JP2006108880A - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
JP2006108880A
JP2006108880A JP2004290269A JP2004290269A JP2006108880A JP 2006108880 A JP2006108880 A JP 2006108880A JP 2004290269 A JP2004290269 A JP 2004290269A JP 2004290269 A JP2004290269 A JP 2004290269A JP 2006108880 A JP2006108880 A JP 2006108880A
Authority
JP
Japan
Prior art keywords
solid
pixel
imaging device
operating temperature
linear defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004290269A
Other languages
Japanese (ja)
Inventor
Koichi Tanigawa
公一 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004290269A priority Critical patent/JP2006108880A/en
Publication of JP2006108880A publication Critical patent/JP2006108880A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging apparatus for detecting a linear defect extended in a vertical direction produced due to a potential dip of a horizontal transfer register and correcting a pixel signal of the detected linear defect when an operating temperature of a solid-state image sensor is low, and to provide a correction method of the pixel signal. <P>SOLUTION: The solid-state image sensor 3 is activated at a low temperature, a linear defect detection correction circuit 6 detects the linear defect of the solid-state image sensor 3 on the basis of the pixel signal of the solid-state image sensor 3, and an address of the detected linear defect is stored. In the case of operating the imaging apparatus, the linear defect detection correction circuit 6 detects the operating temperature of the solid-state image sensor 3, compares the detected temperature with a threshold value, when it is discriminated that the operating temperature of the solid-state image sensor 3 is lower than the threshold value, the address wherein the stored linear defect is read out, and the pixel signal of the linear defect corresponding to the address of the solid-state image sensor 3 is corrected. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体撮像素子の欠陥画素の画素信号を補正する撮像装置および固体撮像素子により出力された欠陥画素の画素信号を補正する画素信号の補正方法に関する。   The present invention relates to an imaging apparatus that corrects a pixel signal of a defective pixel of a solid-state imaging device and a pixel signal correction method that corrects a pixel signal of a defective pixel output by the solid-state imaging device.

ビデオカメラやデジタルカメラのような固体撮像素子を有する撮像装置により撮影された画像には、固体撮像素子に起因する様々な画像欠陥が現れる。良く知られる画像欠陥としては、黒欠陥や白点(白傷)がある。黒欠陥は黒い点として、白点は白い点として画像に現れる。
白点は、半導体中の不純物や結晶欠陥により発生する暗電流に起因する。この暗電流は、固体撮像素子の動作温度の上昇に伴い増大する。このため、固体撮像素子の動作温度を検出し、検出された動作温度に基づいて固体撮像素子により出力される白点の画素信号を補正する撮像装置が開示されている(例えば、特許文献1および2参照)。
In an image taken by an imaging apparatus having a solid-state image sensor such as a video camera or a digital camera, various image defects due to the solid-state image sensor appear. Well-known image defects include black defects and white spots (white scratches). Black defects appear in the image as black dots and white dots as white dots.
White spots are caused by dark currents generated by impurities and crystal defects in the semiconductor. This dark current increases as the operating temperature of the solid-state image sensor increases. For this reason, an imaging device that detects the operating temperature of the solid-state imaging device and corrects the white point pixel signal output from the solid-state imaging device based on the detected operating temperature is disclosed (for example, Patent Document 1 and 2).

ところで、これらの画像欠陥の他に固体撮像素子の水平転送レジスタに起因する欠陥として、水平方向の周囲画素よりもわずかに画素信号が低下した垂直方向に延びる線状欠陥が現れることがある。
例えば、CCD(Charge Coupled Device)の場合、画素(光電変換素子)に蓄積された信号電荷は、垂直転送レジスタに読み出され垂直方向に転送され、水平転送レジスタにより水平方向に転送されて出力される。水平転送レジスタは、複数の転送電極を有する。水平転送レジスタでは、これら複数の転送電極のそれぞれに駆動電圧が与えられると、電荷転送路のポテンシャルエネルギーが変化し信号電荷が転送される。
By the way, in addition to these image defects, as a defect caused by the horizontal transfer register of the solid-state imaging device, a linear defect extending in the vertical direction in which the pixel signal is slightly lower than that in the surrounding pixels in the horizontal direction may appear.
For example, in the case of a CCD (Charge Coupled Device), signal charges accumulated in a pixel (photoelectric conversion element) are read to a vertical transfer register and transferred in the vertical direction, and transferred and output in the horizontal direction by the horizontal transfer register. The The horizontal transfer register has a plurality of transfer electrodes. In the horizontal transfer register, when a drive voltage is applied to each of the plurality of transfer electrodes, the potential energy of the charge transfer path changes and signal charges are transferred.

特開平9−23358号公報Japanese Patent Laid-Open No. 9-23358 特開平11−317516号公報JP 11-317516 A

しかしながら、水平転送レジスタでは、電荷転送路と転送電極との間に異物が存在する場合、電荷転送路と転送電極との間に設けられた絶縁酸化膜の膜厚が局所的に厚い場合、隣接する転送電極間の絶縁酸化膜の膜厚が厚い場合、電荷転送路に注入された不純物イオンの密度が不均一の場合には、電荷転送路にポテンシャルディップが発生する場合がある。ポテンシャルディップは、ポテンシャネルエネルギーの局所的な穴を意味し、数個の電子を捕獲する。
ポテンシャルディップが発生すると、信号電荷の一部がそこに捕獲される。すなわち、垂直転送レジスタにより水平転送レジスタに転送された信号電荷の一部は、このポテンシャルディップに捕獲され、画素信号の信号レベルが低下する。この結果、固体撮像素子により出力された画像には、垂直方向に延びる暗い線状の欠陥が現れる。
However, in the horizontal transfer register, if there is a foreign object between the charge transfer path and the transfer electrode, if the insulating oxide film provided between the charge transfer path and the transfer electrode is locally thick, When the insulating oxide film between the transfer electrodes is thick, the potential dip may occur in the charge transfer path if the density of the impurity ions implanted into the charge transfer path is not uniform. The potential dip means a local hole in the potential chanel energy and captures several electrons.
When a potential dip occurs, part of the signal charge is captured there. That is, part of the signal charge transferred to the horizontal transfer register by the vertical transfer register is captured by the potential dip, and the signal level of the pixel signal is lowered. As a result, dark linear defects extending in the vertical direction appear in the image output by the solid-state imaging device.

線状の欠陥は、固体撮像素子に入射される光の照度が低いとき、かつ、固体撮像素子の動作温度が低いときに現れる。入射光の照度が低い場合には、固体撮像素子から出力される画素信号のレベルが低いため、ポテンシャルディップの電子の捕獲による画素信号の低下の影響が相対的に大きく現れる。また、固体撮像素子の動作温度が低い場合には、電子の運動エネルギーが小さくなるため、ポテンシャルディップに捕獲された電子がポテンシャルディップから抜け出すことが困難になる。   A linear defect appears when the illuminance of light incident on the solid-state image sensor is low and when the operating temperature of the solid-state image sensor is low. When the illuminance of the incident light is low, the level of the pixel signal output from the solid-state imaging device is low, so that the influence of the decrease in the pixel signal due to the capture of electrons in the potential dip appears relatively large. In addition, when the operating temperature of the solid-state imaging device is low, the kinetic energy of electrons becomes small, so that it becomes difficult for the electrons captured by the potential dip to escape from the potential dip.

一方、入射光の照度が高い場合には、固体撮像素子から出力される画素信号のレベルが高いため、ポテンシャルディップに電子が捕獲されたとしても画素信号の低下の影響は相対的に小さく、画像欠陥として認識されない。また、固体撮像素子の動作温度が高い場合には、電子の運動エネルギーが大きくなり、ポテンシャルディップに捕獲された電子がポテンシャルディップから容易に抜け出すため、画素信号が低下せず、画像欠陥は発生しない。   On the other hand, when the illuminance of incident light is high, the level of the pixel signal output from the solid-state imaging device is high, so even if electrons are captured in the potential dip, the influence of the decrease in the pixel signal is relatively small. Not recognized as a defect. In addition, when the operating temperature of the solid-state imaging device is high, the kinetic energy of electrons increases, and the electrons trapped in the potential dip easily escape from the potential dip, so that the pixel signal does not decrease and image defects do not occur. .

固体撮像素子の製造プロセスでは、異物の低減、絶縁酸化膜の均一性の向上等が図られているものの、上記のような固体撮像素子の線状欠陥を除去することは困難である。   In the solid-state imaging device manufacturing process, foreign matter is reduced and the uniformity of the insulating oxide film is improved. However, it is difficult to remove the linear defects of the solid-state imaging device as described above.

本発明は、このような事情に鑑みなされたものであり、その目的は、固体撮像素子の動作温度が低い場合、水平転送レジスタのポテンシャルディップに起因して発生する垂直方向に延びる線状欠陥を検出し、検出された線状欠陥の画素信号を補正する撮像装置および画素信号の補正方法を提供するにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to eliminate a linear defect extending in the vertical direction caused by the potential dip of the horizontal transfer register when the operating temperature of the solid-state imaging device is low. An object of the present invention is to provide an image pickup apparatus that detects and corrects a pixel signal of a detected linear defect, and a pixel signal correction method.

