JP2006108950A - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
JP2006108950A
JP2006108950A JP2004290870A JP2004290870A JP2006108950A JP 2006108950 A JP2006108950 A JP 2006108950A JP 2004290870 A JP2004290870 A JP 2004290870A JP 2004290870 A JP2004290870 A JP 2004290870A JP 2006108950 A JP2006108950 A JP 2006108950A
Authority
JP
Japan
Prior art keywords
pixel
light
solid
defective
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004290870A
Other languages
Japanese (ja)
Inventor
Koichi Tanigawa
公一 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004290870A priority Critical patent/JP2006108950A/en
Publication of JP2006108950A publication Critical patent/JP2006108950A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging apparatus for correcting pixels of a white spot by taking into account an operating temperature and an exposure time of a solid-state image sensor and correcting the white spot without degrading the resolution of an image, and to provide a correction method of a pixel signal. <P>SOLUTION: A white spot detection correction circuit 6 detects the white spot on the basis of the pixel signal outputted from the solid-state image sensor 3 by utilizing a sensor resulting dark current that is a difference between a pixel signal of a light shield pixel and a pixel signal of a vertical transfer register, calculates the sensor resulting dark current in a light shield state, calculates a ratio of the pixel signal of the white spot to the sensor resulting dark current and stores an address of the white spot and the ratio to a white spot ROM 9 in cross-reference with each other. The white spot detection correction circuit 6 multiplies the stored ratio with the sensor resulting dark current of the solid-state image sensor 3 in the operating state to calculate a defective component of the pixel signal of the white spot, and eliminates the defective component of the pixel signal of the white spot by subtracting the defective component from the pixel signal of the white spot to correct the pixel signal of the white spot. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体撮像素子の欠陥画素の画素信号を補正する撮像装置および画素信号の補正方法に関する。   The present invention relates to an image pickup apparatus that corrects a pixel signal of a defective pixel of a solid-state image sensor and a pixel signal correction method.

ビデオカメラやデジタルカメラのような撮像装置により撮影された画像には、固体撮像素子に起因する様々な画像欠陥が現れる。画像欠陥には、画像内の同位置に現れる固定パターン雑音(fixed pattern noise;FPN)があり、良く知られる固定パターン雑音としては、白点(白傷)がある。白点は、画素(光電変換素子、センサともいう)を構成する半導体が金属イオンよる汚染を受けたり、半導体の結晶性がダメージを受けたときに、暗電流が発生し、周辺画素に対して信号出力が大きくなることにより発生する。白点は、画像内では、白、赤、青等の明るい点として認識される。   In an image taken by an imaging device such as a video camera or a digital camera, various image defects due to the solid-state imaging device appear. An image defect includes fixed pattern noise (FPN) appearing at the same position in an image, and a well-known fixed pattern noise includes a white spot (white scratch). A white point indicates that when a semiconductor constituting a pixel (also referred to as a photoelectric conversion element or a sensor) is contaminated by metal ions or the crystallinity of the semiconductor is damaged, dark current is generated and This occurs when the signal output increases. White spots are recognized as bright spots such as white, red, and blue in the image.

従来の撮像装置では、白点を検出し、そのアドレスおよび画素値をあらかじめ記憶しておき、固体撮像素子から出力された白点の画素値から記憶された画素値を減算したり、白点のアドレスをあらかじめ記憶しておき、白点の画素値を周辺画素の画素値の平均値等で置き換えることにより白点を取り除いていた。
また、白点を発生させる暗電流は、温度に依存し、温度の上昇とともに上昇する。このため、従来の撮像装置では、固体撮像素子の動作温度を検出し、検出された温度に応じて白点の画素を補正していた。固体撮像素子の動作温度の検出方法としては、例えば固体撮像素子により出力される画素信号に基づいて演算により求めていた(例えば、特許文献1および2参照)。
特開平9−23358号公報 特開平11−317516号公報
In a conventional imaging device, a white point is detected and its address and pixel value are stored in advance, and the stored pixel value is subtracted from the pixel value of the white point output from the solid-state image sensor, or the white point The address is stored in advance, and the white point is removed by replacing the pixel value of the white point with the average value of the pixel values of surrounding pixels.
Further, the dark current that generates a white spot depends on the temperature, and increases as the temperature increases. For this reason, in the conventional imaging device, the operating temperature of the solid-state imaging device is detected, and white point pixels are corrected according to the detected temperature. As a method for detecting the operating temperature of the solid-state imaging device, for example, it is obtained by calculation based on pixel signals output from the solid-state imaging device (see, for example, Patent Documents 1 and 2).
Japanese Patent Laid-Open No. 9-23358 JP 11-317516 A

しかしながら、従来の撮像装置では、固体撮像素子の温度に応じて白点の画素を補正しているものの、固体撮像素子の露光時間に関しては何ら考慮されていなかった。白点を発生させる暗電流は、露光時間にも依存し、露光時間の増大とともに増大する。このため、固体撮像素子の露光時間の変化に応じて白点の画素を補正する補正方法が望まれる。
また、従来の撮像装置では、白点の画素の画素値を周辺画素の画素値に基づいて置き換える場合には、画像の解像度が低下し、特に、エッジ部分が失われるため、ぼやけた画像になってしまうといった問題があった。
固体撮像素子の製造プロセスにおいては、異物の低減等が図られているものの、上記のような固体撮像素子の白点を除去することは困難である。
However, in the conventional imaging device, although white point pixels are corrected according to the temperature of the solid-state imaging device, no consideration is given to the exposure time of the solid-state imaging device. The dark current that generates a white spot depends on the exposure time and increases with an increase in the exposure time. For this reason, a correction method for correcting white point pixels in accordance with a change in exposure time of the solid-state imaging device is desired.
Further, in the conventional imaging device, when the pixel value of the white point pixel is replaced based on the pixel value of the surrounding pixels, the resolution of the image is lowered, and in particular, the edge portion is lost, resulting in a blurred image. There was a problem such as.
In the manufacturing process of the solid-state imaging device, although the reduction of foreign matters is attempted, it is difficult to remove the white spots of the solid-state imaging device as described above.

本発明は、このような事情に鑑みなされたものであり、その目的は、固体撮像素子の動作温度および露光時間を考慮して白点の画素を補正するとともに、画像の解像度を低下させることなく、白点を補正する撮像装置および画素信号の補正方法を提供するにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to correct white point pixels in consideration of the operating temperature and exposure time of the solid-state imaging device, and without reducing the image resolution. An object of the present invention is to provide an imaging device for correcting a white point and a method for correcting a pixel signal.

