JP2006098085A - Texture prediction method of build-up layer - Google Patents

Texture prediction method of build-up layer Download PDF

Info

Publication number
JP2006098085A
JP2006098085A JP2004281372A JP2004281372A JP2006098085A JP 2006098085 A JP2006098085 A JP 2006098085A JP 2004281372 A JP2004281372 A JP 2004281372A JP 2004281372 A JP2004281372 A JP 2004281372A JP 2006098085 A JP2006098085 A JP 2006098085A
Authority
JP
Japan
Prior art keywords
build
layer
temperature
built
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004281372A
Other languages
Japanese (ja)
Inventor
Minoru Kawasaki
稔 河崎
Tadashi Oshima
正 大島
Takao Kobayashi
孝雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004281372A priority Critical patent/JP2006098085A/en
Publication of JP2006098085A publication Critical patent/JP2006098085A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a texture prediction method of a build-up layer capable of predicting the texture of the build-up layer simply and accurately without performing building-up actually. <P>SOLUTION: This texture prediction method of the build-up layer formed by fusing and solidifying a material for build-up generating a two-liquid phase separation reaction by being fused has a constitution including a fusing process for fusing the material for build-up at a higher temperature than a dispersion phase crystallization temperature at which a dispersion phase dispersed in a matrix is crystallized, a quenching solidifying process for quenching and solidifying the fused material for build-up, and a texture observation process for observing the texture of the material for build-up solidified after being fused. Hereby, the texture of the build-up layer is predicted without performing building-up based on the observed texture. In addition, the two-liquid phase separation temperature and the dispersion phase crystallization temperature of the material for build-up are specified, and the texture of the build-up layer is predicted without performing building-up based on the difference between the two-liquid phase separation temperature and the dispersion phase crystallization temperature. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、肉盛り材料を溶融、凝固させて形成する肉盛層の組織を予測する肉盛層の組織予測方法に関する。   The present invention relates to a buildup layer structure prediction method for predicting a buildup layer structure formed by melting and solidifying a buildup material.

アルミニウム系材料は軽量であるため、自動車等の種々の分野で使用されている。アルミニウム系材料から成形された部材では、所定の部位の機械的特性等を高めるため、当該部位に肉盛層を形成する肉盛り加工が施される。例えば、自動車エンジンのシリンダヘッドのバルブシートには、高温下で吸気バルブ又は排気バルブが繰り返し当接する。このため、バルブシートには、熱伝導性が高く、耐熱性、耐摩耗性に優れた銅合金からなる肉盛層が形成される。肉盛層は、肉盛り材料に熱源となるレーザ光を照射して、肉盛り材料を溶融、凝固させて形成される(例えば、特許文献1、2参照。)。
特開平5−50273号公報 特開2001−105177号公報
Aluminum-based materials are lightweight and are used in various fields such as automobiles. In a member molded from an aluminum-based material, in order to improve mechanical characteristics and the like of a predetermined part, a build-up process for forming a build-up layer in the part is performed. For example, an intake valve or an exhaust valve repeatedly contacts a valve seat of a cylinder head of an automobile engine at a high temperature. For this reason, a built-up layer made of a copper alloy having high thermal conductivity and excellent heat resistance and wear resistance is formed on the valve seat. The build-up layer is formed by irradiating the build-up material with a laser beam serving as a heat source to melt and solidify the build-up material (see, for example, Patent Documents 1 and 2).
JP-A-5-50273 JP 2001-105177 A

例えば、自動車エンジンのシリンダヘッドのバルブシートに形成される肉盛層には、耐熱性、耐摩耗性等といった種々の特性が要求される。よって、上記特許文献1、2に記載されているように、通常、肉盛り材料には、所望の特性を満足するよう、複数の成分からなる合金粉末が用いられる。この場合、肉盛り材料は、例えば、耐摩耗性の観点からある成分の添加量を変化させ、また、クラッド性の観点から別の成分の添加量を変化させる、というように、構成成分を変化させて設計される。そして、設計した肉盛り材料は、実際に肉盛りすることにより評価される。   For example, various characteristics such as heat resistance and wear resistance are required for a built-up layer formed on a valve seat of a cylinder head of an automobile engine. Therefore, as described in Patent Documents 1 and 2, normally, an alloy powder composed of a plurality of components is used for the build-up material so as to satisfy desired characteristics. In this case, the build-up material changes the constituent component, for example, changes the addition amount of one component from the viewpoint of wear resistance, and changes the addition amount of another component from the viewpoint of cladding properties. Designed to let you. The designed overlay material is evaluated by actually overlaying.

このように、従来は、一つの肉盛り材料を設計する度に、その肉盛り材料粉末の製造→肉盛り試験→評価という一連の作業を行う必要があった。このため、肉盛り材料の開発には、多くの時間と費用とが必要となり、このことは、肉盛り材料の成分の増加に伴い、大きな問題となっている。   As described above, conventionally, each time a single build-up material is designed, it has been necessary to perform a series of operations of manufacturing the build-up material powder, build-up test, and evaluating. For this reason, development of the overlay material requires a lot of time and cost, and this has become a big problem as the composition of the overlay material increases.

肉盛り材料の評価には、形成された肉盛層の組織観察が有効である。つまり、肉盛層の組織から、耐摩耗性等の機械的特性が予測される。よって、肉盛り材料の成分の変化に対して、肉盛層の組織がどのように変化するのかを予め知ることができれば、実際に肉盛りを行わなくても肉盛り材料を評価することが可能となる。しかし、肉盛り材料の成分の変化から肉盛層の組織変化を予測できる手法は、未だ見出されていない。   For the evaluation of the build-up material, it is effective to observe the structure of the formed build-up layer. That is, mechanical properties such as wear resistance are predicted from the structure of the overlay layer. Therefore, if it is possible to know in advance how the structure of the built-up layer changes in response to changes in the composition of the built-up material, it is possible to evaluate the built-up material without actually performing the build-up. It becomes. However, no method has yet been found that can predict changes in the structure of the overlay layer from changes in the components of the overlay material.

本発明は、このような実状に鑑みてなされたものであり、実際に肉盛りすることなく、簡便かつ正確に肉盛層の組織を予測することのできる肉盛層の組織予測方法を提供することを課題とする。   The present invention has been made in view of such a situation, and provides an overlay layer structure prediction method capable of easily and accurately predicting an overlay layer structure without actually overlaying. This is the issue.

本発明者は、肉盛り材料のうち、溶融して二液相分離反応を生じる二液相分離系の材料について、成分の変化と形成される肉盛層の組織との関係を得るべく鋭意研究を重ねた。その結果、肉盛り材料の成分の変化から肉盛層の組織を予測することのできる方法を、二種類発明するに至った。   The present inventor has earnestly studied to obtain the relationship between the change of components and the structure of the built-up layer for the material of the two-liquid phase separation system that melts and causes a two-liquid phase separation reaction among the built-up materials. Repeated. As a result, the inventors have invented two types of methods capable of predicting the structure of the overlay layer from the change in the components of the overlay material.

すなわち、本発明の第一の肉盛層の組織予測方法は、溶融して二液相分離反応を生じる肉盛り材料を溶融、凝固させて形成する肉盛層の組織予測方法であって、該肉盛り材料を、マトリックスに分散する分散相が晶出する分散相晶出温度より高い温度で溶融する溶融工程と、溶融した肉盛り材料を急冷凝固させる急冷凝固工程と、溶融後に凝固した肉盛り材料の組織を観察する組織観察工程と、を含み、観察された該組織に基づいて、肉盛りすることなく該肉盛層の組織を予測することを特徴とする。   That is, the first method for predicting the structure of the build-up layer according to the present invention is a method for predicting the structure of the build-up layer formed by melting and solidifying a build-up material that melts and causes a two-liquid phase separation reaction, A melting process in which the build-up material is melted at a temperature higher than the dispersion phase crystallization temperature at which the dispersed phase dispersed in the matrix crystallizes, a rapid solidification process in which the melted build-up material is rapidly solidified, and a build-up solidified after melting. A structure observation step of observing the structure of the material, and based on the observed structure, the structure of the build-up layer is predicted without being built up.