上記目的を達成するため、本発明の撮像装置は、画素信号を出力する固体撮像素子と、前記固体撮像素子を低温で動作させたときに前記固体撮像素子により出力された画素信号に基づいて検出された前記固体撮像素子の垂直方向に延びる線状欠陥のアドレスを記憶する線状欠陥アドレス記憶手段と、前記固体撮像素子の動作温度を検出する動作温度検出手段と、前記動作温度検出手段により検出された前記固体撮像素子の動作温度をしきい値と比較し、前記固体撮像素子の動作温度が前記しきい値より低いかどうかを判定する判定手段と、前記判定手段により前記固体撮像素子の動作温度が低いと判定されたとき、前記線状欠陥アドレス記憶手段に記憶された線状欠陥のアドレスを読み出し、前記固体撮像素子により出力された前記アドレスに対応する前記線状欠陥の画素信号を補正する補正手段とを備えたことを特徴とする。
また、本発明の画素信号の補正方法は、固体撮像素子により出力された画素信号を補正する画素信号の補正方法であって、前記固体撮像素子を低温で動作させたときに前記固体撮像素子により出力された画素信号に基づいて前記固体撮像素子の垂直方向に延びる線状欠陥を検出する線状欠陥検出ステップと、前記線状欠陥検出ステップで検出された前記線状欠陥のアドレスを記憶する線状欠陥アドレス記憶ステップと、前記固体撮像素子の動作温度を検出する動作温度検出ステップと、前記動作温度検出ステップで検出された前記固体撮像素子の動作温度をしきい値と比較し、前記固体撮像素子の動作温度が前記しきい値より低いかどうかを判定する判定ステップと、前記判定ステップで前記固体撮像素子の動作温度が低いと判定されたとき、前記線状欠陥アドレス記憶ステップで記憶された線状欠陥のアドレスを読み出し、前記固体撮像素子により出力された前記アドレスに対応する前記線状欠陥の画素信号を補正する補正ステップとを含むことを特徴とする。
また、本発明の撮像装置は、入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効画素垂直転送レジスタと、前記複数の有効画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する固体撮像素子と、前記固体撮像素子を低温で動作させたときに前記固体撮像素子により出力された画素信号に基づいて検出された前記固体撮像素子の垂直方向に延びる線状欠陥のアドレスを記憶する線状欠陥アドレス記憶手段と、前記固体撮像素子の動作温度を検出する動作温度検出手段と、前記動作温度検出手段により検出された前記固体撮像素子の動作温度をしきい値と比較し、前記固体撮像素子の動作温度が低いかどうかを判定する判定手段と、前記判定手段により前記固体撮像素子の動作温度が低いと判定されたとき、前記線状欠陥アドレス記憶手段に記憶された線状欠陥のアドレスを読み出し、前記固体撮像素子により出力された前記アドレスに対応する前記線状欠陥の画素信号を補正する補正手段とを備えたことを特徴とする。
また、本発明の撮像装置は、入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効画素垂直転送レジスタとを有する有効画素部と、前記有効画素部の周囲に1列または行列状に配列され、画素値が0の画素信号を垂直方向に転送する1または複数の無効画素垂直転送レジスタと、前記複数の有効画素垂直転送レジスタおよび前記1または複数の無効画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する固体撮像素子と、前記固体撮像素子を低温で動作させたときの前記固体撮像素子により出力された画素信号に基づいて検出された前記固体撮像素子の垂直方向に延びる線状欠陥のアドレスを記憶する線状欠陥アドレス記憶手段と、前記固体撮像素子の動作温度を検出する動作温度検出手段と、前記動作温度検出手段により検出された前記固体撮像素子の動作温度をしきい値と比較し、前記固体撮像そしの動作温度が前記しきい値より低いかどうかを判定する判定手段と、前記判定手段により前記固体撮像素子の動作温度が低いと判定されたとき、前記線状欠陥アドレス記憶手段に記憶された線状欠陥のアドレスを読み出し、前記固体撮像素子により出力された前記アドレスに対応する前記線状欠陥の画素信号を補正する補正手段とを備えたことを特徴とする。
また、本発明の撮像装置は、入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効画素垂直転送レジスタとを有する有効画素部と、前記有効画素部の周囲に1行または行列状に配列され、画素値が0の画素信号を垂直方向に転送して前記有効画素垂直転送レジスタに転送する1または複数の無効画素垂直転送レジスタと、前記複数の有効画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する固体撮像素子と、前記固体撮像素子を低温で動作させたときの前記固体撮像素子により出力された画素信号に基づいて検出された前記固体撮像素子の垂直方向に延びる線状欠陥のアドレスを記憶する線状欠陥アドレス記憶手段と、前記固体撮像素子の動作温度を検出する動作温度検出手段と、前記動作温度検出手段により検出された前記固体撮像素子の動作温度をしきい値と比較し、前記固体撮像そしの動作温度が前記しきい値より低いかどうかを判定する判定手段と、前記判定手段により前記固体撮像素子の動作温度が低いと判定されたとき、前記線状欠陥アドレス記憶手段に記憶された線状欠陥のアドレスを読み出し、前記固体撮像素子により出力された前記アドレスに対応する前記線状欠陥の画素信号を補正する補正手段とを備えたことを特徴とする。
また、本発明の撮像装置は、入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素とともに行列を構成するように前記複数の有効画素の周囲に配列され、遮光膜で覆われた複数の遮光画素と、前記複数の有効画素および複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効/遮光画素垂直転送レジスタとを有する有効/遮光画素部と、前記有効/遮光画素部の周囲に1列または行列状に配列され、画素値が0の画素信号を垂直方向に転送する1または複数の無効画素垂直転送レジスタと、前記複数の有効/遮光画素垂直転送レジスタおよび前記1または複数の無効画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する固体撮像素子と、前記固体撮像素子を低温で動作させたときに前記固体撮像素子により出力された画素信号に基づいて検出された前記固体撮像素子の垂直方向に延びる線状欠陥のアドレスを記憶する線状欠陥アドレス記憶手段と、前記固体撮像素子の動作温度を検出する動作温度検出手段と、前記動作温度検出手段により検出された前記固体撮像素子の動作温度をしきい値と比較し、前記固体撮像そしの動作温度が前記しきい値より低いかどうかを判定する判定手段と、前記判定手段により前記固体撮像素子の動作温度が低いと判定されたとき、前記線状欠陥アドレス記憶手段に記憶された線状欠陥のアドレスを読み出し、前記固体撮像素子により出力された前記アドレスに対応する前記線状欠陥の画素信号を補正する補正手段とを備えたことを特徴とする。
また、本発明の撮像装置は、入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素とともに行列を構成するように前記複数の有効画素の周囲に配列され、遮光膜で覆われた複数の遮光画素と、前記複数の有効画素および複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効/遮光画素垂直転送レジスタとを有する有効/遮光画素部と、前記有効/遮光画素部の周囲に1行または行列状に配列され、画素値が0の画素信号を垂直方向に転送して前記有効/遮光画素垂直転送レジスタに転送する1または複数の無効画素垂直転送レジスタと、前記複数の有効/遮光画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する固体撮像素子と、前記固体撮像素子を低温で動作させたときに前記固体撮像素子により出力された画素信号に基づいて検出された前記固体撮像素子の垂直方向に延びる線状欠陥のアドレスを記憶する線状欠陥アドレス記憶手段と、前記固体撮像素子の動作温度を検出する動作温度検出手段と、前記動作温度検出手段により検出された前記固体撮像素子の動作温度をしきい値と比較し、前記固体撮像そしの動作温度が前記しきい値より低いかどうかを判定する判定手段と、前記判定手段により前記固体撮像素子の動作温度が低いと判定されたとき、前記線状欠陥アドレス記憶手段に記憶された線状欠陥のアドレスを読み出し、前記固体撮像素子により出力された前記アドレスに対応する前記線状欠陥の画素信号を補正する補正手段とを備えたことを特徴とする。
In order to achieve the above object, an image pickup apparatus according to the present invention detects a solid-state image pickup device that outputs a pixel signal and a pixel signal output from the solid-state image pickup device when the solid-state image pickup device is operated at a low temperature. Linear defect address storage means for storing the address of a linear defect extending in the vertical direction of the solid-state image sensor, operating temperature detection means for detecting the operating temperature of the solid-state image sensor, and detection by the operating temperature detection means The operation temperature of the solid-state image sensor is compared with a threshold value to determine whether the operation temperature of the solid-state image sensor is lower than the threshold value, and the operation of the solid-state image sensor by the determination means When it is determined that the temperature is low, the address of the linear defect stored in the linear defect address storage means is read, and the address output by the solid-state imaging device Characterized by comprising a correction means for correcting the pixel signal of the corresponding linear defect.
The pixel signal correction method of the present invention is a pixel signal correction method for correcting a pixel signal output from a solid-state image sensor, and is operated by the solid-state image sensor when the solid-state image sensor is operated at a low temperature. A line defect detection step for detecting a line defect extending in the vertical direction of the solid-state imaging device based on the output pixel signal, and a line for storing an address of the line defect detected in the line defect detection step A state defect address storing step, an operating temperature detecting step for detecting an operating temperature of the solid-state imaging device, and the operating temperature of the solid-state imaging device detected in the operating temperature detecting step is compared with a threshold value, and the solid-state imaging A determination step of determining whether the operating temperature of the element is lower than the threshold value, and when the operating temperature of the solid-state imaging device is determined to be low in the determination step A correction step of reading out the address of the linear defect stored in the linear defect address storing step and correcting the pixel signal of the linear defect corresponding to the address output by the solid-state imaging device. And
In addition, the imaging apparatus of the present invention extracts a plurality of effective pixels arranged in a matrix that converts incident light into signal charges and outputs them as pixel signals, and extracts pixel signals for each of the plurality of effective pixels for each column. A solid-state imaging device comprising: a plurality of effective pixel vertical transfer registers for transferring in the vertical direction; and a horizontal transfer register for transferring pixel signals transferred by the plurality of effective pixel vertical transfer registers in the horizontal direction; Linear defect address storage means for storing an address of a linear defect extending in the vertical direction of the solid-state imaging device detected based on a pixel signal output by the solid-state imaging device when operating at a low temperature, and An operating temperature detecting means for detecting an operating temperature of the solid-state imaging device, and an operating temperature of the solid-state imaging device detected by the operating temperature detecting means is compared with a threshold value; Determining means for determining whether or not the operating temperature of the solid-state image sensor is low, and the linear defect stored in the linear defect address storage means when the determining means determines that the operating temperature of the solid-state image sensor is low And a correction means for correcting the pixel signal of the linear defect corresponding to the address output by the solid-state imaging device.
In addition, the imaging apparatus of the present invention extracts a plurality of effective pixels arranged in a matrix that converts incident light into signal charges and outputs them as pixel signals, and extracts pixel signals for each of the plurality of effective pixels for each column. , An effective pixel unit having a plurality of effective pixel vertical transfer registers for transferring in the vertical direction, and a pixel signal having a pixel value of 0 arranged in one column or matrix around the effective pixel unit in the vertical direction Solid-state imaging having one or more invalid pixel vertical transfer registers, and a plurality of valid pixel vertical transfer registers and a horizontal transfer register that horizontally transfers pixel signals transferred by the one or more invalid pixel vertical transfer registers And a vertical direction of the solid-state image sensor detected based on a pixel signal output by the solid-state image sensor when the solid-state image sensor is operated at a low temperature. Linear defect address storage means for storing the address of the linear defect, operating temperature detection means for detecting the operating temperature of the solid-state image sensor, and operating temperature of the solid-state image sensor detected by the operating temperature detection means. A determination unit that determines whether or not the operating temperature of the solid-state imaging device is lower than the threshold value, and the determination unit determines that the operating temperature of the solid-state imaging device is low compared with a threshold value; Correction means for reading out the address of the linear defect stored in the linear defect address storage means and correcting the pixel signal of the linear defect corresponding to the address output by the solid-state imaging device. And
In addition, the imaging apparatus of the present invention extracts a plurality of effective pixels arranged in a matrix that converts incident light into signal charges and outputs them as pixel signals, and extracts pixel signals for each of the plurality of effective pixels for each column. An effective pixel portion having a plurality of effective pixel vertical transfer registers for transferring in the vertical direction, and a pixel signal having a pixel value of 0 arranged in a row or matrix around the effective pixel portion in the vertical direction. A solid-state imaging device having one or a plurality of invalid pixel vertical transfer registers for transferring to the effective pixel vertical transfer registers and a horizontal transfer register for transferring pixel signals transferred by the plurality of valid pixel vertical transfer registers in a horizontal direction A linear notch extending in the vertical direction of the solid-state image sensor detected based on a pixel signal output by the solid-state image sensor when the solid-state image sensor is operated at a low temperature. Linear defect address storage means for storing the address of the solid-state imaging device, operating temperature detection means for detecting the operating temperature of the solid-state imaging device, and the operating temperature of the solid-state imaging device detected by the operating temperature detection means as a threshold value A determination unit that determines whether the operating temperature of the solid-state imaging device is lower than the threshold value, and the linear defect address when the determination unit determines that the operating temperature of the solid-state imaging device is low. And a correction unit that reads the address of the linear defect stored in the storage unit and corrects the pixel signal of the linear defect corresponding to the address output by the solid-state imaging device.
The imaging apparatus according to the present invention includes a plurality of effective pixels arranged in a matrix that converts incident light into signal charges and outputs the signal as a pixel signal, and the plurality of effective pixels form a matrix together with the plurality of effective pixels. A plurality of light-shielding pixels arranged around the effective pixels and covered with a light-shielding film, and a plurality of effective / multiple pixels that extract pixel signals for each of the plurality of effective pixels and the plurality of light-shielding pixels and transfer them in the vertical direction. An effective / light-shielding pixel unit having a light-shielding pixel vertical transfer register, and one or a plurality of pixel signals arranged in a column or a matrix around the effective / light-shielding pixel unit and transferring pixel signals having a pixel value of 0 in the vertical direction An invalid pixel vertical transfer register, a plurality of valid / light-shielded pixel vertical transfer registers, and a horizontal transfer register for horizontally transferring pixel signals transferred by the one or more invalid pixel vertical transfer registers A solid-state image sensor having a vertical line of the solid-state image sensor detected based on a pixel signal output by the solid-state image sensor when the solid-state image sensor is operated at a low temperature. A linear defect address storage means for storing an address, an operating temperature detecting means for detecting the operating temperature of the solid-state image sensor, and the operating temperature of the solid-state image sensor detected by the operating temperature detecting means is compared with a threshold value. And determining means for determining whether or not the operating temperature of the solid-state imaging device is lower than the threshold, and when the determining means determines that the operating temperature of the solid-state imaging device is low, the linear defect address storage A correction method for reading the address of the linear defect stored in the means and correcting the pixel signal of the linear defect corresponding to the address output by the solid-state imaging device Characterized by comprising and.
The imaging apparatus according to the present invention includes a plurality of effective pixels arranged in a matrix that converts incident light into signal charges and outputs the signal as a pixel signal, and the plurality of effective pixels form a matrix together with the plurality of effective pixels. A plurality of light-shielding pixels arranged around the effective pixels and covered with a light-shielding film, and a plurality of effective / multiple pixels that extract pixel signals for each of the plurality of effective pixels and the plurality of light-shielding pixels and transfer them in the vertical direction. An effective / light-shielding pixel unit having a light-shielding pixel vertical transfer register, and a pixel signal having a pixel value of 0 arranged in a row or a matrix around the effective / light-shielding pixel unit in the vertical direction, One or a plurality of invalid pixel vertical transfer registers for transferring to a light-shielded pixel vertical transfer register, and a horizontal transfer register for transferring pixel signals transferred by the plurality of valid / light-shielded pixel vertical transfer registers in a horizontal direction And an address of a linear defect extending in the vertical direction of the solid-state image sensor detected based on a pixel signal output by the solid-state image sensor when the solid-state image sensor is operated at a low temperature. A linear defect address storage means for storing, an operating temperature detecting means for detecting an operating temperature of the solid-state imaging device, and comparing the operating temperature of the solid-state imaging device detected by the operating temperature detecting means with a threshold value, A determination unit that determines whether the operating temperature of the solid-state imaging device is lower than the threshold value, and when the determination unit determines that the operating temperature of the solid-state imaging device is low, the linear defect address storage unit Correction means for reading an address of the stored linear defect and correcting the pixel signal of the linear defect corresponding to the address output by the solid-state imaging device; Characterized by comprising.