上記目的を達成するため、本発明の第1の撮像装置は、画素信号を出力する固体撮像素子と、前記固体撮像素子により出力された画素信号を補正する補正手段とを備え、前記固体撮像素子は、入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素とともに行列を構成するように前記複数の有効画素の周囲に配列され、遮光膜で覆われた複数の遮光画素と、前記複数の有効画素の画素信号を取り出す有効画素転送部および前記複数の遮光画素の画像信号を取り出す遮光画素転送部の少なくとも1つの画素転送部をそれぞれ有し、前記複数の有効画素および複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効/遮光画素垂直転送レジスタとを有する有効/遮光画素部と、前記有効/遮光画素部の周囲に1列または行列状に配列され、画素値が0の画素信号を垂直方向に転送する1または複数の無効画素垂直転送レジスタと、前記複数の有効/遮光画素垂直転送レジスタおよび前記1または複数の無効画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する撮像装置であって、前記補正手段は、前記固体撮像素子を遮光状態で動作させたときに前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送されて前記固体撮像素子により出力された画素信号を減算したセンサ起因暗電流を用い、前記固体撮像素子を遮光状態で動作させたときに前記固体撮像素子により出力された画素信号に基づいて検出された前記固体撮像素子の欠陥画素のアドレスと、前記アドレスに対応する欠陥画素の画素信号と前記センサ起因暗電流との比率とを対応付けて記憶する欠陥画素記憶手段と、前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送されて前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算するセンサ起因暗電流演算手段と、前記欠陥画素記憶手段に記憶された欠陥画素のアドレスおよび対応する比率を読み出し、前記センサ起因暗電流演算手段により演算されたセンサ起因暗電流に前記比率を乗算し、前記欠陥画素の画素信号の欠陥成分を演算する欠陥成分演算手段と、前記固体撮像装置により出力された前記アドレスの欠陥画素の画素信号から前記欠陥成分演算手段により演算された対応する欠陥画素の画素信号の欠陥成分を減算し、前記固体撮像装置により出力された欠陥画素の画素信号から欠陥成分を除去する欠陥成分除去手段とを有することを特徴とする。
また、本発明の第2の撮像装置は、画素信号を出力する固体撮像素子と、前記固体撮像素子により出力された画素信号を補正する補正手段とを備え、前記固体撮像素子は、入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素とともに行列を構成するように前記複数の有効画素の周囲に配列され、遮光膜で覆われた複数の遮光画素と、前記複数の有効画素の画素信号を取り出す有効画素転送部および前記複数の遮光画素の画像信号を取り出す遮光画素転送部の少なくとも1つの画素転送部をそれぞれ有し、前記複数の有効画素および複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効/遮光画素垂直転送レジスタとを有する有効/遮光画素部と、前記有効/遮光画素部の周囲に1列または行列状に配列され、画素値が0の画素信号を垂直方向に転送する1または複数の無効画素垂直転送レジスタと、前記複数の有効/遮光画素垂直転送レジスタおよび前記1または複数の無効画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する固体撮像素子であって、前記補正手段は、前記固体撮像素子を遮光状態で動作させたとき、前記固体撮像素子により出力された画素信号に基づいて前記固体撮像素子の欠陥画素を検出する欠陥画素検出手段と、前記固体撮像素子を遮光状態で動作させたとき、前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送され前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算する第1のセンサ起因暗電流演算手段と、前記欠陥画素検出手段により検出された欠陥画素の画素信号と前記第1のセンサ起因暗電流演算手段により演算されたセンサ起因暗電流との比率を演算する比率演算手段と、前記欠陥画素検出手段により検出された欠陥画素のアドレスと前記比率演算手段により演算された前記アドレスに対応する欠陥画素の比率とを対応付けて記憶する欠陥画素記憶手段と、前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送され前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算する第2のセンサ起因暗電流演算手段と、前記欠陥画素記憶手段に記憶された欠陥画素のアドレスおよび対応する比率を読み出し、前記第2のセンサ起因暗電流演算手段により演算されたセンサ起因暗電流に前記比率を乗算し、前記欠陥画素の画素信号の欠陥成分を演算する欠陥成分演算手段と、前記固体撮像装置により出力された前記アドレスの欠陥画素の画素信号から前記欠陥成分演算手段により演算された対応する欠陥画素の画素信号の欠陥成分を減算し、前記固体撮像装置により出力された欠陥画素の画素信号から欠陥成分を除去する欠陥成分除去手段とを有することを特徴とする。
また、本発明の第1の画素信号の補正方法は、入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素とともに行列を構成するように前記複数の有効画素の周囲に配列され、遮光膜で覆われた複数の遮光画素と、前記複数の有効画素の画素信号を取り出す有効画素転送部および前記複数の遮光画素の画像信号を取り出す遮光画素転送部の少なくとも1つの画素転送部をそれぞれ有し、前記複数の有効画素および複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効/遮光画素垂直転送レジスタとを有する有効/遮光画素部と、前記有効/遮光画素部の周囲に1列または行列状に配列され、画素値が0の画素信号を垂直方向に転送する1または複数の無効画素垂直転送レジスタと、前記複数の有効/遮光画素垂直転送レジスタおよび前記1または複数の無効画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを備えた固体撮像素子により出力された画素信号を補正する画素信号の補正方法であって、前記固体撮像素子を遮光状態で動作させたとき、前記固体撮像素子により出力された画素信号に基づいて前記固体撮像素子の欠陥画素を検出する欠陥画素検出ステップと、前記固体撮像素子を遮光状態で動作させたとき、前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送され前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算する第1のセンサ起因暗電流演算ステップと、前記欠陥画素検出ステップで検出された欠陥画素の画素信号と前記第1のセンサ起因暗電流演算ステップで演算されたセンサ起因暗電流との比率を演算する比率演算ステップと、前記欠陥画素検出ステップで検出された欠陥画素のアドレスと前記比率演算ステップで演算された前記アドレスに対応する欠陥画素の比率とを対応付けて記憶する欠陥画素記憶ステップと、前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送され前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算する第2のセンサ起因暗電流演算ステップと、前記欠陥画素記憶ステップで記憶された欠陥画素のアドレスおよび対応する比率を読み出し、前記第2のセンサ起因暗電流演算ステップで演算されたセンサ起因暗電流に前記比率を乗算し、前記欠陥画素の画素信号の欠陥成分を演算する欠陥成分演算ステップと、前記固体撮像装置により出力された前記アドレスの欠陥画素の画素信号から前記欠陥成分演算ステップで演算された対応する欠陥画素の画素信号の欠陥成分を減算し、前記固体撮像装置により出力された欠陥画素の画素信号から欠陥成分を除去する欠陥成分除去ステップとを含むことを特徴とする。
また、本発明の第3の撮像装置は、画素信号を出力する固体撮像素子と、前記固体撮像素子により出力された画素信号を補正する補正手段とを備え、前記固体撮像装置は、入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素とともに行列を構成するように前記複数の有効画素の周囲に配列され、遮光膜で覆われた複数の遮光画素と、前記複数の有効画素の画素信号を取り出す有効画素転送部および前記複数の遮光画素の画像信号を取り出す遮光画素転送部の少なくとも1つの画素転送部をそれぞれ有し、前記複数の有効画素および複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効/遮光画素垂直転送レジスタとを有する有効/遮光画素部と、前記有効/遮光画素部の周囲に1行または行列状に配列され、画素値が0の画素信号を垂直方向に転送して前記有効/遮光画素垂直転送レジスタに転送する1または複数の無効画素垂直転送レジスタと、前記複数の有効/遮光画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する撮像装置であって、前記補正手段は、前記固体撮像素子を遮光状態で動作させたときに前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送されて前記固体撮像素子により出力された画素信号を減算したセンサ起因暗電流を用い、前記固体撮像素子を遮光状態で動作させたときに前記固体撮像素子により出力された画素信号に基づいて検出された前記固体撮像素子の欠陥画素のアドレスと、前記アドレスに対応する欠陥画素の画素信号と前記センサ起因暗電流との比率とを対応付けて記憶する欠陥画素記憶手段と、前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送されて前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算するセンサ起因暗電流演算手段と、前記欠陥画素記憶手段に記憶された欠陥画素のアドレスおよび対応する比率を読み出し、前記センサ起因暗電流演算手段により演算されたセンサ起因暗電流に前記比率を乗算し、前記欠陥画素の画素信号の欠陥成分を演算する欠陥成分演算手段と、前記固体撮像装置により出力された前記アドレスの欠陥画素の画素信号から前記欠陥成分演算手段により演算された対応する欠陥画素の画素信号の欠陥成分を減算し、前記固体撮像装置により出力された欠陥画素の画素信号から欠陥成分を除去する欠陥成分除去手段とを有することを特徴とする。
また、本発明の第4の撮像装置は、画素信号を出力する固体撮像素子と、前記固体撮像素子により出力された画素信号を補正する補正手段とを備え、前記固体撮像装置は、入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素とともに行列を構成するように前記複数の有効画素の周囲に配列され、遮光膜で覆われた複数の遮光画素と、前記複数の有効画素の画素信号を取り出す有効画素転送部および前記複数の遮光画素の画像信号を取り出す遮光画素転送部の少なくとも1つの画素転送部をそれぞれ有し、前記複数の有効画素および複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効/遮光画素垂直転送レジスタとを有する有効/遮光画素部と、前記有効/遮光画素部の周囲に1行または行列状に配列され、画素値が0の画素信号を垂直方向に転送して前記有効/遮光画素垂直転送レジスタに転送する1または複数の無効画素垂直転送レジスタと、前記複数の有効/遮光画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する撮像装置であって、前記補正手段は、前記固体撮像素子を遮光状態で動作させたとき、前記固体撮像素子により出力された画素信号に基づいて前記固体撮像素子の欠陥画素を検出する欠陥画素検出手段と、前記固体撮像素子を遮光状態で動作させたとき、前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送され前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算する第1のセンサ起因暗電流演算手段と、前記欠陥画素検出手段により検出された欠陥画素の画素信号と前記第1のセンサ起因暗電流演算手段により演算されたセンサ起因暗電流との比率を演算する比率演算手段と、前記欠陥画素検出手段により検出された欠陥画素のアドレスと前記比率演算手段により演算された前記アドレスに対応する欠陥画素の比率とを対応付けて記憶する欠陥画素記憶手段と、前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送され前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算する第2のセンサ起因暗電流演算手段と、前記欠陥画素記憶手段に記憶された欠陥画素のアドレスおよび対応する比率を読み出し、前記第2のセンサ起因暗電流演算手段により演算されたセンサ起因暗電流に前記比率を乗算し、前記欠陥画素の画素信号の欠陥成分を演算する欠陥成分演算手段と、前記固体撮像装置により出力された前記アドレスの欠陥画素の画素信号から前記欠陥成分演算手段により演算された対応する欠陥画素の画素信号の欠陥成分を減算し、前記固体撮像装置により出力された欠陥画素の画素信号から欠陥成分を除去する欠陥成分除去手段とを有することを特徴とする。
また、本発明の第2の画素信号の補正方法は、入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素とともに行列を構成するように前記複数の有効画素の周囲に配列され、遮光膜で覆われた複数の遮光画素と、前記複数の有効画素の画素信号を取り出す有効画素転送部および前記複数の遮光画素の画像信号を取り出す遮光画素転送部の少なくとも1つの画素転送部をそれぞれ有し、前記複数の有効画素および複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効/遮光画素垂直転送レジスタとを有する有効/遮光画素部と、前記有効/遮光画素部の周囲に1行または行列状に配列され、画素値が0の画素信号を垂直方向に転送して前記有効/遮光画素垂直転送レジスタに転送する1または複数の無効画素垂直転送レジスタと、前記複数の有効/遮光画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを備えた撮像装置により出力される画素信号を補正する画素信号の補正方法であって、前記固体撮像素子を遮光状態で動作させたとき、前記固体撮像素子により出力された画素信号に基づいて前記固体撮像素子の欠陥画素を検出する欠陥画素検出ステップと、前記固体撮像素子を遮光状態で動作させたとき、前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送され前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算する第1のセンサ起因暗電流演算ステップと、前記欠陥画素検出ステップで検出された欠陥画素の画素信号と前記第1のセンサ起因暗電流演算ステップで演算されたセンサ起因暗電流との比率を演算する比率演算ステップと、前記欠陥画素検出ステップで検出された欠陥画素のアドレスと前記比率演算ステップで演算された前記アドレスに対応する欠陥画素の比率とを対応付けて記憶する欠陥画素記憶ステップと、前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送され前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算する第2のセンサ起因暗電流演算ステップと、前記欠陥画素記憶ステップで記憶された欠陥画素のアドレスおよび対応する比率を読み出し、前記第2のセンサ起因暗電流演算ステップで演算されたセンサ起因暗電流に前記比率を乗算し、前記欠陥画素の画素信号の欠陥成分を演算する欠陥成分演算ステップと、前記固体撮像装置により出力された前記アドレスの欠陥画素の画素信号から前記欠陥成分演算ステップで演算された対応する欠陥画素の画素信号の欠陥成分を減算し、前記固体撮像装置により出力された欠陥画素の画素信号から欠陥成分を除去する欠陥成分除去ステップとを含むことを特徴とする。
In order to achieve the above object, a first image pickup apparatus of the present invention includes a solid-state image pickup device that outputs a pixel signal, and correction means that corrects the pixel signal output from the solid-state image pickup device. Are arranged around a plurality of effective pixels so as to form a matrix together with the plurality of effective pixels, and a plurality of effective pixels arranged in a matrix for converting incident light into signal charges and outputting them as pixel signals. A plurality of light-shielding pixels covered with a light-shielding film, at least one pixel transfer unit of an effective pixel transfer unit that extracts pixel signals of the plurality of effective pixels, and a light-shielding pixel transfer unit that extracts image signals of the plurality of light-shielding pixels A plurality of effective / light-shielded pixel vertical transfer registers that extract pixel signals for each column of the plurality of effective pixels and the plurality of light-shielded pixels and transfer them in the vertical direction. A light-shielding pixel portion, one or a plurality of invalid pixel vertical transfer registers arranged in a column or matrix around the effective / light-shielding pixel portion and transferring pixel signals having a pixel value of 0 in the vertical direction; And a horizontal transfer register that transfers pixel signals transferred by the one or more invalid pixel vertical transfer registers in a horizontal direction, wherein the correction means When the image sensor is operated in a light-shielded state, the solid-state image sensor is transferred by the invalid pixel vertical transfer register from pixel signals of the plurality of light-shielded pixels extracted by the light-shielded pixel transfer unit and output by the solid-state image sensor. When the solid-state imaging device is operated in a light-shielded state using a sensor-induced dark current obtained by subtracting the pixel signal output by the solid-state imaging device A defect that stores the address of the defective pixel of the solid-state imaging device detected based on the pixel signal output by the pixel signal and the ratio of the pixel signal of the defective pixel corresponding to the address and the dark current caused by the sensor in association with each other Pixel signals that are transferred by the invalid pixel vertical transfer register from the pixel signals of the plurality of light-shielded pixels output by the solid-state image sensor and output by the pixel storage means and the light-shielded pixel transfer unit, and output by the solid-state image sensor The sensor-derived dark current calculation means for calculating the sensor-induced dark current and the address of the defective pixel stored in the defective pixel storage means and the corresponding ratio are read out and calculated by the sensor-derived dark current calculation means. A defect component calculating means for multiplying the sensor-induced dark current by the ratio and calculating a defect component of a pixel signal of the defective pixel; The defective pixel output by the solid-state imaging device is obtained by subtracting the defective component of the pixel signal of the corresponding defective pixel calculated by the defective component calculating means from the pixel signal of the defective pixel at the address output by the solid-state imaging device. And defect component removing means for removing the defect component from the pixel signal.
The second imaging device of the present invention includes a solid-state imaging device that outputs a pixel signal, and a correction unit that corrects the pixel signal output by the solid-state imaging device. A plurality of effective pixels arranged in a matrix for converting light into signal charges and outputting as pixel signals, and arranged around the effective pixels so as to form a matrix together with the plurality of effective pixels, A plurality of covered light-shielding pixels, an effective pixel transfer unit that extracts pixel signals of the plurality of effective pixels, and a light-shielding pixel transfer unit that extracts image signals of the plurality of light-shielded pixels, respectively, An effective / light-shielding pixel section having a plurality of effective / light-shielding pixel vertical transfer registers that extract pixel signals for each of the plurality of effective pixels and the plurality of light-shielding pixels and transfer them in the vertical direction; One or a plurality of invalid pixel vertical transfer registers that are arranged in a column or matrix around the valid / light-shielded pixel portion and transfer a pixel signal having a pixel value of 0 in the vertical direction, and the plurality of valid / light-shielded pixels vertical A solid-state image pickup device having a transfer register and a horizontal transfer register for horizontally transferring a pixel signal transferred by the one or more invalid pixel vertical transfer registers, wherein the correcting means blocks the solid-state image pickup device in a light-shielding state. And when the solid-state image sensor is operated in a light-shielded state, the light-shielding unit detects the defective pixel of the solid-state image sensor based on a pixel signal output from the solid-state image sensor. Transferred from the pixel signals of the plurality of light-shielded pixels extracted by the pixel transfer unit and output from the solid-state imaging device by the invalid pixel vertical transfer register. A first sensor-induced dark current calculation unit that calculates a sensor-induced dark current by subtracting a pixel signal output from the solid-state imaging device, a pixel signal of the defective pixel detected by the defective pixel detection unit, and the first A ratio calculation means for calculating a ratio with the sensor-induced dark current calculated by the sensor-derived dark current calculation means, an address of the defective pixel detected by the defective pixel detection means, and the address calculated by the ratio calculation means And defective pixel storage means for storing the ratio of defective pixels corresponding to the pixel, and the invalid pixel vertical transfer from the pixel signals of the plurality of light-shielded pixels extracted by the light-shielded pixel transfer unit and output by the solid-state imaging device A second sensor-induced dark that calculates the sensor-induced dark current by subtracting the pixel signal transferred by the register and output by the solid-state imaging device Read the current calculation means, the address of the defective pixel stored in the defective pixel storage means and the corresponding ratio, multiply the sensor-induced dark current calculated by the second sensor-derived dark current calculation means by the ratio, Defect component calculation means for calculating a defect component of the pixel signal of the defective pixel, and a corresponding defective pixel pixel calculated by the defect component calculation means from the pixel signal of the defective pixel at the address output by the solid-state imaging device And a defect component removing unit that subtracts the defect component of the signal and removes the defect component from the pixel signal of the defective pixel output by the solid-state imaging device.
The first pixel signal correcting method according to the present invention includes a plurality of effective pixels arranged in a matrix that converts incident light into signal charges and outputs the signal as a pixel signal, and a matrix together with the plurality of effective pixels. A plurality of light-shielded pixels arranged around the plurality of effective pixels and covered with a light-shielding film, an effective pixel transfer unit that extracts pixel signals of the plurality of effective pixels, and image signals of the plurality of light-shielded pixels A plurality of effective / light-shielded pixels that each have at least one pixel-transfer portion of a light-shielded pixel transfer portion that takes out the pixel signals, extracts pixel signals for each of the plurality of effective pixels and the plurality of light-shielded pixels, and transfers them in the vertical direction. An effective / light-shielding pixel portion having a transfer register, and one or a plurality of non-transparent pixels that are arranged in a column or matrix around the effective / light-shielding pixel portion and transfer pixel signals having a pixel value of 0 in the vertical direction. A solid-state imaging device comprising: a pixel vertical transfer register; and a horizontal transfer register for horizontally transferring pixel signals transferred by the plurality of valid / light-shielded pixel vertical transfer registers and the one or more invalid pixel vertical transfer registers A pixel signal correction method for correcting an output pixel signal, wherein when the solid-state image sensor is operated in a light-shielded state, a defective pixel of the solid-state image sensor based on a pixel signal output by the solid-state image sensor And detecting the defective pixel from the pixel signals of the plurality of light-shielded pixels extracted by the light-shielded pixel transfer unit and output by the solid-state image sensor when the solid-state image sensor is operated in a light-shielded state. The pixel signal transferred by the vertical transfer register and output by the solid-state image sensor is subtracted to display the sensor-induced dark current. And calculating a ratio of the pixel signal of the defective pixel detected in the defective pixel detection step to the sensor-induced dark current calculated in the first sensor-derived dark current calculation step. A defective pixel storing step for storing the ratio of the defective pixel detected in the defective pixel detecting step and the ratio of the defective pixel corresponding to the address calculated in the ratio calculating step in association with each other; The sensor signal is derived by subtracting the pixel signal transferred by the invalid pixel vertical transfer register and output by the solid-state image sensor from the pixel signals of the plurality of light-shielded pixels output by the light-shielded pixel transfer unit and output by the solid-state image sensor. Second sensor-derived dark current calculation step for calculating dark current, and defects stored in the defective pixel storage step Defect component calculation that reads the pixel address and the corresponding ratio, multiplies the sensor-induced dark current calculated in the second sensor-derived dark current calculation step by the ratio, and calculates the defect component of the pixel signal of the defective pixel And subtracting the defect component of the pixel signal of the corresponding defective pixel calculated in the defect component calculation step from the pixel signal of the defective pixel at the address output by the solid-state imaging device, and outputting by the solid-state imaging device And a defect component removing step of removing the defect component from the pixel signal of the defective pixel.
In addition, a third imaging device of the present invention includes a solid-state imaging device that outputs a pixel signal and correction means that corrects the pixel signal output by the solid-state imaging device, and the solid-state imaging device is incident A plurality of effective pixels arranged in a matrix for converting light into signal charges and outputting as pixel signals, and arranged around the effective pixels so as to form a matrix together with the plurality of effective pixels, A plurality of covered light-shielding pixels, an effective pixel transfer unit that extracts pixel signals of the plurality of effective pixels, and a light-shielding pixel transfer unit that extracts image signals of the plurality of light-shielded pixels, respectively, An effective / light-shielding pixel section having a plurality of effective / light-shielding pixel vertical transfer registers that extract pixel signals for each of the plurality of effective pixels and the plurality of light-shielding pixels and transfer them in the vertical direction; One or a plurality of invalid pixel verticals arranged in a row or matrix around the valid / light-shielded pixel portion and transferring a pixel signal having a pixel value of 0 in the vertical direction to the valid / light-shielded pixel vertical transfer register An image pickup apparatus comprising: a transfer register; and a horizontal transfer register that horizontally transfers pixel signals transferred by the plurality of effective / light-shielded pixel vertical transfer registers, wherein the correction unit blocks the solid-state image sensor in a light-shielded state. Pixels transferred by the invalid pixel vertical transfer register from the pixel signals of the plurality of light-shielded pixels output by the light-shielded pixel transfer unit and output by the solid-state image sensor when operated by the solid-state image sensor Pixels output by the solid-state image sensor when the solid-state image sensor is operated in a light-shielded state using a sensor-induced dark current obtained by subtracting the signal Defective pixel storage means for storing the address of the defective pixel of the solid-state imaging device detected based on the number, and the ratio of the pixel signal of the defective pixel corresponding to the address and the sensor-induced dark current in association with each other; A pixel signal transferred by the invalid pixel vertical transfer register and output from the solid-state image sensor and subtracted from a pixel signal of the plurality of light-shielded pixels output by the solid-state image sensor taken out by the light-shielded pixel transfer unit; A sensor-induced dark current calculation means for calculating the induced dark current and an address and a corresponding ratio of the defective pixel stored in the defective pixel storage means are read out, and the sensor-derived dark current calculated by the sensor-derived dark current calculation means is obtained. Defect component calculation means for multiplying the ratio and calculating a defect component of the pixel signal of the defective pixel, and the solid-state imaging device. The defect component of the pixel signal of the corresponding defective pixel calculated by the defect component calculation means is subtracted from the pixel signal of the defective pixel at the address that has been input, and the defect signal is output from the pixel signal of the defective pixel output by the solid-state imaging device. And a defect component removing means for removing the component.
In addition, a fourth imaging device of the present invention includes a solid-state imaging device that outputs a pixel signal and correction means that corrects the pixel signal output by the solid-state imaging device, and the solid-state imaging device is incident A plurality of effective pixels arranged in a matrix for converting light into signal charges and outputting as pixel signals, and arranged around the effective pixels so as to form a matrix together with the plurality of effective pixels, A plurality of covered light-shielding pixels, an effective pixel transfer unit that extracts pixel signals of the plurality of effective pixels, and a light-shielding pixel transfer unit that extracts image signals of the plurality of light-shielded pixels, respectively, An effective / light-shielding pixel section having a plurality of effective / light-shielding pixel vertical transfer registers that extract pixel signals for each of the plurality of effective pixels and the plurality of light-shielding pixels and transfer them in the vertical direction; One or a plurality of invalid pixel verticals arranged in a row or matrix around the valid / light-shielded pixel portion and transferring a pixel signal having a pixel value of 0 in the vertical direction to the valid / light-shielded pixel vertical transfer register An image pickup apparatus comprising: a transfer register; and a horizontal transfer register that horizontally transfers pixel signals transferred by the plurality of effective / light-shielded pixel vertical transfer registers, wherein the correction unit blocks the solid-state image sensor in a light-shielded state. And when the solid-state image sensor is operated in a light-shielded state, the light-shielding unit detects the defective pixel of the solid-state image sensor based on a pixel signal output from the solid-state image sensor. The pixel signals of the plurality of light-shielded pixels extracted by the pixel transfer unit and output by the solid-state imaging device are transferred by the invalid pixel vertical transfer register and the fixed pixels are output. A first sensor-induced dark current calculation unit that calculates a sensor-induced dark current by subtracting a pixel signal output from the image sensor, a pixel signal of the defective pixel detected by the defective pixel detection unit, and the first sensor Corresponding to the ratio calculation means for calculating the ratio of the sensor-derived dark current calculated by the caused dark current calculation means, the address of the defective pixel detected by the defective pixel detection means, and the address calculated by the ratio calculation means Defective pixel storage means for storing the ratio of defective pixels to be associated with each other, and the invalid pixel vertical transfer register from the pixel signals of the plurality of light-shielded pixels extracted by the light-shielded pixel transfer unit and output by the solid-state imaging device. Second sensor-derived dark current calculation for subtracting the pixel signal transferred and output by the solid-state imaging device to calculate the sensor-induced dark current And a defective pixel address and a corresponding ratio stored in the defective pixel storage means, multiply the sensor-induced dark current calculated by the second sensor-derived dark current calculation means by the ratio, and A defect component calculation means for calculating a defect component of the pixel signal of the pixel, and a pixel signal of the corresponding defective pixel calculated by the defect component calculation means from the pixel signal of the defective pixel at the address output by the solid-state imaging device. Defect component removal means for subtracting the defect component and removing the defect component from the pixel signal of the defective pixel output by the solid-state imaging device.
The second pixel signal correction method according to the present invention includes a plurality of effective pixels arranged in a matrix that converts incident light into signal charges and outputs them as pixel signals, and a matrix together with the plurality of effective pixels. A plurality of light-shielded pixels arranged around the plurality of effective pixels and covered with a light-shielding film, an effective pixel transfer unit that extracts pixel signals of the plurality of effective pixels, and image signals of the plurality of light-shielded pixels A plurality of effective / light-shielded pixels that each have at least one pixel-transfer portion of a light-shielded pixel transfer portion that takes out the pixel signals, extracts pixel signals for each of the plurality of effective pixels and the plurality of light-shielded pixels, and transfers them in the vertical direction. An effective / light-shielding pixel portion having a transfer register; and a pixel signal having a pixel value of 0 arranged in a row or matrix around the effective / light-shielding pixel portion in a vertical direction to transfer the effective / light-shielding image portion Output by an imaging device comprising one or more invalid pixel vertical transfer registers for transferring to a vertical transfer register and a horizontal transfer register for transferring pixel signals transferred by the plurality of valid / light-shielded pixel vertical transfer registers in the horizontal direction A pixel signal correcting method for correcting a pixel signal to be corrected, wherein when the solid-state image sensor is operated in a light-shielded state, defective pixels of the solid-state image sensor are detected based on the pixel signal output by the solid-state image sensor. Detecting defective pixels to be detected, and when the solid-state image sensor is operated in a light-shielded state, the invalid pixel vertical is extracted from the pixel signals of the plurality of light-shielded pixels extracted by the light-shielded pixel transfer unit and output by the solid-state image sensor. Subtracting the pixel signal transferred by the transfer register and output by the solid-state imaging device, the sensor-induced dark current is calculated. Sensor-derived dark current calculation step, and ratio calculation for calculating a ratio between the pixel signal of the defective pixel detected in the defective pixel detection step and the sensor-induced dark current calculated in the first sensor-derived dark current calculation step A defective pixel storing step for storing the step, the address of the defective pixel detected in the defective pixel detecting step and the ratio of the defective pixel corresponding to the address calculated in the ratio calculating step in association with each other; and Subtracting the pixel signal transferred by the invalid pixel vertical transfer register and output from the solid-state image sensor from the pixel signals of the plurality of light-shielded pixels output by the transfer unit and output by the solid-state image sensor, and the sensor-induced dark current is subtracted. A second sensor-induced dark current calculation step to be calculated, and the defective pixel stored in the defective pixel storage step. A defect component calculating step of reading a dress and a corresponding ratio, multiplying the sensor-induced dark current calculated in the second sensor-derived dark current calculating step by the ratio, and calculating a defect component of a pixel signal of the defective pixel; The defect component output from the solid-state imaging device is obtained by subtracting the defect component of the pixel signal of the corresponding defective pixel calculated in the defect component calculation step from the pixel signal of the defective pixel at the address output by the solid-state imaging device. A defect component removing step of removing a defect component from the pixel signal of the pixel.

