厚くなるように設けられていることを特徴とする請求項1乃至請求項3のいずれかに記載の発光装置。 4. The light emitting device according to claim 1, wherein the second wavelength conversion layer is provided so that a thickness thereof gradually increases from an upper end portion to a lower end portion. 前記第2の波長変換層は、前記発光素子が発光する光の波長を変換する蛍光体を含有して成り、該蛍光体の密度が上端部から下端部にかけて漸次高くなっていることを特徴とする請求項1乃至請求項4のいずれかに記載の発光装置。 The second wavelength conversion layer contains a phosphor that converts the wavelength of light emitted from the light emitting element, and the density of the phosphor gradually increases from the upper end to the lower end. The light emitting device according to any one of claims 1 to 4. 前記第2の波長変換層は、その内側表面に複数の凹部または凸部が設けられていることを特徴とする請求項1乃至請求項5のいずれかに記載の発光装置。 The light emitting device according to claim 1, wherein the second wavelength conversion layer has a plurality of concave portions or convex portions on an inner surface thereof. 前記載置部は、高さが前記第1の反射部材の前記内周面の下端よりも高くなるように突出していることを特徴とする請求項1乃至請求項6のいずれかに記載の発光装置。 The light emitting device according to any one of claims 1 to 6, wherein the mounting portion protrudes so that a height is higher than a lower end of the inner peripheral surface of the first reflecting member. apparatus. 前記第1の波長変換層は、その外周部が前記発光素子の端部とその端部の反対側の前記第1の反射部材の前記内周面の上端とを通る直線よりも前記第2の反射部材側に位置していることを特徴とする請求項1乃至請求項7のいずれかに記載の発光装置。 The first wavelength conversion layer has an outer peripheral portion that is more than a straight line passing through an end portion of the light emitting element and an upper end of the inner peripheral surface of the first reflecting member on the opposite side of the end portion. The light-emitting device according to claim 1, wherein the light-emitting device is located on a reflecting member side. 請求項1乃至請求項8のいずれかに記載の発光装置を所定の配置となるように設置したことを特徴とする照明装置。 9. A lighting device comprising the light emitting device according to claim 1 installed in a predetermined arrangement.
JP2005085369A 2004-06-28 2005-03-24 Light emitting device and illumination system Pending JP2006049814A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005085369A JP2006049814A (en) 2004-06-28 2005-03-24 Light emitting device and illumination system
KR1020050056282A KR100752586B1 (en) 2004-06-28 2005-06-28 Light-emitting apparatus and illuminating apparatus
CNB2005100791757A CN100411207C (en) 2004-06-28 2005-06-28 Light emitting device and lighting device
US11/168,887 US20060034084A1 (en) 2004-06-28 2005-06-28 Light-emitting apparatus and illuminating apparatus
DE102005030128A DE102005030128B4 (en) 2004-06-28 2005-06-28 Light-emitting device and lighting device
TW094121703A TWI267211B (en) 2004-06-28 2005-06-28 Light-emitting apparatus and illuminating apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004190459 2004-06-28
JP2005085369A JP2006049814A (en) 2004-06-28 2005-03-24 Light emitting device and illumination system

Publications (1)

Publication Number Publication Date
JP2006049814A true JP2006049814A (en) 2006-02-16

Family

ID=36027970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005085369A Pending JP2006049814A (en) 2004-06-28 2005-03-24 Light emitting device and illumination system

Country Status (1)