本発明の撮像装置によれば、前記固体撮像素子に対し、まず、前記固体撮像素子を低温で動作させたときに前記固体撮像素子により出力された画素信号に基づいて検出された前記固体撮像素子の垂直方向に延びる線状欠陥のアドレスを線状欠陥アドレス記憶手段に記憶しておく。次に、前記動作温度検出手段により前記固体撮像素子の動作温度を検出し、前記判定手段により検出された動作温度をしきい値と比較し、前記固体撮像そしの動作温度が前記しきい値より低いかどうかを判定する。次に、前記判定手段により前記固体撮像素子の動作温度が低いと判定されたときには、前記補正手段により前記線状欠陥アドレス記憶手段に記憶された線状欠陥のアドレスを読み出し、前記固体撮像素子により出力された前記アドレスに対応する前記線状欠陥の画素信号を補正する。
したがって、固体撮像素子を低温で動作させた場合には、固体撮像素子により出力される線状欠陥の画素信号を補正することができるので線状欠陥のない画質が良好な画像を出力することができる。
また、本発明の画素信号の補正方法によれば、まず、線状欠陥検出ステップで前記固体撮像素子を低温で動作させたときに前記固体撮像素子により出力された画素信号に基づいて前記固体撮像素子の垂直方向に延びる線状欠陥を検出し、線状欠陥アドレス記憶ステップで、前記線状欠陥検出ステップで検出された前記線状欠陥のアドレスを記憶する。次に、動作温度検出ステップで前記固体撮像素子の動作温度を検出し、判定ステップで、前記動作温度検出ステップで検出された前記固体撮像素子の動作温度をしきい値と比較し、前記固体撮像そしの動作温度が前記しきい値より低いかどうかを判定する。前記判定ステップで前記固体撮像素子の動作温度が低いと判定されたときには、補正ステップで前記線状欠陥アドレス記憶ステップで記憶された線状欠陥のアドレスを読み出し、前記固体撮像素子により出力された前記アドレスに対応する前記線状欠陥の画素信号を補正する。
したがって、固体撮像素子を低温で動作させた場合には、固体撮像素子により出力される線状欠陥の画素信号を補正することができるので線状欠陥のない画質が良好な画像を出力することができる。
また、本発明の撮像装置によれば、入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効画素垂直転送レジスタと、前記複数の有効画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する固体撮像素子に対し、上記と同様の線状欠陥の画素信号の補正を行う。
したがって、固体撮像素子を低温で動作させた場合には、固体撮像素子により出力される線状欠陥の画素信号を補正することができるので線状欠陥のない画質が良好な画像を出力することができる。
また、本発明の撮像装置によれば、入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効画素垂直転送レジスタとを有する有効画素部と、前記有効画素部の周囲に1列または行列状に配列され、画素値が0の画素信号を垂直方向に転送する1または複数の無効画素垂直転送レジスタと、前記複数の有効画素垂直転送レジスタおよび前記1または複数の無効画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する固体撮像素子に対し、上記と同様の線状欠陥の画素信号の補正を行う。
したがって、固体撮像素子を低温で動作させた場合には、固体撮像素子により出力される線状欠陥の画素信号を補正することができるので線状欠陥のない画質が良好な画像を出力することができる。
また、本発明の撮像装置によれば、入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効画素垂直転送レジスタとを有する有効画素部と、前記有効画素部の周囲に1行または行列状に配列され、画素値が0の画素信号を垂直方向に転送して前記有効画素垂直転送レジスタに転送する1または複数の無効画素垂直転送レジスタと、前記複数の有効画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する固体撮像素子に対し、上記と同様の線状欠陥の画素信号の補正を行う。
したがって、固体撮像素子を低温で動作させた場合には、固体撮像素子により出力される線状欠陥の画素信号を補正することができるので線状欠陥のない画質が良好な画像を出力することができる。
また、本発明の撮像装置によれば、入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素とともに行列を構成するように前記複数の有効画素の周囲に配列され、遮光膜で覆われた複数の遮光画素と、前記複数の有効画素および複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効/遮光画素垂直転送レジスタとを有する有効/遮光画素部と、前記有効/遮光画素部の周囲に1列または行列状に配列され、画素値が0の画素信号を垂直方向に転送する1または複数の無効画素垂直転送レジスタと、前記複数の有効/遮光画素垂直転送レジスタおよび前記1または複数の無効画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する固体撮像素子に対し、上記と同様の線状欠陥の画素信号の補正を行う。
したがって、固体撮像素子を低温で動作させた場合には、固体撮像素子により出力される線状欠陥の画素信号を補正することができるので線状欠陥のない画質が良好な画像を出力することができる。
また、本発明の撮像装置によれば、入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素とともに行列を構成するように前記複数の有効画素の周囲に配列され、遮光膜で覆われた複数の遮光画素と、前記複数の有効画素および複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効/遮光画素垂直転送レジスタとを有する有効/遮光画素部と、前記有効/遮光画素部の周囲に1行または行列状に配列され、画素値が0の画素信号を垂直方向に転送して前記有効/遮光画素垂直転送レジスタに転送する1または複数の無効画素垂直転送レジスタと、前記複数の有効/遮光画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する固体撮像素子に対し、上記と同様の線状欠陥の画素信号の補正を行う。
したがって、固体撮像素子を低温で動作させた場合には、固体撮像素子により出力される線状欠陥の画素信号を補正することができるので線状欠陥のない画質が良好な画像を出力することができる。
According to the imaging apparatus of the present invention, first, the solid-state imaging device detected based on the pixel signal output from the solid-state imaging device when the solid-state imaging device is operated at a low temperature. The address of the linear defect extending in the vertical direction is stored in the linear defect address storage means. Next, the operating temperature of the solid-state imaging device is detected by the operating temperature detecting means, the operating temperature detected by the determining means is compared with a threshold value, and the operating temperature of the solid-state imaging device is compared with the threshold value. Determine if it is low. Next, when the determination unit determines that the operating temperature of the solid-state image sensor is low, the correction unit reads the address of the linear defect stored in the linear defect address storage unit, and the solid-state image sensor The pixel signal of the linear defect corresponding to the output address is corrected.
Therefore, when the solid-state imaging device is operated at a low temperature, the pixel signal of the linear defect output from the solid-state imaging device can be corrected, so that an image with good image quality without the linear defect can be output. it can.
According to the pixel signal correction method of the present invention, first, the solid-state imaging is performed based on the pixel signal output by the solid-state imaging device when the solid-state imaging device is operated at a low temperature in the linear defect detection step. A linear defect extending in the vertical direction of the element is detected, and the address of the linear defect detected in the linear defect detection step is stored in a linear defect address storage step. Next, an operating temperature of the solid-state imaging device is detected in an operating temperature detection step, and an operating temperature of the solid-state imaging device detected in the operating temperature detection step is compared with a threshold value in a determination step, and the solid-state imaging It is determined whether the operating temperature is lower than the threshold value. When it is determined in the determination step that the operating temperature of the solid-state image sensor is low, the address of the linear defect stored in the linear defect address storage step is read in the correction step, and the output of the solid-state image sensor The pixel signal of the linear defect corresponding to the address is corrected.
Therefore, when the solid-state imaging device is operated at a low temperature, the pixel signal of the linear defect output from the solid-state imaging device can be corrected, so that an image with good image quality without the linear defect can be output. it can.
Further, according to the imaging apparatus of the present invention, a plurality of effective pixels arranged in a matrix that converts incident light into signal charges and outputs them as pixel signals, and pixel signals for each of the plurality of effective pixels for each column. A solid-state imaging device having a plurality of effective pixel vertical transfer registers for transferring in the vertical direction and a horizontal transfer register for transferring pixel signals transferred by the plurality of effective pixel vertical transfer registers in the horizontal direction. The pixel signal of the linear defect is corrected similarly to.
Therefore, when the solid-state imaging device is operated at a low temperature, the pixel signal of the linear defect output from the solid-state imaging device can be corrected, so that an image with good image quality without the linear defect can be output. it can.
Further, according to the imaging apparatus of the present invention, a plurality of effective pixels arranged in a matrix that converts incident light into signal charges and outputs them as pixel signals, and pixel signals for each of the plurality of effective pixels for each column. An effective pixel unit having a plurality of effective pixel vertical transfer registers for transferring in the vertical direction, and a pixel signal having a pixel value of 0 arranged in a column or matrix around the effective pixel unit in the vertical direction One or more invalid pixel vertical transfer registers for transferring, and a horizontal transfer register for horizontally transferring pixel signals transferred by the plurality of valid pixel vertical transfer registers and the one or more invalid pixel vertical transfer registers The pixel signal of the linear defect similar to the above is corrected for the solid-state imaging device.
Therefore, when the solid-state imaging device is operated at a low temperature, the pixel signal of the linear defect output from the solid-state imaging device can be corrected, so that an image with good image quality without the linear defect can be output. it can.
Further, according to the imaging apparatus of the present invention, a plurality of effective pixels arranged in a matrix that converts incident light into signal charges and outputs them as pixel signals, and pixel signals for each of the plurality of effective pixels for each column. An effective pixel portion having a plurality of effective pixel vertical transfer registers for transferring in the vertical direction, and a pixel signal having a pixel value of 0 arranged in a row or matrix around the effective pixel portion in the vertical direction One or more invalid pixel vertical transfer registers that transfer and transfer to the effective pixel vertical transfer registers, and a horizontal transfer register that horizontally transfers pixel signals transferred by the plurality of effective pixel vertical transfer registers The pixel signal of the linear defect similar to the above is corrected for the image sensor.
Therefore, when the solid-state imaging device is operated at a low temperature, the pixel signal of the linear defect output from the solid-state imaging device can be corrected, so that an image with good image quality without the linear defect can be output. it can.
According to the imaging device of the present invention, a plurality of effective pixels arranged in a matrix for converting incident light into signal charges and outputting them as pixel signals, and a matrix together with the plurality of effective pixels are configured. A plurality of light-shielding pixels arranged around the plurality of effective pixels and covered with a light-shielding film, and a plurality of pixel signals taken out for each of the plurality of effective pixels and the plurality of light-shielding pixels and transferred in a vertical direction An effective / light-shielding pixel unit having an effective / light-shielding pixel vertical transfer register, and 1 or a pixel signal having a pixel value of 0 arranged in one column or a matrix around the effective / light-shielding pixel unit in the vertical direction A horizontal shift that horizontally transfers pixel signals transferred by the plurality of invalid pixel vertical transfer registers, the plurality of valid / light-shielded pixel vertical transfer registers, and the one or more invalid pixel vertical transfer registers. To solid-state imaging device having a register, it corrects the pixel signal of the same line defects as described above.
Therefore, when the solid-state imaging device is operated at a low temperature, the pixel signal of the linear defect output from the solid-state imaging device can be corrected, so that an image with good image quality without the linear defect can be output. it can.
According to the imaging device of the present invention, a plurality of effective pixels arranged in a matrix for converting incident light into signal charges and outputting them as pixel signals, and a matrix together with the plurality of effective pixels are configured. A plurality of light-shielding pixels arranged around the plurality of effective pixels and covered with a light-shielding film, and a plurality of pixel signals taken out for each of the plurality of effective pixels and the plurality of light-shielding pixels and transferred in a vertical direction An effective / light-shielding pixel portion having an effective / light-shielding pixel vertical transfer register, and a pixel signal having a pixel value of 0 arranged in a row or a matrix around the effective / light-shielding pixel portion in the vertical direction One or a plurality of invalid pixel vertical transfer registers for transferring to the valid / light-shielded pixel vertical transfer registers, and a horizontal transfer level for transferring pixel signals transferred by the plurality of valid / light-shielded pixel vertical transfer registers in the horizontal direction. To solid-state imaging device having a static, it corrects the pixel signal of the same line defects as described above.
Therefore, when the solid-state imaging device is operated at a low temperature, the pixel signal of the linear defect output from the solid-state imaging device can be corrected, so that an image with good image quality without the linear defect can be output. it can.

上記目的を達成するため、固体撮像素子を低温で動作させ、固体撮像素子により出力された画素信号に基づいて固体撮像素子の垂直方向に延びる線状欠陥を検出し、検出された線状欠陥のアドレスを記憶しておく。撮像装置の使用時には、固体撮像素子の動作温度を検出し、検出された固体撮像素子の動作温度をしきい値と比較し、固体撮像素子の動作温度がしきい値より低いかどうかを判定する。そして、固体撮像素子の動作温度が低いと判定されたときには、記憶された線状欠陥のアドレスを読み出し、固体撮像素子により出力されたアドレスに対応する線状欠陥の画素信号を補正する。   In order to achieve the above object, the solid-state imaging device is operated at a low temperature, a linear defect extending in the vertical direction of the solid-state imaging device is detected based on a pixel signal output by the solid-state imaging device, and the detected linear defect is detected. Remember the address. When the imaging apparatus is used, the operating temperature of the solid-state image sensor is detected, the detected operating temperature of the solid-state image sensor is compared with a threshold value, and it is determined whether the operating temperature of the solid-state image sensor is lower than the threshold value. . When it is determined that the operating temperature of the solid-state imaging device is low, the stored linear defect address is read and the pixel signal of the linear defect corresponding to the address output by the solid-state imaging device is corrected.

以下、本発明の実施例1の撮像装置および画素信号の補正方法について図面を参照して説明する。
図1は、実施例1の撮像装置の概略構成を示す図である。
図1に示すように、実施例1の撮像装置は、レンズ1、絞り2、固体撮像素子3、CDS(Correlated Double Sampling)回路4、AD(Analog to Digital)変換回路5、線状欠陥検出補正回路6、画像処理回路7、CPU8、線状欠陥アドレスROM9、画像RAM10および記録媒体11を備える。
Hereinafter, an image pickup apparatus and a pixel signal correction method according to Embodiment 1 of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating a schematic configuration of the imaging apparatus according to the first embodiment.
As shown in FIG. 1, the imaging apparatus according to the first embodiment includes a lens 1, a diaphragm 2, a solid-state imaging device 3, a CDS (Correlated Double Sampling) circuit 4, an AD (Analog to Digital) conversion circuit 5, and a linear defect detection correction. A circuit 6, an image processing circuit 7, a CPU 8, a linear defect address ROM 9, an image RAM 10, and a recording medium 11 are provided.

レンズ1は、入射された光を固体撮像素子3に結像する。絞り2は、固体撮像素子3の入射光量を調節するとともに、メカシャッタとなる。固体撮像素子3は、例えば、CCD(Charge Coupled Device)からなり、入射された光を信号電荷に変換し、画素信号として出力する複数の画素を有し、これら複数の画素により出力された画素信号(画像)を出力する。CDS回路4は、固体撮像素子3により出力された画素信号に相関二重サンプリング処理を施し、画素信号に含まれるノイズを除去する。AD変換回路5は、CDS回路4により出力されたアナログ画素信号をデジタル画素信号に変換する。線状欠陥検出補正回路6は、AD変換回路5により出力されたデジタル画素信号に基づいて、固体撮像素子3を低温で動作させたときに固体撮像素子3により出力された画像の垂直方向に延びる線状欠陥を検出するととともに、検出された線状欠陥を構成する画素の画素信号を補正する。線状欠陥検出補正回路6による線状欠陥の検出は、この撮像装置(固体撮像素子3)の出荷前の検査時に製造者により行われる。   The lens 1 forms an image of incident light on the solid-state image sensor 3. The diaphragm 2 adjusts the amount of incident light of the solid-state image sensor 3 and serves as a mechanical shutter. The solid-state imaging device 3 is composed of, for example, a CCD (Charge Coupled Device), and has a plurality of pixels that convert incident light into signal charges and output them as pixel signals, and pixel signals output by the plurality of pixels. (Image) is output. The CDS circuit 4 performs correlated double sampling processing on the pixel signal output from the solid-state imaging device 3 to remove noise contained in the pixel signal. The AD conversion circuit 5 converts the analog pixel signal output from the CDS circuit 4 into a digital pixel signal. The linear defect detection / correction circuit 6 extends in the vertical direction of the image output by the solid-state image sensor 3 when the solid-state image sensor 3 is operated at a low temperature based on the digital pixel signal output by the AD conversion circuit 5. While detecting a linear defect, the pixel signal of the pixel which comprises the detected linear defect is correct | amended. The detection of the linear defect by the linear defect detection / correction circuit 6 is performed by the manufacturer at the time of inspection before shipment of the imaging device (solid-state imaging device 3).

画像処理回路7は、線状欠陥補正回路6により出力された画素信号にガンマ補正等の種々の画像処理を施し出力する。CPU8は、この撮像装置の各部を制御する。線状欠陥アドレスROM9は、この撮像装置(固体撮像素子3)の検査時に線状欠陥検出補正回路6により検出された線状欠陥を構成する画素のアドレスを記憶する。線状欠陥検出補正回路6は、この撮像装置の購入後の撮影時には、線状欠陥アドレスROM9に記憶された線状欠陥を構成する画素のアドレスを読み出し、読み出されたアドレスに対応する画素信号を補正する。画像RAM10は、画像処理回路7により出力された画素信号のバッファメモリとなるとともに、線状欠陥検出補正回路6により固体撮像素子3の線状欠陥を検出する際の作業用メモリとなる。記録媒体11は、ビデオテープ、メモリカード等の交換可能な記録媒体からなり、画像処理回路7により出力された画素信号(画像)を記録する。   The image processing circuit 7 performs various image processing such as gamma correction on the pixel signal output from the linear defect correction circuit 6 and outputs the result. CPU8 controls each part of this imaging device. The linear defect address ROM 9 stores the addresses of pixels constituting the linear defect detected by the linear defect detection / correction circuit 6 at the time of inspection of the imaging device (solid-state imaging device 3). The linear defect detection / correction circuit 6 reads the address of the pixel constituting the linear defect stored in the linear defect address ROM 9 at the time of photographing after purchase of the imaging device, and the pixel signal corresponding to the read address. Correct. The image RAM 10 serves as a buffer memory for pixel signals output from the image processing circuit 7 and also serves as a working memory when the linear defect detection / correction circuit 6 detects a linear defect in the solid-state imaging device 3. The recording medium 11 is an exchangeable recording medium such as a video tape or a memory card, and records the pixel signal (image) output from the image processing circuit 7.

図2は、図1に示される固体撮像素子の画素部の構成を示す図である。
図2に示すように、固体撮像素子3の画素部20は、有効画素部21、水平前OPB(Optical Black)部22、水平後OPB部23、水平転送レジスタ24および出力回路25を備える。
有効画素部21は、行列状に配列され、入射された光を信号電荷に変換し画素信号として出力する複数の有効画素(不図示)と、複数の有効画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数列の垂直転送レジスタ(不図示)とを備える。
複数の有効画素は、入射される光を透過するR(Red)、G(Green)およびB(Blue)のいずれか一つの色の色フィルタを有する。複数の有効画素は、色フィルタを通して光を入射し、入射された光を信号電荷に変換し画素信号として出力する。垂直転送レジスタは、複数の有効画素の行数と同数の転送素子を有し、これらの転送素子により1画素毎に画素信号を垂直方向に転送する。垂直転送レジスタには、入射される光を遮光する遮光膜が形成されている。
FIG. 2 is a diagram illustrating a configuration of a pixel portion of the solid-state imaging device illustrated in FIG.
As shown in FIG. 2, the pixel unit 20 of the solid-state imaging device 3 includes an effective pixel unit 21, a front horizontal OPB (Optical Black) unit 22, a horizontal rear OPB unit 23, a horizontal transfer register 24, and an output circuit 25.
The effective pixel unit 21 is arranged in a matrix and takes out a plurality of effective pixels (not shown) that convert incident light into signal charges and outputs them as pixel signals, and extracts pixel signals for each of the plurality of effective pixels for each column. And a plurality of columns of vertical transfer registers (not shown) for transferring in the vertical direction.
The plurality of effective pixels have a color filter of any one color of R (Red), G (Green), and B (Blue) that transmits incident light. The plurality of effective pixels receive light through a color filter, convert the incident light into a signal charge, and output it as a pixel signal. The vertical transfer register has the same number of transfer elements as the number of rows of a plurality of effective pixels, and transfers pixel signals in the vertical direction for each pixel by these transfer elements. The vertical transfer register is formed with a light shielding film that shields incident light.

水平前OPB部22は、複数の有効画素と同行の行列状に配列された複数の遮光画素(不図示)と、複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数列の垂直転送レジスタ(不図示)とを備える。
複数の遮光画素および複数列の素垂直転送レジスタには、入射される光を遮光する遮光膜が形成されている。複数の遮光画素は、複数の有効画素と同様の光電変換部を有し、画素信号を出力するが、光が入射されず、光に関係のない電荷を蓄積する。複数の遮光画素は、固体撮像素子3の動作時の光学的黒レベルを検出するのに用いられる。複数列の垂直転送レジスタは、有効画素部21の垂直転送レジスタと同じ構成である。
The pre-horizontal OPB unit 22 takes out a plurality of light-shielded pixels (not shown) arranged in a matrix in the same row as a plurality of effective pixels, and extracts a pixel signal for each column of the plurality of light-shielded pixels and transfers them in the vertical direction. Column vertical transfer registers (not shown).
A light shielding film that shields incident light is formed in the plurality of light shielding pixels and the plurality of elementary vertical transfer registers. The plurality of light-shielding pixels have the same photoelectric conversion units as the plurality of effective pixels and output pixel signals, but light is not incident and charges not related to light are accumulated. The plurality of light shielding pixels are used to detect an optical black level during operation of the solid-state imaging device 3. The plurality of columns of vertical transfer registers have the same configuration as that of the effective pixel unit 21.