本発明の第1の撮像装置によれば、まず、前記固体撮像素子を遮光状態で動作させたときに前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送されて前記固体撮像素子により出力された画素信号を減算したセンサ起因暗電流を用い、前記欠陥画素記憶手段により前記固体撮像素子を遮光状態で動作させたときに前記固体撮像素子により出力された画素信号に基づいて検出された前記固体撮像素子の欠陥画素のアドレスと、前記アドレスに対応する欠陥画素の画素信号と前記センサ起因暗電流との比率とを対応付けて記憶する。次に、センサ起因暗電流演算手段により前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送されて前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算する。次に、欠陥成分演算手段により前記欠陥画素記憶手段に記憶された欠陥画素のアドレスおよび対応する比率を読み出し、前記センサ起因暗電流演算手段により演算されたセンサ起因暗電流に前記比率を乗算し、前記欠陥画素の画素信号の欠陥成分を演算する。次に、欠陥成分除去手段により前記固体撮像装置により出力された前記アドレスの欠陥画素の画素信号から前記欠陥成分演算手段により演算された対応する欠陥画素の画素信号の欠陥成分を減算し、前記固体撮像装置により出力された欠陥画素の画素信号から欠陥成分を除去する。
このため、複数の遮光画素の画素信号と無効画素垂直転送レジスタの画素信号との差分であるセンサ起因暗電流を利用し、遮光状態で求められた固体撮像素子の欠陥画素の画素信号とセンサ起因暗電流との比率を動作状態の固体撮像素子のセンサ起因暗電流に乗算して欠陥画素の画素信号に含まれる欠陥成分を演算し、演算された欠陥成分を欠陥画素の画素信号から減算して欠陥画素の画素信号に含まれる欠陥成分を除去することができる。
したがって、温度および露光時間に依存する固体撮像素子のセンサ起因の暗電流そのものを検出し、欠陥画素を補正することができるので、欠陥画素を精度良く補正することができる。また、欠陥画素のアドレスとその比率とを対応付けて記憶するので、メモリ容量を小さくすることができる。従来のような温度と補正量とを対応付けた演算テーブルは必要ない。また、周辺画素の画素値に基づいて欠陥画素を置き換える必要がないので、画像の解像度を低下させることなく、エッジ部分を正しく補正し、シャープな画像を得ることができる。
また、本発明の第2の撮像装置によれば、前記固体撮像素子を遮光状態で動作させたとき、欠陥画素検出手段により前記固体撮像素子により出力された画素信号に基づいて前記固体撮像素子の欠陥画素を検出するととともに、第1のセンサ起因暗電流演算手段により前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送され前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算する。次に、比率演算手段により前記欠陥画素検出手段により検出された欠陥画素の画素信号と前記第1のセンサ起因暗電流演算手段により演算されたセンサ起因暗電流との比率を演算する。次に、欠陥画素記憶手段により前記欠陥画素検出手段により検出された欠陥画素のアドレスと前記比率演算手段により演算された前記アドレスに対応する欠陥画素の比率とを対応付けて記憶する。そして、第2のセンサ起因暗電流演算手段により前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送され前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算する。次に、欠陥成分演算手段により前記欠陥画素記憶手段に記憶された欠陥画素のアドレスおよび対応する比率を読み出し、前記第2のセンサ起因暗電流演算手段により演算されたセンサ起因暗電流に前記比率を乗算し、前記欠陥画素の画素信号の欠陥成分を演算する。次に、欠陥成分除去手段により前記固体撮像装置により出力された前記アドレスの欠陥画素の画素信号から前記欠陥成分演算手段により演算された対応する欠陥画素の画素信号の欠陥成分を減算し、前記固体撮像装置により出力された欠陥画素の画素信号から欠陥成分を除去する。
したがって、複数の遮光画素の画素信号と無効画素垂直転送レジスタの画素信号との差分であるセンサ起因暗電流を利用し、遮光状態で固体撮像素子の欠陥画素を検出するとともに、遮光状態のセンサ起因暗電流を演算し、欠陥画素の画素信号とセンサ起因暗電流との比率を演算し、演算された比率を対応する欠陥画素と対応付けて記憶する。そして、動作状態の固体撮像素子のセンサ起因暗電流を演算し、記憶された比率を乗算して欠陥画素の画素信号に含まれる欠陥成分を演算し、演算された欠陥成分を欠陥画素の画素信号から減算して欠陥画素の画素信号に含まれる欠陥成分を除去することができる。
したがって、上記第1の撮像装置と同様の効果に有する。
また、前記補正手段に前記欠陥画素検出手段、前記第1のセンサ起因暗電流演算手段および前記比率演算手段を設け、欠陥画素のアドレスとその比率(欠陥画素の画素信号とセンサ起因暗電流との比率)とを対応付けて欠陥画素記憶手段により記憶する。
したがって、いちいち専用の装置により欠陥画素を検出し、欠陥画素のアドレスとその比率を求める必要がない。
また、本発明の第1の画素信号の補正方法によれば、欠陥画素検出ステップで前記固体撮像素子を遮光状態で動作させたとき、前記固体撮像素子により出力された画素信号に基づいて前記固体撮像素子の欠陥画素を検出し、第1のセンサ起因暗電流演算ステップで前記固体撮像素子を遮光状態で動作させたとき、前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送され前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算し、比率演算ステップで前記欠陥画素検出ステップで検出された欠陥画素の画素信号と前記第1のセンサ起因暗電流演算ステップで演算されたセンサ起因暗電流との比率を演算し、欠陥画素記憶ステップで前記欠陥画素検出ステップで検出された欠陥画素のアドレスと前記比率演算ステップで演算された前記アドレスに対応する欠陥画素の比率とを対応付けて記憶する。そして、第2のセンサ起因暗電流演算ステップで前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送され前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算し、欠陥成分演算ステップで前記欠陥画素記憶ステップで記憶された欠陥画素のアドレスおよび対応する比率を読み出し、前記第2のセンサ起因暗電流演算ステップで演算されたセンサ起因暗電流に前記比率を乗算し、前記欠陥画素の画素信号の欠陥成分を演算し、欠陥成分除去ステップで前記固体撮像装置により出力された前記アドレスの欠陥画素の画素信号から前記欠陥成分演算ステップで演算された対応する欠陥画素の画素信号の欠陥成分を減算し、前記固体撮像装置により出力された欠陥画素の画素信号から欠陥成分を除去する。
このため、複数の遮光画素の画素信号と無効画素垂直転送レジスタの画素信号との差分であるセンサ起因暗電流を利用し、遮光状態で固体撮像素子の欠陥画素を検出するとともに、遮光状態のセンサ起因暗電流を演算し、欠陥画素の画素信号とセンサ起因暗電流との比率を演算し、演算された比率を対応する欠陥画素と対応付けて記憶する。そして、動作状態の固体撮像素子のセンサ起因暗電流を演算し、記憶された比率を乗算して欠陥画素の画素信号に含まれる欠陥成分を演算し、演算された欠陥成分を欠陥画素の画素信号から減算して欠陥画素の画素信号に含まれる欠陥成分を除去することができる。
したがって、上記第2の撮像装置と同様の効果を有する。
また、本発明の第3の撮像装置によれば、入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素とともに行列を構成するように前記複数の有効画素の周囲に配列され、遮光膜で覆われた複数の遮光画素と、前記複数の有効画素の画素信号を取り出す有効画素転送部および前記複数の遮光画素の画像信号を取り出す遮光画素転送部の少なくとも1つの画素転送部をそれぞれ有し、前記複数の有効画素および複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効/遮光画素垂直転送レジスタとを有する有効/遮光画素部と、前記有効/遮光画素部の周囲に1行または行列状に配列され、画素値が0の画素信号を垂直方向に転送して前記有効/遮光画素垂直転送レジスタに転送する1または複数の無効画素垂直転送レジスタと、前記複数の有効/遮光画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する固体撮像素子に対し、上記第1の撮像装置と同様の欠陥画素の補正を行う。
したがって、上記第1の撮像装置と同様の効果を有する。
また、本発明の第4の撮像装置によれば、入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素とともに行列を構成するように前記複数の有効画素の周囲に配列され、遮光膜で覆われた複数の遮光画素と、前記複数の有効画素の画素信号を取り出す有効画素転送部および前記複数の遮光画素の画像信号を取り出す遮光画素転送部の少なくとも1つの画素転送部をそれぞれ有し、前記複数の有効画素および複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効/遮光画素垂直転送レジスタとを有する有効/遮光画素部と、前記有効/遮光画素部の周囲に1行または行列状に配列され、画素値が0の画素信号を垂直方向に転送して前記有効/遮光画素垂直転送レジスタに転送する1または複数の無効画素垂直転送レジスタと、前記複数の有効/遮光画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する固体撮像素子に対し、上記第2の撮像装置と同様の欠陥画素の補正を行う。
したがって、上記第2の撮像装置と同様の効果を有する。
また、本発明の第2の画素信号の補正方法によれば、入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素とともに行列を構成するように前記複数の有効画素の周囲に配列され、遮光膜で覆われた複数の遮光画素と、前記複数の有効画素の画素信号を取り出す有効画素転送部および前記複数の遮光画素の画像信号を取り出す遮光画素転送部の少なくとも1つの画素転送部をそれぞれ有し、前記複数の有効画素および複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効/遮光画素垂直転送レジスタとを有する有効/遮光画素部と、前記有効/遮光画素部の周囲に1行または行列状に配列され、画素値が0の画素信号を垂直方向に転送して前記有効/遮光画素垂直転送レジスタに転送する1または複数の無効画素垂直転送レジスタと、前記複数の有効/遮光画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する固体撮像素子に対し、上記の画素信号の補正方法と同様の欠陥画素の補正を行う。
したがって、上記第1の画素信号の補正方法と同様の効果を有する。
According to the first imaging device of the present invention, first, the pixels of the plurality of light-shielded pixels that are taken out by the light-shielded pixel transfer unit and output by the solid-state image sensor when the solid-state image sensor is operated in a light-shielded state. When the solid-state imaging device is operated in a light-shielded state by the defective pixel storage means using a sensor-induced dark current obtained by subtracting a pixel signal transferred from the signal by the invalid pixel vertical transfer register and output by the solid-state imaging device Corresponding to the address of the defective pixel of the solid-state imaging device detected based on the pixel signal output by the solid-state imaging device, and the ratio of the pixel signal of the defective pixel corresponding to the address and the sensor-induced dark current Add and remember. Next, the invalid pixel vertical transfer register transfers the pixel signals of the plurality of light-shielded pixels outputted by the light-shielded pixel transfer unit and output by the solid-state image sensor by the sensor-induced dark current calculation means, and is transmitted by the solid-state image sensor. The sensor-generated dark current is calculated by subtracting the output pixel signal. Next, the address of the defective pixel stored in the defective pixel storage unit and the corresponding ratio are read by the defective component calculation unit, the sensor-induced dark current calculated by the sensor-derived dark current calculation unit is multiplied by the ratio, A defect component of a pixel signal of the defective pixel is calculated. Next, the defect component of the pixel signal of the corresponding defective pixel calculated by the defect component calculation unit is subtracted from the pixel signal of the defective pixel at the address output by the solid-state imaging device by the defect component removal unit, and the solid The defective component is removed from the pixel signal of the defective pixel output by the imaging device.
For this reason, the pixel signal of the defective pixel of the solid-state image sensor obtained in the light-shielded state and the sensor origin are obtained by using the sensor-induced dark current that is the difference between the pixel signal of the plurality of light-shielded pixels and the pixel signal of the invalid pixel vertical transfer register By multiplying the dark current ratio of the solid-state image sensor in the active state by the dark current caused by the sensor, the defect component included in the pixel signal of the defective pixel is calculated, and the calculated defect component is subtracted from the pixel signal of the defective pixel. It is possible to remove a defective component included in a pixel signal of a defective pixel.
Therefore, since the dark current itself caused by the sensor of the solid-state imaging device depending on the temperature and the exposure time can be detected and the defective pixel can be corrected, the defective pixel can be corrected with high accuracy. Further, since the address of the defective pixel and the ratio thereof are stored in association with each other, the memory capacity can be reduced. There is no need for a calculation table in which the temperature and the correction amount are associated with each other. In addition, since it is not necessary to replace defective pixels based on the pixel values of the peripheral pixels, the edge portion can be corrected correctly and a sharp image can be obtained without reducing the image resolution.
According to the second imaging device of the present invention, when the solid-state imaging device is operated in a light-shielded state, the solid-state imaging device is operated based on a pixel signal output from the solid-state imaging device by a defective pixel detection unit. A defective pixel is detected and transferred by the invalid pixel vertical transfer register from the pixel signals of the plurality of light-shielded pixels output by the solid-state image sensor and extracted by the light-shielded pixel transfer unit by the first sensor-derived dark current calculation means. Then, the pixel signal output from the solid-state image sensor is subtracted to calculate a sensor-induced dark current. Next, a ratio between the pixel signal of the defective pixel detected by the defective pixel detection unit and the sensor-induced dark current calculated by the first sensor-derived dark current calculation unit is calculated by the ratio calculation unit. Next, the defective pixel storage means stores the defective pixel address detected by the defective pixel detection means in association with the defective pixel ratio corresponding to the address calculated by the ratio calculation means. Then, the solid-state image sensor is transferred by the invalid pixel vertical transfer register from the pixel signals of the plurality of light-shielded pixels output by the solid-state image sensor and extracted by the light-shielded pixel transfer unit by the second sensor-induced dark current calculation means. The pixel signal output by is subtracted to calculate the sensor-induced dark current. Next, the defect component calculation means reads the defective pixel address and the corresponding ratio stored in the defective pixel storage means, and sets the ratio to the sensor-induced dark current calculated by the second sensor-derived dark current calculation means. Multiply and calculate the defective component of the pixel signal of the defective pixel. Next, the defect component of the pixel signal of the corresponding defective pixel calculated by the defect component calculation unit is subtracted from the pixel signal of the defective pixel at the address output by the solid-state imaging device by the defect component removal unit, and the solid The defective component is removed from the pixel signal of the defective pixel output by the imaging device.
Therefore, the sensor-induced dark current, which is the difference between the pixel signals of the plurality of light-shielded pixels and the pixel signal of the invalid pixel vertical transfer register, is used to detect a defective pixel of the solid-state imaging device in the light-shielded state and The dark current is calculated, the ratio between the pixel signal of the defective pixel and the sensor-induced dark current is calculated, and the calculated ratio is stored in association with the corresponding defective pixel. Then, the sensor-induced dark current of the solid-state imaging device in the operating state is calculated, the defect ratio included in the pixel signal of the defective pixel is calculated by multiplying the stored ratio, and the calculated defect component is calculated as the pixel signal of the defective pixel. The defect component included in the pixel signal of the defective pixel can be removed by subtracting from.
Therefore, it has the same effect as the first imaging device.
In addition, the correction means includes the defective pixel detection means, the first sensor-induced dark current calculation means, and the ratio calculation means, and the address of the defective pixel and its ratio (the pixel signal of the defective pixel and the sensor-induced dark current The ratio is stored in association with the defective pixel storage means.
Therefore, it is not necessary to detect defective pixels by a dedicated device and obtain the defective pixel addresses and their ratios.
According to the first pixel signal correction method of the present invention, when the solid-state image sensor is operated in a light-shielded state in the defective pixel detection step, the solid-state image signal is output based on the pixel signal output from the solid-state image sensor. The plurality of pixels extracted by the light-shielded pixel transfer unit and output by the solid-state image sensor when the defective pixels of the image sensor are detected and the solid-state image sensor is operated in a light-shielded state in the first sensor-induced dark current calculation step The pixel signal transferred by the invalid pixel vertical transfer register and output from the solid-state imaging device is subtracted from the pixel signal of the light-shielded pixel, and the sensor-induced dark current is calculated and detected in the defective pixel detection step in the ratio calculation step. Calculating a ratio between the pixel signal of the defective pixel and the sensor-induced dark current calculated in the first sensor-derived dark current calculating step, and storing the defective pixel The address of the detected defective pixel in the defective pixel detection step said ratio calculating step in association with the ratio of defective pixels corresponding to the calculated said address stored in step. Then, in the second sensor-induced dark current calculation step, the solid-state image sensor is transferred by the invalid pixel vertical transfer register from the pixel signals of the plurality of light-shielded pixels output by the light-shielded pixel transfer unit and output by the solid-state image sensor. Subtracting the pixel signal output from the sensor, calculating a sensor-induced dark current, reading the defective pixel address and the corresponding ratio stored in the defective pixel storing step in the defect component calculating step, and The sensor-induced dark current calculated in the current calculation step is multiplied by the ratio, the defect component of the pixel signal of the defective pixel is calculated, and the defective pixel of the address output by the solid-state imaging device in the defect component removal step is calculated. Subtract the defect component of the pixel signal of the corresponding defective pixel calculated in the defect component calculation step from the pixel signal, Serial removing defective component from the pixel signal of the defective pixel output by the solid-state imaging device.
Therefore, the sensor-induced dark current, which is the difference between the pixel signals of a plurality of light-shielded pixels and the pixel signal of the invalid pixel vertical transfer register, is used to detect a defective pixel of the solid-state imaging device in a light-shielded state and The resulting dark current is calculated, the ratio between the pixel signal of the defective pixel and the sensor-induced dark current is calculated, and the calculated ratio is stored in association with the corresponding defective pixel. Then, the sensor-induced dark current of the solid-state imaging device in the operating state is calculated, the defect ratio included in the pixel signal of the defective pixel is calculated by multiplying the stored ratio, and the calculated defect component is calculated as the pixel signal of the defective pixel. The defect component included in the pixel signal of the defective pixel can be removed by subtracting from.
Therefore, it has the same effect as the second imaging device.
Further, according to the third imaging device of the present invention, a plurality of effective pixels arranged in a matrix for converting incident light into signal charges and outputting them as pixel signals, and a matrix together with the plurality of effective pixels A plurality of light-shielded pixels arranged around the plurality of effective pixels and covered with a light-shielding film, an effective pixel transfer unit that extracts pixel signals of the plurality of effective pixels, and image signals of the plurality of light-shielded pixels A plurality of effective / light-shielded pixel vertical transfers, each having at least one pixel transfer part of the light-shielded pixel transfer part to be taken out, extracting pixel signals for each of the plurality of effective pixels and the plurality of light-shielded pixels and transferring them in the vertical direction An effective / light-shielding pixel portion having a register and a pixel signal having a pixel value of 0 arranged in a row or matrix around the effective / light-shielding pixel portion in the vertical direction to transfer the effective / light-shielding pixel portion For a solid-state imaging device having one or more invalid pixel vertical transfer registers for transferring to a transfer register and a horizontal transfer register for transferring pixel signals transferred by the plurality of valid / light-shielded pixel vertical transfer registers in a horizontal direction, Correction of defective pixels is performed in the same manner as in the first imaging device.
Therefore, it has the same effect as the first imaging device.
Further, according to the fourth imaging device of the present invention, a plurality of effective pixels arranged in a matrix for converting incident light into signal charges and outputting them as pixel signals, and a matrix together with the plurality of effective pixels A plurality of light-shielded pixels arranged around the plurality of effective pixels and covered with a light-shielding film, an effective pixel transfer unit that extracts pixel signals of the plurality of effective pixels, and image signals of the plurality of light-shielded pixels A plurality of effective / light-shielded pixel vertical transfers, each having at least one pixel transfer part of the light-shielded pixel transfer part to be taken out, extracting pixel signals for each of the plurality of effective pixels and the plurality of light-shielded pixels and transferring them in the vertical direction An effective / light-shielding pixel portion having a register and a pixel signal having a pixel value of 0 arranged in a row or matrix around the effective / light-shielding pixel portion in the vertical direction to transfer the effective / light-shielding pixel portion For a solid-state imaging device having one or more invalid pixel vertical transfer registers for transferring to a transfer register and a horizontal transfer register for transferring pixel signals transferred by the plurality of valid / light-shielded pixel vertical transfer registers in a horizontal direction, Correction of defective pixels is performed in the same manner as in the second imaging device.
Therefore, it has the same effect as the second imaging device.
According to the second pixel signal correction method of the present invention, together with the plurality of effective pixels arranged in a matrix that converts incident light into a signal charge and outputs it as a pixel signal, the plurality of effective pixels A plurality of light-shielding pixels arranged around the plurality of effective pixels so as to form a matrix and covered with a light-shielding film; an effective pixel transfer unit that extracts pixel signals of the plurality of effective pixels; and the plurality of light-shielding pixels A plurality of effective / light-shielding units each having at least one pixel-transfer unit of a light-shielding pixel transfer unit for extracting an image signal, extracting pixel signals for each of the plurality of effective pixels and the plurality of light-shielding pixels, and transferring them in the vertical direction An effective / light-shielding pixel portion having a pixel vertical transfer register; and a pixel signal having a pixel value of 0 arranged in a row or matrix around the effective / light-shielding pixel portion in the vertical direction to transmit the effective / light-shielding pixel portion. A solid-state imaging device having one or more invalid pixel vertical transfer registers for transferring to an optical pixel vertical transfer register and a horizontal transfer register for transferring pixel signals transferred by the plurality of valid / light-shielded pixel vertical transfer registers in a horizontal direction On the other hand, the defective pixel is corrected in the same manner as the above-described pixel signal correction method.
Therefore, it has the same effect as the first pixel signal correction method.

