JP2006041479A - Light emitting element and its manufacturing method - Google Patents

Light emitting element and its manufacturing method Download PDF

Info

Publication number
JP2006041479A
JP2006041479A JP2005133750A JP2005133750A JP2006041479A JP 2006041479 A JP2006041479 A JP 2006041479A JP 2005133750 A JP2005133750 A JP 2005133750A JP 2005133750 A JP2005133750 A JP 2005133750A JP 2006041479 A JP2006041479 A JP 2006041479A
Authority
JP
Japan
Prior art keywords
light
layer
semiconductor layer
refractive index
index material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005133750A
Other languages
Japanese (ja)
Other versions
JP2006041479A5 (en
JP4857596B2 (en
Inventor
Yoshinobu Suehiro
好伸 末広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2005133750A priority Critical patent/JP4857596B2/en
Priority to US11/145,167 priority patent/US7560294B2/en
Publication of JP2006041479A publication Critical patent/JP2006041479A/en
Publication of JP2006041479A5 publication Critical patent/JP2006041479A5/ja
Application granted granted Critical
Publication of JP4857596B2 publication Critical patent/JP4857596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-emitting element and its manufacturing method which promotes the outside radiation, without holding the light in a layer having a high optical absorption coefficient. <P>SOLUTION: A sapphire substrate is lifted off from an n-GaN layer 13 of an LED element 1, and a glass member 11, having a higher refractive index than that of the sapphire substrate, is bonded to the n-GaN layer 13. This reduces layer-confined lights confined in the GaN layer to increase blue lights to be radiated to the outside, resulting in an improved light extraction properties. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は発光素子およびその製造方法に関し、特に、光吸収係数の大なる層に光を留めることなく外部放射を促進させることができる発光素子およびその製造方法に関する。   The present invention relates to a light emitting device and a method for manufacturing the same, and more particularly to a light emitting device capable of promoting external radiation without stopping light in a layer having a large light absorption coefficient and a method for manufacturing the same.

従来、サファイア等の下地基板上にIII族窒化物系化合物半導体からなる半導体結晶を成長させることによって発光素子を製造する方法が知られている。このような発光素子において、発光層で生じた光が光吸収係数の高い層に閉じ込められ、層内で吸収されることによって外部放射効率が低下することが問題となっている。   Conventionally, a method of manufacturing a light emitting device by growing a semiconductor crystal made of a group III nitride compound semiconductor on a base substrate such as sapphire is known. In such a light-emitting element, there is a problem that light generated in the light-emitting layer is confined in a layer having a high light absorption coefficient and is absorbed in the layer, thereby reducing external radiation efficiency.

このような問題を解決するものとして、サファイア基板の表面に凹凸面を形成し、その上にIII族窒化物系化合物半導体層を設けた発光素子がある(例えば、特許文献1参照。)。   As a solution to such a problem, there is a light emitting element in which an uneven surface is formed on the surface of a sapphire substrate and a group III nitride compound semiconductor layer is provided thereon (see, for example, Patent Document 1).

特許文献1に記載される発光素子は、基板表面の上にIII族窒化物系化合物半導体で形成されてその表面がテクスチャ構造、断面台形状、若しくはピット状であるバッファ層を形成し、このバッファ層の上にIII族窒化物系化合物半導体層を形成している。   The light emitting device described in Patent Document 1 is formed of a group III nitride compound semiconductor on a substrate surface, and a surface of the buffer layer having a texture structure, a trapezoidal shape, or a pit shape is formed. A group III nitride compound semiconductor layer is formed on the layer.

特許文献1に記載される発光素子によれば、サファイア基板とIII族窒化物系化合物半導体層との界面へ大きな角度をもって入射する光(当該界面と光進行方向との挟角が小さな光)であっても、当該段差面(側面)から外部へ放出できることとなり、光の取り出し効率が向上するとしている。
特開2003−197961号公報([0011]、図1)
According to the light-emitting element described in Patent Document 1, the light incident on the interface between the sapphire substrate and the group III nitride compound semiconductor layer with a large angle (light having a small angle between the interface and the light traveling direction). Even in such a case, the light can be emitted from the step surface (side surface) to the outside, and the light extraction efficiency is improved.
JP 2003-197961 A ([0011], FIG. 1)