本発明の第一の肉盛層の組織予測方法では、溶融して二液相分離反応を生じる二液相分離系の肉盛り材料を対象とする。この肉盛り材料は偏晶系の材料であって、溶融した状態において、ある温度範囲では二液相に分離する。ここで、二液相は、マトリックス成分とマトリックスに分散する分散相成分とからなる。また、その温度範囲の上限より高温では、マトリックス成分と分散相成分とが溶けあい一液相状態となる。   The first method for predicting a structure of a build-up layer according to the present invention targets a build-up material of a two-liquid phase separation system that melts and causes a two-liquid phase separation reaction. This build-up material is a monotectic material, and in a molten state, it separates into two liquid phases within a certain temperature range. Here, the two-liquid phase includes a matrix component and a dispersed phase component dispersed in the matrix. Further, at a temperature higher than the upper limit of the temperature range, the matrix component and the dispersed phase component are melted to form a one-liquid phase state.

図1に、偏晶系合金の状態図の一例を示す。図1に示す状態図は、偏晶系合金を成分A、Bの二元系と仮定した場合の概念図である。図1に示すように、組成Xの合金は、温度T1を超える温度では一液相状態の融液となっている。この状態から除々に温度を下げると、温度T1よりL22濃度の融液が新たな相として現れ、二液相状態(L1+L2)となる。本明細書では、この温度T1を二液相分離温度という。T1は変態点の一つである。温度の降下とともに、旧融液濃度はL12−L1M線に沿って変化し、新しい相の融液濃度はL22−L2M線に沿って変化する。温度T2で、新しい相の融液濃度はL2Mとなり、ここで偏晶反応により、L2M濃度融液はβ結晶とL1M融液とを生成する。本明細書では、この温度T2を分散相晶出温度という。T2も変態点の一つである。偏晶反応が終わり、L2M濃度融液が消滅すると、温度の降下とともにβ結晶が晶出し続け、残った融液の濃度はL1M−L1E線に沿って変化する(L1+β)。温度TEに至ると、共晶反応によりα相とβ相とになる(α+β)。 FIG. 1 shows an example of a phase diagram of a monotectic alloy. The state diagram shown in FIG. 1 is a conceptual diagram when it is assumed that the monotectic alloy is a binary system of components A and B. As shown in FIG. 1, the alloy of composition X is a melt in a single liquid phase at a temperature exceeding temperature T1. When the temperature is gradually lowered from this state, a melt having an L 22 concentration appears as a new phase from the temperature T1, and a two-liquid phase state (L 1 + L 2 ) is obtained. In the present specification, this temperature T1 is referred to as a two-liquid phase separation temperature. T1 is one of transformation points. As the temperature decreases, the old melt concentration changes along the L 12 -L 1M line, and the melt concentration of the new phase changes along the L 22 -L 2M line. At temperature T2, the melt concentration of the new phase becomes L 2M , where the L 2M concentration melt generates β crystals and L 1M melt due to the twin crystal reaction. In the present specification, this temperature T2 is referred to as a dispersed phase crystallization temperature. T2 is also one of transformation points. When the monotectic reaction ends and the L 2M concentration melt disappears, the β crystal continues to crystallize as the temperature decreases, and the concentration of the remaining melt changes along the L 1M -L 1E line (L 1 + β). When the temperature reaches T E , an α-phase and a β-phase are formed by the eutectic reaction (α + β).

例えば、温度T1で生じるL2相の核数が少なく、二液相(L1相、L2相)の比重差が大きい場合には、T1とT2との間の温度で長時間保持すると、二液相は重力により上下に分離する。よって、温度T1から温度T2へ、適当な冷却速度で冷却すれば、L2相がL1相の中に分散した状態となる。この場合、L2相の大きさは、T1からT2への冷却速度によって変化する。L2相は、温度T2でβ結晶(固相)とL1M融液(液相)とに分離する。比較的速い冷却速度で温度TEに至る場合、L2相の粒子は、「β結晶が分散した粒子」としてマトリックス中に分散すると考えられる。以下、本明細書では、この「β結晶が分散した粒子」を「分散粒子」と称する。また、ここでは、偏晶系合金を二元系と仮定して説明したが、実用合金である多元系合金であっても、同じように考えることができる。 For example, when the number of nuclei of the L 2 phase generated at the temperature T1 is small and the specific gravity difference between the two liquid phases (L 1 phase, L 2 phase) is large, holding at a temperature between T1 and T2 for a long time, The two liquid phases separate up and down by gravity. Therefore, if the cooling is performed from the temperature T1 to the temperature T2 at an appropriate cooling rate, the L 2 phase is dispersed in the L 1 phase. In this case, the size of the L 2 phase varies depending on the cooling rate from T1 to T2. The L 2 phase is separated into β crystals (solid phase) and L 1M melt (liquid phase) at a temperature T2. When the temperature T E is reached at a relatively high cooling rate, the L 2 phase particles are considered to be dispersed in the matrix as “particles in which β crystals are dispersed”. Hereinafter, in the present specification, the “particles in which β crystals are dispersed” are referred to as “dispersed particles”. In addition, here, the explanation was made on the assumption that the monotectic alloy is a binary alloy, but a multi-component alloy that is a practical alloy can be considered in the same way.

本発明の第一の肉盛層の組織予測方法の溶融工程では、温度の低下に伴い二液相状態から分散相が晶出し始める温度(分散相晶出温度)よりも高い温度、換言すれば、分散相が完全に溶融する温度で、肉盛り材料を溶融する。次の急冷凝固工程では、溶融した肉盛り材料を、その溶融温度から急速に冷却して凝固させる。急冷することで、溶融時の状態をそのまま反映した組織を得ることができる。つまり、実際の肉盛層と同等の、あるいは比較対照して類推可能な組織を得ることができる。次の組織観察工程では、上記二つの工程を経た肉盛り材料の組織を観察する。   In the melting step of the first cladding layer structure prediction method of the present invention, the temperature higher than the temperature at which the dispersed phase starts to crystallize from the two-liquid phase state (dispersed phase crystallization temperature) as the temperature decreases, in other words The overlay material is melted at a temperature at which the dispersed phase is completely melted. In the next rapid solidification process, the melted build-up material is rapidly cooled and solidified from its melting temperature. By rapid cooling, it is possible to obtain a structure that directly reflects the state at the time of melting. That is, it is possible to obtain a structure that is equivalent to an actual overlay layer or that can be inferred by comparison. In the next structure observation step, the structure of the build-up material that has undergone the above two steps is observed.

溶融工程で溶融し、急冷凝固工程で凝固した肉盛り材料は、マトリックスに分散粒子が分散した組織を有する。この溶融後に凝固した肉盛り材料の組織(以下、適宜「材料組織」と称す。)は、溶融した温度や、肉盛り材料の成分により変化する。具体的には、分散粒子の大きさや、マトリックス中に占める分散粒子の体積割合が、肉盛り材料の溶融温度、成分により変化する。本発明者は、この材料組織の変化と、実際に肉盛りして形成された肉盛層の組織変化とが、同様の傾向を示すことを見出した。   The build-up material melted in the melting process and solidified in the rapid solidification process has a structure in which dispersed particles are dispersed in a matrix. The structure of the build-up material solidified after melting (hereinafter referred to as “material structure” as appropriate) varies depending on the melting temperature and the components of the build-up material. Specifically, the size of the dispersed particles and the volume ratio of the dispersed particles in the matrix vary depending on the melting temperature and components of the build-up material. The present inventor has found that the change in the material structure and the change in the structure of the built-up layer actually built up show the same tendency.

したがって、本発明の第一の肉盛層の組織予測方法により、成分の異なる種々の肉盛り材料を溶融、凝固させ、各々の組織を観察すれば、その組織変化により、成分の変化に対する肉盛層の組織を予測することができる。これより、実際に肉盛りすることなく、肉盛り材料を評価することができるとともに、所望の組織を有する肉盛り材料の最適組成を、容易に決定することができる。   Therefore, if the various overlaying materials having different components are melted and solidified by the first method for predicting the structure of the overlaying layer of the present invention, and each of the tissues is observed, the overlaying with respect to the change of the component is caused by the change in the structure. The organization of the stratum can be predicted. As a result, the build-up material can be evaluated without actually building up, and the optimum composition of the build-up material having a desired structure can be easily determined.