上記目的を達成するため、遮光状態で固体撮像素子の欠陥画素を検出するとともに、遮光状態のセンサ起因暗電流を演算し、欠陥画素の画素信号とセンサ起因暗電流との比率を演算し、演算された比率を対応する欠陥画素と対応付けて記憶する。そして、記憶された比率を動作状態の固体撮像素子の対応する欠陥画素のセンサ起因暗電流に乗算して欠陥画素の画素信号に含まれる欠陥成分を演算し、演算された欠陥成分を欠陥画素の画素信号から減算して欠陥画素の画素信号に含まれる欠陥成分を除去する。   In order to achieve the above object, the defective pixel of the solid-state imaging device is detected in the light-shielded state, the sensor-induced dark current in the light-shielded state is calculated, and the ratio between the pixel signal of the defective pixel and the sensor-induced dark current is calculated and calculated. The ratio is stored in association with the corresponding defective pixel. Then, the defect ratio included in the pixel signal of the defective pixel is calculated by multiplying the stored ratio by the sensor-induced dark current of the corresponding defective pixel of the solid-state imaging device in the operating state, and the calculated defect component is calculated for the defective pixel. The defect component included in the pixel signal of the defective pixel is removed by subtracting from the pixel signal.

以下、本発明の実施例1の撮像装置および画素信号の補正方法について図面を参照して説明する。
図1は、実施例1の撮像装置の概略構成を示す図である。
図1に示すように、実施例1の撮像装置は、レンズ1、絞り2、固体撮像素子3、CDS(Correlated Double Sampling)回路4、AD(Analog to Digital)変換回路5、白点検出補正回路6、画像処理回路7、CPU8、白点ROM9、画像RAM10および記録媒体11を備える。
Hereinafter, an image pickup apparatus and a pixel signal correction method according to Embodiment 1 of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating a schematic configuration of the imaging apparatus according to the first embodiment.
As shown in FIG. 1, the imaging apparatus according to the first embodiment includes a lens 1, an aperture 2, a solid-state imaging device 3, a CDS (Correlated Double Sampling) circuit 4, an AD (Analog to Digital) conversion circuit 5, and a white point detection correction circuit. 6, an image processing circuit 7, a CPU 8, a white point ROM 9, an image RAM 10, and a recording medium 11.

レンズ1は、入射された光を固体撮像素子3に結像する。絞り2は、固体撮像素子3の入射光量を調節するとともに、メカシャッタとなる。固体撮像素子3は、例えば、CCD(Charge Coupled Device)からなり、入射された光を信号電荷に変換し、画素信号として出力する複数の画素を有し、これら複数の画素により出力された画素信号(画像)を出力する。CDS回路4は、固体撮像素子3により出力された画素信号に相関二重サンプリング処理を施し、画素信号に含まれるノイズを除去する。AD変換回路5は、CDS回路4により出力されたアナログ画素信号をデジタル画素信号に変換する。白点検出補正回路6は、AD変換回路5により出力されたデジタル画素信号に基づいて固体撮像素子3の白点(欠陥画素)を検出するととともに、検出された白点の画素信号を補正する。白点検出補正回路6による白点の検出は、この撮像装置の出荷前の検査時に製造者により行われる。   The lens 1 forms an image of incident light on the solid-state image sensor 3. The diaphragm 2 adjusts the amount of incident light of the solid-state image sensor 3 and serves as a mechanical shutter. The solid-state imaging device 3 is composed of, for example, a CCD (Charge Coupled Device), and has a plurality of pixels that convert incident light into signal charges and output them as pixel signals, and pixel signals output by the plurality of pixels. (Image) is output. The CDS circuit 4 performs correlated double sampling processing on the pixel signal output from the solid-state imaging device 3 to remove noise contained in the pixel signal. The AD conversion circuit 5 converts the analog pixel signal output from the CDS circuit 4 into a digital pixel signal. The white point detection / correction circuit 6 detects a white point (defective pixel) of the solid-state imaging device 3 based on the digital pixel signal output from the AD conversion circuit 5 and corrects the detected white point pixel signal. The white point detection by the white point detection correction circuit 6 is performed by the manufacturer at the time of inspection before shipment of the imaging apparatus.

画像処理回路7は、白点検出補正回路6により出力された画素信号にガンマ補正等の種々の画像処理を施し出力する。CPU8は、この撮像装置の各部を制御する。白点ROM9は、この撮像装置の検査時に白点検出補正回路6により検出された白点のアドレスとその比率(後述)とを対応付けて記憶する。白点検出補正回路6は、この撮像装置の購入後の撮影時には、白点ROM9に記憶された白点のアドレスおよび比率を読み出し、この比率に基づいてアドレスに対応する白点の画素信号を補正する。画像RAM10は、画像処理回路7により出力された画素信号のバッファメモリとなるとともに、白点検出補正回路6により固体撮像素子3の白点を検出する際の作業用メモリとなる。記録媒体11は、ビデオテープ、メモリカード等の交換可能な記録媒体からなり、画像処理回路7により出力された画素信号(画像)を記録する。   The image processing circuit 7 performs various image processing such as gamma correction on the pixel signal output from the white point detection correction circuit 6 and outputs the result. CPU8 controls each part of this imaging device. The white point ROM 9 stores the address of the white point detected by the white point detection / correction circuit 6 at the time of inspection of the imaging apparatus and its ratio (described later) in association with each other. The white point detection / correction circuit 6 reads the white point address and ratio stored in the white point ROM 9 at the time of photographing after purchase of the imaging apparatus, and corrects the white point pixel signal corresponding to the address based on the ratio. To do. The image RAM 10 serves as a buffer memory for the pixel signal output from the image processing circuit 7, and serves as a working memory when the white point detection / correction circuit 6 detects the white point of the solid-state imaging device 3. The recording medium 11 is an exchangeable recording medium such as a video tape or a memory card, and records the pixel signal (image) output from the image processing circuit 7.

図2は、図1に示される固体撮像素子の画素部の構成を示す図である。
図2に示すように、固体撮像素子3の画素部20は、有効画素部21、水平前OPB(Optical Black)部22、水平後OPB部23、水平転送レジスタ24および出力回路25を備える。
FIG. 2 is a diagram illustrating a configuration of a pixel portion of the solid-state imaging device illustrated in FIG.
As shown in FIG. 2, the pixel unit 20 of the solid-state imaging device 3 includes an effective pixel unit 21, a front horizontal OPB (Optical Black) unit 22, a horizontal rear OPB unit 23, a horizontal transfer register 24, and an output circuit 25.

有効画素部21は、行列状に配列され、入射された光を信号電荷に変換し画素信号として出力する複数の有効画素(不図示)と、複数の有効画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数列の垂直転送レジスタ(不図示)とを備える。
複数の有効画素は、入射される光を透過するR(Red)、G(Green)およびB(Blue)のいずれか一つの色の色フィルタを有する。複数の有効画素は、色フィルタを通して光を入射し、入射された光を信号電荷に変換し画素信号として出力する。垂直転送レジスタは、複数の有効画素の行数と同数の転送素子を有し、これらの転送素子により1画素毎に画素信号を垂直方向に転送する。垂直転送レジスタには、入射される光を遮光する遮光膜が形成されている。
The effective pixel unit 21 is arranged in a matrix and takes out a plurality of effective pixels (not shown) that convert incident light into signal charges and outputs them as pixel signals, and extracts pixel signals for each of the plurality of effective pixels for each column. And a plurality of columns of vertical transfer registers (not shown) for transferring in the vertical direction.
The plurality of effective pixels have a color filter of any one color of R (Red), G (Green), and B (Blue) that transmits incident light. The plurality of effective pixels receive light through a color filter, convert the incident light into a signal charge, and output it as a pixel signal. The vertical transfer register has the same number of transfer elements as the number of rows of a plurality of effective pixels, and transfers pixel signals in the vertical direction for each pixel by these transfer elements. The vertical transfer register is formed with a light shielding film that shields incident light.

水平前OPB部22は、複数の有効画素と同行の行列状に配列された複数の遮光画素(不図示)と、複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数列の垂直転送レジスタ(不図示)とを備える。
複数の遮光画素および複数列の垂直転送レジスタには、入射される光を遮光する遮光膜が形成されている。複数の遮光画素は、遮光されているため、光に関係のない電荷を蓄積する。複数の遮光画素は、固体撮像素子3の動作時の光学的黒レベルを検出するのに用いられる。複数列の垂直転送レジスタは、有効画素部21の垂直転送レジスタと同じ構成である。
The pre-horizontal OPB unit 22 takes out a plurality of light-shielded pixels (not shown) arranged in a matrix in the same row as a plurality of effective pixels, and extracts a pixel signal for each column of the plurality of light-shielded pixels and transfers them in the vertical direction. Column vertical transfer registers (not shown).
A plurality of light shielding pixels and a plurality of columns of vertical transfer registers are formed with a light shielding film that shields incident light. Since the plurality of light shielding pixels are shielded from light, charges that are not related to light are accumulated. The plurality of light shielding pixels are used to detect an optical black level during operation of the solid-state imaging device 3. The plurality of columns of vertical transfer registers have the same configuration as that of the effective pixel unit 21.

水平後OPB部23は、複数列の垂直転送レジスタ(不図示)を備える。
複数列の垂直転送レジスタには、入射される光を遮光する遮光膜が形成されている。複数列の垂直転送レジスタは、有効画素部21の垂直転送レジスタと同じ構成である。複数列の垂直転送レジスタは、画素値が0の画素信号を転送する。複数列の垂直転送レジスタは、固体撮像素子3の動作時の無信号レベルを検出するのに用いられる。
The horizontal post-OPB unit 23 includes a plurality of columns of vertical transfer registers (not shown).
A plurality of columns of vertical transfer registers are formed with a light shielding film that shields incident light. The plurality of columns of vertical transfer registers have the same configuration as that of the effective pixel unit 21. The vertical transfer registers of a plurality of columns transfer pixel signals having a pixel value of 0. The plurality of columns of vertical transfer registers are used to detect a no-signal level during operation of the solid-state imaging device 3.

水平転送レジスタ24は、有効画素部21、水平前OPB部22および水平後OPB部23の複数列の垂直転送レジスタにより垂直方向に転送された画素信号を取り出し、水平方向に転送する。水平転送レジスタ24は、有効画素部21、水平前OPB部22および水平後OPB部23の垂直転送レジスタの列数と同数の転送素子を有し、これらの転送素子により1画素毎に画素信号を水平方向に転送する。出力回路25は、水平転送レジスタ24により水平方向に転送された画素信号(信号電荷)を電圧に変換し次段のCDS回路4に出力する。   The horizontal transfer register 24 takes out pixel signals transferred in the vertical direction by a plurality of columns of vertical transfer registers of the effective pixel unit 21, the horizontal pre-OPB unit 22 and the horizontal post-OPB unit 23, and transfers them in the horizontal direction. The horizontal transfer register 24 has the same number of transfer elements as the number of columns of the vertical transfer registers of the effective pixel unit 21, the horizontal front OPB unit 22, and the horizontal post OPB unit 23, and these transfer elements send pixel signals for each pixel. Transfer horizontally. The output circuit 25 converts the pixel signal (signal charge) transferred in the horizontal direction by the horizontal transfer register 24 into a voltage and outputs the voltage to the CDS circuit 4 in the next stage.

図3は、図2に示される固体撮像素子により出力される画素信号の説明図である。
ここで、固体撮像素子3には、明るさが一様な光が入射されるものとする。また、有効画素の色フィルタの影響は無視するものとする。
図3に示すように、固体撮像素子3の1ラインを走査すると、有効画素部21、水平前OPB部22および水平後OPB部23のそれぞれにレベルの異なる画素信号が得られる。
有効画素部21、水平前OPB部22および水平後OPB部23のないブランキング領域の画素信号は、レベルが「0」である。水平後OPB部23から得られる画素信号は、無信号レベルの画素信号であり、垂直転送レジスタの転送により発生した垂直転送レジスタ起因の暗電流によるものである。水平前OPB部22から得られる画素信号は、光学的黒レベルの画素信号であり、光に関係なく蓄積され変換された遮光画素のセンサ起因の暗電流と垂直転送レジスタ起因の暗電流とを含む。有効画素部21から得られる画素信号は、光信号レベルの画素信号であり、入射された光を光電変換した有効画素の光起因信号と光に関係なく蓄積され変換された有効画素のセンサ起因の暗電流と垂直転送レジスタ起因の暗電流とを含む。
FIG. 3 is an explanatory diagram of pixel signals output by the solid-state imaging device shown in FIG.
Here, it is assumed that light with uniform brightness is incident on the solid-state imaging device 3. In addition, the influence of the color filter of the effective pixel is ignored.
As shown in FIG. 3, when one line of the solid-state imaging device 3 is scanned, pixel signals having different levels are obtained in the effective pixel unit 21, the horizontal front OPB unit 22, and the horizontal rear OPB unit 23, respectively.
The level of the pixel signal in the blanking area without the effective pixel unit 21, the pre-horizontal OPB unit 22, and the horizontal post-OPB unit 23 is “0”. The pixel signal obtained from the post-horizontal OPB unit 23 is a non-signal level pixel signal, which is due to the dark current caused by the vertical transfer register generated by the transfer of the vertical transfer register. The pixel signal obtained from the pre-horizontal OPB unit 22 is an optical black level pixel signal, and includes a dark current caused by a sensor of a light-shielded pixel that is accumulated and converted regardless of light, and a dark current caused by a vertical transfer register. . The pixel signal obtained from the effective pixel unit 21 is a pixel signal at an optical signal level, which is derived from a light-induced signal of an effective pixel obtained by photoelectric conversion of incident light and a sensor-derived effective pixel accumulated and converted irrespective of the light. The dark current and the dark current caused by the vertical transfer register are included.