しかし、特許文献1に記載された発光素子によれば、III族窒化物系化合物半導体層から直接取り出される光以外の、層内に閉じ込められた光(層内閉込光)の取り出しについては凹凸加工を施したとしても層内閉込光の反射性が充分でなく、III族窒化物系化合物半導体層とサファイア基板の屈折率差に依存するため、光取り出し効率に限界がある。また、III族窒化物系化合物半導体層は光吸収係数が大であることにより、層内閉込光となると減衰して有効に活用することができない。   However, according to the light-emitting element described in Patent Document 1, the extraction of light confined in the layer (in-layer confinement light) other than the light extracted directly from the group III nitride compound semiconductor layer is uneven. Even if the processing is performed, the reflectivity of the light confined in the layer is not sufficient, and the light extraction efficiency is limited because it depends on the refractive index difference between the group III nitride compound semiconductor layer and the sapphire substrate. In addition, since the group III nitride compound semiconductor layer has a large light absorption coefficient, it is attenuated and cannot be used effectively when it becomes confined light in the layer.

従って、本発明の目的は、光吸収係数の大なる層に光を留めることなく外部放射を促進させることができる発光素子およびその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a light emitting device capable of promoting external radiation without stopping light in a layer having a large light absorption coefficient, and a method for manufacturing the same.

本発明は、上記の目的を達成するため、発光層を含む半導体層を有し、実装面側に第1および第2の電極が設けられるフリップチップ型の発光素子において、前記半導体層の光放射面側に設けられる屈折率n=1.6以上の透光性高屈折率材料層とを有する発光素子を提供する。   In order to achieve the above object, the present invention provides a flip-chip type light emitting device having a semiconductor layer including a light emitting layer and provided with first and second electrodes on the mounting surface side. A light-emitting element having a light-transmitting high refractive index material layer having a refractive index n = 1.6 or more provided on a surface side is provided.

また、本発明は、上記の目的を達成するため、発光層を含む半導体層と、前記半導体層に貼り付けられる屈折率n=1.6以上の透光性高屈折率材料層とを有し、前記透光性高屈折率材料層はガラスである発光素子を提供する。   In order to achieve the above object, the present invention includes a semiconductor layer including a light-emitting layer, and a light-transmitting high-refractive index material layer having a refractive index n = 1.6 or more attached to the semiconductor layer. The light-transmitting high-refractive-index material layer provides a light-emitting element made of glass.

また、本発明は、上記の目的を達成するため、下地基板を準備する基板準備工程と、前記下地基板に半導体層を形成する半導体層形成工程と、前記半導体層から前記下地基板をリフトオフするリフトオフ工程と、前記下地基板をリフトオフされた前記半導体層の前記下地基板取り付け側に透光性高屈折率材料層を設ける透光性高屈折率材料層形成工程と、前記透光性高屈折率材料層を設けられた前記半導体層に電極を形成する電極形成工程とを含む製造方法を提供する。   In order to achieve the above object, the present invention provides a substrate preparation step for preparing a base substrate, a semiconductor layer forming step for forming a semiconductor layer on the base substrate, and a lift-off for lifting off the base substrate from the semiconductor layer. A translucent high refractive index material layer forming step for providing a translucent high refractive index material layer on the base substrate mounting side of the semiconductor layer lifted off the base substrate, and the translucent high refractive index material An electrode forming step of forming an electrode on the semiconductor layer provided with the layer is provided.

本発明によれば、半導体層内に留まる層内閉込光を半導体層に貼り付けられる透光性高屈折率材料層を介して取り出すことで、界面反射が抑えられて光取り出し性が高まる。そのことによって光吸収係数の大なる層に光を留めることなく外部放射を促進させることができる。   According to the present invention, in-layer confinement light that remains in the semiconductor layer is extracted through the translucent high-refractive-index material layer that is attached to the semiconductor layer, so that interface reflection is suppressed and light extraction performance is improved. As a result, external radiation can be promoted without stopping light in the layer having a large light absorption coefficient.