本発明の第二の肉盛層の組織予測方法は、溶融して二液相分離反応を生じる肉盛り材料を溶融、凝固させて形成する肉盛層の組織予測方法であって、該肉盛り材料の二液相分離温度と、マトリックスに分散する分散相が晶出する分散相晶出温度と、を特定し、該二液相分離温度と該分散相晶出温度との差に基づいて、肉盛りすることなく該肉盛層の組織を予測することを特徴とする。   The second method for predicting the structure of a build-up layer according to the present invention is a method for predicting the structure of a build-up layer formed by melting and solidifying a build-up material that melts and causes a two-liquid phase separation reaction. Identify the two-liquid phase separation temperature of the material and the dispersed phase crystallization temperature at which the dispersed phase dispersed in the matrix crystallizes, and based on the difference between the two-liquid phase separation temperature and the dispersed phase crystallization temperature, It is characterized by predicting the structure of the overlay layer without overlaying.

本発明の第二の肉盛層の組織予測方法においても、上記第一の肉盛層の組織予測方法と同様、二液相分離系の肉盛り材料を対象とする。ここで、二液相分離温度は、肉盛り材料の溶融状態において、一液相から二液相に分離する温度であり、前出図1中のT1に相当する。二液相分離温度と分散相晶出温度との差は、二液相が共存する温度範囲を示し、肉盛り材料の成分により変化する。本発明者は、この温度差が、実際に肉盛りして形成された肉盛層の組織と関係があることを見出した。すなわち、二液相分離温度と分散相晶出温度との差の変化と、実際に肉盛りして形成された肉盛層の組織における分散粒子の大きさの変化とが、同様の傾向を示すことを見出した。   In the second method for predicting the structure of the built-up layer of the present invention, as in the first method for predicting the structure of the built-up layer, the build-up material of the two-liquid phase separation system is targeted. Here, the two-liquid phase separation temperature is a temperature at which the liquid material is separated from one liquid phase into two liquid phases, and corresponds to T1 in FIG. The difference between the two-liquid phase separation temperature and the dispersed phase crystallization temperature indicates the temperature range in which the two liquid phases coexist, and varies depending on the components of the build-up material. The present inventor has found that this temperature difference is related to the structure of the built-up layer that is actually built up. That is, the change in the difference between the two-liquid phase separation temperature and the dispersed phase crystallization temperature and the change in the size of the dispersed particles in the structure of the built-up layer actually built up show the same tendency. I found out.

したがって、本発明の第二の肉盛層の組織予測方法により、成分の異なる種々の肉盛り材料について、二液相分離温度と分散相晶出温度との差を求めれば、その温度差変化から、成分の変化に対する肉盛層の組織を予測することができる。これより、実際に肉盛りすることなく、肉盛り材料を評価することができるとともに、所望の組織を有する肉盛り材料の最適組成を、容易に決定することができる。   Therefore, if the difference between the two-liquid phase separation temperature and the disperse phase crystallization temperature is determined for various overlay materials having different components by the structure prediction method of the second overlay layer of the present invention, It is possible to predict the structure of the built-up layer with respect to changes in the components. As a result, the build-up material can be evaluated without actually building up, and the optimum composition of the build-up material having a desired structure can be easily determined.

本発明の第一の肉盛層の組織予測方法により、成分の異なる種々の肉盛り材料を溶融、凝固させ、各々の組織を観察すれば、その組織変化により、成分の変化に対する肉盛層の組織を予測することができる。また、本発明の第二の肉盛層の組織予測方法により、成分の異なる種々の肉盛り材料について、二液相分離温度と分散相晶出温度との差を求めれば、その温度差変化から、成分の変化に対する肉盛層の組織を予測することができる。このように、本発明の二つの肉盛層の組織予測方法によれば、実際に肉盛りすることなく、肉盛り材料を評価することができるとともに、所望の組織を有する肉盛り材料の最適組成を、容易に決定することができる。   According to the first method for predicting the structure of the overlay layer of the present invention, various overlay materials having different components are melted and solidified, and each structure is observed. The organization can be predicted. Moreover, if the difference between the two-liquid phase separation temperature and the disperse phase crystallization temperature is obtained with respect to various overlaying materials having different components by the structure prediction method of the second overlaying layer of the present invention, It is possible to predict the structure of the built-up layer with respect to changes in the components. As described above, according to the structure prediction method of the two overlay layers of the present invention, the overlay material can be evaluated without actually overlaying, and the optimum composition of the overlay material having a desired structure can be evaluated. Can be easily determined.

以下、本発明の二つの肉盛層の組織予測方法を詳しく説明する。本発明の二つの肉盛層の組織予測方法では、いずれも、溶融して二液相分離反応を生じる肉盛り材料を対象とする。したがって、まず、対象となる肉盛り材料について説明し、次に、各々の方法について説明する。なお、本発明の二つの肉盛層の組織予測方法は、いずれも下記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   Hereinafter, the structure prediction method of the two overlaying layers of the present invention will be described in detail. In the two methods for predicting the structure of the overlay layer of the present invention, both are intended for the overlay material that melts and causes a two-liquid phase separation reaction. Therefore, first, the target overlay material will be described, and then each method will be described. Note that the two methods for predicting the structure of the overlaying layer of the present invention are not limited to the following embodiments, and modifications and improvements that can be made by those skilled in the art are made without departing from the scope of the present invention. It can be implemented in various forms.

〈肉盛り材料〉
本発明の二つの肉盛層の組織予測方法で対象とする肉盛り材料は、溶融して二液相分離反応を生じる材料であれば、その成分が特に限定されるものではない。例えば、銅合金、アルミニウム合金、鉄合金、ニッケル合金、コバルト合金等が挙げられる。肉盛り材料の成分は、肉盛層を形成する母材の材質や、肉盛層に要求される特性に応じて適宜選択すればよい。例えば、アルミニウム合金製のシリンダヘッドのバルブシートに肉盛層を形成する場合、肉盛層には、高い耐熱性および耐摩耗性が要求される。この場合の肉盛り材料としては、銅合金が好適である。銅合金としては、例えば、銅(Cu)−ニッケル(Ni)−シリコン(Si)−モリブデン(Mo)−鉄(Fe)系、Cu−Ni−コバルト(Co)−Fe−Mo−Si系、Cu−Fe−B系の他、これらに新たな元素を加えた改良型合金等が挙げられる。肉盛り材料には、実際の肉盛りに使用する合金粉末を用いることができる。しかし、コスト等を考慮すれば、溶解に適したサイズの純金属、母合金等を目的の組成となるよう秤量して肉盛り材料とすることが望ましい。また、目的の組成となるよう秤量調整した金属粉末材料を、圧粉成形して用いてもよい。
<Material for meat>
The build-up material which is the target of the structure prediction method of the two build-up layers of the present invention is not particularly limited as long as it is a material that melts and causes a two-liquid phase separation reaction. For example, a copper alloy, an aluminum alloy, an iron alloy, a nickel alloy, a cobalt alloy, and the like can be given. The component of the build-up material may be appropriately selected according to the material of the base material forming the build-up layer and the characteristics required for the build-up layer. For example, when a built-up layer is formed on a valve seat of an aluminum alloy cylinder head, the built-up layer is required to have high heat resistance and wear resistance. In this case, a copper alloy is suitable as the build-up material. Examples of the copper alloy include copper (Cu) -nickel (Ni) -silicon (Si) -molybdenum (Mo) -iron (Fe), Cu-Ni-cobalt (Co) -Fe-Mo-Si, Cu In addition to the -Fe-B system, improved alloys obtained by adding new elements to these may be used. As the build-up material, an alloy powder used for actual build-up can be used. However, in consideration of cost and the like, it is desirable to weigh a pure metal, a master alloy, etc. of a size suitable for melting so as to obtain a target composition to obtain a build-up material. Moreover, you may use the metal powder material which weighed and adjusted so that it might become the target composition by compacting.

〈第一の肉盛層の組織予測方法:急冷凝固法〉
本発明の第一の肉盛層の組織予測方法は、溶融工程と、急冷凝固工程と、組織観察工程とを含み、観察された該組織に基づいて、肉盛りすることなく肉盛層の組織を予測する。以下、各工程等について順に説明する。
<Structure prediction method of first overlay layer: Rapid solidification method>
The first method for predicting a structure of a built-up layer according to the present invention includes a melting step, a rapid solidification step, and a structure observing step. Based on the observed structure, the structure of the built-up layer without being built up Predict. Hereinafter, each process etc. are demonstrated in order.