言い換えれば、固体撮像素子3に光が入射すると、遮光膜のない有効画素部21は、光起因信号、センサ起因の暗電流および垂直転送レジスタ起因の暗電流を含む光信号レベルの画素信号を出力し、遮光膜が形成された水平前OPB部22は、センサ起因の暗電流および垂直転送レジスタ起因の暗電流を含む光学的黒レベルの画素信号を出力し、水平後OPB部23は、垂直転送レジスタ起因の暗電流を含む無信号レベルの画素信号を出力する。   In other words, when light is incident on the solid-state imaging device 3, the effective pixel unit 21 without the light-shielding film outputs a pixel signal at an optical signal level including a light-induced signal, a sensor-induced dark current, and a vertical transfer register-derived dark current. The horizontal front OPB unit 22 on which the light shielding film is formed outputs an optical black level pixel signal including a dark current caused by the sensor and a dark current caused by the vertical transfer register, and the horizontal post-OPB unit 23 performs the vertical transfer. A non-signal level pixel signal including dark current caused by the register is output.

図4は、固体撮像素子の白点の一例を示す図である。また、図5は、白点を有する固体撮像素子により出力される画素信号の説明図である。
固体撮像素子3を遮光状態で動作させると、その出力画像には、図4に示すように、他の部分より明るい白点(図4では2個示す)が発生する。この画像の1ライン(X−X'面)を走査すると、図5に示すように、有効画素部21の他の部分に対し急峻に突出した信号レベルが得られる。これは、背景技術の欄で述べたように、有効画素を構成する半導体が金属イオンよる汚染を受けたり、半導体の結晶性がダメージを受けたときに発生するセンサ起因の暗電流によるものである。
FIG. 4 is a diagram illustrating an example of a white spot of the solid-state imaging device. FIG. 5 is an explanatory diagram of pixel signals output from a solid-state imaging device having a white point.
When the solid-state imaging device 3 is operated in a light-shielded state, as shown in FIG. 4, a bright white spot (shown by two in FIG. 4) is generated in the output image. When one line (XX ′ plane) of this image is scanned, as shown in FIG. 5, a signal level that protrudes steeply with respect to other portions of the effective pixel portion 21 is obtained. As described in the background art section, this is due to the dark current caused by the sensor that is generated when the semiconductor constituting the effective pixel is contaminated by metal ions or the crystallinity of the semiconductor is damaged. .

図6は、図1に示される白点検出補正回路の構成を示す図である。
前述のように、白点検出補正回路6は、撮像装置の出荷前の検査時に固体撮像素子3の白点(欠陥画素)を検出するとともに、撮像装置の購入後の撮影時(通常の撮影時ともいう)に白点ROM9に記憶された白点のアドレスおよび比率(後述)を読み出し、この比率に基づいてアドレスに対応する画素信号を補正する。白点の検出は、遮光状態で固体撮像装置3を動作させて行われる。
図6に示すように、白点検出補正回路6は、白点検出手段31、センサ起因暗電流演算手段32、比率演算手段33、白点記憶制御手段34および白点補正手段35を備える。
FIG. 6 is a diagram showing a configuration of the white spot detection correction circuit shown in FIG.
As described above, the white point detection / correction circuit 6 detects the white point (defective pixel) of the solid-state image sensor 3 at the time of inspection before shipment of the imaging device, and at the time of shooting after purchase of the imaging device (during normal shooting) The white spot address and ratio (described later) stored in the white spot ROM 9 are read out, and the pixel signal corresponding to the address is corrected based on this ratio. The white point is detected by operating the solid-state imaging device 3 in a light-shielded state.
As shown in FIG. 6, the white point detection correction circuit 6 includes a white point detection unit 31, a sensor-induced dark current calculation unit 32, a ratio calculation unit 33, a white point storage control unit 34, and a white point correction unit 35.

白点検出手段31は、固体撮像素子3により出力された画素信号に基づいて白点を検出する。白点検出回路31は、例えば、検査対象である注目画素と周辺画素との信号レベルの差を検出し、信号レベルの差がしきい値以上のとき、白点と判定する。また、白点検出回路31は、固体撮像素子3により出力された複数枚の画像の同位置の画素信号を累積加算し、累積加算された画素信号を比較して白点を検出するように構成することができる。この場合、固体撮像素子3のランダム雑音を排除し、いっそう精度良く白点を検出することができる。なお、画素信号の累積加算のために画像RAM10が使用される。   The white spot detection unit 31 detects a white spot based on the pixel signal output from the solid-state imaging device 3. For example, the white point detection circuit 31 detects a difference in signal level between a target pixel to be inspected and a peripheral pixel, and determines that a white point is detected when the difference in signal level is equal to or greater than a threshold value. The white point detection circuit 31 is configured to cumulatively add pixel signals at the same position in a plurality of images output from the solid-state imaging device 3 and compare the cumulatively added pixel signals to detect a white point. can do. In this case, it is possible to eliminate the random noise of the solid-state imaging device 3 and detect the white spot with higher accuracy. Note that the image RAM 10 is used for cumulative addition of pixel signals.

センサ起因暗電流演算手段32は、画素部20の水平前OPB部22の複数の遮光画素から取り出され固体撮像素子3により出力された画素信号(例えば、複数の遮光画素の画素値の平均値)から画素部20の水平後OPB部23により転送されて固体撮像素子3により出力された画素信号(例えば、垂直転送レジスタを構成する複数の転送素子の画素値の平均値)を減算し、有効画素部21の複数の有効画素および水平前OPB部22の複数の遮光画素のセンサ起因暗電流を演算する。   The sensor-induced dark current calculation means 32 is a pixel signal (for example, an average value of pixel values of a plurality of light-shielded pixels) extracted from the plurality of light-shielded pixels of the front horizontal OPB unit 22 of the pixel unit 20 and output from the solid-state imaging device 3. The pixel signal transferred from the horizontal post-OPB unit 23 of the pixel unit 20 and output from the solid-state image sensor 3 (for example, the average value of the pixel values of a plurality of transfer elements constituting the vertical transfer register) is subtracted from The sensor-induced dark current of the plurality of effective pixels of the unit 21 and the plurality of light-shielded pixels of the horizontal front OPB unit 22 is calculated.

比率演算手段33は、この撮像装置の出荷前の検査時に固体撮像素子3を遮光状態で動作させたとき、白点検出手段31により検出された白点の画素信号とセンサ起因暗電流演算手段32により演算されたセンサ起因暗電流との比率を演算する。白点記憶制御手段34は、白点検出手段31により検出された白点のアドレスと比率演算手段33により演算された対応する白点の比率とを対応付け、例えば白点ROM9に記憶する。   The ratio calculation means 33 is a white point pixel signal detected by the white point detection means 31 and the sensor-induced dark current calculation means 32 when the solid-state imaging device 3 is operated in a light-shielded state during inspection before shipment of the image pickup apparatus. The ratio with the sensor-induced dark current calculated by is calculated. The white point storage control unit 34 associates the address of the white point detected by the white point detection unit 31 with the ratio of the corresponding white point calculated by the ratio calculation unit 33 and stores it in, for example, the white point ROM 9.

白点補正手段35は、白点ROM9に記憶された白点のアドレスおよび比率を読み出し、この比率に基づいて固体撮像素子3により出力された前記アドレスに対応する白点の画素信号を補正する。具体的には、この撮像装置の出荷後に使用者により行われる通常の撮影時にセンサ起因暗電流演算手段32により演算されたセンサ起因暗電流に白点の比率を乗算することにより白点の画素信号に含まれる欠陥成分を演算し、演算された欠陥成分を白点の画素信号から減算することにより白点の画素信号を補正する。   The white point correction means 35 reads the white point address and ratio stored in the white point ROM 9 and corrects the white point pixel signal corresponding to the address output by the solid-state image sensor 3 based on this ratio. Specifically, the pixel signal of the white point is obtained by multiplying the sensor-induced dark current calculated by the sensor-derived dark current calculation means 32 at the time of normal photographing performed by the user after shipment of the imaging device by the white point ratio. The white dot pixel signal is corrected by subtracting the calculated defect component from the white dot pixel signal.

図7は、センサ起因暗電流、白点および垂直転送レジスタ起因電流の特性を示す図である。
前述のように、白点の画素信号は、垂直転送レジスタ起因暗電流、センサ起因暗電流および白点そのものの暗電流を含むが、図7に示すような関係が判明した。すなわち、白点の画素信号およびセンサ起因暗電流は、固体撮像素子3の温度および露光時間に依存し、線形関係を有する。これらは、温度が10℃上昇するにともない約2倍となる。また、露光時間の増大にともない増大する。一方、垂直転送レジスタ起因暗電流は、温度との間に線形関係を有するが、露光時間には依存せず、露光時間に対しほぼ一定の関係を有する。垂直転送レジスタは、露光に関係なく常に駆動しているためである。
したがって、センサ起因暗電流が温度および露光時間に応じて変化すれば、白点の画素信号も同様に変化することから、白点の画素信号とセンサ起因暗電流との比およびセンサ起因暗電流に基づいて白点の画素信号の欠陥成分を演算により求めることができる。
例えば、遮光状態における白点の画素信号が「10」のとき、センサ起因暗電流が「2」であれば、白点の画素信号とセンサ起因暗電流との比は「5」である。そして、通常の撮影時に、センサ起因暗電流が「4」のとき、このセンサ起因暗電流は、遮光時のセンサ起因暗電流の2倍であるから、白点の画素信号に含まれる欠陥成分も2倍となり、その値は「20」となる。そして、演算により求められた欠陥成分を白点の画素信号から減算すれば、欠陥成分が除去された正しい白点の画素信号が得られることになる。
FIG. 7 is a diagram showing characteristics of sensor-induced dark current, white point, and vertical transfer register-induced current.
As described above, the white point pixel signal includes the vertical transfer register-induced dark current, the sensor-induced dark current, and the white point itself dark current, and the relationship shown in FIG. 7 has been found. That is, the white point pixel signal and the sensor-induced dark current depend on the temperature of the solid-state imaging device 3 and the exposure time, and have a linear relationship. These double approximately as the temperature increases by 10 ° C. Also, it increases as the exposure time increases. On the other hand, the dark current caused by the vertical transfer register has a linear relationship with the temperature, but does not depend on the exposure time and has a substantially constant relationship with the exposure time. This is because the vertical transfer register is always driven regardless of exposure.
Therefore, if the sensor-induced dark current changes according to the temperature and the exposure time, the white point pixel signal changes in the same manner, so the ratio of the white point pixel signal to the sensor-induced dark current and the sensor-induced dark current Based on this, it is possible to obtain the defect component of the white point pixel signal by calculation.
For example, when the white point pixel signal in the light-shielding state is “10” and the sensor-induced dark current is “2”, the ratio of the white point pixel signal to the sensor-induced dark current is “5”. During normal shooting, when the sensor-induced dark current is “4”, the sensor-induced dark current is twice that of the sensor-induced dark current during light shielding. The value is doubled and the value is “20”. Then, by subtracting the defect component obtained by the calculation from the white point pixel signal, a correct white point pixel signal from which the defect component has been removed can be obtained.

次に、実施例1の撮像装置の出荷前の検査時の動作を説明する。
絞り2を閉じた遮光状態で撮像装置の撮影が行われる。固体撮像素子3の画面部20の有効画素部21の複数の有効画素および水平OPB22の複数の遮光画素により光に関係なく電荷が蓄積される。次に、複数の有効画素および複数の遮光画素に蓄積された信号電荷が画素信号としてそれぞれの垂直転送レジスタにより取り出され、垂直方向に転送される。同時に、水平後OPB部23の垂直転送レジスタにより画素値が「0」の画素信号が垂直方向に転送される。そして、有効画素部21、水平前OPB部22および水平後OPB部23のそれぞれの垂直転送レジスタにより垂直方向に転送された画素信号が水平転送レジスタ24により水平方向に転送され、出力回路25により画素信号(信号電荷)が電圧に変換され、次段のCDS回路4に出力される。
Next, the operation at the time of inspection before shipment of the image pickup apparatus of Embodiment 1 will be described.
Imaging with the imaging device is performed in a light-shielded state with the aperture 2 closed. Charges are accumulated regardless of light by the plurality of effective pixels of the effective pixel unit 21 of the screen unit 20 of the solid-state imaging device 3 and the plurality of light-shielding pixels of the horizontal OPB 22. Next, signal charges accumulated in a plurality of effective pixels and a plurality of light-shielded pixels are taken out by the respective vertical transfer registers as pixel signals and transferred in the vertical direction. At the same time, a pixel signal having a pixel value “0” is transferred in the vertical direction by the vertical transfer register of the post-horizontal OPB unit 23. Then, the pixel signals transferred in the vertical direction by the vertical transfer registers of the effective pixel unit 21, the pre-horizontal OPB unit 22 and the horizontal post-OPB unit 23 are transferred in the horizontal direction by the horizontal transfer register 24, and the output circuit 25 outputs the pixel signal. The signal (signal charge) is converted into a voltage and output to the CDS circuit 4 at the next stage.

固体撮像素子3により出力された画素信号は、CDS回路4によりノイズが除去され、AD変換回路5によりアナログ画素信号からデジタル画素信号に変換され、白点検出補正回路6に入力される。
ここで、白点を検出し、白点のアドレスおよび比率(画素信号とセンサ起因暗電流との比率)を記憶する方法をステップS1〜S4で説明する。
白点検出回路31により固体撮像装置3の白点が検出される。具体的には、白点検出手段31により注目画素と周辺画素との信号レベル(画素信号)の差が検出され、信号レベルの差がしきい値以上のとき、白点と判定される(ステップS1)。次に、センサ起因暗電流演算手段32により水平前OPB部22の複数の遮光画素の画素信号の平均値から水平後OPB部23からの複数の画素信号の平均値が減算され、センサ起因暗電流が演算される(ステップS2)。次に、比率演算手段により白点検出手段31により検出された白点の画素信号とセンサ起因暗電流演算手段32により演算されたセンサ起因暗電流との比率が演算される(ステップS3)。そして、白点記憶制御手段34により白点検出手段31により検出された白点のアドレスと比率演算手段33により演算された対応する白点の比率とが対応付けられ、白点ROM9に記憶される(ステップS4)。
The pixel signal output from the solid-state imaging device 3 is denoised by the CDS circuit 4, converted from an analog pixel signal to a digital pixel signal by the AD conversion circuit 5, and input to the white point detection correction circuit 6.
Here, a method of detecting a white point and storing the white point address and ratio (ratio between the pixel signal and the sensor-induced dark current) will be described in steps S1 to S4.
A white spot of the solid-state imaging device 3 is detected by the white spot detection circuit 31. Specifically, the white point detection means 31 detects a difference in signal level (pixel signal) between the target pixel and the surrounding pixels, and when the difference in signal level is equal to or greater than a threshold value, the white point is determined (step). S1). Next, the sensor-derived dark current calculation means 32 subtracts the average value of the plurality of pixel signals from the horizontal rear OPB unit 23 from the average value of the pixel signals of the plurality of light-shielded pixels of the horizontal front OPB unit 22, thereby obtaining the sensor-induced dark current. Is calculated (step S2). Next, the ratio between the white point pixel signal detected by the white point detection unit 31 and the sensor-induced dark current calculated by the sensor-derived dark current calculation unit 32 is calculated by the ratio calculation unit (step S3). Then, the white point address detected by the white point detection unit 31 by the white point storage control unit 34 is associated with the ratio of the corresponding white point calculated by the ratio calculation unit 33 and stored in the white point ROM 9. (Step S4).

次に、実施例1の撮像装置の通常の撮影時の動作を説明する。
レンズ1および絞り2を通して光が固体撮像素子3に入射されると、固体撮像素子3の画素部20の有効画素部21の複数の有効画素により光量に応じた電荷が蓄積される。同時に、水平前OPB部22の複数の遮光画素に光と関係なく電荷が蓄積される。
次に、複数の有効画素および複数の遮光画素に蓄積された信号電荷が画素信号としてそれぞれの垂直転送レジスタにより取り出され垂直方向に転送される。同時に、水平後OPB部23の垂直転送レジスタにより画素値が「0」の画素信号が垂直方向に転送される。そして、有効画素部21、水平前OPB部22および水平後OPB部23のそれぞれの垂直転送レジスタにより垂直方向に転送された画素信号が水平転送レジスタ24により水平方向に転送され、出力回路25により画素信号(信号電荷)が電圧に変換され、次段のCDS回路4に出力される。
Next, the operation at the time of normal shooting of the image pickup apparatus of Embodiment 1 will be described.
When light enters the solid-state image sensor 3 through the lens 1 and the diaphragm 2, charges corresponding to the light amount are accumulated by the plurality of effective pixels of the effective pixel unit 21 of the pixel unit 20 of the solid-state image sensor 3. At the same time, charges are accumulated in the plurality of light-shielding pixels of the front horizontal OPB unit 22 regardless of light.
Next, signal charges accumulated in a plurality of effective pixels and a plurality of light-shielded pixels are taken out by the respective vertical transfer registers as pixel signals and transferred in the vertical direction. At the same time, a pixel signal having a pixel value “0” is transferred in the vertical direction by the vertical transfer register of the post-horizontal OPB unit 23. Then, the pixel signals transferred in the vertical direction by the vertical transfer registers of the effective pixel unit 21, the pre-horizontal OPB unit 22 and the horizontal post-OPB unit 23 are transferred in the horizontal direction by the horizontal transfer register 24, and the output circuit 25 outputs the pixel signal. The signal (signal charge) is converted into a voltage and output to the CDS circuit 4 at the next stage.