水平後OPB部23は、複数列の垂直転送レジスタ(不図示)を備える。
複数列の垂直転送レジスタには、入射される光を遮光する遮光膜が形成されている。複数列の垂直転送レジスタは、有効画素部21の垂直転送レジスタと同じ構成である。複数列の垂直転送レジスタは、画素値が0の画素信号を転送する。複数列の垂直転送レジスタは、固体撮像素子3の動作時の無信号レベルを検出するのに用いられる。
The horizontal post-OPB unit 23 includes a plurality of columns of vertical transfer registers (not shown).
A plurality of columns of vertical transfer registers are formed with a light shielding film that shields incident light. The plurality of columns of vertical transfer registers have the same configuration as that of the effective pixel unit 21. The vertical transfer registers of a plurality of columns transfer pixel signals having a pixel value of 0. The plurality of columns of vertical transfer registers are used to detect a no-signal level during operation of the solid-state imaging device 3.

水平転送レジスタ24は、有効画素部21、水平前OPB部22および水平後OPB部23の複数列の垂直転送レジスタにより垂直方向に転送された画素信号を取り出し、水平方向に転送する。水平転送レジスタ24は、有効画素部21、水平前OPB部22および水平後OPB部23の垂直転送レジスタの列数と同数の転送素子を有し、これらの転送素子により1画素毎に画素信号を水平方向に転送する。出力回路25は、水平転送レジスタ24により水平方向に転送された画素信号(信号電荷)を電圧に変換し次段のCDS回路4に出力する。   The horizontal transfer register 24 takes out pixel signals transferred in the vertical direction by a plurality of columns of vertical transfer registers of the effective pixel unit 21, the horizontal pre-OPB unit 22 and the horizontal post-OPB unit 23, and transfers them in the horizontal direction. The horizontal transfer register 24 has the same number of transfer elements as the number of columns of the vertical transfer registers of the effective pixel unit 21, the horizontal front OPB unit 22, and the horizontal post OPB unit 23, and these transfer elements send pixel signals for each pixel. Transfer horizontally. The output circuit 25 converts the pixel signal (signal charge) transferred in the horizontal direction by the horizontal transfer register 24 into a voltage and outputs the voltage to the CDS circuit 4 in the next stage.

図3は、図2に示される固体撮像素子により出力される画素信号の説明図である。
ここで、固体撮像素子3には、明るさが一様な光が入射されるものとする。また、有効画素の色フィルタの影響は無視するものとする。
図3に示すように、固体撮像素子3の1ラインを走査すると、有効画素部21、水平前OPB部22および水平後OPB部23のそれぞれにレベルの異なる画素信号が得られる。
有効画素部21、水平前OPB部22および水平後OPB部23のないブランキング領域の画素信号は、レベルが「0」である。水平後OPB部23から得られる画素信号は、無信号レベルの画素信号であり、垂直転送レジスタの転送により発生した垂直転送レジスタ起因の暗電流によるものである。水平前OPB部22から得られる画素信号は、光学的黒レベルの画素信号であり、光に関係なく蓄積され変換された遮光画素のセンサ起因の暗電流と垂直転送レジスタ起因の暗電流とを含む。有効画素部21から得られる画素信号は、光信号レベルの画素信号であり、入射された光を光電変換した有効画素の光起因信号と光に関係なく蓄積され変換された有効画素のセンサ起因の暗電流と垂直転送レジスタ起因の暗電流とを含む。
FIG. 3 is an explanatory diagram of pixel signals output by the solid-state imaging device shown in FIG.
Here, it is assumed that light with uniform brightness is incident on the solid-state imaging device 3. In addition, the influence of the color filter of the effective pixel is ignored.
As shown in FIG. 3, when one line of the solid-state imaging device 3 is scanned, pixel signals having different levels are obtained in the effective pixel unit 21, the horizontal front OPB unit 22, and the horizontal rear OPB unit 23, respectively.
The level of the pixel signal in the blanking area without the effective pixel unit 21, the pre-horizontal OPB unit 22, and the horizontal post-OPB unit 23 is “0”. The pixel signal obtained from the post-horizontal OPB unit 23 is a non-signal level pixel signal, which is due to the dark current caused by the vertical transfer register generated by the transfer of the vertical transfer register. The pixel signal obtained from the pre-horizontal OPB unit 22 is an optical black level pixel signal, and includes a dark current caused by a sensor of a light-shielded pixel that is accumulated and converted regardless of light, and a dark current caused by a vertical transfer register. . The pixel signal obtained from the effective pixel unit 21 is a pixel signal at an optical signal level, which is derived from a light-induced signal of an effective pixel obtained by photoelectric conversion of incident light and a sensor-derived effective pixel accumulated and converted irrespective of the light. The dark current and the dark current caused by the vertical transfer register are included.

言い換えれば、固体撮像素子3に光が入射すると、遮光膜のない有効画素部21は、光起因信号、センサ起因の暗電流および垂直転送レジスタ起因の暗電流を含む光信号レベルの画素信号を出力し、遮光膜が形成された水平前OPB部22は、センサ起因の暗電流および垂直転送レジスタ起因の暗電流を含む光学的黒レベルの画素信号を出力し、水平後OPB部23は、垂直転送レジスタ起因の暗電流を含む無信号レベルの画素信号を出力する。   In other words, when light is incident on the solid-state imaging device 3, the effective pixel unit 21 without the light-shielding film outputs a pixel signal at an optical signal level including a light-induced signal, a sensor-induced dark current, and a vertical transfer register-derived dark current. The horizontal front OPB unit 22 on which the light shielding film is formed outputs an optical black level pixel signal including a dark current caused by the sensor and a dark current caused by the vertical transfer register, and the horizontal post-OPB unit 23 performs the vertical transfer. A non-signal level pixel signal including dark current caused by the register is output.

図4は、固体撮像素子の線状欠陥の一例を示す図である。また、図5は、線状欠陥を有する固体撮像素子により出力される画素信号の説明図である。
固体撮像素子を低温および低照度で動作させたときには、図4に示すように、画像の垂直方向に延びる線状欠陥が発生する場合がある。この画像の1ライン(X−X'面)を走査すると、図5に示すように、有効画素部21に画素信号レベルがわずかに落ち込む部分が現れる。この落ち込む部分は、全てのラインに現れ、図4に示される線状欠陥として認識される。
FIG. 4 is a diagram illustrating an example of a linear defect of a solid-state imaging device. FIG. 5 is an explanatory diagram of pixel signals output from a solid-state imaging device having a linear defect.
When the solid-state imaging device is operated at a low temperature and low illuminance, a linear defect extending in the vertical direction of the image may occur as shown in FIG. When one line (XX ′ plane) of this image is scanned, a portion where the pixel signal level slightly drops appears in the effective pixel portion 21 as shown in FIG. This depressed portion appears in all lines and is recognized as a linear defect shown in FIG.

図6は、図1に示される線状欠陥検出補正回路の構成を示す図である。
前述のように、線状欠陥検出補正回路6は、撮像装置の出荷前の検査時に固体撮像素子3の線状欠陥を検出するとともに、撮像装置の購入後の撮影時に線状欠陥アドレスROM9に記憶された線状欠陥を構成する画素のアドレスを読み出し、読み出されたアドレスに対応する画素信号を補正する。線状欠陥の検出は、低温および低照度の条件下で固体撮像装置を動作させて行われる。
図6に示すように、線状欠陥検出補正回路6は、線状欠陥検出手段31、線状欠陥アドレス記憶制御手段32、温度センサ33、温度検出手段34、温度判定手段35および線状欠陥補正手段36を備える。
FIG. 6 is a diagram showing a configuration of the linear defect detection and correction circuit shown in FIG.
As described above, the linear defect detection / correction circuit 6 detects a linear defect of the solid-state imaging device 3 at the time of inspection before shipment of the imaging device, and stores it in the linear defect address ROM 9 at the time of imaging after purchase of the imaging device. The address of the pixel constituting the line defect thus read is read, and the pixel signal corresponding to the read address is corrected. Detection of linear defects is performed by operating the solid-state imaging device under conditions of low temperature and low illuminance.
As shown in FIG. 6, the linear defect detection / correction circuit 6 includes a linear defect detection means 31, a linear defect address storage control means 32, a temperature sensor 33, a temperature detection means 34, a temperature determination means 35, and a linear defect correction. Means 36 are provided.

線状欠陥検出手段31は、固体撮像素子3により出力された画素信号に基づいて線状欠陥を検出する。線状欠陥検出回路31は、例えば、水平方向に隣接する画素の信号レベル(画素信号)の差を検出し、信号レベルの差がしきい値以上のとき、線状欠陥と判定する。
また、線状欠陥検出回路31は、画像内の1列分の画素信号を累積加算し、累積加算された画素信号を比較して線状欠陥を検出するように構成することができる。また、線状欠陥検出回路31は、固体撮像素子3により出力された複数枚の画像の同位置の画素信号を累積加算し、累積加算された画素信号を比較して線状欠陥を検出するように構成することができる。これらの場合、いっそう精度良く線状欠陥を検出することができる。なお、画素信号の累積加算のために画像RAM10が使用される。
The linear defect detection means 31 detects a linear defect based on the pixel signal output from the solid-state image sensor 3. For example, the linear defect detection circuit 31 detects a difference in signal level (pixel signal) between pixels adjacent in the horizontal direction, and determines that the defect is a linear defect when the difference in signal level is equal to or greater than a threshold value.
Further, the linear defect detection circuit 31 can be configured to cumulatively add pixel signals for one column in an image and compare the cumulatively added pixel signals to detect a linear defect. Further, the linear defect detection circuit 31 cumulatively adds pixel signals at the same position of a plurality of images output from the solid-state imaging device 3, and compares the cumulatively added pixel signals to detect a linear defect. Can be configured. In these cases, the linear defect can be detected with higher accuracy. Note that the image RAM 10 is used for cumulative addition of pixel signals.

線状欠陥アドレス記憶制御手段32は、線状欠陥検出手段31により検出された線上欠陥を構成する画素のアドレスを線状欠陥アドレスROM9に記憶する。温度センサ33は、固体撮像素子3の温度を直接測定し、測定された温度に相当する信号を出力する。温度検出手段34は、温度センサ33により出力された信号に基づいて固体撮像素子3の動作温度を特定する。温度判定手段35は、温度検出手段34により特定された固体撮像素子3の動作温度をしきい値と比較し、固体撮像素子3の動作温度が低いかどうか判定する。   The linear defect address storage control means 32 stores the address of the pixel constituting the on-line defect detected by the linear defect detection means 31 in the linear defect address ROM 9. The temperature sensor 33 directly measures the temperature of the solid-state imaging device 3 and outputs a signal corresponding to the measured temperature. The temperature detection unit 34 specifies the operating temperature of the solid-state imaging device 3 based on the signal output from the temperature sensor 33. The temperature determination unit 35 compares the operating temperature of the solid-state imaging device 3 specified by the temperature detection unit 34 with a threshold value, and determines whether the operating temperature of the solid-state imaging device 3 is low.

線状欠陥補正手段36は、温度判定手段35により固体撮像素子3の動作温度が低いと判定されたとき、線状欠陥アドレスROM9に記憶された線上欠陥を構成する画素のアドレスを読み出し、固体撮像素子3により出力された前記アドレスに対応する線状欠陥の画素信号を補正する。線状欠陥補正手段36は、例えば、周辺画素に基づいて欠陥画素(線状欠陥を構成する画素)を補正する。例えば、欠陥画素の画素信号を複数の周辺画素の画素信号の平均値や中央値(メディアン値)で置き換える。   The linear defect correcting means 36 reads the address of the pixel constituting the on-line defect stored in the linear defect address ROM 9 when the temperature determining means 35 determines that the operating temperature of the solid-state imaging device 3 is low, and solid-state imaging The pixel signal of the linear defect corresponding to the address output by the element 3 is corrected. For example, the linear defect correction unit 36 corrects a defective pixel (a pixel constituting a linear defect) based on peripheral pixels. For example, the pixel signal of the defective pixel is replaced with the average value or median value (median value) of the pixel signals of a plurality of peripheral pixels.

次に、実施例1の撮像装置の動作を説明する。
レンズ1および絞り2を通して光が固体撮像素子3に入射されると、固体撮像素子3の画素部20の有効画素部21の複数の有効画素により光量に応じた電荷が蓄積される。同時に、水平前OPB部22の複数の遮光画素に光と関係なく電荷が蓄積される。次に、複数の有効画素に蓄積された信号電荷が画素信号としてそれぞれの垂直転送レジスタにより取り出され、複数の遮光画素に蓄積された信号電荷が画素信号としてそれぞれの垂直転送レジスタにより取り出され、垂直方向に転送される。同時に、水平後OPB部23の垂直転送レジスタにより画素値が「0」の画素信号が垂直方向に転送される。そして、有効画素部21、水平前OPB部22および水平後OPB部23のそれぞれの垂直転送レジスタにより垂直方向に転送された画素信号が水平転送レジスタ23により水平方向に転送され、出力回路25により画素信号(信号電荷)が電圧に変換され、次段のCDS回路4に出力される。
Next, the operation of the imaging apparatus according to the first embodiment will be described.
When light enters the solid-state image sensor 3 through the lens 1 and the diaphragm 2, charges corresponding to the light amount are accumulated by the plurality of effective pixels of the effective pixel unit 21 of the pixel unit 20 of the solid-state image sensor 3. At the same time, charges are accumulated in the plurality of light-shielding pixels of the front horizontal OPB unit 22 regardless of light. Next, the signal charges accumulated in the plurality of effective pixels are taken out by the respective vertical transfer registers as pixel signals, and the signal charges accumulated in the plurality of light-shielded pixels are taken out by the respective vertical transfer registers as pixel signals, Forwarded in the direction. At the same time, a pixel signal having a pixel value “0” is transferred in the vertical direction by the vertical transfer register of the post-horizontal OPB unit 23. Then, the pixel signals transferred in the vertical direction by the vertical transfer registers of the effective pixel unit 21, the pre-horizontal OPB unit 22 and the horizontal post-OPB unit 23 are transferred in the horizontal direction by the horizontal transfer register 23, and the output circuit 25 The signal (signal charge) is converted into a voltage and output to the CDS circuit 4 at the next stage.

固体撮像素子3により出力された画素信号は、CDS回路4によりノイズが除去され、AD変換回路5によりアナログ画素信号からデジタル画素信号に変換され、線状欠陥検出補正回路6に入力される。   The pixel signal output from the solid-state imaging device 3 is denoised by the CDS circuit 4, converted from an analog pixel signal to a digital pixel signal by the AD conversion circuit 5, and input to the linear defect detection correction circuit 6.