(1)溶融工程
本工程は、上記肉盛り材料を、マトリックスに分散する分散相が晶出する分散相晶出温度より高い温度で溶融する工程である。すなわち、本工程では、肉盛り材料を溶解用るつぼ等に収容し、加熱炉で分散相晶出温度よりも高い温度に加熱する。そして、肉盛り材料を完全に溶融させる。加熱炉としては、高周波加熱炉、タンマン炉等を用いればよい。また、肉盛り材料の酸化を抑制するため、アルゴンガス等の不活性ガス雰囲気、あるいは真空雰囲気で溶融することが望ましい。肉盛り材料を溶融する温度(溶融温度)は、分散相晶出温度より高ければよいが、好ましくは、実際の肉盛り加工の際に、肉盛り材料が加熱される温度程度とするとよい。例えば、レーザ光を照射して銅合金を肉盛りする場合には、レーザ出力にもよるが、銅合金は1800℃程度の温度まで加熱されると考えられる。よって、この銅合金を肉盛り材料とした場合には、1800℃程度で溶融させればよい。
(1) Melting step This step is a step of melting the above-described build-up material at a temperature higher than the dispersed phase crystallization temperature at which the dispersed phase dispersed in the matrix is crystallized. That is, in this step, the build-up material is housed in a melting crucible or the like and heated to a temperature higher than the dispersed phase crystallization temperature in a heating furnace. Then, the overlay material is completely melted. As the heating furnace, a high-frequency heating furnace, a Tamman furnace, or the like may be used. Further, in order to suppress oxidation of the build-up material, it is desirable to melt in an inert gas atmosphere such as argon gas or a vacuum atmosphere. The temperature at which the build-up material is melted (melting temperature) may be higher than the disperse phase crystallization temperature, but preferably about the temperature at which the build-up material is heated during actual build-up processing. For example, when a copper alloy is built up by irradiating laser light, the copper alloy is considered to be heated to a temperature of about 1800 ° C., depending on the laser output. Therefore, when this copper alloy is used as a build-up material, it may be melted at about 1800 ° C.

(2)急冷凝固工程
本工程は、先の溶融工程で溶融した肉盛り材料を急冷凝固させる工程である。本工程では、先の溶融工程で肉盛り材料を溶融した温度から、急速に冷却する(溶融温度=冷却開始温度)。本工程における冷却速度は、実際の肉盛層と同等の、あるいは比較対照して類推可能な組織を得るという観点から、実際の肉盛り時の冷却速度と同程度にすることが望ましい。具体的には、50℃/秒以上とすることが望ましい。100℃/秒以上1000℃/秒以下とするとより好適である。冷却方法は、特に限定されるものではない。例えば、通常の金型鋳造法、溶融した肉盛り材料の一部を吸引して金型鋳造する方法、液滴を金型間に挟んでのスプラットクール等が挙げられる。
(2) Rapid solidification process This process is a process of rapidly solidifying the build-up material melted in the previous melting process. In this step, the material is rapidly cooled from the temperature at which the build-up material is melted in the previous melting step (melting temperature = cooling start temperature). The cooling rate in this step is desirably the same as the cooling rate at the time of actual build-up from the viewpoint of obtaining a structure equivalent to or compared with an actual build-up layer. Specifically, it is desirable to set it at 50 ° C./second or more. More preferably, it is 100 ° C./second or more and 1000 ° C./second or less. The cooling method is not particularly limited. For example, a normal mold casting method, a method of casting a mold by sucking a part of a molten build-up material, a splat cool with a droplet sandwiched between molds, and the like can be mentioned.

(3)組織観察工程
本工程は、先の二つの工程を経て溶融後に凝固した肉盛り材料の組織を観察する工程である。組織の観察は、通常の合金組織の観察手法に従えばよく、凝固した肉盛り材料の断面を、光学顕微鏡等で観察すればよい。組織の観察では、主として分散粒子の状態、つまり、分散粒子の大きさ、形状、観察視野における面積割合等を測定すればよい。なかでも、分散粒子の大きさは、肉盛層の摩擦特性への影響が大きい。よって、組織観察では、分散粒子の大きさを測定することが望ましい。具体的には、分散粒子の最大径を測定すればよい。ここで、「分散粒子の最大径」とは、分散粒子を2本の平行線で挟んだ場合の最大長さを意味する。
(3) Structure observation process This process is a process of observing the structure of the build-up material that has solidified after melting through the previous two processes. The observation of the structure may be in accordance with a normal method for observing the alloy structure, and the cross section of the solidified build-up material may be observed with an optical microscope or the like. In the observation of the tissue, the state of the dispersed particles, that is, the size and shape of the dispersed particles, the area ratio in the observation visual field, etc. may be mainly measured. Among these, the size of the dispersed particles has a great influence on the friction characteristics of the built-up layer. Therefore, it is desirable to measure the size of the dispersed particles in the tissue observation. Specifically, the maximum diameter of the dispersed particles may be measured. Here, the “maximum diameter of the dispersed particles” means the maximum length when the dispersed particles are sandwiched between two parallel lines.

(4)組織観察工程にて観察された組織は、肉盛り材料の溶融温度や成分の違いにより異なったものとなる。例えば、分散粒子の大きさに着目した場合、肉盛り材料の溶融温度や成分の違いにより、分散粒子の最大径は変化する。そして、この変化と同じ傾向で、実際に肉盛りした肉盛層の組織における分散粒子も変化する。よって、例えば、肉盛り材料の成分の違いによる分散相の最大径の変化から、実際に肉盛りした肉盛層の組織における分散粒子の大きさの変化を予測すればよい。   (4) The structure observed in the structure observation step differs depending on the melting temperature of the overlay material and the difference in components. For example, when attention is paid to the size of the dispersed particles, the maximum diameter of the dispersed particles changes depending on the melting temperature of the build-up material and the difference in components. In the same tendency as this change, the dispersed particles in the structure of the actually built-up overlay layer also change. Therefore, for example, the change in the size of dispersed particles in the structure of the actually built-up layer may be predicted from the change in the maximum diameter of the dispersed phase due to the difference in the components of the building-up material.

〈第二の肉盛層の組織予測方法:変態点特定法〉
本発明の第二の肉盛層の組織予測方法は、上記肉盛り材料の二つの変態点である二液相分離温度と、分散相晶出温度と、を特定し、二液相分離温度と分散相晶出温度との差に基づいて、肉盛りすることなく肉盛層の組織を予測する。
<Structure prediction method of second overlay layer: Transformation point identification method>
The structure prediction method of the second build-up layer of the present invention specifies a two-liquid phase separation temperature, which is two transformation points of the build-up material, and a dispersed phase crystallization temperature, Based on the difference from the disperse phase crystallization temperature, the structure of the build-up layer is predicted without build-up.

二液相分離温度および分散相晶出温度の測定方法としては、例えば、以下の二つの方法が挙げられる。一つは、肉盛り材料を一液相状態となるよう溶融した後、加熱を停止し冷却する過程の熱分析を行う方法である。上述したように、二液相分離系の肉盛り材料の溶融状態は、温度の低下に伴い、二液相分離温度を境にして、一液相状態から二液相状態へ変化する。溶融状態が変化する時には、状態変化に伴うエネルギーが放出される。よって、一液相状態となるよう溶融した後、ゆるやかに冷却し、冷却過程の温度の経時変化を測定(熱分析)すると、一液相→二液相となる温度では、放出されるエネルギーにより冷却速度が遅くなる。つまり、肉盛り材料温度の経時変化を示す熱分析曲線の傾斜がゆるやかになる。同様に、分散相が晶出する時にも、状態変化に伴うエネルギー(晶出に伴う凝固熱)が放出される。前出図1に示した二元系合金で説明すれば、分散相が晶出する温度(T2)では、相律により自由度が0となり、β結晶が晶出し尽くすまで温度が一定に保たれる。本方法では、熱分析曲線の傾斜が変化する温度を、高温側から順に二液相分離温度、分散相晶出温度を特定する情報とする。   Examples of methods for measuring the two-liquid phase separation temperature and the dispersed phase crystallization temperature include the following two methods. One is a method of performing a thermal analysis in a process in which heating is stopped and cooling is performed after the build-up material is melted in a one-liquid phase state. As described above, the molten state of the build-up material of the two-liquid phase separation system changes from the one-liquid phase state to the two-liquid phase state with the temperature being lowered, with the two-liquid phase separation temperature as a boundary. When the molten state changes, energy accompanying the state change is released. Therefore, after melting to become a one-liquid phase state, slowly cooling and measuring the change in temperature of the cooling process over time (thermal analysis), the temperature that changes from one liquid phase to two liquid phases depends on the energy released. The cooling rate becomes slow. That is, the slope of the thermal analysis curve indicating the change over time in the build-up material temperature becomes gentle. Similarly, when the dispersed phase is crystallized, energy accompanying the change of state (solidification heat accompanying crystallization) is released. The binary alloy shown in FIG. 1 will be described. At the temperature (T2) at which the dispersed phase crystallizes, the degree of freedom becomes 0 due to the phase rule, and the temperature is kept constant until the β crystal is completely crystallized. It is. In this method, the temperature at which the slope of the thermal analysis curve changes is used as information for specifying the two-liquid phase separation temperature and the dispersed phase crystallization temperature in order from the high temperature side.