(第1の実施の形態)
(LED素子1の構成)
図1(a)および(b)は、第1の実施の形態に係るLED素子であり、(a)は縦断
面図、(b)は臨界角を示す説明図である。このフリップチップ型のLED素子1は、図
1(a)に示すように発光層14を有するGaN系半導体層100より高屈折率の透光性高屈折率材料であるガラス部材11と、GaN半導体化合物によって形成されるn−GaN層13と、n−GaN層13上に積層される発光層14と、発光層14上に積層されるp−GaN層15と、p−GaN層15からn−GaN層13にかけてエッチングにより除去されたn−GaN層13に設けられるn−電極16と、p−GaN層15上に設けられるp−電極18とを有する。
(First embodiment)
(Configuration of LED element 1)
1A and 1B are LED elements according to the first embodiment, FIG. 1A is a longitudinal sectional view, and FIG. 1B is an explanatory view showing a critical angle. As shown in FIG. 1A, the flip-chip type LED element 1 includes a glass member 11 which is a light-transmitting high refractive index material having a higher refractive index than a GaN-based semiconductor layer 100 having a light emitting layer 14, and a GaN semiconductor. An n-GaN layer 13 formed of a compound, a light emitting layer 14 stacked on the n-GaN layer 13, a p-GaN layer 15 stacked on the light emitting layer 14, and the p-GaN layer 15 to n − The n-electrode 16 provided on the n-GaN layer 13 removed by etching over the GaN layer 13 and the p-electrode 18 provided on the p-GaN layer 15 are included.

III族窒化物系化合物半導体層の形成方法は、特に限定されないが、周知の有機金属気相成長法(MOCVD法)、分子線結晶成長法(MBE法)、ハライド系気相成長法(HVPE法)、スパッタ法、イオンプレーティング法、電子シャワー法等によって形成することができる。なお、発光素子の構成としては、ホモ構造、ヘテロ構造若しくはダブルへテロ構造のものを用いることができる。さらに、量子井戸構造(単一量子井戸構造若しくは多重量子井戸構造)を採用することもできる。   The formation method of the group III nitride compound semiconductor layer is not particularly limited, but the well-known metal organic chemical vapor deposition method (MOCVD method), molecular beam crystal growth method (MBE method), halide vapor phase epitaxy method (HVPE method). ), A sputtering method, an ion plating method, an electron shower method, or the like. Note that a light-emitting element having a homo structure, a hetero structure, or a double hetero structure can be used. Furthermore, a quantum well structure (single quantum well structure or multiple quantum well structure) can also be adopted.

ガラス部材11は、屈折率n=2.0、熱膨張率:7.0×10−6/℃、屈伏点:6
50℃、Bi系材料で、図示しないサファイア基板上に成長させたGaN系半導体
化合物をレーザ光線の照射に基づいて剥離することによりサファイア基板から分離し、露出したn−GaN層13に熱融着されている。
Glass member 11 has refractive index n = 2.0, coefficient of thermal expansion: 7.0 × 10 −6 / ° C., yield point: 6
A GaN-based semiconductor compound grown on a sapphire substrate (not shown) with a Bi 2 O 3 -based material at 50 ° C. is separated from the sapphire substrate by being peeled off by irradiation with a laser beam, and exposed to the exposed n-GaN layer 13. It is heat-sealed.

図1(b)は、ガラス部材を用いた場合の臨界角の違いを示す図である。サファイア基板である場合、界面1Aに対して臨界角はn=1.7の矢印で示される範囲(界面方向に対し45度)となり、ガラス部材11の場合より全反射することなく外部放射される光が少なくなる。外部放射されない光は層内閉込光となってGaN系半導体層100内での光吸収や電極部材による光吸収によって光ロスになる。一方、n−GaN層13に表面にガラス部材11を貼り付けた場合、ガラス部材11の界面1Aに対して臨界角はn=2.0の矢印で示される範囲(界面方向に対し56度)となる。これによって、GaN系半導体層100内での光吸収を減じ、光放射効率の向上を図ることができる。   FIG.1 (b) is a figure which shows the difference in the critical angle at the time of using a glass member. In the case of a sapphire substrate, the critical angle with respect to the interface 1A is in a range indicated by an arrow of n = 1.7 (45 degrees with respect to the interface direction), and is externally radiated without being totally reflected as compared with the case of the glass member 11. Less light. Light that is not emitted externally becomes confined light within the layer, and becomes light loss due to light absorption in the GaN-based semiconductor layer 100 and light absorption by the electrode member. On the other hand, when the glass member 11 is attached to the surface of the n-GaN layer 13, the critical angle with respect to the interface 1A of the glass member 11 is a range indicated by an arrow n = 2.0 (56 degrees with respect to the interface direction). It becomes. Thereby, light absorption in the GaN-based semiconductor layer 100 can be reduced, and light emission efficiency can be improved.