ここで、線状欠陥を有する画素信号の補正方法を、ステップS1〜S5により説明する。
撮像装置の出荷前の検査時には、線状欠陥検出回路6の線状欠陥検出手段31により固体撮像装置3の線状欠陥が検出される。具体的には、線状欠陥検出手段31により水平方向に隣接する画素の信号レベル(画素信号)の差が検出され、信号レベルの差がしきい値以上のとき、線状欠陥と判定される(ステップS1)。次に、線状欠陥検出手段31により検出された線状欠陥を構成する画素のアドレスが線状欠陥アドレス記憶手段32により線状欠陥アドレスROM9に記憶される(ステップS2)。
Here, a method for correcting a pixel signal having a linear defect will be described with reference to steps S1 to S5.
At the time of inspection before shipment of the imaging device, the linear defect of the solid-state imaging device 3 is detected by the linear defect detection means 31 of the linear defect detection circuit 6. Specifically, the difference between the signal levels (pixel signals) of pixels adjacent in the horizontal direction is detected by the linear defect detection means 31, and when the difference between the signal levels is equal to or greater than a threshold value, it is determined as a linear defect. (Step S1). Next, the address of the pixel constituting the linear defect detected by the linear defect detection means 31 is stored in the linear defect address ROM 9 by the linear defect address storage means 32 (step S2).

撮像装置の出荷後の撮影時には、線状欠陥検出回路6の温度センサ33により測定された信号に基づいて温度検出手段34により固体撮像素子3の動作温度が特定され(ステップS3)、特定された動作温度が温度判定手段34によりしきい値と比較され、固体撮像装置3の動作温度が低いかどうか判定される(ステップS4)。   At the time of imaging after shipment of the imaging device, the operating temperature of the solid-state imaging device 3 is specified by the temperature detection unit 34 based on the signal measured by the temperature sensor 33 of the linear defect detection circuit 6 (step S3). The operating temperature is compared with a threshold value by the temperature determining means 34, and it is determined whether or not the operating temperature of the solid-state imaging device 3 is low (step S4).

温度判定手段34により固体撮像装置3の動作温度が低いと判定されたときには、線状欠陥補正手段36により線状欠陥アドレスROM9に記憶された線上欠陥を構成する画素のアドレスが読み出され、固体撮像素子3により出力された前記アドレスに対応する線状欠陥の画素信号が補正される。具体的には、線状欠陥を構成する画素の画素信号が複数の周辺画素の画素信号の平均値や中央値(メディアン値)で置き換えられる(ステップS5)。   When the temperature determining unit 34 determines that the operating temperature of the solid-state imaging device 3 is low, the linear defect correcting unit 36 reads the addresses of the pixels constituting the on-line defect stored in the linear defect address ROM 9 and reads the solid state. The pixel signal of the linear defect corresponding to the address output by the image sensor 3 is corrected. Specifically, the pixel signals of the pixels constituting the linear defect are replaced with the average value or the median value (median value) of the pixel signals of a plurality of peripheral pixels (step S5).

線状欠陥が補正された画素信号は、次段の画像処理回路7に出力され、ガンマ補正等の画像処理が施される。画像処理回路7により出力された画素信号は、画像RAM10に記憶された後、外部出力される、あるいは記録媒体11に記録される。   The pixel signal in which the linear defect is corrected is output to the image processing circuit 7 at the next stage and subjected to image processing such as gamma correction. The pixel signal output by the image processing circuit 7 is stored in the image RAM 10 and then output externally or recorded on the recording medium 11.

このように、実施例1の撮像装置によれば、線状欠陥検出補正回路6により固体撮像素子3の線状欠陥を検出するとともに、線状欠陥を構成する画素の画素信号を補正する。したがって、固体撮像素子3を低温で動作させた場合には、固体撮像素子3により出力された線状欠陥の画素信号を補正することができるので線状欠陥のない画質が良好な画像を得ることができる。   As described above, according to the imaging apparatus of the first embodiment, the linear defect detection and correction circuit 6 detects the linear defect of the solid-state imaging device 3 and corrects the pixel signal of the pixels constituting the linear defect. Therefore, when the solid-state imaging device 3 is operated at a low temperature, the pixel signal of the linear defect output from the solid-state imaging device 3 can be corrected, so that an image with good image quality without the linear defect can be obtained. Can do.

また、線状欠陥検出補正回路6に線状欠陥検出手段31を設けるので、いちいち撮像装置の外部端子から画素信号を取り出し、専用の検出装置により線状欠陥を検出する必要がない。したがって、線状欠陥の検出を容易に行うことができる。   Further, since the linear defect detection means 31 is provided in the linear defect detection / correction circuit 6, it is not necessary to take out pixel signals from the external terminals of the imaging device one by one and detect the linear defect by a dedicated detection device. Therefore, it is possible to easily detect a linear defect.

また、温度センサ33を設け、固体撮像素子3の温度を測定する。したがって、簡単な構成により容易に固体撮像素子3の温度を測定することができる。   Moreover, the temperature sensor 33 is provided and the temperature of the solid-state image sensor 3 is measured. Therefore, the temperature of the solid-state image sensor 3 can be easily measured with a simple configuration.

図7は、図2に示される固体撮像素子の画素部の変形例を示す図である。
実施例1の固体撮像素子3の画素部20では、有効画素部21の水平方向に隣接する水平前OPB部22および水平後OPB部23を設け、水平前OPB部22を複数の遮光画素と複数列の垂直転送レジスタとより構成し、水平後OPB部23を複数列の垂直レジスタにより構成しているが、水平前OPB部22および水平後OPB部23の位置を反対に構成してもよい。言い換えれば、図7に示すように、有効画素部21の水平方向に隣接する水平前OPB部26および水平後OPB部27を設け、水平前OPB部26を複数列の垂直レジスタにより構成し、水平後OPB部27を複数の遮光画素と複数列の垂直転送レジスタとより構成してもよい。
FIG. 7 is a diagram showing a modification of the pixel portion of the solid-state imaging device shown in FIG.
In the pixel unit 20 of the solid-state imaging device 3 according to the first embodiment, the horizontal front OPB unit 22 and the horizontal rear OPB unit 23 that are adjacent to the effective pixel unit 21 in the horizontal direction are provided, and the horizontal front OPB unit 22 includes a plurality of light shielding pixels. The horizontal post-OPB unit 23 is formed of a plurality of columns of vertical registers, but the positions of the horizontal front OPB unit 22 and the horizontal post-OPB unit 23 may be reversed. In other words, as shown in FIG. 7, the horizontal front OPB unit 26 and the horizontal rear OPB unit 27 adjacent to the effective pixel unit 21 in the horizontal direction are provided, and the horizontal front OPB unit 26 is configured by a plurality of columns of vertical registers. The rear OPB unit 27 may be composed of a plurality of light shielding pixels and a plurality of columns of vertical transfer registers.

図8は、実施例2の撮像装置の線状欠陥検出補正回路40の構成を示す図である。また、図9は、垂直転送レジスタ起因の暗電流と固体撮像素子の動作温度との関係を示す図である。
図8に示すように、実施例2の撮像装置は、図1に示される実施例1の撮像装置の線状欠陥検出補正回路6を線状欠陥検出補正回路40に置き換えたものである。また、実施例2の線状欠陥検出補正回路40は、図6に示される実施例1の線状欠陥検出補正回路6の温度センサ33および温度検出手段34を温度検出手段41に置き換えたものである。
なお、実施例2の撮像装置の他の部分および図8に示される線状欠陥検出補正回路40の他の部分は、実施例1の撮像装置および線状欠陥検出補正回路6の構成要素と同一であるため、その説明を省略する。
FIG. 8 is a diagram illustrating a configuration of the linear defect detection correction circuit 40 of the imaging apparatus according to the second embodiment. FIG. 9 is a diagram showing the relationship between the dark current resulting from the vertical transfer register and the operating temperature of the solid-state imaging device.
As shown in FIG. 8, the imaging apparatus of the second embodiment is obtained by replacing the linear defect detection and correction circuit 6 of the imaging apparatus of the first embodiment shown in FIG. 1 with a linear defect detection and correction circuit 40. The linear defect detection / correction circuit 40 according to the second embodiment is obtained by replacing the temperature sensor 33 and the temperature detection means 34 of the linear defect detection / correction circuit 6 according to the first embodiment shown in FIG. is there.
In addition, the other part of the imaging device of Example 2 and the other part of the linear defect detection correction circuit 40 shown in FIG. 8 are the same as the components of the imaging device and the linear defect detection correction circuit 6 of Example 1. Therefore, the description thereof is omitted.

温度検出手段41は、固体撮像素子3により出力された画素信号に基づいて固体撮像素子3の動作温度を演算する。具体的には、温度検出手段41は、図2に示される画素部20の水平後OPB部23から得られた画素信号を利用する。
水平後OPB部23から得られた画素信号は、前述のように、垂直転送レジスタ起因の暗電流を含む。この垂直転送レジスタ起因の暗電流は、図9に示すように、固体撮像素子3の動作温度と線形の関係を有する。このため、垂直転送レジスタ起因の暗電流を含む無信号レベルの画素信号に基づいて固体撮像素子3の動作温度を演算することができる。
The temperature detection unit 41 calculates the operating temperature of the solid-state image sensor 3 based on the pixel signal output from the solid-state image sensor 3. Specifically, the temperature detection unit 41 uses a pixel signal obtained from the horizontal post-OPB unit 23 of the pixel unit 20 shown in FIG.
The pixel signal obtained from the horizontal post-OPB unit 23 includes the dark current caused by the vertical transfer register as described above. The dark current caused by the vertical transfer register has a linear relationship with the operating temperature of the solid-state imaging device 3 as shown in FIG. For this reason, the operating temperature of the solid-state image sensor 3 can be calculated based on a non-signal level pixel signal including dark current caused by the vertical transfer register.

具体的には、水平後OPB部23の垂直転送レジスタにより転送されて固体撮像素子3により出力された画素信号に基づく垂直転送レジスタ起因暗電流と固体撮像素子3の動作温度とを対応付けた演算テーブルを例えば、図1に示される線状欠陥アドレスROM9に線状欠陥のアドレスとともに記憶しておく。
温度検出手段41は、水平後OPB部23の垂直転送レジスタにより転送されて固体撮像素子3により出力された画素信号に対応する固体撮像素子3の動作温度を線状欠陥アドレスROM9に記憶された演算テーブルに基づいて演算する。線状欠陥アドレスROM9の演算テーブルの画素信号は飛び飛びの値を取るので、固体撮像素子3により出力された画素信号に対し内挿による補間演算を行えば、いっそう精度良く固体撮像素子3の動作温度を演算することができる。
Specifically, an operation in which the dark current caused by the vertical transfer register based on the pixel signal transferred by the vertical transfer register of the post-horizontal OPB unit 23 and output from the solid-state image sensor 3 is associated with the operating temperature of the solid-state image sensor 3. For example, the table is stored in the linear defect address ROM 9 shown in FIG. 1 together with the address of the linear defect.
The temperature detecting means 41 calculates the operation temperature of the solid-state image pickup device 3 corresponding to the pixel signal transferred by the vertical transfer register of the post-horizontal OPB unit 23 and output from the solid-state image pickup device 3 and stored in the linear defect address ROM 9. Calculate based on the table. Since the pixel signal in the calculation table of the linear defect address ROM 9 takes a jump value, if the interpolation calculation is performed on the pixel signal output from the solid-state image pickup device 3 by interpolation, the operating temperature of the solid-state image pickup device 3 is more accurate. Can be calculated.

このように、実施例2の撮像装置によれば、温度検出手段41により固体撮像素子3より出力された水平後OPB部23の画素信号に基づいて固体撮像素子3の動作温度を演算する。したがって、固体撮像素子3の動作温度を高精度に求めることができるので、確実に線状欠陥を補正することができる。   As described above, according to the imaging apparatus of the second embodiment, the operating temperature of the solid-state imaging device 3 is calculated based on the pixel signal of the horizontal post-OPB unit 23 output from the solid-state imaging device 3 by the temperature detection unit 41. Therefore, since the operating temperature of the solid-state image sensor 3 can be obtained with high accuracy, the linear defect can be reliably corrected.

図10は、実施例3の撮像装置の線状欠陥検出補正回路50の構成を示す図である。また、図11は、センサ起因の暗電流と固体撮像素子の動作温度との関係を示す図である。
図10に示すように、実施例3の撮像装置は、実施例2の撮像装置の線状欠陥検出補正回路40を線状欠陥検出補正回路50に置き換えたものである。また、実施例3の線状欠陥検出補正回路50は、図8に示される実施例2の線状欠陥検出補正回路40の温度検出手段41を温度検出手段51に置き換えたものである。
なお、実施例3の撮像装置の他の部分および図10に示される線状欠陥検出補正回路50の他の部分は、実施例2の撮像装置および線状欠陥検出補正回路40の構成要素と同一であるため、その説明を省略する。
FIG. 10 is a diagram illustrating a configuration of the linear defect detection correction circuit 50 of the imaging apparatus according to the third embodiment. FIG. 11 is a diagram illustrating the relationship between the dark current caused by the sensor and the operating temperature of the solid-state imaging device.
As illustrated in FIG. 10, the imaging device of the third embodiment is obtained by replacing the linear defect detection and correction circuit 40 of the imaging device of the second embodiment with a linear defect detection and correction circuit 50. The linear defect detection / correction circuit 50 of the third embodiment is obtained by replacing the temperature detection means 41 of the linear defect detection / correction circuit 40 of the second embodiment shown in FIG.
The other parts of the imaging device of the third embodiment and the other parts of the linear defect detection / correction circuit 50 shown in FIG. 10 are the same as the components of the imaging device and the linear defect detection / correction circuit 40 of the second embodiment. Therefore, the description thereof is omitted.

温度検出手段50は、図2に示される画素部20の水平前OPB部22および水平後OPB部23から得られた画素信号を利用する。
水平後OPB部23から得られた画素信号は、前述のように、垂直転送レジスタ起因の暗電流を含む。水平前OPB部22から得られた画素信号は、前述のように、光に関係なく蓄積され変換された遮光画素のセンサ起因の暗電流と垂直転送レジスタ起因の暗電流とを含む。このセンサ起因の暗電流は、図11に示すように、固体撮像装置3の動作温度と線形の関係を有する。このため、遮光画素のセンサ起因の暗電流と垂直転送レジスタ起因の暗電流とを含む光学的黒レベルの画素信号と垂直転送レジスタ起因の暗電流を含む無信号レベルの画素信号との差分を求め、求められた差分、すなわち、センサ起因の暗電流に基づいて固体撮像素子3の動作温度を演算することができる。
The temperature detection means 50 uses pixel signals obtained from the pre-horizontal OPB unit 22 and the post-horizontal OPB unit 23 of the pixel unit 20 shown in FIG.
The pixel signal obtained from the horizontal post-OPB unit 23 includes the dark current caused by the vertical transfer register as described above. As described above, the pixel signal obtained from the pre-horizontal OPB unit 22 includes the dark current caused by the sensor and the dark current caused by the vertical transfer register, which are accumulated and converted regardless of light. The dark current resulting from this sensor has a linear relationship with the operating temperature of the solid-state imaging device 3, as shown in FIG. Therefore, the difference between the optical black level pixel signal including the dark current caused by the sensor of the light-shielded pixel and the dark current caused by the vertical transfer register and the non-signal level pixel signal including the dark current caused by the vertical transfer register is obtained. The operating temperature of the solid-state imaging device 3 can be calculated based on the obtained difference, that is, the dark current caused by the sensor.