固体撮像素子3により出力された画素信号は、CDS回路4によりノイズが除去され、AD変換回路5によりアナログ画素信号からデジタル画素信号に変換され、白点検出補正回路6に入力される。   The pixel signal output from the solid-state imaging device 3 is denoised by the CDS circuit 4, converted from an analog pixel signal to a digital pixel signal by the AD conversion circuit 5, and input to the white point detection correction circuit 6.

ここで、白点の画素信号の補正方法を、ステップS11〜S13で説明する。
センサ起因暗電流演算手段32により水平前OPB部22の複数の遮光画素の画素信号の平均値から水平後OPB部23からの複数の画素信号の平均値が減算され、センサ起因暗電流が演算される(ステップS11)。次に、白点補正手段35により白点ROM9に記憶された白点のアドレスおよび比率が読み出され、各白点の比率にセンサ起因暗電流演算手段32により演算されたセンサ起因暗電流が乗算され、各白点の画素信号の欠陥成分が演算される(ステップS12)。次に、白点補正手段35により固体撮像素子3により出力された前記アドレスに対応する白点の画素信号から演算された対応する欠陥成分が減算され、白点の画素信号から欠陥成分が除去されて画素信号が補正される(ステップS13)。
Here, a method for correcting the white point pixel signal will be described in steps S11 to S13.
The sensor-derived dark current calculation means 32 subtracts the average value of the plurality of pixel signals from the horizontal post-OPB unit 23 from the average value of the pixel signals of the plurality of light-shielded pixels of the horizontal front OPB unit 22 to calculate the sensor-induced dark current. (Step S11). Next, the white spot address and ratio stored in the white spot ROM 9 are read by the white spot correction means 35, and the ratio of each white spot is multiplied by the sensor-derived dark current calculated by the sensor-derived dark current calculation means 32. Then, the defect component of each white point pixel signal is calculated (step S12). Next, the corresponding defect component calculated from the white point pixel signal corresponding to the address output from the solid-state imaging device 3 by the white point correction unit 35 is subtracted, and the defect component is removed from the white point pixel signal. Thus, the pixel signal is corrected (step S13).

欠陥成分が除去されて補正された画素信号は、次段の画像処理回路7に出力され、ガンマ補正等の画像処理が施される。画像処理回路7により出力された画素信号は、画像RAM10に記憶された後、外部出力される、あるいは記録媒体11に記録される。   The pixel signal corrected by removing the defect component is output to the image processing circuit 7 in the next stage, and subjected to image processing such as gamma correction. The pixel signal output by the image processing circuit 7 is stored in the image RAM 10 and then output externally or recorded on the recording medium 11.

このように、実施例1の撮像装置によれば、白点検出補正回路6により固体撮像素子3の白点を検出し、その画素信号を補正する。したがって、白点のない画質が良好な画像を得ることができる。
また、白点検出補正回路6により白点を検出し、白点のアドレスおよび比を白点ROM9に記憶する。したがって、いちいち専用の検出装置により白点を検出する必要がなく、白点の検出を容易に行うことができる。
As described above, according to the imaging apparatus of the first embodiment, the white point detection and correction circuit 6 detects the white point of the solid-state imaging device 3 and corrects the pixel signal. Therefore, it is possible to obtain an image with good image quality without white spots.
Further, the white point is detected by the white point detection and correction circuit 6 and the white point address and ratio are stored in the white point ROM 9. Therefore, it is not necessary to detect a white spot by a dedicated detection device, and the white spot can be easily detected.

また、白点検出補正回路6により遮光状態で求められた固体撮像素子の白点の画素信号とセンサ起因暗電流との比率を動作状態の固体撮像素子のセンサ起因暗電流に乗算して白点の画素信号に含まれる欠陥成分を演算し、演算された欠陥成分を白点の画素信号から減算して白点の画素信号の欠陥成分を除去する。
したがって、温度および露光時間に依存する固体撮像素子のセンサ起因の暗電流そのものを検出し、白点を補正することができるので、白点を精度良く補正することができる。
Also, the white point is obtained by multiplying the sensor-induced dark current of the solid-state image sensor in the operating state by the ratio of the white-point pixel signal of the solid-state image sensor and the sensor-induced dark current obtained in the light-shielded state by the white point detection correction circuit 6 The defect component included in the pixel signal is calculated, and the calculated defect component is subtracted from the white point pixel signal to remove the defect component of the white point pixel signal.
Therefore, since the dark current itself caused by the sensor of the solid-state imaging device depending on the temperature and the exposure time can be detected and the white point can be corrected, the white point can be corrected with high accuracy.

また、白点のアドレスおよび比率を対応付けて記憶するので、メモリ容量を小さくすることができる。従来のような温度と補正量とを対応付けた演算テーブルは必要ない。また、周辺画素に基づいて白点の画素信号を置き換える必要がないので、画像の解像度を低下させることなく、エッジ部分を正しく補正し、シャープな画像を得ることができる。   Further, since the white spot address and the ratio are stored in association with each other, the memory capacity can be reduced. There is no need for a calculation table in which the temperature and the correction amount are associated with each other. Further, since it is not necessary to replace the white point pixel signal based on the peripheral pixels, the edge portion can be corrected correctly and a sharp image can be obtained without reducing the image resolution.

図8〜図11は、図2に示される固体撮像素子の画素部の変形例を示す図である。
図2に示される水平前OPB部22および水平後OPB部23は、その位置を反対にしてもよい。言い換えれば、図8に示すように、有効画素部21の水平方向に隣接する水平前OPB部26および水平後OPB部27を設け、水平前OPB部26を複数列の垂直レジスタにより構成し、水平後OPB部27を複数の遮光画素と複数列の垂直転送レジスタとより構成してもよい。
8 to 11 are diagrams showing modifications of the pixel portion of the solid-state imaging device shown in FIG.
The positions of the front horizontal OPB unit 22 and the horizontal rear OPB unit 23 shown in FIG. 2 may be reversed. In other words, as shown in FIG. 8, a horizontal front OPB unit 26 and a horizontal rear OPB unit 27 that are adjacent in the horizontal direction of the effective pixel unit 21 are provided, and the horizontal front OPB unit 26 is configured by a plurality of columns of vertical registers. The rear OPB unit 27 may be composed of a plurality of light shielding pixels and a plurality of columns of vertical transfer registers.

図2に示される画素部20では、水平前OPB部22および水平後OPB部23の画素信号に基づいて固体撮像素子3のセンサ起因暗電流を演算する。水平前OPB部22および水平後OPB部23は、従来良く知られる、光学的黒レベルを求めるためのオプティカルブラック領域を構成する。これに対し、固体撮像素子3のセンサ起因暗電流を演算するための専用のOPB部を設けてもよい。   In the pixel unit 20 shown in FIG. 2, the sensor-induced dark current of the solid-state imaging device 3 is calculated based on the pixel signals of the pre-horizontal OPB unit 22 and the horizontal post-OPB unit 23. The horizontal front OPB portion 22 and the horizontal rear OPB portion 23 constitute an optical black region for obtaining an optical black level, which is well known conventionally. On the other hand, a dedicated OPB unit for calculating the sensor-induced dark current of the solid-state imaging device 3 may be provided.

図9は、複数の遮光画素および複数列の垂直転送レジスタを有する光学的黒レベル部61および複数列の垂直転送レジスタを有する無信号レベル部62を水平前OPB部22の水平方向に隣接するように並べて配列した例である。
なお、光学的黒レベル部61は、少なくとも1列の遮光画素および垂直転送レジスタを有すればよく、無信号レベル部62は、少なくとも1列の垂直転送レジスタを有すればよい。
FIG. 9 shows that the optical black level unit 61 having a plurality of light-shielding pixels and a plurality of columns of vertical transfer registers and the no-signal level unit 62 having a plurality of columns of vertical transfer registers are adjacent to the horizontal OPB unit 22 in the horizontal direction. It is an example arranged side by side.
The optical black level unit 61 only needs to have at least one column of light-shielded pixels and a vertical transfer register, and the no-signal level unit 62 only needs to have at least one column of a vertical transfer register.

図10は、複数の遮光画素および複数列の垂直転送レジスタを有する光学的黒レベル部61および複数列の垂直転送レジスタを有する無信号レベル部62を水平後OPB部23の水平方向に隣接するように並べて配列した例である。
なお、光学的黒レベル部61は、少なくとも1列の遮光画素および垂直転送レジスタを有すればよく、無信号レベル部62は、少なくとも1列の垂直転送レジスタを有すればよい。
10 shows that the optical black level unit 61 having a plurality of light-shielding pixels and a plurality of columns of vertical transfer registers and the no-signal level unit 62 having a plurality of columns of vertical transfer registers are adjacent to each other in the horizontal direction of the rear rear OPB unit 23. It is an example arranged side by side.
The optical black level unit 61 only needs to have at least one column of light-shielded pixels and a vertical transfer register, and the no-signal level unit 62 only needs to have at least one column of a vertical transfer register.

図11は、複数の遮光画素および複数列の垂直転送レジスタを有する光学的黒レベル部63および複数列の垂直転送レジスタを有する無信号レベル部64を有効画素部21、水平前OPB部22および水平後OPB部23の垂直方向に隣接するように配列した例である。
なお、光学的黒レベル部63は、少なくとも1行の遮光画素および垂直転送レジスタ(転送素子)を有すればよく、無信号レベル部62は、少なくとも1行の垂直転送レジスタ(転送素子)を有すればよい。
FIG. 11 shows an optical black level portion 63 having a plurality of light-shielding pixels and a plurality of columns of vertical transfer registers and a non-signal level portion 64 having a plurality of columns of vertical transfer registers. In this example, the rear OPB unit 23 is arranged so as to be adjacent to each other in the vertical direction.
The optical black level unit 63 only needs to have at least one row of light-shielding pixels and a vertical transfer register (transfer element), and the no-signal level unit 62 has at least one row of vertical transfer register (transfer element). do it.

図9〜図11に示される光学的黒レベル部61および63の複数の遮光画素は、有効画素部21の複数の有効画素に比べ、大きな暗電流が発生するように構成することができる。これにより、センサ起因暗電流を検出しやすくすることができるので、固体撮像素子3のセンサ起因暗電流を高精度に求めることができる。   The plurality of light-shielding pixels of the optical black level portions 61 and 63 shown in FIGS. 9 to 11 can be configured to generate a larger dark current than the plurality of effective pixels of the effective pixel portion 21. As a result, the sensor-induced dark current can be easily detected, so that the sensor-induced dark current of the solid-state imaging device 3 can be obtained with high accuracy.

実施例1の撮像装置の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of an imaging apparatus according to Embodiment 1. FIG. 図1に示される固体撮像素子の画素部の構成を示す図である。It is a figure which shows the structure of the pixel part of the solid-state image sensor shown by FIG. 図2に示される固体撮像素子により出力される画素信号の説明図である。It is explanatory drawing of the pixel signal output by the solid-state image sensor shown by FIG. 固体撮像素子の白点の一例を示す図である。It is a figure which shows an example of the white spot of a solid-state image sensor. 白点を有する固体撮像素子により出力される画素信号の説明図である。It is explanatory drawing of the pixel signal output by the solid-state image sensor which has a white point. 図1に示される白点検出補正回路の構成を示す図である。It is a figure which shows the structure of the white point detection correction circuit shown by FIG. センサ起因暗電流、白点および垂直転送レジスタ起因電流の特性を示す図である。It is a figure which shows the characteristic of a sensor-induced dark current, a white point, and a vertical transfer register-induced current. 図2に示される固体撮像素子の画素部の変形例を示す図である。It is a figure which shows the modification of the pixel part of the solid-state image sensor shown by FIG. 図2に示される固体撮像素子の画素部の変形例を示す図である。It is a figure which shows the modification of the pixel part of the solid-state image sensor shown by FIG. 図2に示される固体撮像素子の画素部の変形例を示す図である。It is a figure which shows the modification of the pixel part of the solid-state image sensor shown by FIG. 図2に示される固体撮像素子の画素部の変形例を示す図である。It is a figure which shows the modification of the pixel part of the solid-state image sensor shown by FIG.

符号の説明Explanation of symbols

1……レンズ、2……絞り、3……固体撮像素子、4……CDS回路、5……AD変換回路、6……線状欠陥検出補正回路、7……画像処理回路、8……CPU、9……白点ROM、10……画像RAM、20……画素部20、21……有効画素部、22……水平後OPB部、23……水平後OPB部、24……水平転送レジスタ、25……出力回路、31……白点検出手段、32……センサ起因暗電流演算手段、33……比率演算手段、34……白点記憶制御手段、35……白点補正手段。   DESCRIPTION OF SYMBOLS 1 ... Lens, 2 ... Diaphragm, 3 ... Solid-state image sensor, 4 ... CDS circuit, 5 ... AD conversion circuit, 6 ... Linear defect detection correction circuit, 7 ... Image processing circuit, 8 ... CPU, 9 ... White dot ROM, 10 ... Image RAM, 20 ... Pixel unit 20, 21 ... Effective pixel unit, 22 ... Horizontal rear OPB unit, 23 ... Horizontal rear OPB unit, 24 ... Horizontal transfer Register, 25... Output circuit, 31... White point detecting means, 32... Sensor-induced dark current calculating means, 33 .. Ratio calculating means, 34.

Claims (18)