もう一つは、肉盛り材料を種々の温度で溶融し、各々の温度から急冷して得られる組織を観察する方法である。肉盛り材料を溶融し、急冷することで、他の相の出現を抑制し、溶融時の状態をできるだけ反映させた組織を得ることができる。よって、本方法では、溶融した温度ごとに得られる組織を観察することで、その温度では一液相状態か、二液相状態か、分散相晶出状態かを判断し、二液相分離温度および分散相晶出温度を特定する情報とする。   The other is a method of observing a structure obtained by melting a build-up material at various temperatures and rapidly cooling from each temperature. By melting and rapidly cooling the overlay material, it is possible to suppress the appearance of other phases and obtain a structure that reflects the state at the time of melting as much as possible. Therefore, in this method, by observing the structure obtained for each melted temperature, it is judged whether the temperature is a one-liquid phase state, a two-liquid phase state, or a dispersed phase crystallization state, and the two-liquid phase separation temperature And information for specifying the dispersed phase crystallization temperature.

後の実施例で示すように、二液相分離温度と分散相晶出温度との差は、肉盛り材料の成分により変化する。一方、実際に肉盛りした肉盛層の組織も、肉盛り材料の成分により変化する。例えば、ある成分の含有量の変化に伴い、二液相分離温度と分散相晶出温度との差が小さくなると、肉盛層の組織における分散粒子の大きさも小さくなる。このように、二液相分離温度と分散相晶出温度との差の変化と、肉盛層の組織における分散粒子の大きさの変化とは同様の傾向を示す。したがって、成分の異なる種々の肉盛り材料について、二液相分離温度と分散相晶出温度との差を求め、その温度差変化から、成分の変化に対する肉盛層の組織を予測すればよい。   As will be shown in later examples, the difference between the two-liquid phase separation temperature and the dispersed phase crystallization temperature varies depending on the components of the build-up material. On the other hand, the structure of the actually built-up layer also varies depending on the components of the built-up material. For example, when the difference between the two-liquid phase separation temperature and the dispersed phase crystallization temperature is reduced with the change in the content of a certain component, the size of dispersed particles in the built-up layer structure is also reduced. Thus, the change in the difference between the two-liquid phase separation temperature and the dispersed phase crystallization temperature and the change in the size of the dispersed particles in the build-up layer structure show the same tendency. Therefore, it is only necessary to obtain the difference between the two-liquid phase separation temperature and the disperse phase crystallization temperature for various build-up materials having different components, and predict the structure of the build-up layer with respect to the change of the component from the temperature difference change.

上記実施形態に基づいて、本発明の二つの肉盛層の組織予測方法を実施し、実際に肉盛りして形成した肉盛層の組織と比較した。以下、順に説明する。   Based on the above-mentioned embodiment, the structure prediction method of the two build-up layers of the present invention was carried out, and compared with the structure of the build-up layer that was actually built up. Hereinafter, it demonstrates in order.

(1)第一の肉盛層の組織予測方法(急冷凝固法)による組織観察
肉盛り材料として、Cu−Ni−Si−Mo−Fe系の銅合金を対象とした。この銅合金において、Cu−12.5%Ni−2.3%Si−8.5%Mo−9%Fe(単位:質量%、以下同じ)の組成を基本組成とした。
(1) Microstructure observation by the first overlay layer structure prediction method (rapid solidification method) Cu-Ni-Si-Mo-Fe copper alloys were used as the overlay material. In this copper alloy, the composition of Cu-12.5% Ni-2.3% Si-8.5% Mo-9% Fe (unit: mass%, the same applies hereinafter) was used as the basic composition.

まず、上記基本組成となるよう秤量した溶解原料70gを、高周波溶解炉中で1500℃、1600℃、1700℃、1800℃の各温度で溶融した。溶解雰囲気は、アルゴンガス雰囲気とした。次いで、各々の温度の溶湯を、外径φ6mm、厚さ2mmのSUS316製パイプ中に吸引鋳造した。この時の冷却速度は高温時で約100℃/秒であった。
また、上記基本組成に対してNi量のみを増加した組成(Cu−20.5%Ni−2.3%Si−8.5%Mo−9%Fe)について、同組成となるよう秤量した溶解原料を、上記同様に各温度で溶融した後、急冷した。
First, 70 g of a melting raw material weighed so as to have the above basic composition was melted at 1500 ° C., 1600 ° C., 1700 ° C., and 1800 ° C. in a high-frequency melting furnace. The dissolution atmosphere was an argon gas atmosphere. Next, the molten metal at each temperature was suction cast into a SUS316 pipe having an outer diameter of 6 mm and a thickness of 2 mm. The cooling rate at this time was about 100 ° C./second at a high temperature.
Further, a composition in which only the amount of Ni was increased with respect to the basic composition (Cu-20.5% Ni-2.3% Si-8.5% Mo-9% Fe) was measured to have the same composition. The raw material was melted at each temperature in the same manner as described above, and then rapidly cooled.

図2に、両組成の合金組織の光学顕微鏡写真を各溶融温度ごとに示す。いずれの組成の合金も、Cu基マトリックス中に、分散粒子である硬質粒子(Fe、Moのシリサイド)が分散した組織を有する。図2より、同じ組成では、溶融温度が低いほど硬質粒子の大きさが大きくなることがわかる。溶融温度が低いほど二液相分離が進行していると考えられる。つまり、各温度での溶融状態が異なるため、溶融温度により組織に差が生じる。また、同じ溶融温度では、Ni量が増加すると、硬質粒子の大きさは小さくなる。つまり、Ni量の増加により組織が微細化することがわかる。   In FIG. 2, the optical micrograph of the alloy structure of both compositions is shown for every melting temperature. The alloy having any composition has a structure in which hard particles (silicides of Fe and Mo), which are dispersed particles, are dispersed in a Cu-based matrix. From FIG. 2, it can be seen that with the same composition, the lower the melting temperature, the larger the size of the hard particles. It is considered that the two-liquid phase separation proceeds as the melting temperature is lower. That is, since the molten state at each temperature is different, a difference occurs in the structure depending on the melting temperature. In addition, at the same melting temperature, the size of the hard particles decreases as the amount of Ni increases. In other words, it can be seen that the structure becomes finer as the amount of Ni increases.

また、上記基本組成に対してNi、Si、Mo、Feの量をそれぞれ増加した組成について、同組成となるよう秤量した溶解原料を、1800℃で溶融した後、約100℃/秒の冷却速度で急冷し、各組織を観察した。これらの結果については、後の(4)にまとめて示す。   Moreover, about the composition which increased the quantity of Ni, Si, Mo, and Fe with respect to the said basic composition, after melt | dissolving the melt | dissolution raw material measured so that it might become the same composition at 1800 degreeC, about 100 degreeC / second cooling rate Then, each tissue was observed. These results are summarized in (4) below.