(LED素子1の製造工程)
図2は、LED素子の製造工程を示す図である。以下にLED素子1の製造工程について説明する。
(Manufacturing process of LED element 1)
FIG. 2 is a diagram showing a manufacturing process of the LED element. Below, the manufacturing process of the LED element 1 is demonstrated.

(基板準備工程)
図2(a)は、基板準備工程を示す図である。まず、下地基板となるウエハー状のサファイア基板10を準備する。
(Board preparation process)
FIG. 2A is a diagram illustrating a substrate preparation process. First, a wafer-like sapphire substrate 10 serving as a base substrate is prepared.

(バッファ層形成工程)
図2(b)は、サファイア基板へのバッファ層形成工程を示す図である。サファイア基板10の表面にAlNバッファ層12を形成する。
(Buffer layer forming process)
FIG. 2B is a diagram showing a buffer layer forming process on the sapphire substrate. An AlN buffer layer 12 is formed on the surface of the sapphire substrate 10.

(半導体層形成工程)
図2(c)は、GaN系半導体層の形成工程を示す図である。AlNバッファ層12上にn−GaN層13と、発光層14と、p−GaN層15とを順次設けた後、p−GaN層15からn−GaN層13にかけてをエッチングにより除去することによってn−GaN層13を露出させる。
(Semiconductor layer formation process)
FIG. 2C is a diagram showing a process for forming a GaN-based semiconductor layer. An n-GaN layer 13, a light emitting layer 14, and a p-GaN layer 15 are sequentially provided on the AlN buffer layer 12, and then removed from the p-GaN layer 15 to the n-GaN layer 13 by etching. -The GaN layer 13 is exposed.

(リフトオフ工程)
図2(d)は、サファイア基板とGaN系半導体層とのリフトオフ工程を示す図である。図2(c)に示すGaN系半導体層100を積層されたサファイア基板10に対し、サファイア基板10側からレーザ光線をウエハー全面に照射する。ここで照射されるレーザ光線は、サファイア基板を透過し、GaN系半導体層100を透過しない波長のものが使用される。このようなレーザ光線の照射に基づいてサファイア基板10とn−GaN層13の界面が局所的に加熱され、その結果、n−GaN層13から形成基板であるサファイア基板10が剥離する。ここでn−GaN層13側に残留したAlNバッファ層12は酸洗浄に基づいて除去される。
(Lift-off process)
FIG. 2D is a diagram showing a lift-off process between the sapphire substrate and the GaN-based semiconductor layer. A sapphire substrate 10 on which the GaN-based semiconductor layer 100 shown in FIG. 2C is laminated is irradiated with a laser beam from the sapphire substrate 10 side over the entire surface of the wafer. The laser beam irradiated here has a wavelength that passes through the sapphire substrate and does not pass through the GaN-based semiconductor layer 100. Based on such irradiation of the laser beam, the interface between the sapphire substrate 10 and the n-GaN layer 13 is locally heated, and as a result, the sapphire substrate 10 that is the formation substrate is peeled off from the n-GaN layer 13. Here, the AlN buffer layer 12 remaining on the n-GaN layer 13 side is removed based on acid cleaning.

(ガラス準備工程)
図2(e)は、サファイア基板が剥離されたGaN系半導体層に熱融着されるガラス部材を準備するガラス準備工程を示す図である。図2(e)でサファイア基板10をリフトオフされたGaN系半導体層100に対し、n−GaN層13側にn=2.0のガラス部材11を配置する。
(Glass preparation process)
FIG.2 (e) is a figure which shows the glass preparation process which prepares the glass member heat-sealed to the GaN-type semiconductor layer from which the sapphire substrate was peeled. With respect to the GaN-based semiconductor layer 100 in which the sapphire substrate 10 is lifted off in FIG. 2E, a glass member 11 with n = 2.0 is disposed on the n-GaN layer 13 side.