具体的には、水平前OPB部22および水平後OPB部23のそれぞれの垂直転送レジスタにより転送されて固体撮像素子3により出力された画素信号に基づいて、光学的黒レベルの画素信号と無信号レベルの画素信号との差分を求め、この差分と固体撮像素子3の動作温度とを対応付けた演算テーブルを例えば、図1に示される線状欠陥アドレスROM9に線状欠陥のアドレスとともに記憶しておく。
温度検出手段50は、水平前OPB部22および水平後OPB部23のそれぞれの垂直転送レジスタにより転送されて固体撮像素子3により出力された画素信号から光学的黒レベルの画素信号と無信号レベルの画素信号との差分を演算し、演算された差分に対応する固体撮像素子3の動作温度を線状欠陥アドレスROM9に記憶された演算テーブルに基づいて演算する。線状欠陥アドレスROM9の演算テーブルの差分は飛び飛びの値を取るので、演算された差分に対し内挿による補間演算を行えば、いっそう精度良く固体撮像素子3の動作温度を演算することができる。
Specifically, based on the pixel signals transferred by the vertical transfer registers of the horizontal front OPB unit 22 and the horizontal rear OPB unit 23 and output from the solid-state imaging device 3, the pixel signal of the optical black level and the no signal are output. A difference between the pixel signal of the level is obtained, and a calculation table in which the difference and the operating temperature of the solid-state imaging device 3 are associated is stored in the linear defect address ROM 9 shown in FIG. deep.
The temperature detection means 50 receives the pixel signal of the optical black level and the non-signal level from the pixel signal transferred by the vertical transfer registers of the front horizontal OPB unit 22 and the horizontal rear OPB unit 23 and output from the solid-state imaging device 3. The difference from the pixel signal is calculated, and the operating temperature of the solid-state imaging device 3 corresponding to the calculated difference is calculated based on the calculation table stored in the linear defect address ROM 9. Since the difference in the calculation table of the linear defect address ROM 9 takes a jump value, if the interpolation calculation is performed on the calculated difference by interpolation, the operating temperature of the solid-state imaging device 3 can be calculated with higher accuracy.

このように、実施例3の撮像装置によれば、温度検出手段50により固体撮像素子3より出力された水平前OPB部22および水平後OPB部23の画素信号に基づいて固体撮像素子3の動作温度を演算する。したがって、固体撮像素子3の動作温度を高精度に求めることができるので、確実に線状欠陥を補正することができる。   As described above, according to the imaging apparatus of the third embodiment, the operation of the solid-state imaging device 3 based on the pixel signals of the horizontal front OPB unit 22 and the horizontal rear OPB unit 23 output from the solid-state imaging device 3 by the temperature detection unit 50. Calculate the temperature. Therefore, since the operating temperature of the solid-state image sensor 3 can be obtained with high accuracy, the linear defect can be reliably corrected.

実施例3では、図2に示される水平前OPB部22および水平後OPB部23の画素信号に基づいて固体撮像素子3の動作温度を演算する。このため、従来良く知られるオプティカルブラック領域を利用することができる。これに対し、固体撮像素子3の動作温度を演算するための専用のOPB部を設けてもよい。   In the third embodiment, the operating temperature of the solid-state imaging device 3 is calculated based on the pixel signals of the front horizontal OPB unit 22 and the horizontal rear OPB unit 23 shown in FIG. For this reason, a well-known optical black region can be used. On the other hand, a dedicated OPB unit for calculating the operating temperature of the solid-state imaging device 3 may be provided.

図12〜図14は、実施例4の固体撮像素子の画素部20の構成例を示す図である。
図12は、複数の遮光画素および複数列の垂直転送レジスタを有する光学的黒レベル部61および複数列の垂直転送レジスタを有する無信号レベル部62を水平前OPB部22の水平方向に隣接するように並べて配列した例である。
なお、光学的黒レベル部61は、少なくとも1列の遮光画素および垂直転送レジスタを有すればよく、無信号レベル部62は、少なくとも1列の垂直転送レジスタを有すればよい。
FIGS. 12-14 is a figure which shows the structural example of the pixel part 20 of the solid-state image sensor of Example 4. As shown in FIG.
In FIG. 12, the optical black level unit 61 having a plurality of light-shielding pixels and a plurality of columns of vertical transfer registers and the non-signal level unit 62 having a plurality of columns of vertical transfer registers are adjacent to each other in the horizontal direction of the horizontal front OPB unit 22. It is an example arranged side by side.
The optical black level unit 61 only needs to have at least one column of light-shielded pixels and a vertical transfer register, and the no-signal level unit 62 only needs to have at least one column of a vertical transfer register.

図13は、複数の遮光画素および複数列の垂直転送レジスタを有する光学的黒レベル部61および複数列の垂直転送レジスタを有する無信号レベル部62を水平後OPB部23の水平方向に隣接するように並べて配列した例である。
なお、光学的黒レベル部61は、少なくとも1列の遮光画素および垂直転送レジスタを有すればよく、無信号レベル部62は、少なくとも1列の垂直転送レジスタを有すればよい。
13 shows that the optical black level unit 61 having a plurality of light-shielding pixels and a plurality of columns of vertical transfer registers and the no-signal level unit 62 having a plurality of columns of vertical transfer registers are adjacent to each other in the horizontal direction of the horizontal rear OPB unit 23. It is an example arranged side by side.
The optical black level unit 61 only needs to have at least one column of light-shielded pixels and a vertical transfer register, and the no-signal level unit 62 only needs to have at least one column of a vertical transfer register.

図14は、複数の遮光画素および複数列の垂直転送レジスタを有する光学的黒レベル部63および複数列の垂直転送レジスタを有する無信号レベル部64を有効画素部21、水平前OPB部22および水平後OPB部23の垂直方向に隣接するように配列した例である。
なお、光学的黒レベル部63は、少なくとも1行の遮光画素および垂直転送レジスタ(転送素子)を有すればよく、無信号レベル部64は、少なくとも1行の垂直転送レジスタ(転送素子)を有すればよい。
FIG. 14 shows an optical black level portion 63 having a plurality of light-shielded pixels and a plurality of columns of vertical transfer registers, and a non-signal level portion 64 having a plurality of columns of vertical transfer registers. In this example, the rear OPB unit 23 is arranged so as to be adjacent to each other in the vertical direction.
The optical black level unit 63 only needs to have at least one row of light-shielding pixels and a vertical transfer register (transfer element), and the no-signal level unit 64 has at least one row of vertical transfer register (transfer element). do it.

図12〜図13に示される光学的黒レベル部61および63の複数の遮光画素は、他の部分に比べ大きな暗電流が発生するように構成することができる。これにより、センサ起因の暗電流を検出しやすくすることができるので、固体撮像素子3の動作温度を高精度に求めることができる。   The plurality of light-shielding pixels of the optical black level portions 61 and 63 shown in FIGS. 12 to 13 can be configured to generate a larger dark current than other portions. As a result, it is possible to easily detect the dark current caused by the sensor, so that the operating temperature of the solid-state imaging device 3 can be obtained with high accuracy.

このように、実施例4の撮像装置によれば、暗電流が発生しやすい専用のOPB部(光学的黒レベル部61または63)を設け、センサ起因の暗電流を検出しやすくすることができるので、固体撮像素子3の動作温度を高精度に求めることができる。
なお、実施例2の撮像装置のように、暗電流が発生しやすい専用のOPB部(無信号レベル部62または64のみ)を設け、垂直転送レジスタ起因の暗電流を検出しやすくし、固体撮像素子3の動作温度を高精度に求めることができる。
As described above, according to the imaging apparatus of the fourth embodiment, the dedicated OPB part (optical black level part 61 or 63) that easily generates dark current is provided, and the dark current caused by the sensor can be easily detected. Therefore, the operating temperature of the solid-state imaging device 3 can be obtained with high accuracy.
As in the image pickup apparatus of the second embodiment, a dedicated OPB portion (only the no-signal level portion 62 or 64) that easily generates dark current is provided to facilitate detection of dark current caused by the vertical transfer register, and solid-state imaging. The operating temperature of the element 3 can be obtained with high accuracy.

実施例1の撮像装置の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of an imaging apparatus according to Embodiment 1. FIG. 図1に示される固体撮像素子の画素部の構成を示す図である。It is a figure which shows the structure of the pixel part of the solid-state image sensor shown by FIG. 図2に示される固体撮像素子により出力される画素信号の説明図である。It is explanatory drawing of the pixel signal output by the solid-state image sensor shown by FIG. 固体撮像素子の線状欠陥の一例を示す図である。It is a figure which shows an example of the linear defect of a solid-state image sensor. 線状欠陥を有する固体撮像素子により出力される画素信号の説明図である。It is explanatory drawing of the pixel signal output by the solid-state image sensor which has a linear defect. 図1に示される線状欠陥検出補正回路の構成を示す図である。It is a figure which shows the structure of the linear defect detection correction circuit shown by FIG. 図2に示される固体撮像素子の画素部の変形例を示す図である。It is a figure which shows the modification of the pixel part of the solid-state image sensor shown by FIG. 実施例2の撮像装置の線状欠陥検出補正回路40の構成を示す図である。FIG. 6 is a diagram illustrating a configuration of a linear defect detection / correction circuit 40 of the imaging apparatus according to the second embodiment. 垂直転送レジスタ起因の暗電流と固体撮像素子の動作温度との関係を示す図である。It is a figure which shows the relationship between the dark current resulting from a vertical transfer register, and the operating temperature of a solid-state image sensor. 実施例3の撮像装置の線状欠陥検出補正回路50の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of a linear defect detection / correction circuit 50 of an imaging apparatus according to a third embodiment. センサ起因の暗電流と固体撮像素子の動作温度との関係を示す図である。It is a figure which shows the relationship between the dark current resulting from a sensor, and the operating temperature of a solid-state image sensor. 実施例4の固体撮像素子の画素部の構成例を示す図である。FIG. 10 is a diagram illustrating a configuration example of a pixel unit of a solid-state imaging element according to a fourth embodiment. 実施例4の固体撮像素子の画素部の構成例を示す図である。FIG. 10 is a diagram illustrating a configuration example of a pixel unit of a solid-state imaging element according to a fourth embodiment. 実施例4の固体撮像素子の画素部の構成例を示す図である。FIG. 10 is a diagram illustrating a configuration example of a pixel unit of a solid-state imaging element according to a fourth embodiment.

符号の説明Explanation of symbols

1……レンズ、2……絞り、3……固体撮像素子、4……CDS回路、5……AD変換回路、6……線状欠陥検出補正回路、7……画像処理回路、8……CPU、9……線状欠陥アドレスROM、10……画像RAM、20……画素部20、21……有効画素部、22……水平前OPB部、23……水平後OPB部、24……水平転送レジスタ、25……出力回路、31……線状欠陥検出手段、32……線状欠陥アドレス記憶制御手段、33……温度センサ、34……温度検出手段、35……温度判定手段、36……線状欠陥補正手段。   DESCRIPTION OF SYMBOLS 1 ... Lens, 2 ... Diaphragm, 3 ... Solid-state image sensor, 4 ... CDS circuit, 5 ... AD conversion circuit, 6 ... Linear defect detection correction circuit, 7 ... Image processing circuit, 8 ... CPU, 9 ... Linear defect address ROM, 10 ... Image RAM, 20 ... Pixel unit 20, 21 ... Effective pixel unit, 22 ... Horizontal front OPB unit, 23 ... Horizontal rear OPB unit, 24 ... Horizontal transfer register, 25... Output circuit, 31... Linear defect detection means, 32... Linear defect address storage control means, 33 ... temperature sensor, 34. 36: Linear defect correction means.

Claims (35)