(2)第二の肉盛層の組織予測方法(変態点特定法)による温度測定
上記(1)と同様、Cu−Ni−Si−Mo−Fe系の銅合金を対象とし、Cu−12.5%Ni−2.3%Si−8.5%Mo−9%Feの組成を基本組成とした。この基本組成となるよう秤量した溶解原料、および同組成に対して、Ni、Si、Mo、Feの量をそれぞれ変化させた組成となるよう秤量した各溶解原料を、1800℃(一液相状態で溶融する温度)で溶融し、その後2〜6℃/秒程度の冷却速度で冷却した。この冷却過程の熱分析を行い、各々について二液相分離温度と分散相晶出温度とを特定した。
(2) Temperature measurement by the second cladding layer structure prediction method (transformation point identification method) Similar to the above (1), Cu-Ni-Si-Mo-Fe-based copper alloys are targeted, and Cu-12. The composition of 5% Ni-2.3% Si-8.5% Mo-9% Fe was taken as the basic composition. The dissolved raw material weighed to have this basic composition, and each dissolved raw material weighed to have a composition in which the amounts of Ni, Si, Mo, and Fe were changed with respect to the same composition were 1800 ° C. (one-liquid phase state) And then cooled at a cooling rate of about 2 to 6 ° C./second. Thermal analysis of this cooling process was performed, and for each, a two-liquid phase separation temperature and a dispersed phase crystallization temperature were specified.

図3(a)〜(d)に、各成分の変化に対する二液相分離温度(T1)および分散相晶出温度(T2)の変化を示す。図3(a)、(b)、(d)に示すように、Ni、Si、Feの各量の増加に伴って、T1とT2との差(ΔT=T1−T2)は小さくなった。一方、図3(c)に示すように、Mo量の増加に伴って、ΔTは大きくなった。   FIGS. 3A to 3D show changes in the two-liquid phase separation temperature (T1) and the dispersed phase crystallization temperature (T2) with respect to changes in each component. As shown in FIGS. 3A, 3B, and 3D, the difference between ΔT1 and T2 (ΔT = T1−T2) became smaller as the amounts of Ni, Si, and Fe increased. On the other hand, as shown in FIG.3 (c), (DELTA) T became large with the increase in Mo amount.

(3)成分の変化に対する肉盛層の組織
上記(1)、(2)で使用した基本組成の合金粉末(Cu−12.5%Ni−2.3%Si−8.5%Mo−9%Fe)を用い、Al−Si(アルミニウム−シリコン)合金製の母材表面に実際に肉盛りして肉盛層を形成した。肉盛りは、レーザ光を用いた公知の方法により、レーザ出力3.5kW、送り速度900mm/minの条件で行った。そして、形成された肉盛層の断面組織を観察し、分散粒子である硬質粒子の最大径を測定した。「硬質粒子の最大径」とは、硬質粒子を2本の平行線で挟んだ場合の最大長さである。この場合の硬質粒子の最大径は0.9mmであった。
(3) Structure of build-up layer with respect to changes in components Alloy powder (Cu-12.5% Ni-2.3% Si-8.5% Mo-9) of the basic composition used in (1) and (2) above % Fe) was used to actually build up the surface of the base material made of an Al—Si (aluminum-silicon) alloy to form a built-up layer. Overlaying was performed under the conditions of a laser output of 3.5 kW and a feed rate of 900 mm / min by a known method using laser light. And the cross-sectional structure | tissue of the formed overlay was observed, and the maximum diameter of the hard particle which is a dispersion particle was measured. The “maximum diameter of hard particles” is the maximum length when the hard particles are sandwiched between two parallel lines. In this case, the maximum diameter of the hard particles was 0.9 mm.

また、上記基本組成に対して、Ni、Si、Mo、Feの量をそれぞれ変化させた各合金粉末を用い、上記同様に母材表面に肉盛りして肉盛層を形成した。そして、形成された各々の肉盛層の断面組織を観察し、分散粒子である硬質粒子の最大径を測定した。図4に、各成分の変化に対する硬質粒子の最大径の変化を示す。   In addition, each alloy powder in which the amounts of Ni, Si, Mo, and Fe were changed with respect to the basic composition was used, and the overlay was formed on the surface of the base material in the same manner as described above. And the cross-sectional structure | tissue of each formed overlaying layer was observed, and the maximum diameter of the hard particle | grains which are dispersion | distribution particles was measured. FIG. 4 shows changes in the maximum diameter of the hard particles with respect to changes in each component.

図4に示すように、Ni量またはSi量が増加すると、硬質粒子の最大径は小さくなった。また、Ni量を18%に増加し、かつ、Fe量を増加した場合も、硬質粒子の最大径は小さくなった。これより、Ni、Si、Feの各量の増加に伴い、硬質粒子が微細化されることがわかる。一方、Mo量が増加すると、硬質粒子の最大径は大きくなった。   As shown in FIG. 4, the maximum diameter of the hard particles decreased as the amount of Ni or Si increased. Further, when the Ni content was increased to 18% and the Fe content was increased, the maximum diameter of the hard particles was reduced. From this, it can be seen that the hard particles are refined with increasing amounts of Ni, Si, and Fe. On the other hand, as the amount of Mo increased, the maximum diameter of the hard particles increased.

(4)上記二つの方法で得られた結果と実際の肉盛層の組織との対比
上記(1)の組織観察により、成分の異なる各組織における硬質粒子の最大径(D’)を測定した(溶融温度1800℃)。また、上記(2)の温度測定により、各成分ごとに、二液相分離温度(T1)と分散相晶出温度(T2)との差(ΔT)を算出した。表1に、合金成分に対して、D’、ΔT、および上記(3)で測定した実際の肉盛層の硬質粒子の最大径(D)を示す。
(4) Comparison between the results obtained by the above two methods and the actual structure of the overlay layer The maximum diameter (D ′) of the hard particles in each structure having different components was measured by the structure observation in (1) above. (Melting temperature 1800 ° C.). Moreover, the difference (ΔT) between the two-liquid phase separation temperature (T1) and the dispersed phase crystallization temperature (T2) was calculated for each component by the temperature measurement in (2) above. Table 1 shows D ′, ΔT, and the maximum diameter (D) of the hard particles of the actual built-up layer measured in (3) above with respect to the alloy components.

Figure 2006098085
まず、Niに着目した場合、Ni量が増加すると、D’は小さくなる。同様に、ΔTも小さくなる。この傾向は、実際の肉盛層の組織における硬質粒子の最大径Dの傾向と一致する。また、Si、Feに関しても同様のことがいえる。次に、Mo量に着目した場合、Mo量が増加すると、D’は大きくなる。同様に、ΔTも大きくなる。この傾向も、実際の肉盛層の組織における硬質粒子の最大径Dの傾向と一致する。このように、成分の変化に対する硬質粒子の最大径D’の変化から、あるいは、ΔTの変化から、実際に肉盛りした肉盛層の組織における硬質粒子の大きさの変化を予測することができる。
Figure 2006098085
First, when focusing on Ni, D ′ decreases as the amount of Ni increases. Similarly, ΔT also decreases. This tendency coincides with the tendency of the maximum diameter D of the hard particles in the actual structure of the overlay layer. The same applies to Si and Fe. Next, when focusing on the Mo amount, D ′ increases as the Mo amount increases. Similarly, ΔT also increases. This tendency also coincides with the tendency of the maximum diameter D of the hard particles in the actual structure of the overlay layer. As described above, it is possible to predict the change in the size of the hard particles in the actually built-up layer structure from the change in the maximum diameter D ′ of the hard particles with respect to the change in the component or from the change in ΔT. .