Country Link
JP (1) JP2006049814A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199011A (en) * 2007-02-15 2008-08-28 Samsung Electro Mech Co Ltd Package board and method for manufacturing thereof
JP2008205170A (en) * 2007-02-20 2008-09-04 Nec Lighting Ltd Light-emitting semiconductor device
WO2009006599A2 (en) * 2007-07-03 2009-01-08 Conner Arlie R Light emitting diode illumination system
JP2009071254A (en) * 2007-08-23 2009-04-02 Panasonic Electric Works Co Ltd Light-emitting device
US7846391B2 (en) 2006-05-22 2010-12-07 Lumencor, Inc. Bioanalytical instrumentation using a light source subsystem
US7898665B2 (en) 2007-08-06 2011-03-01 Lumencor, Inc. Light emitting diode illumination system
WO2011024502A1 (en) * 2009-08-28 2011-03-03 京セラ株式会社 Light emitting device
US8242462B2 (en) 2009-01-23 2012-08-14 Lumencor, Inc. Lighting design of high quality biomedical devices
TWI386593B (en) * 2010-11-01 2013-02-21 Hon Hai Prec Ind Co Ltd Led ceiling lamp
US8389957B2 (en) 2011-01-14 2013-03-05 Lumencor, Inc. System and method for metered dosage illumination in a bioanalysis or other system
US8466436B2 (en) 2011-01-14 2013-06-18 Lumencor, Inc. System and method for metered dosage illumination in a bioanalysis or other system
WO2013108738A1 (en) * 2012-01-17 2013-07-25 京セラ株式会社 Light-emitting device
US8967811B2 (en) 2012-01-20 2015-03-03 Lumencor, Inc. Solid state continuous white light source
US9217561B2 (en) 2012-06-15 2015-12-22 Lumencor, Inc. Solid state light source for photocuring
JP2018014443A (en) * 2016-07-22 2018-01-25 スタンレー電気株式会社 Light emitting device
JP2019165122A (en) * 2018-03-20 2019-09-26 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
CN112820205A (en) * 2019-11-15 2021-05-18 成都辰显光电有限公司 Display panel, preparation method thereof and display device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150965A (en) * 1998-11-11 2000-05-30 Matsushita Electronics Industry Corp Semiconductor light emitting device
JP2000216434A (en) * 1996-12-27 2000-08-04 Nichia Chem Ind Ltd Light emitting diode and its forming method
JP2001298216A (en) * 2000-04-12 2001-10-26 Matsushita Electric Ind Co Ltd Surface-mounting semiconductor light-emitting device
JP2002324918A (en) * 2001-02-07 2002-11-08 Patent Treuhand Ges Elektr Gluehlamp Mbh Semiconductor module equipped with reflector
JP2002353513A (en) * 2001-05-25 2002-12-06 Rohm Co Ltd Chip-type light-emitting device
JP2003142737A (en) * 2001-08-22 2003-05-16 Nichia Chem Ind Ltd Light emitting device
JP2003172737A (en) * 2001-12-07 2003-06-20 Toyo Kohan Co Ltd Solid support body, substrate, biosensor, and analysis method for biological substance using them
JP2003298117A (en) * 2002-04-05 2003-10-17 Toyoda Gosei Co Ltd Light emitting diode
JP2004056075A (en) * 2002-05-31 2004-02-19 Stanley Electric Co Ltd Light-emitting device and method of manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216434A (en) * 1996-12-27 2000-08-04 Nichia Chem Ind Ltd Light emitting diode and its forming method
JP2000150965A (en) * 1998-11-11 2000-05-30 Matsushita Electronics Industry Corp Semiconductor light emitting device
JP2001298216A (en) * 2000-04-12 2001-10-26 Matsushita Electric Ind Co Ltd Surface-mounting semiconductor light-emitting device
JP2002324918A (en) * 2001-02-07 2002-11-08 Patent Treuhand Ges Elektr Gluehlamp Mbh Semiconductor module equipped with reflector
JP2002353513A (en) * 2001-05-25 2002-12-06 Rohm Co Ltd Chip-type light-emitting device
JP2003142737A (en) * 2001-08-22 2003-05-16 Nichia Chem Ind Ltd Light emitting device
JP2003172737A (en) * 2001-12-07 2003-06-20 Toyo Kohan Co Ltd Solid support body, substrate, biosensor, and analysis method for biological substance using them
JP2003298117A (en) * 2002-04-05 2003-10-17 Toyoda Gosei Co Ltd Light emitting diode
JP2004056075A (en) * 2002-05-31 2004-02-19 Stanley Electric Co Ltd Light-emitting device and method of manufacturing the same