(ガラス圧着工程)
図2(f)は、n−GaN層13にガラス部材を熱融着するガラス圧着工程を示す図である。ガラス部材11は、n−GaN層13にホットプレスされることにより熱融着される。
(Glass crimping process)
FIG. 2 (f) is a diagram showing a glass crimping process for thermally fusing a glass member to the n-GaN layer 13. The glass member 11 is heat-sealed by being hot pressed onto the n-GaN layer 13.

(電極形成工程)
図2(g)は、電極を形成する電極形成工程を示す図である。エッチングにより露出させたn−GaN層13に第1の電極としてn−電極16を形成し、p−GaN層15上に第2の電極としてp−電極18を形成する。電極形成後、ダイサーで個々のLED素子1に切断し、電極を除く表面に図示しない絶縁膜が形成される。なお、LED素子1の切断は、ダイサーによるカット以外の他の方法、例えば、スクライブによって行うこともできる。
(Electrode formation process)
FIG. 2G is a diagram showing an electrode forming process for forming an electrode. An n-electrode 16 is formed as a first electrode on the n-GaN layer 13 exposed by etching, and a p-electrode 18 is formed as a second electrode on the p-GaN layer 15. After the electrodes are formed, each LED element 1 is cut with a dicer, and an insulating film (not shown) is formed on the surface excluding the electrodes. In addition, cutting | disconnection of the LED element 1 can also be performed by methods other than the cutting | disconnection by a dicer, for example, scribe.

このようにして形成されたLED素子1を用いて、LEDランプを形成するには、まず、配線パターンを設けられたセラミックス基板にLED素子1をAuバンプを介して実装する。次に、封止樹脂でLED素子1を一体的に封止してパッケージ化する。   In order to form an LED lamp using the LED element 1 formed as described above, first, the LED element 1 is mounted on a ceramic substrate provided with a wiring pattern via Au bumps. Next, the LED element 1 is integrally sealed with a sealing resin to be packaged.

(LED素子1の動作)
上記したLEDランプの配線パターンを図示しない電源部に接続して通電すると、配線パターンを介してn−電極16及びp−電極18に順方向の電圧が印加され、発光層14においてホール及びエレクトロンのキャリア再結合が生じて発光する。この発光に基づいて生じた青色光のうち、発光層14からガラス部材11側に放射される青色光は、ガラス部材11を介して封止樹脂に入射し、封止樹脂から外部放射される。
(Operation of LED element 1)
When the wiring pattern of the LED lamp is connected to a power supply unit (not shown) and energized, a forward voltage is applied to the n-electrode 16 and the p-electrode 18 through the wiring pattern, and holes and electrons are generated in the light emitting layer 14. Carrier recombination occurs to emit light. Of the blue light generated based on this light emission, the blue light emitted from the light emitting layer 14 toward the glass member 11 enters the sealing resin through the glass member 11 and is radiated from the sealing resin to the outside.

また、発光層14からp−GaN層15側に放射された青色光は、p−電極18で反射されてガラス部材11の方向に導かれる。ここで、ガラス部材11の臨界角の範囲にある光はガラス部材11を透過してLED素子1の外部に放射される。   Further, the blue light emitted from the light emitting layer 14 toward the p-GaN layer 15 is reflected by the p-electrode 18 and guided toward the glass member 11. Here, the light within the critical angle range of the glass member 11 is transmitted through the glass member 11 and is emitted to the outside of the LED element 1.