また、別途摩耗試験を行い、硬質粒子の最大径と肉盛層の摩擦摩耗量との関係を調べた。図5に、摩耗試験装置の概略図を示す。図5に示すように、摩擦試験装置1は、ホルダ5とバルブ材3と高周波加熱コイル4とからなる。バルブ材3は、SUE50製であり、円柱状を呈する。バルブ材3は、軸芯を中心に、回転可能である。高周波加熱コイル4は、バルブ材3に巻装される。高周波加熱コイル4は、バルブ材3を加熱する。ホルダ5は、円柱状を呈する。ホルダ5は、バルブ材3と軸方向に対向して配置される。ホルダ5の、バルブ材3側の端面には、凹部が形成されている。ホルダ5は、バルブ材3側に向かって、移動可能である。短軸円柱状の試験片2は、ホルダ5の凹部に配置される。試験片2の表面には、肉盛層20が形成される。摩擦試験は、ホルダ5をバルブ材3方向に移動させ、肉盛層20をバルブ材3の表面に摺接させて行った。摩擦試験の条件は、大気中、無潤滑、加熱温度600℃、面圧1.96MPa、回転速度0.3m/sとした。そして、30分間摺接させた後の肉盛層20の摩耗量を測定した。   In addition, a separate wear test was conducted to examine the relationship between the maximum diameter of the hard particles and the frictional wear amount of the built-up layer. FIG. 5 shows a schematic diagram of the wear test apparatus. As shown in FIG. 5, the friction test apparatus 1 includes a holder 5, a valve material 3, and a high frequency heating coil 4. The valve material 3 is made of SUE50 and has a cylindrical shape. The valve material 3 is rotatable around the axis. The high frequency heating coil 4 is wound around the valve material 3. The high frequency heating coil 4 heats the valve material 3. The holder 5 has a cylindrical shape. The holder 5 is disposed to face the valve member 3 in the axial direction. A concave portion is formed on the end surface of the holder 5 on the valve material 3 side. The holder 5 is movable toward the valve material 3 side. The short-axis columnar test piece 2 is disposed in the concave portion of the holder 5. A built-up layer 20 is formed on the surface of the test piece 2. The friction test was performed by moving the holder 5 in the direction of the valve material 3 and sliding the built-up layer 20 on the surface of the valve material 3. The conditions for the friction test were air, no lubrication, a heating temperature of 600 ° C., a surface pressure of 1.96 MPa, and a rotational speed of 0.3 m / s. And the abrasion loss of the build-up layer 20 after making it slide-contact for 30 minutes was measured.

図6に、硬質粒子の最大径と肉盛層の摩擦摩耗量との関係を示す。図6より、硬質粒子の最大径が大きいほど、摩耗量は少なく、肉盛層の耐摩耗性は高くなることがわかる。このように、硬質粒子の大きさによって、肉盛層の機械的特性は変化する。したがって、肉盛層の組織、具体的には、分散粒子の大きさを予測することは、肉盛層の機械的特性の予測を可能とし、肉盛り材料を設計する上で有用である。   FIG. 6 shows the relationship between the maximum diameter of the hard particles and the frictional wear amount of the built-up layer. FIG. 6 shows that the larger the maximum diameter of the hard particles, the smaller the amount of wear and the higher the wear resistance of the built-up layer. Thus, the mechanical characteristics of the build-up layer change depending on the size of the hard particles. Therefore, predicting the structure of the overlay layer, specifically, the size of the dispersed particles, makes it possible to predict the mechanical properties of the overlay layer and is useful in designing the overlay material.

偏晶系合金の状態図の一例である。It is an example of the phase diagram of a monotectic alloy. Ni量の異なる二種類の合金の各溶融温度ごとの組織を示す光学顕微鏡写真である。It is an optical micrograph which shows the structure | tissue for each melting temperature of two types of alloys from which Ni amount differs. 合金粉末の成分変化に対する二液相分離温度(T1)および分散相晶出温度(T2)の変化を示すグラフであり、(a)はNi量、(b)はSi量、(c)はMo量、(d)はFe量について示す。It is a graph which shows the change of the two liquid phase separation temperature (T1) with respect to the component change of an alloy powder, and a dispersed phase crystallization temperature (T2), (a) is Ni amount, (b) is Si amount, (c) is Mo. The amount, (d) shows the Fe amount. 合金粉末の成分変化に対する硬質粒子の最大径の変化を示すグラフである。It is a graph which shows the change of the maximum diameter of a hard particle with respect to the component change of an alloy powder. 摩耗試験装置の概略図である。It is the schematic of an abrasion test apparatus. 硬質粒子の最大径と肉盛層の摩擦摩耗量との関係を示すグラフである。It is a graph which shows the relationship between the maximum diameter of a hard particle, and the amount of frictional wear of a build-up layer.

符号の説明Explanation of symbols

1:摩耗試験装置 2:試験片 20:肉盛層 3:バルブ材 4:高周波加熱コイル
5:ホルダ
1: Wear test device 2: Test piece 20: Overlay layer 3: Valve material 4: High-frequency heating coil 5: Holder

Claims (6)

溶融して二液相分離反応を生じる肉盛り材料を溶融、凝固させて形成する肉盛層の組織予測方法であって、
該肉盛り材料を、マトリックスに分散する分散相が晶出する分散相晶出温度より高い温度で溶融する溶融工程と、
溶融した肉盛り材料を急冷凝固させる急冷凝固工程と、
溶融後に凝固した肉盛り材料の組織を観察する組織観察工程と、
を含み、
観察された該組織に基づいて、肉盛りすることなく該肉盛層の組織を予測することを特徴とする肉盛層の組織予測方法。
A method for predicting the structure of a built-up layer formed by melting and solidifying a built-up material that melts and causes a two-liquid phase separation reaction,
A melting step of melting the build-up material at a temperature higher than a dispersed phase crystallization temperature at which a dispersed phase dispersed in a matrix crystallizes;
A rapid solidification process for rapidly solidifying the melted material,
A structure observation process for observing the structure of the build-up material solidified after melting;
Including
A method for predicting a structure of a built-up layer, wherein the structure of the built-up layer is predicted based on the observed structure without being built up.
前記肉盛り材料は、銅合金からなる請求項1に記載の肉盛層の組織予測方法。   The method for predicting a structure of a built-up layer according to claim 1, wherein the build-up material is made of a copper alloy. 前記急冷凝固工程では、前記肉盛り材料を50℃/秒以上の冷却速度で急冷凝固する請求項1に記載の肉盛層の組織予測方法。   The method for predicting a structure of a built-up layer according to claim 1, wherein in the rapid solidification step, the build-up material is rapidly solidified at a cooling rate of 50 ° C / second or more. 溶融して二液相分離反応を生じる肉盛り材料を溶融、凝固させて形成する肉盛層の組織予測方法であって、
該肉盛り材料の二液相分離温度と、マトリックスに分散する分散相が晶出する分散相晶出温度と、を特定し、
該二液相分離温度と該分散相晶出温度との差に基づいて、肉盛りすることなく該肉盛層の組織を予測することを特徴とする肉盛層の組織予測方法。
A method for predicting the structure of a built-up layer formed by melting and solidifying a built-up material that melts and causes a two-liquid phase separation reaction,
Identify the two-liquid phase separation temperature of the build-up material and the dispersed phase crystallization temperature at which the dispersed phase dispersed in the matrix crystallizes,
A method for predicting a structure of a built-up layer, which predicts the structure of the built-up layer without building up based on a difference between the two-liquid phase separation temperature and the dispersed phase crystallization temperature.
前記肉盛り材料は、銅合金からなる請求項4に記載の肉盛層の組織予測方法。   The method for predicting a structure of a built-up layer according to claim 4, wherein the build-up material is made of a copper alloy. 前記二液相分離温度および前記分散相晶出温度は、前記肉盛り材料を一液相状態となるよう溶融した後、冷却過程での熱分析により特定する請求項4に記載の肉盛層の組織予測方法。   5. The build-up layer according to claim 4, wherein the two-liquid phase separation temperature and the dispersed phase crystallization temperature are specified by thermal analysis in a cooling process after the build-up material is melted to be in a one-liquid phase state. Organization prediction method.
JP2004281372A 2004-09-28 2004-09-28 Texture prediction method of build-up layer Pending JP2006098085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004281372A JP2006098085A (en) 2004-09-28 2004-09-28 Texture prediction method of build-up layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004281372A JP2006098085A (en) 2004-09-28 2004-09-28 Texture prediction method of build-up layer

Publications (1)

Publication Number Publication Date
JP2006098085A true JP2006098085A (en) 2006-04-13

Family

ID=36238073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004281372A Pending JP2006098085A (en) 2004-09-28 2004-09-28 Texture prediction method of build-up layer

Country Status (1)