画素信号を出力する固体撮像素子と、前記固体撮像素子により出力された画素信号を補正する補正手段とを備え、
前記固体撮像素子は、
入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、
前記複数の有効画素とともに行列を構成するように前記複数の有効画素の周囲に配列され、遮光膜で覆われた複数の遮光画素と、
前記複数の有効画素の画素信号を取り出す有効画素転送部および前記複数の遮光画素の画像信号を取り出す遮光画素転送部の少なくとも1つの画素転送部をそれぞれ有し、前記複数の有効画素および複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効/遮光画素垂直転送レジスタとを有する有効/遮光画素部と、
前記有効/遮光画素部の周囲に1列または行列状に配列され、画素値が0の画素信号を垂直方向に転送する1または複数の無効画素垂直転送レジスタと、
前記複数の有効/遮光画素垂直転送レジスタおよび前記1または複数の無効画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する撮像装置であって、
前記補正手段は、
前記固体撮像素子を遮光状態で動作させたときに前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送されて前記固体撮像素子により出力された画素信号を減算したセンサ起因暗電流を用い、前記固体撮像素子を遮光状態で動作させたときに前記固体撮像素子により出力された画素信号に基づいて検出された前記固体撮像素子の欠陥画素のアドレスと、前記アドレスに対応する欠陥画素の画素信号と前記センサ起因暗電流との比率とを対応付けて記憶する欠陥画素記憶手段と、
前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送されて前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算するセンサ起因暗電流演算手段と、
前記欠陥画素記憶手段に記憶された欠陥画素のアドレスおよび対応する比率を読み出し、前記センサ起因暗電流演算手段により演算されたセンサ起因暗電流に前記比率を乗算し、前記欠陥画素の画素信号の欠陥成分を演算する欠陥成分演算手段と、
前記固体撮像装置により出力された前記アドレスの欠陥画素の画素信号から前記欠陥成分演算手段により演算された対応する欠陥画素の画素信号の欠陥成分を減算し、前記固体撮像装置により出力された欠陥画素の画素信号から欠陥成分を除去する欠陥成分除去手段とを有する、
ことを特徴とする撮像装置。
A solid-state imaging device that outputs a pixel signal; and a correction unit that corrects the pixel signal output by the solid-state imaging device;
The solid-state imaging device is
A plurality of effective pixels arranged in a matrix that converts incident light into signal charges and outputs them as pixel signals;
A plurality of light shielding pixels arranged around the plurality of effective pixels so as to form a matrix together with the plurality of effective pixels and covered with a light shielding film;
Each of the plurality of effective pixels and the plurality of light shielding units includes at least one pixel transfer unit of an effective pixel transfer unit that extracts pixel signals of the plurality of effective pixels and a light shielding pixel transfer unit that extracts image signals of the plurality of light shielding pixels. An effective / light-shielding pixel unit having a plurality of effective / light-shielding pixel vertical transfer registers that extract pixel signals for each column of pixels and transfer them in the vertical direction;
One or a plurality of invalid pixel vertical transfer registers arranged in a column or matrix around the effective / light-shielding pixel portion and transferring a pixel signal having a pixel value of 0 in the vertical direction;
An image pickup apparatus comprising: a plurality of valid / light-shielded pixel vertical transfer registers; and a horizontal transfer register that transfers pixel signals transferred by the one or more invalid pixel vertical transfer registers in a horizontal direction,
The correction means includes
When the solid-state image sensor is operated in a light-shielded state, the solid-state image sensor is transferred by the invalid pixel vertical transfer register from pixel signals of the plurality of light-shielded pixels output by the light-shielded pixel transfer unit and output by the solid-state image sensor. The solid-state imaging detected based on the pixel signal output by the solid-state imaging device when the solid-state imaging device is operated in a light-shielded state using a sensor-induced dark current obtained by subtracting the pixel signal output by the imaging device Defective pixel storage means for storing the address of the defective pixel of the element, the ratio of the pixel signal of the defective pixel corresponding to the address and the sensor-induced dark current in association with each other;
A pixel signal transferred by the invalid pixel vertical transfer register and output from the solid-state image sensor and subtracted from a pixel signal of the plurality of light-shielded pixels output by the solid-state image sensor taken out by the light-shielded pixel transfer unit; A sensor-induced dark current calculating means for calculating the induced dark current;
The defective pixel address stored in the defective pixel storage means and the corresponding ratio are read out, the sensor-induced dark current calculated by the sensor-derived dark current calculation means is multiplied by the ratio, and the defect of the pixel signal of the defective pixel A defect component calculating means for calculating a component;
The defective pixel output by the solid-state imaging device is obtained by subtracting the defective component of the pixel signal of the corresponding defective pixel calculated by the defective component calculating means from the pixel signal of the defective pixel at the address output by the solid-state imaging device. A defect component removing means for removing the defect component from the pixel signal of
An imaging apparatus characterized by that.
前記補正手段は、前記固体撮像素子を遮光状態で動作させたとき、前記固体撮像素子により出力された画素信号に基づいて前記固体撮像素子の欠陥画素を検出する欠陥画素検出手段を有することを特徴とする請求項1記載の撮像装置。   The correction means includes defective pixel detection means for detecting a defective pixel of the solid-state image sensor based on a pixel signal output from the solid-state image sensor when the solid-state image sensor is operated in a light-shielded state. The imaging apparatus according to claim 1. 前記欠陥画素検出手段は、前記固体撮像素子により出力された複数枚の画像の同位置の画素信号を累積加算する累積加算手段を有し、前記累積加算手段により累積加算された前記複数枚の同位置の画素信号に基づいて欠陥画素を検出することを特徴とする請求項2記載の撮像装置。   The defective pixel detection means includes cumulative addition means for cumulatively adding pixel signals at the same position in a plurality of images output from the solid-state imaging device, and the plurality of the same number of the plurality of sheets that have been cumulatively added by the cumulative addition means. The imaging apparatus according to claim 2, wherein a defective pixel is detected based on a pixel signal at a position. 前記補正手段は、前記欠陥画素検出手段により検出された欠陥画素の画素信号と前記センサ起因暗電流演算手段により演算されたセンサ起因暗電流との比率を演算する比率演算手段を有し、
前記欠陥画素検出手段により欠陥画素が検出されたとき、前記センサ起因暗電流演算手段によりセンサ起因暗電流を演算させ、前記比率演算手段により前記欠陥画素検出手段により検出された欠陥画素の画素信号と前記センサ起因暗電流演算手段により演算されたセンサ起因暗電流との比率を演算させ、前記欠陥画素記憶手段により前記欠陥画素検出手段により検出された欠陥画素のアドレスと、前記比率演算手段により演算された前記アドレスに対応する欠陥画素の比率とを対応付けて記憶させることを特徴とする請求項2記載の撮像装置。
The correction means includes ratio calculation means for calculating a ratio between a pixel signal of the defective pixel detected by the defective pixel detection means and a sensor-induced dark current calculated by the sensor-derived dark current calculation means,
When a defective pixel is detected by the defective pixel detection means, a sensor-induced dark current is calculated by the sensor-induced dark current calculation means, and a pixel signal of the defective pixel detected by the defective pixel detection means by the ratio calculation means The ratio of the sensor-induced dark current calculated by the sensor-induced dark current calculation means is calculated, and the defective pixel address detected by the defective pixel detection means by the defective pixel storage means is calculated by the ratio calculation means. The imaging apparatus according to claim 2, wherein a ratio of defective pixels corresponding to the address is stored in association with each other.
前記遮光画素は、前記有効画素に比べ、大きな暗電流が発生するように構成されていることを特徴とする請求項1記載の撮像装置。   The imaging device according to claim 1, wherein the light-shielding pixel is configured to generate a larger dark current than the effective pixel. 前記複数の遮光画素は、画素信号の黒レベルを検出するためのオプティカルブラック領域を構成することを特徴とする請求項1記載の撮像装置。   The imaging device according to claim 1, wherein the plurality of light-shielding pixels constitute an optical black region for detecting a black level of a pixel signal. 前記無効画素垂直転送レジスタは、画素信号の黒レベルを検出するためのオプティカルブラック領域を構成することを特徴とする請求項1記載の撮像装置。   The imaging apparatus according to claim 1, wherein the invalid pixel vertical transfer register forms an optical black region for detecting a black level of a pixel signal. 画素信号を出力する固体撮像素子と、前記固体撮像素子により出力された画素信号を補正する補正手段とを備え、
前記固体撮像素子は、
入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、
前記複数の有効画素とともに行列を構成するように前記複数の有効画素の周囲に配列され、遮光膜で覆われた複数の遮光画素と、
前記複数の有効画素の画素信号を取り出す有効画素転送部および前記複数の遮光画素の画像信号を取り出す遮光画素転送部の少なくとも1つの画素転送部をそれぞれ有し、前記複数の有効画素および複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効/遮光画素垂直転送レジスタとを有する有効/遮光画素部と、
前記有効/遮光画素部の周囲に1列または行列状に配列され、画素値が0の画素信号を垂直方向に転送する1または複数の無効画素垂直転送レジスタと、
前記複数の有効/遮光画素垂直転送レジスタおよび前記1または複数の無効画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する固体撮像素子であって、
前記補正手段は、
前記固体撮像素子を遮光状態で動作させたとき、前記固体撮像素子により出力された画素信号に基づいて前記固体撮像素子の欠陥画素を検出する欠陥画素検出手段と、
前記固体撮像素子を遮光状態で動作させたとき、前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送され前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算する第1のセンサ起因暗電流演算手段と、
前記欠陥画素検出手段により検出された欠陥画素の画素信号と前記第1のセンサ起因暗電流演算手段により演算されたセンサ起因暗電流との比率を演算する比率演算手段と、
前記欠陥画素検出手段により検出された欠陥画素のアドレスと前記比率演算手段により演算された前記アドレスに対応する欠陥画素の比率とを対応付けて記憶する欠陥画素記憶手段と、
前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送され前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算する第2のセンサ起因暗電流演算手段と、
前記欠陥画素記憶手段に記憶された欠陥画素のアドレスおよび対応する比率を読み出し、前記第2のセンサ起因暗電流演算手段により演算されたセンサ起因暗電流に前記比率を乗算し、前記欠陥画素の画素信号の欠陥成分を演算する欠陥成分演算手段と、
前記固体撮像装置により出力された前記アドレスの欠陥画素の画素信号から前記欠陥成分演算手段により演算された対応する欠陥画素の画素信号の欠陥成分を減算し、前記固体撮像装置により出力された欠陥画素の画素信号から欠陥成分を除去する欠陥成分除去手段とを有する、
ことを特徴とする撮像装置。
A solid-state imaging device that outputs a pixel signal; and a correction unit that corrects the pixel signal output by the solid-state imaging device;
The solid-state imaging device is
A plurality of effective pixels arranged in a matrix that converts incident light into signal charges and outputs them as pixel signals;
A plurality of light shielding pixels arranged around the plurality of effective pixels so as to form a matrix together with the plurality of effective pixels and covered with a light shielding film;
Each of the plurality of effective pixels and the plurality of light shielding units includes at least one pixel transfer unit of an effective pixel transfer unit that extracts pixel signals of the plurality of effective pixels and a light shielding pixel transfer unit that extracts image signals of the plurality of light shielding pixels. An effective / light-shielding pixel unit having a plurality of effective / light-shielding pixel vertical transfer registers that extract pixel signals for each column of pixels and transfer them in the vertical direction;
One or a plurality of invalid pixel vertical transfer registers arranged in a column or matrix around the effective / light-shielding pixel portion and transferring a pixel signal having a pixel value of 0 in the vertical direction;
A solid-state imaging device having a horizontal transfer register that horizontally transfers pixel signals transferred by the plurality of valid / light-shielded pixel vertical transfer registers and the one or more invalid pixel vertical transfer registers,
The correction means includes
Defective pixel detection means for detecting a defective pixel of the solid-state image sensor based on a pixel signal output by the solid-state image sensor when the solid-state image sensor is operated in a light-shielded state;
When the solid-state image sensor is operated in a light-shielded state, the solid-state image sensor is transferred from the pixel signals of the plurality of light-shielded pixels extracted by the light-shielded pixel transfer unit and output by the solid-state image sensor, and transferred by the invalid pixel vertical transfer register. A first sensor-induced dark current calculation means for subtracting a pixel signal output by the element and calculating a sensor-induced dark current;
A ratio calculating means for calculating a ratio between a pixel signal of the defective pixel detected by the defective pixel detecting means and a sensor-induced dark current calculated by the first sensor-derived dark current calculating means;
Defective pixel storage means for storing the address of the defective pixel detected by the defective pixel detection means and the ratio of the defective pixel corresponding to the address calculated by the ratio calculation means in association with each other;
The sensor signal is derived by subtracting the pixel signal transferred by the invalid pixel vertical transfer register and output by the solid-state image sensor from the pixel signals of the plurality of light-shielded pixels output by the light-shielded pixel transfer unit and output by the solid-state image sensor. A second sensor-derived dark current calculating means for calculating dark current;
The defective pixel address stored in the defective pixel storage means and the corresponding ratio are read, the sensor-induced dark current calculated by the second sensor-derived dark current calculation means is multiplied by the ratio, and the pixel of the defective pixel A defect component calculating means for calculating a defect component of the signal;
The defective pixel output by the solid-state imaging device is obtained by subtracting the defective component of the pixel signal of the corresponding defective pixel calculated by the defective component calculating means from the pixel signal of the defective pixel at the address output by the solid-state imaging device. A defect component removing means for removing the defect component from the pixel signal of
An imaging apparatus characterized by that.
入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、
前記複数の有効画素とともに行列を構成するように前記複数の有効画素の周囲に配列され、遮光膜で覆われた複数の遮光画素と、
前記複数の有効画素の画素信号を取り出す有効画素転送部および前記複数の遮光画素の画像信号を取り出す遮光画素転送部の少なくとも1つの画素転送部をそれぞれ有し、前記複数の有効画素および複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効/遮光画素垂直転送レジスタとを有する有効/遮光画素部と、
前記有効/遮光画素部の周囲に1列または行列状に配列され、画素値が0の画素信号を垂直方向に転送する1または複数の無効画素垂直転送レジスタと、
前記複数の有効/遮光画素垂直転送レジスタおよび前記1または複数の無効画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを備えた固体撮像素子により出力された画素信号を補正する画素信号の補正方法であって、
前記固体撮像素子を遮光状態で動作させたとき、前記固体撮像素子により出力された画素信号に基づいて前記固体撮像素子の欠陥画素を検出する欠陥画素検出ステップと、
前記固体撮像素子を遮光状態で動作させたとき、前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送され前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算する第1のセンサ起因暗電流演算ステップと、
前記欠陥画素検出ステップで検出された欠陥画素の画素信号と前記第1のセンサ起因暗電流演算ステップで演算されたセンサ起因暗電流との比率を演算する比率演算ステップと、
前記欠陥画素検出ステップで検出された欠陥画素のアドレスと前記比率演算ステップで演算された前記アドレスに対応する欠陥画素の比率とを対応付けて記憶する欠陥画素記憶ステップと、
前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送され前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算する第2のセンサ起因暗電流演算ステップと、
前記欠陥画素記憶ステップで記憶された欠陥画素のアドレスおよび対応する比率を読み出し、前記第2のセンサ起因暗電流演算ステップで演算されたセンサ起因暗電流に前記比率を乗算し、前記欠陥画素の画素信号の欠陥成分を演算する欠陥成分演算ステップと、
前記固体撮像装置により出力された前記アドレスの欠陥画素の画素信号から前記欠陥成分演算ステップで演算された対応する欠陥画素の画素信号の欠陥成分を減算し、前記固体撮像装置により出力された欠陥画素の画素信号から欠陥成分を除去する欠陥成分除去ステップとを含む、
ことを特徴とする画素信号の補正方法。
A plurality of effective pixels arranged in a matrix that converts incident light into signal charges and outputs them as pixel signals;
A plurality of light shielding pixels arranged around the plurality of effective pixels so as to form a matrix together with the plurality of effective pixels and covered with a light shielding film;
Each of the plurality of effective pixels and the plurality of light shielding units includes at least one pixel transfer unit of an effective pixel transfer unit that extracts pixel signals of the plurality of effective pixels and a light shielding pixel transfer unit that extracts image signals of the plurality of light shielding pixels. An effective / light-shielding pixel unit having a plurality of effective / light-shielding pixel vertical transfer registers that extract pixel signals for each column of pixels and transfer them in the vertical direction;
One or a plurality of invalid pixel vertical transfer registers arranged in a column or matrix around the effective / light-shielding pixel portion and transferring a pixel signal having a pixel value of 0 in the vertical direction;
A pixel signal output by a solid-state imaging device including a horizontal transfer register that horizontally transfers pixel signals transferred by the plurality of valid / light-shielded pixel vertical transfer registers and the one or more invalid pixel vertical transfer registers. A correction method of a pixel signal to be corrected,
A defective pixel detection step of detecting a defective pixel of the solid-state image sensor based on a pixel signal output by the solid-state image sensor when the solid-state image sensor is operated in a light-shielded state;
When the solid-state image sensor is operated in a light-shielded state, the solid-state image sensor is transferred from the pixel signals of the plurality of light-shielded pixels extracted by the light-shielded pixel transfer unit and output by the solid-state image sensor, and transferred by the invalid pixel vertical transfer register. A first sensor-induced dark current calculation step of subtracting a pixel signal output by the element and calculating a sensor-induced dark current;
A ratio calculation step of calculating a ratio between a pixel signal of the defective pixel detected in the defective pixel detection step and a sensor-induced dark current calculated in the first sensor-induced dark current calculation step;
A defective pixel storage step for storing the address of the defective pixel detected in the defective pixel detection step and the ratio of the defective pixel corresponding to the address calculated in the ratio calculation step in association with each other;
The sensor signal is derived by subtracting the pixel signal transferred by the invalid pixel vertical transfer register and output by the solid-state image sensor from the pixel signals of the plurality of light-shielded pixels output by the light-shielded pixel transfer unit and output by the solid-state image sensor. A second sensor-derived dark current calculation step for calculating dark current;
The defective pixel address stored in the defective pixel storage step and the corresponding ratio are read out, the sensor-induced dark current calculated in the second sensor-derived dark current calculation step is multiplied by the ratio, and the pixel of the defective pixel A defect component calculation step for calculating a defect component of the signal;
The defective pixel output by the solid-state imaging device is obtained by subtracting the defective component of the pixel signal of the corresponding defective pixel calculated in the defective component calculation step from the pixel signal of the defective pixel at the address output by the solid-state imaging device. Removing a defect component from the pixel signal of the defect component,
A method for correcting a pixel signal.
画素信号を出力する固体撮像素子と、前記固体撮像素子により出力された画素信号を補正する補正手段とを備え、
前記固体撮像装置は、
入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、
前記複数の有効画素とともに行列を構成するように前記複数の有効画素の周囲に配列され、遮光膜で覆われた複数の遮光画素と、
前記複数の有効画素の画素信号を取り出す有効画素転送部および前記複数の遮光画素の画像信号を取り出す遮光画素転送部の少なくとも1つの画素転送部をそれぞれ有し、前記複数の有効画素および複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効/遮光画素垂直転送レジスタとを有する有効/遮光画素部と、
前記有効/遮光画素部の周囲に1行または行列状に配列され、画素値が0の画素信号を垂直方向に転送して前記有効/遮光画素垂直転送レジスタに転送する1または複数の無効画素垂直転送レジスタと、
前記複数の有効/遮光画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する撮像装置であって、
前記補正手段は、
前記固体撮像素子を遮光状態で動作させたときに前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送されて前記固体撮像素子により出力された画素信号を減算したセンサ起因暗電流を用い、前記固体撮像素子を遮光状態で動作させたときに前記固体撮像素子により出力された画素信号に基づいて検出された前記固体撮像素子の欠陥画素のアドレスと、前記アドレスに対応する欠陥画素の画素信号と前記センサ起因暗電流との比率とを対応付けて記憶する欠陥画素記憶手段と、
前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送されて前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算するセンサ起因暗電流演算手段と、
前記欠陥画素記憶手段に記憶された欠陥画素のアドレスおよび対応する比率を読み出し、前記センサ起因暗電流演算手段により演算されたセンサ起因暗電流に前記比率を乗算し、前記欠陥画素の画素信号の欠陥成分を演算する欠陥成分演算手段と、
前記固体撮像装置により出力された前記アドレスの欠陥画素の画素信号から前記欠陥成分演算手段により演算された対応する欠陥画素の画素信号の欠陥成分を減算し、前記固体撮像装置により出力された欠陥画素の画素信号から欠陥成分を除去する欠陥成分除去手段とを有する、
ことを特徴とする撮像装置。
A solid-state imaging device that outputs a pixel signal; and a correction unit that corrects the pixel signal output by the solid-state imaging device;
The solid-state imaging device
A plurality of effective pixels arranged in a matrix that converts incident light into signal charges and outputs them as pixel signals;
A plurality of light shielding pixels arranged around the plurality of effective pixels so as to form a matrix together with the plurality of effective pixels and covered with a light shielding film;
Each of the plurality of effective pixels and the plurality of light shielding units includes at least one pixel transfer unit of an effective pixel transfer unit that extracts pixel signals of the plurality of effective pixels and a light shielding pixel transfer unit that extracts image signals of the plurality of light shielding pixels. An effective / light-shielding pixel unit having a plurality of effective / light-shielding pixel vertical transfer registers that extract pixel signals for each column of pixels and transfer them in the vertical direction;
One or a plurality of invalid pixel verticals arranged in a row or matrix around the effective / light-shielded pixel portion and transferring a pixel signal having a pixel value of 0 in the vertical direction to the valid / light-shielded pixel vertical transfer register A transfer register;
A horizontal transfer register for horizontally transferring pixel signals transferred by the plurality of effective / light-shielded pixel vertical transfer registers,
The correction means includes
When the solid-state image sensor is operated in a light-shielded state, the solid-state image sensor is transferred by the invalid pixel vertical transfer register from pixel signals of the plurality of light-shielded pixels output by the light-shielded pixel transfer unit and output by the solid-state image sensor. The solid-state imaging detected based on the pixel signal output by the solid-state imaging device when the solid-state imaging device is operated in a light-shielded state using a sensor-induced dark current obtained by subtracting the pixel signal output by the imaging device Defective pixel storage means for storing the address of the defective pixel of the element, the ratio of the pixel signal of the defective pixel corresponding to the address and the sensor-induced dark current in association with each other;
A pixel signal transferred by the invalid pixel vertical transfer register and output from the solid-state image sensor and subtracted from a pixel signal of the plurality of light-shielded pixels output by the solid-state image sensor taken out by the light-shielded pixel transfer unit; A sensor-induced dark current calculating means for calculating the induced dark current;
The defective pixel address stored in the defective pixel storage means and the corresponding ratio are read out, the sensor-induced dark current calculated by the sensor-derived dark current calculation means is multiplied by the ratio, and the defect of the pixel signal of the defective pixel A defect component calculating means for calculating a component;
The defective pixel output by the solid-state imaging device is obtained by subtracting the defective component of the pixel signal of the corresponding defective pixel calculated by the defective component calculating means from the pixel signal of the defective pixel at the address output by the solid-state imaging device. A defect component removing means for removing the defect component from the pixel signal of
An imaging apparatus characterized by that.
前記補正手段は、前記固体撮像素子を遮光状態で動作させたとき、前記固体撮像素子により出力された画素信号に基づいて前記固体撮像素子の欠陥画素を検出する欠陥画素検出手段を有することを特徴とする請求項10記載の撮像装置。   The correction means includes defective pixel detection means for detecting a defective pixel of the solid-state image sensor based on a pixel signal output from the solid-state image sensor when the solid-state image sensor is operated in a light-shielded state. The imaging apparatus according to claim 10. 前記欠陥画素検出手段は、前記固体撮像素子により出力された複数枚の画像の同位置の画素信号を累積加算する累積加算手段を有し、前記累積加算手段により累積加算された前記複数枚の同位置の画素信号に基づいて欠陥画素を検出することを特徴とする請求項11記載の撮像装置。   The defective pixel detection means includes cumulative addition means for cumulatively adding pixel signals at the same position in a plurality of images output from the solid-state imaging device, and the plurality of the same number of the plurality of sheets that have been cumulatively added by the cumulative addition means. The imaging apparatus according to claim 11, wherein a defective pixel is detected based on a pixel signal of a position. 前記補正手段は、前記欠陥画素検出手段により検出された欠陥画素の画素信号と前記センサ起因暗電流演算手段により演算されたセンサ起因暗電流との比率を演算する比率演算手段を有し、
前記欠陥画素検出手段により欠陥画素が検出されたとき、前記センサ起因暗電流演算手段によりセンサ起因暗電流を演算させ、前記比率演算手段により前記欠陥画素検出手段により検出された欠陥画素の画素信号と前記センサ起因暗電流演算手段により演算されたセンサ起因暗電流との比率を演算させ、前記欠陥画素記憶手段に前記欠陥画素検出手段により検出された欠陥画素のアドレスと、前記比率演算手段により演算された前記アドレスに対応する欠陥画素の比率とを対応付けて記憶することを特徴とする請求項11記載の撮像装置。
The correction means includes ratio calculation means for calculating a ratio between a pixel signal of the defective pixel detected by the defective pixel detection means and a sensor-induced dark current calculated by the sensor-derived dark current calculation means,
When a defective pixel is detected by the defective pixel detection means, a sensor-induced dark current is calculated by the sensor-induced dark current calculation means, and a pixel signal of the defective pixel detected by the defective pixel detection means by the ratio calculation means The ratio of the sensor-induced dark current calculated by the sensor-induced dark current calculation means is calculated, and the defective pixel storage means calculates the defective pixel address detected by the defective pixel detection means and the ratio calculation means. 12. The image pickup apparatus according to claim 11, wherein a ratio of defective pixels corresponding to the address is stored in association with each other.
前記遮光画素は、前記有効画素に比べ、大きな暗電流が発生するように構成されていることを特徴とする請求項10記載の撮像装置。   The imaging device according to claim 10, wherein the light-shielding pixel is configured to generate a larger dark current than the effective pixel. 前記複数の遮光画素は、画素信号の黒レベルを検出するためのオプティカルブラック領域を構成することを特徴とする請求項10記載の撮像装置。   The imaging device according to claim 10, wherein the plurality of light shielding pixels constitute an optical black region for detecting a black level of a pixel signal. 前記無効画素垂直転送レジスタは、画素信号の黒レベルを検出するためのオプティカルブラック領域を構成することを特徴とする請求項10記載の撮像装置。   The image pickup apparatus according to claim 10, wherein the invalid pixel vertical transfer register forms an optical black region for detecting a black level of a pixel signal. 画素信号を出力する固体撮像素子と、前記固体撮像素子により出力された画素信号を補正する補正手段とを備え、
前記固体撮像装置は、
入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、
前記複数の有効画素とともに行列を構成するように前記複数の有効画素の周囲に配列され、遮光膜で覆われた複数の遮光画素と、
前記複数の有効画素の画素信号を取り出す有効画素転送部および前記複数の遮光画素の画像信号を取り出す遮光画素転送部の少なくとも1つの画素転送部をそれぞれ有し、前記複数の有効画素および複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効/遮光画素垂直転送レジスタとを有する有効/遮光画素部と、
前記有効/遮光画素部の周囲に1行または行列状に配列され、画素値が0の画素信号を垂直方向に転送して前記有効/遮光画素垂直転送レジスタに転送する1または複数の無効画素垂直転送レジスタと、
前記複数の有効/遮光画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する撮像装置であって、
前記補正手段は、
前記固体撮像素子を遮光状態で動作させたとき、前記固体撮像素子により出力された画素信号に基づいて前記固体撮像素子の欠陥画素を検出する欠陥画素検出手段と、
前記固体撮像素子を遮光状態で動作させたとき、前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送され前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算する第1のセンサ起因暗電流演算手段と、
前記欠陥画素検出手段により検出された欠陥画素の画素信号と前記第1のセンサ起因暗電流演算手段により演算されたセンサ起因暗電流との比率を演算する比率演算手段と、
前記欠陥画素検出手段により検出された欠陥画素のアドレスと前記比率演算手段により演算された前記アドレスに対応する欠陥画素の比率とを対応付けて記憶する欠陥画素記憶手段と、
前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送され前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算する第2のセンサ起因暗電流演算手段と、
前記欠陥画素記憶手段に記憶された欠陥画素のアドレスおよび対応する比率を読み出し、前記第2のセンサ起因暗電流演算手段により演算されたセンサ起因暗電流に前記比率を乗算し、前記欠陥画素の画素信号の欠陥成分を演算する欠陥成分演算手段と、
前記固体撮像装置により出力された前記アドレスの欠陥画素の画素信号から前記欠陥成分演算手段により演算された対応する欠陥画素の画素信号の欠陥成分を減算し、前記固体撮像装置により出力された欠陥画素の画素信号から欠陥成分を除去する欠陥成分除去手段とを有する、
ことを特徴とする撮像装置。
A solid-state imaging device that outputs a pixel signal; and a correction unit that corrects the pixel signal output by the solid-state imaging device;
The solid-state imaging device
A plurality of effective pixels arranged in a matrix that converts incident light into signal charges and outputs them as pixel signals;
A plurality of light shielding pixels arranged around the plurality of effective pixels so as to form a matrix together with the plurality of effective pixels and covered with a light shielding film;
Each of the plurality of effective pixels and the plurality of light shielding units includes at least one pixel transfer unit of an effective pixel transfer unit that extracts pixel signals of the plurality of effective pixels and a light shielding pixel transfer unit that extracts image signals of the plurality of light shielding pixels. An effective / light-shielding pixel unit having a plurality of effective / light-shielding pixel vertical transfer registers that extract pixel signals for each column of pixels and transfer them in the vertical direction;
One or a plurality of invalid pixel verticals arranged in a row or matrix around the effective / light-shielded pixel portion and transferring a pixel signal having a pixel value of 0 in the vertical direction to the valid / light-shielded pixel vertical transfer register A transfer register;
A horizontal transfer register for horizontally transferring pixel signals transferred by the plurality of effective / light-shielded pixel vertical transfer registers,
The correction means includes
Defective pixel detection means for detecting a defective pixel of the solid-state image sensor based on a pixel signal output by the solid-state image sensor when the solid-state image sensor is operated in a light-shielded state;
When the solid-state image sensor is operated in a light-shielded state, the solid-state image sensor is transferred from the pixel signals of the plurality of light-shielded pixels extracted by the light-shielded pixel transfer unit and output by the solid-state image sensor, and transferred by the invalid pixel vertical transfer register. A first sensor-induced dark current calculation means for subtracting a pixel signal output by the element and calculating a sensor-induced dark current;
A ratio calculating means for calculating a ratio between a pixel signal of the defective pixel detected by the defective pixel detecting means and a sensor-induced dark current calculated by the first sensor-derived dark current calculating means;
Defective pixel storage means for storing the address of the defective pixel detected by the defective pixel detection means and the ratio of the defective pixel corresponding to the address calculated by the ratio calculation means in association with each other;
The sensor signal is derived by subtracting the pixel signal transferred by the invalid pixel vertical transfer register and output by the solid-state image sensor from the pixel signals of the plurality of light-shielded pixels output by the light-shielded pixel transfer unit and output by the solid-state image sensor. A second sensor-derived dark current calculating means for calculating dark current;
The defective pixel address stored in the defective pixel storage means and the corresponding ratio are read, the sensor-induced dark current calculated by the second sensor-derived dark current calculation means is multiplied by the ratio, and the pixel of the defective pixel A defect component calculating means for calculating a defect component of the signal;
The defective pixel output by the solid-state imaging device is obtained by subtracting the defective component of the pixel signal of the corresponding defective pixel calculated by the defective component calculating means from the pixel signal of the defective pixel at the address output by the solid-state imaging device. A defect component removing means for removing the defect component from the pixel signal of
An imaging apparatus characterized by that.
入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、
前記複数の有効画素とともに行列を構成するように前記複数の有効画素の周囲に配列され、遮光膜で覆われた複数の遮光画素と、
前記複数の有効画素の画素信号を取り出す有効画素転送部および前記複数の遮光画素の画像信号を取り出す遮光画素転送部の少なくとも1つの画素転送部をそれぞれ有し、前記複数の有効画素および複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効/遮光画素垂直転送レジスタとを有する有効/遮光画素部と、
前記有効/遮光画素部の周囲に1行または行列状に配列され、画素値が0の画素信号を垂直方向に転送して前記有効/遮光画素垂直転送レジスタに転送する1または複数の無効画素垂直転送レジスタと、
前記複数の有効/遮光画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを備えた撮像装置により出力される画素信号を補正する画素信号の補正方法であって、
前記固体撮像素子を遮光状態で動作させたとき、前記固体撮像素子により出力された画素信号に基づいて前記固体撮像素子の欠陥画素を検出する欠陥画素検出ステップと、
前記固体撮像素子を遮光状態で動作させたとき、前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送され前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算する第1のセンサ起因暗電流演算ステップと、
前記欠陥画素検出ステップで検出された欠陥画素の画素信号と前記第1のセンサ起因暗電流演算ステップで演算されたセンサ起因暗電流との比率を演算する比率演算ステップと、
前記欠陥画素検出ステップで検出された欠陥画素のアドレスと前記比率演算ステップで演算された前記アドレスに対応する欠陥画素の比率とを対応付けて記憶する欠陥画素記憶ステップと、
前記遮光画素転送部により取り出され前記固体撮像素子により出力された前記複数の遮光画素の画素信号から前記無効画素垂直転送レジスタにより転送され前記固体撮像素子により出力された画素信号を減算し、センサ起因暗電流を演算する第2のセンサ起因暗電流演算ステップと、
前記欠陥画素記憶ステップで記憶された欠陥画素のアドレスおよび対応する比率を読み出し、前記第2のセンサ起因暗電流演算ステップで演算されたセンサ起因暗電流に前記比率を乗算し、前記欠陥画素の画素信号の欠陥成分を演算する欠陥成分演算ステップと、
前記固体撮像装置により出力された前記アドレスの欠陥画素の画素信号から前記欠陥成分演算ステップで演算された対応する欠陥画素の画素信号の欠陥成分を減算し、前記固体撮像装置により出力された欠陥画素の画素信号から欠陥成分を除去する欠陥成分除去ステップとを含む、
ことを特徴とする画素信号の補正方法。
A plurality of effective pixels arranged in a matrix that converts incident light into signal charges and outputs them as pixel signals;
A plurality of light shielding pixels arranged around the plurality of effective pixels so as to form a matrix together with the plurality of effective pixels and covered with a light shielding film;
Each of the plurality of effective pixels and the plurality of light shielding units includes at least one pixel transfer unit of an effective pixel transfer unit that extracts pixel signals of the plurality of effective pixels and a light shielding pixel transfer unit that extracts image signals of the plurality of light shielding pixels. An effective / light-shielding pixel unit having a plurality of effective / light-shielding pixel vertical transfer registers that extract pixel signals for each column of pixels and transfer them in the vertical direction;
One or a plurality of invalid pixel verticals arranged in a row or matrix around the effective / light-shielded pixel portion and transferring a pixel signal having a pixel value of 0 in the vertical direction to the valid / light-shielded pixel vertical transfer register A transfer register;
A correction method of a pixel signal for correcting a pixel signal output by an imaging device including a horizontal transfer register for transferring a pixel signal transferred by the plurality of effective / light-shielded pixel vertical transfer registers in a horizontal direction,
A defective pixel detection step of detecting a defective pixel of the solid-state image sensor based on a pixel signal output by the solid-state image sensor when the solid-state image sensor is operated in a light-shielded state;
When the solid-state image sensor is operated in a light-shielded state, the solid-state image sensor is transferred from the pixel signals of the plurality of light-shielded pixels extracted by the light-shielded pixel transfer unit and output by the solid-state image sensor, and transferred by the invalid pixel vertical transfer register. A first sensor-induced dark current calculation step of subtracting a pixel signal output by the element and calculating a sensor-induced dark current;
A ratio calculation step of calculating a ratio between a pixel signal of the defective pixel detected in the defective pixel detection step and a sensor-induced dark current calculated in the first sensor-induced dark current calculation step;
A defective pixel storage step for storing the address of the defective pixel detected in the defective pixel detection step and the ratio of the defective pixel corresponding to the address calculated in the ratio calculation step in association with each other;
The sensor signal is derived by subtracting the pixel signal transferred by the invalid pixel vertical transfer register and output by the solid-state image sensor from the pixel signals of the plurality of light-shielded pixels output by the light-shielded pixel transfer unit and output by the solid-state image sensor. A second sensor-derived dark current calculation step for calculating dark current;
The defective pixel address stored in the defective pixel storage step and the corresponding ratio are read out, the sensor-induced dark current calculated in the second sensor-derived dark current calculation step is multiplied by the ratio, and the pixel of the defective pixel A defect component calculation step for calculating a defect component of the signal;
The defective pixel output by the solid-state imaging device is obtained by subtracting the defective component of the pixel signal of the corresponding defective pixel calculated in the defective component calculation step from the pixel signal of the defective pixel at the address output by the solid-state imaging device. Removing a defect component from the pixel signal of the defect component,
A method for correcting a pixel signal.
JP2004290870A 2004-10-04 2004-10-04 Imaging apparatus Pending JP2006108950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004290870A JP2006108950A (en) 2004-10-04 2004-10-04 Imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004290870A JP2006108950A (en) 2004-10-04 2004-10-04 Imaging apparatus