画素信号を出力する固体撮像素子と、
前記固体撮像素子を低温で動作させたときに前記固体撮像素子により出力された画素信号に基づいて検出された前記固体撮像素子の垂直方向に延びる線状欠陥のアドレスを記憶する線状欠陥アドレス記憶手段と、
前記固体撮像素子の動作温度を検出する動作温度検出手段と、
前記動作温度検出手段により検出された前記固体撮像素子の動作温度をしきい値と比較し、前記固体撮像素子の動作温度が前記しきい値より低いかどうかを判定する判定手段と、
前記判定手段により前記固体撮像素子の動作温度が低いと判定されたとき、前記線状欠陥アドレス記憶手段に記憶された線状欠陥のアドレスを読み出し、前記固体撮像素子により出力された前記アドレスに対応する前記線状欠陥の画素信号を補正する補正手段とを備えた、
ことを特徴とする撮像装置。
A solid-state image sensor that outputs pixel signals;
A linear defect address storage for storing an address of a linear defect extending in the vertical direction of the solid-state imaging device detected based on a pixel signal output by the solid-state imaging device when the solid-state imaging device is operated at a low temperature Means,
An operating temperature detecting means for detecting an operating temperature of the solid-state imaging device;
A determination unit that compares the operating temperature of the solid-state imaging device detected by the operating temperature detection unit with a threshold value, and determines whether or not the operating temperature of the solid-state imaging device is lower than the threshold value;
When the determination unit determines that the operating temperature of the solid-state image sensor is low, the address of the linear defect stored in the linear defect address storage unit is read and corresponds to the address output by the solid-state image sensor Correcting means for correcting the pixel signal of the linear defect.
An imaging apparatus characterized by that.
前記固体撮像素子により出力された画素信号に基づいて前記固体撮像素子の前記線状欠陥を検出する線状欠陥検出手段を有することを特徴とする請求項1記載の撮像装置。   The imaging apparatus according to claim 1, further comprising: a linear defect detection unit configured to detect the linear defect of the solid-state image sensor based on a pixel signal output from the solid-state image sensor. 固体撮像素子により出力された画素信号を補正する画素信号の補正方法であって、
前記固体撮像素子を低温で動作させたときに前記固体撮像素子により出力された画素信号に基づいて前記固体撮像素子の垂直方向に延びる線状欠陥を検出する線状欠陥検出ステップと、
前記線状欠陥検出ステップで検出された前記線状欠陥のアドレスを記憶する線状欠陥アドレス記憶ステップと、
前記固体撮像素子の動作温度を検出する動作温度検出ステップと、
前記動作温度検出ステップで検出された前記固体撮像素子の動作温度をしきい値と比較し、前記固体撮像素子の動作温度が前記しきい値より低いかどうかを判定する判定ステップと、
前記判定ステップで前記固体撮像素子の動作温度が低いと判定されたとき、前記線状欠陥アドレス記憶ステップで記憶された線状欠陥のアドレスを読み出し、前記固体撮像素子により出力された前記アドレスに対応する前記線状欠陥の画素信号を補正する補正ステップとを含むことを特徴とする画素信号の補正方法。
A pixel signal correction method for correcting a pixel signal output by a solid-state imaging device,
A linear defect detection step for detecting a linear defect extending in a vertical direction of the solid-state image sensor based on a pixel signal output by the solid-state image sensor when the solid-state image sensor is operated at a low temperature;
A linear defect address storage step for storing an address of the linear defect detected in the linear defect detection step;
An operating temperature detecting step for detecting an operating temperature of the solid-state imaging device;
A determination step of comparing the operating temperature of the solid-state imaging device detected in the operating temperature detection step with a threshold value and determining whether the operating temperature of the solid-state imaging device is lower than the threshold value;
When it is determined in the determination step that the operating temperature of the solid-state image sensor is low, the address of the linear defect stored in the linear defect address storage step is read and corresponds to the address output by the solid-state image sensor And a correction step of correcting the pixel signal of the linear defect.
入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効画素垂直転送レジスタと、前記複数の有効画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する固体撮像素子と、
前記固体撮像素子を低温で動作させたときに前記固体撮像素子により出力された画素信号に基づいて検出された前記固体撮像素子の垂直方向に延びる線状欠陥のアドレスを記憶する線状欠陥アドレス記憶手段と、
前記固体撮像素子の動作温度を検出する動作温度検出手段と、
前記動作温度検出手段により検出された前記固体撮像素子の動作温度をしきい値と比較し、前記固体撮像素子の動作温度が前記しきい値より低いかどうかを判定する判定手段と、
前記判定手段により前記固体撮像素子の動作温度が低いと判定されたとき、前記線状欠陥アドレス記憶手段に記憶された線状欠陥のアドレスを読み出し、前記固体撮像素子により出力された前記アドレスに対応する前記線状欠陥の画素信号を補正する補正手段とを備えた、
ことを特徴とする撮像装置。
A plurality of effective pixels arranged in a matrix that converts incident light into a signal charge and outputs it as a pixel signal, and a plurality of effective pixels that are extracted for each column from the plurality of effective pixels and transferred in the vertical direction A solid-state imaging device having a pixel vertical transfer register and a horizontal transfer register for transferring a pixel signal transferred by the plurality of effective pixel vertical transfer registers in a horizontal direction;
A linear defect address storage for storing an address of a linear defect extending in the vertical direction of the solid-state imaging device detected based on a pixel signal output by the solid-state imaging device when the solid-state imaging device is operated at a low temperature Means,
An operating temperature detecting means for detecting an operating temperature of the solid-state imaging device;
A determination unit that compares the operating temperature of the solid-state imaging device detected by the operating temperature detection unit with a threshold value, and determines whether or not the operating temperature of the solid-state imaging device is lower than the threshold value;
When the determination unit determines that the operating temperature of the solid-state image sensor is low, the address of the linear defect stored in the linear defect address storage unit is read and corresponds to the address output by the solid-state image sensor Correcting means for correcting the pixel signal of the linear defect.
An imaging apparatus characterized by that.
前記固体撮像素子により出力された画素信号に基づいて前記固体撮像素子の前記線状欠陥を検出する線状欠陥検出手段を有することを特徴とする請求項4記載の撮像装置。   The imaging apparatus according to claim 4, further comprising a linear defect detection unit that detects the linear defect of the solid-state image sensor based on a pixel signal output from the solid-state image sensor. 前記線状欠陥検出手段は、前記固体撮像素子により出力された前記複数の有効画素垂直転送レジスタのそれぞれにより転送される1列分の画素信号をそれぞれ累積加算する累積加算手段を有し、前記累積加算手段により累積加算された前記1列分の画素信号に基づいて前記線状欠陥を検出することを特徴とする請求項4記載の撮像装置。   The linear defect detecting means includes cumulative addition means for cumulatively adding pixel signals for one column transferred by each of the plurality of effective pixel vertical transfer registers output from the solid-state imaging device, 5. The imaging apparatus according to claim 4, wherein the linear defect is detected based on the pixel signals for the one column accumulated and added by an adding means. 前記線状欠陥検出手段は、前記固体撮像素子により出力された複数枚の画像の同位置の画素信号を累積加算する累積加算手段を有し、前記累積加算手段により累積加算された前記複数枚の同位置の画素信号に基づいて前記線状欠陥を検出することを特徴とする請求項5記載の撮像装置。   The linear defect detection means includes cumulative addition means for cumulatively adding pixel signals at the same position of a plurality of images output from the solid-state imaging device, and the plurality of the plurality of sheets cumulatively added by the cumulative addition means. 6. The imaging apparatus according to claim 5, wherein the linear defect is detected based on a pixel signal at the same position. 前記動作温度検出手段は、前記固体撮像素子の温度を検出する温度センサを有することを特徴とする請求項4記載の撮像装置。   The imaging apparatus according to claim 4, wherein the operating temperature detection unit includes a temperature sensor that detects a temperature of the solid-state imaging device. 前記補正手段は、前記線状欠陥の画素信号を前記線状欠陥を構成する画素の周辺画素の画素信号に基づいて補正することを特徴とする請求項4記載の撮像装置。   The imaging apparatus according to claim 4, wherein the correction unit corrects the pixel signal of the linear defect based on a pixel signal of a peripheral pixel of the pixel constituting the linear defect. 入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効画素垂直転送レジスタとを有する有効画素部と、
前記有効画素部の周囲に1列または行列状に配列され、画素値が0の画素信号を垂直方向に転送する1または複数の無効画素垂直転送レジスタと、
前記複数の有効画素垂直転送レジスタおよび前記1または複数の無効画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する固体撮像素子と、
前記固体撮像素子を低温で動作させたときに前記固体撮像素子により出力された画素信号に基づいて検出された前記固体撮像素子の垂直方向に延びる線状欠陥のアドレスを記憶する線状欠陥アドレス記憶手段と、
前記固体撮像素子の動作温度を検出する動作温度検出手段と、
前記動作温度検出手段により検出された前記固体撮像素子の動作温度をしきい値と比較し、前記固体撮像素子の動作温度が前記しきい値より低いかどうかを判定する判定手段と、
前記判定手段により前記固体撮像素子の動作温度が低いと判定されたとき、前記線状欠陥アドレス記憶手段に記憶された線状欠陥のアドレスを読み出し、前記固体撮像素子により出力された前記アドレスに対応する前記線状欠陥の画素信号を補正する補正手段とを備えた、
ことを特徴とする撮像装置。
A plurality of effective pixels arranged in a matrix that converts incident light into a signal charge and outputs it as a pixel signal, and a plurality of effective pixels that are extracted for each column from the plurality of effective pixels and transferred in the vertical direction An effective pixel unit having a pixel vertical transfer register;
One or a plurality of invalid pixel vertical transfer registers that are arranged in a column or matrix around the effective pixel portion and transfer a pixel signal having a pixel value of 0 in the vertical direction;
A solid-state imaging device having a horizontal transfer register that horizontally transfers pixel signals transferred by the plurality of effective pixel vertical transfer registers and the one or more invalid pixel vertical transfer registers;
A linear defect address storage for storing an address of a linear defect extending in the vertical direction of the solid-state imaging device detected based on a pixel signal output by the solid-state imaging device when the solid-state imaging device is operated at a low temperature Means,
An operating temperature detecting means for detecting an operating temperature of the solid-state imaging device;
A determination unit that compares the operating temperature of the solid-state imaging device detected by the operating temperature detection unit with a threshold value, and determines whether or not the operating temperature of the solid-state imaging device is lower than the threshold value;
When the determination unit determines that the operating temperature of the solid-state image sensor is low, the address of the linear defect stored in the linear defect address storage unit is read and corresponds to the address output by the solid-state image sensor Correcting means for correcting the pixel signal of the linear defect.
An imaging apparatus characterized by that.
前記無効画素垂直転送レジスタは、前記有効画素垂直転送レジスタに比べ、大きな暗電流が発生するように構成されていることを特徴とする請求項10記載の撮像装置。   The imaging apparatus according to claim 10, wherein the invalid pixel vertical transfer register is configured to generate a larger dark current than the effective pixel vertical transfer register. 前記無効画素垂直転送レジスタは、画素信号の黒レベルを検出するためのオプティカルブラック領域を構成することを特徴とする請求項10記載の撮像装置。   The image pickup apparatus according to claim 10, wherein the invalid pixel vertical transfer register forms an optical black region for detecting a black level of a pixel signal. 前記固体撮像素子の前記線状欠陥を検出する線状欠陥検出手段を有することを特徴とする請求項10記載の撮像装置。   The imaging apparatus according to claim 10, further comprising a linear defect detection unit that detects the linear defect of the solid-state imaging element. 前記線状欠陥検出手段は、前記固体撮像素子により出力された前記複数の有効画素垂直転送レジスタのそれぞれにより転送される1列分の画素信号をそれぞれ累積加算する累積加算手段を有し、前記累積加算手段により累積加算された前記1列分の画素信号に基づいて前記線状欠陥を検出することを特徴とする請求項13記載の撮像装置。   The linear defect detecting means includes cumulative addition means for cumulatively adding pixel signals for one column transferred by each of the plurality of effective pixel vertical transfer registers output from the solid-state imaging device, 14. The imaging apparatus according to claim 13, wherein the linear defect is detected based on the pixel signals for the one column accumulated and added by the adding means. 前記線状欠陥検出手段は、前記固体撮像素子により出力された複数枚の画像の同位置の画素信号を累積加算する累積加算手段を有し、前記累積加算手段により累積加算された前記複数枚の同位置の画素信号に基づいて前記線状欠陥を検出することを特徴とする請求項13記載の撮像装置。   The linear defect detection means includes cumulative addition means for cumulatively adding pixel signals at the same position of a plurality of images output from the solid-state imaging device, and the plurality of the plurality of sheets cumulatively added by the cumulative addition means. The imaging apparatus according to claim 13, wherein the linear defect is detected based on a pixel signal at the same position. 前記動作温度検出手段は、前記固体撮像素子の温度を検出する温度センサを有することを特徴とする請求項10記載の撮像装置。   The imaging apparatus according to claim 10, wherein the operating temperature detection unit includes a temperature sensor that detects a temperature of the solid-state imaging device. 前記動作温度検出手段は、前記無効画素垂直転送レジスタにより転送されて前記固体撮像素子により出力された画素信号に基づいて前記固体撮像素子の動作温度を演算する動作温度演算手段を有することを特徴とする請求項10記載の撮像装置。   The operating temperature detecting means has operating temperature calculating means for calculating the operating temperature of the solid-state image sensor based on a pixel signal transferred by the invalid pixel vertical transfer register and output by the solid-state image sensor. The imaging device according to claim 10. 前記動作温度検出手段は、前記無効画素垂直転送レジスタにより転送されて前記固体撮像素子により出力された画素信号に基づく垂直転送レジスタ起因暗電流と前記固体撮像素子の動作温度とを対応付けた演算テーブルを記憶する演算テーブル記憶手段を有し、
前記動作温度演算手段は、前記演算テーブル記憶手段に記憶された演算テーブルに基づいて前記固体撮像素子の動作温度を演算することを特徴とする請求項17記載の撮像装置。
The operating temperature detecting means is a calculation table in which a dark current caused by a vertical transfer register based on a pixel signal transferred by the invalid pixel vertical transfer register and output from the solid-state image sensor is associated with an operating temperature of the solid-state image sensor A calculation table storage means for storing
18. The imaging apparatus according to claim 17, wherein the operating temperature calculation unit calculates an operating temperature of the solid-state imaging device based on a calculation table stored in the calculation table storage unit.
前記補正手段は、前記線状欠陥の画素信号を前記線状欠陥を構成する画素の周辺画素の画素信号に基づいて補正することを特徴とする請求項7記載の撮像装置。   The imaging apparatus according to claim 7, wherein the correction unit corrects the pixel signal of the linear defect based on a pixel signal of a peripheral pixel of the pixel constituting the linear defect. 入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効画素垂直転送レジスタとを有する有効画素部と、
前記有効画素部の周囲に1行または行列状に配列され、画素値が0の画素信号を垂直方向に転送して前記有効画素垂直転送レジスタに転送する1または複数の無効画素垂直転送レジスタと、
前記複数の有効画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する固体撮像素子と、
前記固体撮像素子を低温で動作させたときに前記固体撮像素子により出力された画素信号に基づいて検出された前記固体撮像素子の垂直方向に延びる線状欠陥のアドレスを記憶する線状欠陥アドレス記憶手段と、
前記固体撮像素子の動作温度を検出する動作温度検出手段と、
前記動作温度検出手段により検出された前記固体撮像素子の動作温度をしきい値と比較し、前記固体撮像素子の動作温度が前記しきい値より低いかどうかを判定する判定手段と、
前記判定手段により前記固体撮像素子の動作温度が低いと判定されたとき、前記線状欠陥アドレス記憶手段に記憶された線状欠陥のアドレスを読み出し、前記固体撮像素子により出力された前記アドレスに対応する前記線状欠陥の画素信号を補正する補正手段とを備えた、
ことを特徴とする撮像装置。
A plurality of effective pixels arranged in a matrix that converts incident light into a signal charge and outputs it as a pixel signal, and a plurality of effective pixels that are extracted for each column from the plurality of effective pixels and transferred in the vertical direction An effective pixel unit having a pixel vertical transfer register;
One or a plurality of invalid pixel vertical transfer registers arranged in a row or matrix around the effective pixel portion and transferring a pixel signal having a pixel value of 0 in the vertical direction to the effective pixel vertical transfer register;
A solid-state imaging device having a horizontal transfer register that horizontally transfers pixel signals transferred by the plurality of effective pixel vertical transfer registers;
A linear defect address storage for storing an address of a linear defect extending in the vertical direction of the solid-state imaging device detected based on a pixel signal output by the solid-state imaging device when the solid-state imaging device is operated at a low temperature Means,
An operating temperature detecting means for detecting an operating temperature of the solid-state imaging device;
A determination unit that compares the operating temperature of the solid-state imaging device detected by the operating temperature detection unit with a threshold value, and determines whether or not the operating temperature of the solid-state imaging device is lower than the threshold value;
When the determination unit determines that the operating temperature of the solid-state image sensor is low, the address of the linear defect stored in the linear defect address storage unit is read and corresponds to the address output by the solid-state image sensor Correcting means for correcting the pixel signal of the linear defect.
An imaging apparatus characterized by that.
前記固体撮像素子の前記線状欠陥を検出する線状欠陥検出手段を有することを特徴とする請求項20記載の撮像装置。   21. The imaging apparatus according to claim 20, further comprising a linear defect detection unit that detects the linear defect of the solid-state imaging device. 前記動作温度検出手段は、前記無効画素垂直転送レジスタにより転送されて前記固体撮像素子により出力された画素信号に基づいて前記固体撮像素子の動作温度を演算する動作温度演算手段を有することを特徴とする請求項20記載の撮像装置。   The operating temperature detecting means has operating temperature calculating means for calculating the operating temperature of the solid-state image sensor based on a pixel signal transferred by the invalid pixel vertical transfer register and output by the solid-state image sensor. The imaging device according to claim 20. 前記動作温度検出手段は、前記無効画素垂直転送レジスタにより転送されて前記固体撮像素子により出力された画素信号に基づく垂直転送レジスタ起因暗電流と前記固体撮像素子の動作温度とを対応付けた演算テーブルを記憶する演算テーブル記憶手段を有し、
前記動作温度演算手段は、前記演算テーブル記憶手段に記憶された演算テーブルに基づいて前記固体撮像素子の動作温度を演算することを特徴とする請求項22記載の撮像装置。
The operating temperature detecting means is a calculation table in which a dark current caused by a vertical transfer register based on a pixel signal transferred by the invalid pixel vertical transfer register and output from the solid-state image sensor is associated with an operating temperature of the solid-state image sensor A calculation table storage means for storing
23. The imaging apparatus according to claim 22, wherein the operating temperature calculation unit calculates an operating temperature of the solid-state imaging device based on a calculation table stored in the calculation table storage unit.
入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素とともに行列を構成するように前記複数の有効画素の周囲に配列され、遮光膜で覆われた複数の遮光画素と、前記複数の有効画素および複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効/遮光画素垂直転送レジスタとを有する有効/遮光画素部と、
前記有効/遮光画素部の周囲に1列または行列状に配列され、画素値が0の画素信号を垂直方向に転送する1または複数の無効画素垂直転送レジスタと、
前記複数の有効/遮光画素垂直転送レジスタおよび前記1または複数の無効画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する固体撮像素子と、
前記固体撮像素子を低温で動作させたときに前記固体撮像素子により出力された画素信号に基づいて検出された前記固体撮像素子の垂直方向に延びる線状欠陥のアドレスを記憶する線状欠陥アドレス記憶手段と、
前記固体撮像素子の動作温度を検出する動作温度検出手段と、
前記動作温度検出手段により検出された前記固体撮像素子の動作温度をしきい値と比較し、前記固体撮像素子の動作温度が前記しきい値より低いかどうかを判定する判定手段と、
前記判定手段により前記固体撮像素子の動作温度が低いと判定されたとき、前記線状欠陥アドレス記憶手段に記憶された線状欠陥のアドレスを読み出し、前記固体撮像素子により出力された前記アドレスに対応する前記線状欠陥の画素信号を補正する補正手段とを備えた、
ことを特徴とする撮像装置。
A plurality of effective pixels arranged in a matrix for converting incident light into signal charges and outputting them as pixel signals, and arranged around the plurality of effective pixels so as to form a matrix together with the plurality of effective pixels, A plurality of light-shielding pixels covered with a light-shielding film, and a plurality of effective pixels and a plurality of effective / light-shielding pixel vertical transfer registers that extract pixel signals for each column for the plurality of effective pixels and the plurality of light-shielding pixels and transfer them in the vertical direction / Shading pixel part,
One or a plurality of invalid pixel vertical transfer registers arranged in a column or matrix around the effective / light-shielding pixel portion and transferring a pixel signal having a pixel value of 0 in the vertical direction;
A solid-state imaging device having a horizontal transfer register that horizontally transfers pixel signals transferred by the plurality of valid / light-shielded pixel vertical transfer registers and the one or more invalid pixel vertical transfer registers;
A linear defect address storage for storing an address of a linear defect extending in the vertical direction of the solid-state imaging device detected based on a pixel signal output by the solid-state imaging device when the solid-state imaging device is operated at a low temperature Means,
An operating temperature detecting means for detecting an operating temperature of the solid-state imaging device;
A determination unit that compares the operating temperature of the solid-state imaging device detected by the operating temperature detection unit with a threshold value, and determines whether or not the operating temperature of the solid-state imaging device is lower than the threshold value;
When the determination unit determines that the operating temperature of the solid-state image sensor is low, the address of the linear defect stored in the linear defect address storage unit is read and corresponds to the address output by the solid-state image sensor Correcting means for correcting the pixel signal of the linear defect.
An imaging apparatus characterized by that.
前記複数の有効/遮光画素垂直転送レジスタは、前記複数の有効画素の画素信号を取り出す有効画素転送部および前記複数の遮光画素の画像信号を取り出す遮光画素転送部の少なくとも1つの画素転送部をそれぞれ有し、
前記遮光画素転送部は、前記有効画素転送部に比べ、大きな暗電流が発生するように構成されていることを特徴とする請求項24記載の撮像装置。
The plurality of effective / light-shielded pixel vertical transfer registers respectively include at least one pixel transfer unit of an effective pixel transfer unit that extracts pixel signals of the plurality of effective pixels and a light-shielded pixel transfer unit that extracts image signals of the plurality of light-shielded pixels. Have
25. The imaging apparatus according to claim 24, wherein the light-shielding pixel transfer unit is configured to generate a larger dark current than the effective pixel transfer unit.
前記複数の有効/遮光画素垂直転送レジスタは、前記複数の有効画素の画素信号を取り出す有効画素転送部および前記複数の遮光画素の画像信号を取り出す遮光画素転送部の少なくとも1つの画素転送部をそれぞれ有し、
前記無効画素垂直転送レジスタは、前記有効画素転送部に比べ、暗電流が発生しやすいように構成されていることを特徴とする請求項24記載の撮像装置。
The plurality of effective / light-shielded pixel vertical transfer registers respectively include at least one pixel transfer unit of an effective pixel transfer unit that extracts pixel signals of the plurality of effective pixels and a light-shielded pixel transfer unit that extracts image signals of the plurality of light-shielded pixels. Have
The imaging device according to claim 24, wherein the invalid pixel vertical transfer register is configured to generate a dark current more easily than the effective pixel transfer unit.
前記複数の遮光画素は、画素信号の黒レベルを検出するためのオプティカルブラック領域を構成することを特徴とする請求項24記載の撮像装置。   The imaging device according to claim 24, wherein the plurality of light-shielding pixels constitute an optical black region for detecting a black level of a pixel signal. 前記無効画素垂直転送レジスタは、画素信号の黒レベルを検出するためのオプティカルブラック領域を構成することを特徴とする請求項25記載の撮像装置。   26. The image pickup apparatus according to claim 25, wherein the invalid pixel vertical transfer register forms an optical black region for detecting a black level of a pixel signal. 前記固体撮像素子の前記線状欠陥を検出する線状欠陥検出手段を有することを特徴とする請求項24記載の撮像装置。   25. The imaging apparatus according to claim 24, further comprising a linear defect detection unit that detects the linear defect of the solid-state imaging device. 前記複数の有効/遮光画素垂直転送レジスタは、前記複数の有効画素の画素信号を取り出す有効画素転送部および前記複数の遮光画素の画像信号を取り出す遮光画素転送部の少なくとも1つの画素転送部を有し、
前記動作温度検出手段は、前記遮光画素転送部により取り出され、前記固体撮像素子により出力された前記複数の遮光画素の画素信号と、前記無効画素垂直転送レジスタにより転送されて前記固体撮像素子により出力された画素信号との差分値であるセンサ起因暗電流を演算するセンサ起因暗電流演算手段と、
前記センサ起因暗電流演算手段により演算されたセンサ起因暗電流に基づいて前記固体撮像素子の動作温度を演算する動作温度演算手段とを有することを特徴とする請求項24記載の撮像装置。
The plurality of effective / light-shielded pixel vertical transfer registers includes at least one pixel transfer unit including an effective pixel transfer unit that extracts pixel signals of the plurality of effective pixels and a light-shielded pixel transfer unit that extracts image signals of the plurality of light-shielded pixels. And
The operating temperature detecting means is extracted by the light-shielded pixel transfer unit, and is output by the solid-state image sensor and the pixel signals of the plurality of light-shielded pixels output by the solid-state image sensor and output by the invalid pixel vertical transfer register. Sensor-induced dark current calculation means for calculating a sensor-induced dark current that is a difference value from the pixel signal that has been obtained,
The image pickup apparatus according to claim 24, further comprising an operation temperature calculation unit that calculates an operation temperature of the solid-state image sensor based on the sensor-induced dark current calculated by the sensor-induced dark current calculation unit.
前記動作温度検出手段は、前記センサ起因暗電流演算手段により演算されるセンサ起因暗電流と前記固体撮像素子の動作温度とを対応付けた演算テーブルを記憶する演算テーブル記憶手段を有し、
前記動作温度演算手段は、前記演算テーブル記憶手段に記憶された演算テーブルに基づいて前記固体撮像素子の動作温度を演算することを特徴とする請求項30記載の撮像装置。
The operating temperature detecting unit has a calculation table storage unit that stores a calculation table in which a sensor-induced dark current calculated by the sensor-induced dark current calculation unit and an operation temperature of the solid-state imaging device are associated with each other.
31. The imaging apparatus according to claim 30, wherein the operating temperature calculation unit calculates an operating temperature of the solid-state imaging device based on a calculation table stored in the calculation table storage unit.
入射された光を信号電荷に変換し画素信号として出力する行列状に配列された複数の有効画素と、前記複数の有効画素とともに行列を構成するように前記複数の有効画素の周囲に配列され、遮光膜で覆われた複数の遮光画素と、前記複数の有効画素および複数の遮光画素に対し列毎に画素信号を取り出し、垂直方向に転送する複数の有効/遮光画素垂直転送レジスタとを有する有効/遮光画素部と、
前記有効/遮光画素部の周囲に1行または行列状に配列され、画素値が0の画素信号を垂直方向に転送して前記有効/遮光画素垂直転送レジスタに転送する1または複数の無効画素垂直転送レジスタと、
前記複数の有効/遮光画素垂直転送レジスタにより転送された画素信号を水平方向に転送する水平転送レジスタとを有する固体撮像素子と、
前記固体撮像素子を低温で動作させたときに前記固体撮像素子により出力された画素信号に基づいて検出された前記固体撮像素子の垂直方向に延びる線状欠陥のアドレスを記憶する線状欠陥アドレス記憶手段と、
前記固体撮像素子の動作温度を検出する動作温度検出手段と、
前記動作温度検出手段により検出された前記固体撮像素子の動作温度をしきい値と比較し、前記固体撮像素子の動作温度が前記しきい値より低いかどうかを判定する判定手段と、
前記判定手段により前記固体撮像素子の動作温度が低いと判定されたとき、前記線状欠陥アドレス記憶手段に記憶された線状欠陥のアドレスを読み出し、前記固体撮像素子により出力された前記アドレスに対応する前記線状欠陥の画素信号を補正する補正手段とを備えた、
ことを特徴とする撮像装置。
A plurality of effective pixels arranged in a matrix for converting incident light into signal charges and outputting them as pixel signals, and arranged around the plurality of effective pixels so as to form a matrix together with the plurality of effective pixels, A plurality of light-shielding pixels covered with a light-shielding film, and a plurality of effective pixels and a plurality of effective / light-shielding pixel vertical transfer registers that extract pixel signals for each column for the plurality of effective pixels and the plurality of light-shielding pixels and transfer them in the vertical direction / Shading pixel part,
One or a plurality of invalid pixel verticals arranged in a row or matrix around the effective / light-shielded pixel portion and transferring a pixel signal having a pixel value of 0 in the vertical direction to the valid / light-shielded pixel vertical transfer register A transfer register;
A solid-state imaging device having a horizontal transfer register that horizontally transfers pixel signals transferred by the plurality of effective / light-shielded pixel vertical transfer registers;
A linear defect address storage for storing an address of a linear defect extending in the vertical direction of the solid-state imaging device detected based on a pixel signal output by the solid-state imaging device when the solid-state imaging device is operated at a low temperature Means,
An operating temperature detecting means for detecting an operating temperature of the solid-state imaging device;
A determination unit that compares the operating temperature of the solid-state imaging device detected by the operating temperature detection unit with a threshold value, and determines whether or not the operating temperature of the solid-state imaging device is lower than the threshold value;
When the determination unit determines that the operating temperature of the solid-state image sensor is low, the address of the linear defect stored in the linear defect address storage unit is read and corresponds to the address output by the solid-state image sensor Correcting means for correcting the pixel signal of the linear defect.
An imaging apparatus characterized by that.
前記固体撮像素子の前記線状欠陥を検出する線状欠陥検出手段を有することを特徴とする請求項32記載の撮像装置。   33. The imaging apparatus according to claim 32, further comprising linear defect detection means for detecting the linear defect of the solid-state imaging device. 前記複数の有効/遮光画素垂直転送レジスタは、前記複数の有効画素の画素信号を取り出す有効画素転送部および前記複数の遮光画素の画像信号を取り出す遮光画素転送部の少なくとも1つの画素転送部をそれぞれ有し、
前記動作温度検出手段は、前記遮光画素転送部により取り出され、前記固体撮像素子により出力された前記複数の遮光画素の画素信号と、前記無効画素垂直転送レジスタにより転送されて前記固体撮像素子により出力された画素信号との差分値であるセンサ起因暗電流を演算するセンサ起因暗電流演算手段と、
前記センサ起因暗電流演算手段により演算されたセンサ起因暗電流に基づいて前記固体撮像素子の動作温度を演算する動作温度演算手段とを有することを特徴とする請求項32記載の撮像装置。
The plurality of effective / light-shielded pixel vertical transfer registers respectively include at least one pixel transfer unit of an effective pixel transfer unit that extracts pixel signals of the plurality of effective pixels and a light-shielded pixel transfer unit that extracts image signals of the plurality of light-shielded pixels. Have
The operating temperature detecting means is extracted by the light-shielded pixel transfer unit, and is output by the solid-state image sensor and the pixel signals of the plurality of light-shielded pixels output by the solid-state image sensor and output by the invalid pixel vertical transfer register. Sensor-induced dark current calculation means for calculating a sensor-induced dark current that is a difference value from the pixel signal that has been obtained,
33. The imaging apparatus according to claim 32, further comprising operating temperature calculation means for calculating an operating temperature of the solid-state imaging device based on the sensor-induced dark current calculated by the sensor-induced dark current calculation means.
前記動作温度検出手段は、前記センサ起因暗電流演算手段により演算されるセンサ起因暗電流と前記固体撮像素子の動作温度とを対応付けた演算テーブルを記憶する演算テーブル記憶手段を有し、
前記動作温度演算手段は、前記演算テーブル記憶手段に記憶された演算テーブルに基づいて前記固体撮像素子の動作温度を演算することを特徴とする請求項34記載の撮像装置。
The operating temperature detecting unit has a calculation table storage unit that stores a calculation table in which a sensor-induced dark current calculated by the sensor-induced dark current calculation unit and an operation temperature of the solid-state imaging device are associated with each other.
35. The imaging apparatus according to claim 34, wherein the operating temperature calculation unit calculates an operating temperature of the solid-state imaging device based on a calculation table stored in the calculation table storage unit.
JP2004290269A 2004-10-01 2004-10-01 Imaging apparatus Pending JP2006108880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004290269A JP2006108880A (en) 2004-10-01 2004-10-01 Imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004290269A JP2006108880A (en) 2004-10-01 2004-10-01 Imaging apparatus