Country Link
JP (1) JP2006098085A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040224A (en) * 2011-08-11 2013-02-28 Ihi Corp Heat storage material and heat storage system
JP2017036470A (en) * 2015-08-07 2017-02-16 トヨタ自動車株式会社 Abrasion resistant copper base alloy
JP2018058093A (en) * 2016-10-07 2018-04-12 株式会社豊田中央研究所 Padding alloy and padding member
JP2018158379A (en) * 2017-12-11 2018-10-11 トヨタ自動車株式会社 Valve seat alloy
WO2018217246A1 (en) * 2016-09-29 2018-11-29 Nlight, Inc. Method of forming an article, optical beam system with use of variable beam parameters to control solidification of a material
CN109175315A (en) * 2018-09-27 2019-01-11 太原科技大学 A kind of preparation method of copper and iron immiscible alloy
US10295820B2 (en) 2016-01-19 2019-05-21 Nlight, Inc. Method of processing calibration data in 3D laser scanner systems
JP2019085626A (en) * 2017-11-09 2019-06-06 株式会社豊田中央研究所 Hardfacing alloy and hardfacing member
US10434600B2 (en) 2015-11-23 2019-10-08 Nlight, Inc. Fine-scale temporal control for laser material processing
US10520671B2 (en) 2015-07-08 2019-12-31 Nlight, Inc. Fiber with depressed central index for increased beam parameter product
US10535973B2 (en) 2015-01-26 2020-01-14 Nlight, Inc. High-power, single-mode fiber sources
US10618131B2 (en) 2014-06-05 2020-04-14 Nlight, Inc. Laser patterning skew correction
US10673198B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-coupled laser with time varying beam characteristics
US10673199B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-based saturable absorber
US10673197B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-based optical modulator
US10730785B2 (en) 2016-09-29 2020-08-04 Nlight, Inc. Optical fiber bending mechanisms
US10971885B2 (en) 2014-06-02 2021-04-06 Nlight, Inc. Scalable high power fiber laser
US10971884B2 (en) 2015-03-26 2021-04-06 Nlight, Inc. Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss
US11179807B2 (en) 2015-11-23 2021-11-23 Nlight, Inc. Fine-scale temporal control for laser material processing
US11446765B2 (en) 2017-03-22 2022-09-20 Toyota Jidosha Kabushiki Kaisha Method of producing clad layer and device for producing the same

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040224A (en) * 2011-08-11 2013-02-28 Ihi Corp Heat storage material and heat storage system
US10971885B2 (en) 2014-06-02 2021-04-06 Nlight, Inc. Scalable high power fiber laser
US11465232B2 (en) 2014-06-05 2022-10-11 Nlight, Inc. Laser patterning skew correction
US10618131B2 (en) 2014-06-05 2020-04-14 Nlight, Inc. Laser patterning skew correction
US10535973B2 (en) 2015-01-26 2020-01-14 Nlight, Inc. High-power, single-mode fiber sources
US10916908B2 (en) 2015-01-26 2021-02-09 Nlight, Inc. High-power, single-mode fiber sources
US10971884B2 (en) 2015-03-26 2021-04-06 Nlight, Inc. Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss
US10520671B2 (en) 2015-07-08 2019-12-31 Nlight, Inc. Fiber with depressed central index for increased beam parameter product
US10167533B2 (en) 2015-08-07 2019-01-01 Toyota Jidosha Kabushiki Kaisha Wear-resistant copper-based alloy, cladding alloy, cladding layer, and valve system member and sliding member for internal combustion engine
JP2017036470A (en) * 2015-08-07 2017-02-16 トヨタ自動車株式会社 Abrasion resistant copper base alloy
US10434600B2 (en) 2015-11-23 2019-10-08 Nlight, Inc. Fine-scale temporal control for laser material processing
US11179807B2 (en) 2015-11-23 2021-11-23 Nlight, Inc. Fine-scale temporal control for laser material processing
US11331756B2 (en) 2015-11-23 2022-05-17 Nlight, Inc. Fine-scale temporal control for laser material processing
US11794282B2 (en) 2015-11-23 2023-10-24 Nlight, Inc. Fine-scale temporal control for laser material processing
US10295820B2 (en) 2016-01-19 2019-05-21 Nlight, Inc. Method of processing calibration data in 3D laser scanner systems
US10739579B2 (en) 2016-01-19 2020-08-11 Nlight, Inc. Method of processing calibration data in 3D laser scanner systems
US10663767B2 (en) 2016-09-29 2020-05-26 Nlight, Inc. Adjustable beam characteristics
US10673197B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-based optical modulator
US10730785B2 (en) 2016-09-29 2020-08-04 Nlight, Inc. Optical fiber bending mechanisms
US10673199B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-based saturable absorber
US10673198B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-coupled laser with time varying beam characteristics
US10656330B2 (en) 2016-09-29 2020-05-19 Nlight, Inc. Use of variable beam parameters to control solidification of a material
WO2018217246A1 (en) * 2016-09-29 2018-11-29 Nlight, Inc. Method of forming an article, optical beam system with use of variable beam parameters to control solidification of a material
JP2018058093A (en) * 2016-10-07 2018-04-12 株式会社豊田中央研究所 Padding alloy and padding member
US11446765B2 (en) 2017-03-22 2022-09-20 Toyota Jidosha Kabushiki Kaisha Method of producing clad layer and device for producing the same
US10961607B2 (en) 2017-11-09 2021-03-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Hardfacing alloy and hardfacing member
JP2019085626A (en) * 2017-11-09 2019-06-06 株式会社豊田中央研究所 Hardfacing alloy and hardfacing member
JP2018158379A (en) * 2017-12-11 2018-10-11 トヨタ自動車株式会社 Valve seat alloy
CN109175315A (en) * 2018-09-27 2019-01-11 太原科技大学 A kind of preparation method of copper and iron immiscible alloy

Similar Documents

Publication Publication Date Title
JP2006098085A (en) Texture prediction method of build-up layer
Farahany et al. Evaluation of the effect of Bi, Sb, Sr and cooling condition on eutectic phases in an Al–Si–Cu alloy (ADC12) by in situ thermal analysis
Valencia et al. Thermophysical properties
JP4678373B2 (en) Method for producing magnesium alloy material
Kamga et al. Hot tearing of aluminum–copper B206 alloys with iron and silicon additions
Shin et al. Development and characterization of low-silicon cast aluminum alloys for thermal dissipation
Esfahani et al. Study of hot tearing of A206 aluminum alloy using Instrumented Constrained T-shaped Casting method
Vandersluis et al. Influence of solidification rate on the microstructure, mechanical properties, and thermal conductivity of cast A319 Al alloy
Benjunior et al. Effect of different cooling rates condition on thermal profile and microstructure of aluminium 6061
Granath et al. Determining effect of slurry process parameters on semisolid A356 alloy microstructures produced by RheoMetal process
Vandersluis et al. The role of porosity in reducing the thermal conductivity of B319 Al alloy with decreasing solidification rate
Park et al. Microstructures and mechanical properties of Mg–Al–Zn–Ca alloys fabricated by high frequency electromagnetic casting method
Hassasi et al. Effect of squeeze casting parameters on the wear properties of A390 aluminum alloy
Gencalp et al. Effects of Low-Frequency Mechanical Vibration and Casting Temperatures on Microstructure of Semisolid AlSi 8 Cu 3 Fe Alloy
Arami et al. Microporosity control and thermal-fatigue resistance of A319 aluminum foundry alloy
Vatankhah Barenji Casting fluidity, viscosity, microstructure and tensile properties of aluminum matrix composites with different Mg2Si contents
Deepak Kumar et al. Solid fraction evolution characteristics of semi-solid A356 alloy and in-situ A356-TiB 2 composites investigated by differential thermal analysis
Jafari et al. An alternative approach in ceramic shell investment casting of AZ91D magnesium alloy: In situ melting technique
Krupińska et al. Effect of Re addition on the crystallization, heat treatment and structure of the Cu–Ni–Si-Cr alloy
Abdi et al. Effect of gas-induced semisolid process on solidification parameters and dendrite coherency point of Al–4.3 Cu alloy using thermal analysis
Piątkowski et al. The study of phase transformations of AlSi9Cu3 alloy by DSC method
Huang et al. Microstructure and shape memory properties of Cu-12.5 Al-xMn alloy produced by additive manufacturing with powder core wire
Razak et al. Investigation of pouring temperature and holding time for semisolid metal feedstock production
Luo et al. Effect of the pouring temperature by novel synchronous rolling-casting for metal on microstructure and properties of ZLl04 alloy
Li et al. Influence of mold temperature on microstructure and shrinkage porosity of the A357 alloys in gravity die casting