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9063007B2 (en) 2006-05-22 2015-06-23 Lumencor, Inc. Bioanalytical instrumentation using a light source subsystem
US7846391B2 (en) 2006-05-22 2010-12-07 Lumencor, Inc. Bioanalytical instrumentation using a light source subsystem
US8728399B2 (en) 2006-05-22 2014-05-20 Lumencor, Inc. Bioanalytical instrumentation using a light source subsystem
US8673218B2 (en) 2006-05-22 2014-03-18 Lumencor, Inc. Bioanalytical instrumentation using a light source subsystem
JP2012049577A (en) * 2007-02-15 2012-03-08 Samsung Electro-Mechanics Co Ltd Package substrate and method for manufacturing thereof
US7903410B2 (en) 2007-02-15 2011-03-08 Samsung Electro-Mechanics Co., Ltd. Package board and method for manufacturing thereof
JP2008199011A (en) * 2007-02-15 2008-08-28 Samsung Electro Mech Co Ltd Package board and method for manufacturing thereof
JP2008205170A (en) * 2007-02-20 2008-09-04 Nec Lighting Ltd Light-emitting semiconductor device
WO2009006599A2 (en) * 2007-07-03 2009-01-08 Conner Arlie R Light emitting diode illumination system
WO2009006599A3 (en) * 2007-07-03 2009-04-02 Arlie R Conner Light emitting diode illumination system
US7709811B2 (en) 2007-07-03 2010-05-04 Conner Arlie R Light emitting diode illumination system
US8493564B2 (en) 2007-08-06 2013-07-23 Lumencor, Inc. Light emitting diode illumination system
US8625097B2 (en) 2007-08-06 2014-01-07 Lumencor, Inc. Light emitting diode illumination system
US9062832B2 (en) 2007-08-06 2015-06-23 Lumencor, Inc. Light emitting diode illumination system
US9068703B2 (en) 2007-08-06 2015-06-30 Lumencor, Inc. Light emitting diode illumination system
US8279442B2 (en) 2007-08-06 2012-10-02 Lumencor, Inc. Light emitting diode illumination system
US7898665B2 (en) 2007-08-06 2011-03-01 Lumencor, Inc. Light emitting diode illumination system
US9574722B2 (en) 2007-08-06 2017-02-21 Lumencor, Inc. Light emitting diode illumination system
US8629982B2 (en) 2007-08-06 2014-01-14 Lumencor, Inc. Light emitting diode illumination system
US8098375B2 (en) 2007-08-06 2012-01-17 Lumencor, Inc. Light emitting diode illumination system
US9395055B2 (en) 2007-08-06 2016-07-19 Lumencor, Inc. Light emitting diode illumination system
JP2009071254A (en) * 2007-08-23 2009-04-02 Panasonic Electric Works Co Ltd Light-emitting device
US8309940B2 (en) 2009-01-23 2012-11-13 Lumencor, Inc. Lighting design of high quality biomedical devices
US8242462B2 (en) 2009-01-23 2012-08-14 Lumencor, Inc. Lighting design of high quality biomedical devices
US8698101B2 (en) 2009-01-23 2014-04-15 Lumencor, Inc. Lighting design of high quality biomedical devices
US8263949B2 (en) 2009-01-23 2012-09-11 Lumencor, Inc. Lighting design of high quality biomedical devices
US8258487B1 (en) 2009-01-23 2012-09-04 Lumencor, Inc. Lighting design of high quality biomedical devices
WO2011024502A1 (en) * 2009-08-28 2011-03-03 京セラ株式会社 Light emitting device
TWI386593B (en) * 2010-11-01 2013-02-21 Hon Hai Prec Ind Co Ltd Led ceiling lamp
US8466436B2 (en) 2011-01-14 2013-06-18 Lumencor, Inc. System and method for metered dosage illumination in a bioanalysis or other system
US9658160B2 (en) 2011-01-14 2017-05-23 Lumencor, Inc. System and method for controlled intensity illumination in a bioanalysis or other system
US9335266B2 (en) 2011-01-14 2016-05-10 Lumencor, Inc. System and method for controlled intensity illumination in a bioanalysis or other system
US8389957B2 (en) 2011-01-14 2013-03-05 Lumencor, Inc. System and method for metered dosage illumination in a bioanalysis or other system
WO2013108738A1 (en) * 2012-01-17 2013-07-25 京セラ株式会社 Light-emitting device
US8967811B2 (en) 2012-01-20 2015-03-03 Lumencor, Inc. Solid state continuous white light source
US9103528B2 (en) 2012-01-20 2015-08-11 Lumencor, Inc Solid state continuous white light source
US8967846B2 (en) 2012-01-20 2015-03-03 Lumencor, Inc. Solid state continuous white light source
US9642515B2 (en) 2012-01-20 2017-05-09 Lumencor, Inc. Solid state continuous white light source
US9217561B2 (en) 2012-06-15 2015-12-22 Lumencor, Inc. Solid state light source for photocuring
JP2018014443A (en) * 2016-07-22 2018-01-25 スタンレー電気株式会社 Light emitting device
JP2019165122A (en) * 2018-03-20 2019-09-26 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
CN112820205A (en) * 2019-11-15 2021-05-18 成都辰显光电有限公司 Display panel, preparation method thereof and display device
CN112820205B (en) * 2019-11-15 2023-01-31 成都辰显光电有限公司 Display panel, preparation method thereof and display device

Similar Documents

Publication Publication Date Title
JP4675906B2 (en) Light-emitting element mounting substrate, light-emitting element storage package, light-emitting device, and lighting device
KR100620844B1 (en) Light-emitting apparatus and illuminating apparatus
KR100752586B1 (en) Light-emitting apparatus and illuminating apparatus
JP2006049814A (en) Light emitting device and illumination system
JP3898721B2 (en) Light emitting device and lighting device
JP2006237264A (en) Light emitting device and lighting apparatus
JP3921474B2 (en) Light emitting device and lighting device
JP2005340472A (en) Light-emitting device and illuminator
JP2008159986A (en) Light-emitting device and illuminator
JP2007123576A (en) Light emitting device and illumination apparatus
JP4938255B2 (en) Light emitting element storage package, light source, and light emitting device
JP4948841B2 (en) Light emitting device and lighting device
JP2005210042A (en) Light emitting apparatus and illumination apparatus
JP2006093399A (en) Light-emitting device, its manufacturing method and luminaire
JP2006066657A (en) Light emitting device and lighting device
JP2006295230A (en) Light emitting device and lighting apparatus
JP2005039194A (en) Package for housing light emitting element, light emitting device, and luminair
JP4845370B2 (en) Light emitting device and lighting device
JP4557613B2 (en) Light emitting element storage package, light emitting device, and lighting device
JP2005310911A (en) Package for housing light emitting element, light emitting device, and lighting apparatus
JP4511238B2 (en) Light emitting element storage package, light emitting device, and lighting device
JP4593974B2 (en) Light emitting device and lighting device
JP2007208292A (en) Light-emitting device
JP4637623B2 (en) Light emitting device and lighting device
JP4601404B2 (en) Light emitting device and lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120221