Publications (1)

Publication Number Publication Date
JP2006108880A true JP2006108880A (en) 2006-04-20

Family

ID=36378115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004290269A Pending JP2006108880A (en) 2004-10-01 2004-10-01 Imaging apparatus

Country Status (1)

Country Link
JP (1) JP2006108880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167452A (en) * 2007-01-03 2008-07-17 Samsung Electronics Co Ltd Image sensor with temperature sensor and driving method and system thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167452A (en) * 2007-01-03 2008-07-17 Samsung Electronics Co Ltd Image sensor with temperature sensor and driving method and system thereof

Similar Documents

Publication Publication Date Title
US8988561B2 (en) Imaging apparatus having temperature sensor within image sensor wherein apparatus outputs an image whose quality does not degrade if temperature increases within image sensor
US9071781B2 (en) Image capturing apparatus and defective pixel detection method
JP5300356B2 (en) IMAGING DEVICE AND IMAGING DEVICE CONTROL METHOD
JP5312246B2 (en) Imaging apparatus and control method
JP5852324B2 (en) Imaging apparatus, control method therefor, and program
US8610802B2 (en) Solid-state imaging device with noise extracing pixels in the effective pixel region and solid-state imaging system using the same
JP5526014B2 (en) Imaging device
JP5541718B2 (en) Imaging device and defective pixel detection method thereof
JP2007158626A (en) Solid-state imaging apparatus
JP2007189544A (en) Imaging apparatus
JP5207926B2 (en) Imaging apparatus and control method thereof
JP2006033036A (en) Imaging apparatus
JP4719442B2 (en) Image signal processing circuit, camera, and image signal processing method
JP4977541B2 (en) Digital camera and operation control method thereof
US6956978B2 (en) Multi-pass dark frame subtraction
JP2009177436A (en) Solid-state imaging apparatus, signal processor, and electronic information device
JP2006108880A (en) Imaging apparatus
JP2006108918A (en) Imaging apparatus
JP2010178384A (en) Image signal processing circuit, camera and image signal processing method
JP2006108950A (en) Imaging apparatus
JP5737924B2 (en) Imaging device
JP4952548B2 (en) Noise detection device, imaging device, and noise detection method
JP2006100913A (en) Image processor and processing method
JP4481764B2 (en) Method for correcting signal output from image sensor and image processing apparatus using the same
JP5515320B2 (en) Imaging device