Publications (1)

Publication Number Publication Date
JP2006108950A true JP2006108950A (en) 2006-04-20

Family

ID=36378176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004290870A Pending JP2006108950A (en) 2004-10-04 2004-10-04 Imaging apparatus

Country Status (1)

Country Link
JP (1) JP2006108950A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8237812B2 (en) 2007-06-14 2012-08-07 Sony Corporation Imaging apparatus, imaging control method, and imaging control program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8237812B2 (en) 2007-06-14 2012-08-07 Sony Corporation Imaging apparatus, imaging control method, and imaging control program

Similar Documents

Publication Publication Date Title
US7952621B2 (en) Imaging apparatus having temperature sensor within image sensor wherin apparatus outputs an image whose quality does not degrade if temperature increases within image sensor
US8610802B2 (en) Solid-state imaging device with noise extracing pixels in the effective pixel region and solid-state imaging system using the same
EP2161919B1 (en) Read out method for a CMOS imager with reduced dark current
JP5526014B2 (en) Imaging device
KR100880281B1 (en) Image processing method and image processing circuit
US8451350B2 (en) Solid-state imaging device, camera module, and imaging method
KR102129627B1 (en) Solid-state imaging device, signal processing method thereof and electronic apparatus
US20080316336A1 (en) Image pickup apparatus and control method for image pickup apparatus
JP2008109504A (en) Imaging device and correcting method
US7443430B2 (en) Image sensing apparatus and method for correcting signal from image sensing device by using signal correction amount
JP4719442B2 (en) Image signal processing circuit, camera, and image signal processing method
US10623674B2 (en) Image processing device, image processing method and computer readable recording medium
JP4977541B2 (en) Digital camera and operation control method thereof
JP7134786B2 (en) Imaging device and control method
JP2006108950A (en) Imaging apparatus
JP2006108918A (en) Imaging apparatus
JP4397869B2 (en) Smear correction method and smear correction circuit
JP2010178384A (en) Image signal processing circuit, camera and image signal processing method
JP2006108880A (en) Imaging apparatus
JP5404217B2 (en) Imaging apparatus and control method thereof
JP2006100913A (en) Image processor and processing method
JP5515320B2 (en) Imaging device
JP4429348B2 (en) IMAGING DEVICE AND IMAGING DEVICE CONTROL METHOD
JP5293447B2 (en) Electronic camera
JP2011091507A (en) Imaging apparatus