尚、ガラス部材11に至った光は高い効率で外部に放射される。すなわち、図1においては、説明のためガラス部材11と各GaN層との厚さを同等として描いてあるが、実際にはガラス部材11が100ミクロン程度であるのに対し、GaN層13+発光層14+p−GaN層15は数ミクロンの厚さであり、GaNに閉じ込められる光は層内吸収と電極部材吸収によって著しく減衰する。一方、ガラス部材に至った光は、ガラス部材11での吸収は無視できるものであり、封止樹脂(n=1.5)とガラス部材11との臨界角は約50度のため、上面で外部放射されない光は側面から外部放射される。他の界面反射の場合も同様、2度の界面反射内で外部放射される。そして、ガラス部材11は十分な厚さがあるので、このような2度の界面反射の確率は高い。   The light that reaches the glass member 11 is radiated to the outside with high efficiency. That is, in FIG. 1, the glass member 11 and each GaN layer are drawn to have the same thickness for the sake of explanation, but in reality, the glass member 11 is about 100 microns, whereas the GaN layer 13 + light emitting layer. The 14 + p-GaN layer 15 has a thickness of several microns, and the light confined in the GaN is significantly attenuated by intra-layer absorption and electrode member absorption. On the other hand, the light reaching the glass member can be ignored by the glass member 11, and the critical angle between the sealing resin (n = 1.5) and the glass member 11 is about 50 degrees. Light that is not emitted externally is emitted externally from the side. Similarly, in the case of other interface reflections, external radiation is emitted within two interface reflections. And since the glass member 11 has sufficient thickness, the probability of such 2 degree interface reflection is high.

(第1の実施の形態の効果)
第1の実施の形態によると、以下の効果が得られる。
(1)LED素子1のn−GaN層13からサファイア基板をリフトオフし、サファイア基板よりも高い屈折率を有するガラス部材11をn−GaN層13に接合したので、GaN層内に閉じ込められる層内閉込光を低減して外部放射される青色光を増やすことができ、その結果、光取り出し性を向上させることができる。サファイア基板10を用いた場合、n−GaN層13との屈折率比に基づく臨界角θcは、1.7(サファイア)/2.4(GaN):θc=45度となるが、上記した屈折率n=2.0のガラス部材11を用いた場合には、θcが56度になるため、開口角の立体角は52%増となり、ガラス部材11へ透過しうる青色光が50%余り増す。このため、光吸収係数の大なる層に青色光を留めることなく外部放射を促進させることができる。
(Effects of the first embodiment)
According to the first embodiment, the following effects can be obtained.
(1) Since the sapphire substrate is lifted off from the n-GaN layer 13 of the LED element 1 and the glass member 11 having a refractive index higher than that of the sapphire substrate is bonded to the n-GaN layer 13, the inside of the layer confined in the GaN layer The blue light emitted outside can be increased by reducing the confinement light, and as a result, the light extraction performance can be improved. When the sapphire substrate 10 is used, the critical angle θc based on the refractive index ratio with the n-GaN layer 13 is 1.7 (sapphire) /2.4 (GaN): θc = 45 degrees. When the glass member 11 with a rate n = 2.0 is used, θc is 56 degrees, so the solid angle of the opening angle is increased by 52%, and the blue light that can be transmitted to the glass member 11 is increased by about 50%. . For this reason, external radiation can be promoted without keeping blue light in a layer having a large light absorption coefficient.

(2)n−GaN層13からサファイア基板10をレーザ光線でリフトオフして、透過性材料であるガラス部材11を一体化するようにしたので、発光波長や、所望の光取り出し性に応じたLED素子1を容易に形成することができる。 (2) Since the sapphire substrate 10 is lifted off from the n-GaN layer 13 with a laser beam and the glass member 11 which is a transmissive material is integrated, an LED corresponding to the emission wavelength and desired light extraction performance The element 1 can be easily formed.

(3)透過性材料として熱変形自在なガラス材料をホットプレスにより熱融着しているので、n−GaN層13との接着性に優れるとともに接合作業を容易に行うことができる。また、熱膨張率が同等となるようにしてあるので、熱融着後、クラックや大きな反りが生じることを防ぐことができる。 (3) Since a heat-deformable glass material as a permeable material is heat-sealed by hot pressing, it has excellent adhesion to the n-GaN layer 13 and can be easily joined. In addition, since the thermal expansion coefficients are made equal, it is possible to prevent cracks and large warpage from occurring after heat fusion.

(第2の実施の形態)
(LED素子1の構成)
図3は、第2の実施の形態に係るLED素子の縦断面図である。このフリップチップ型のLED素子1は、第1の実施の形態で説明したガラス部材11に代えて蛍光体を含有した蛍光体含有ガラス部材11Bを設けた構成において第1の実施の形態と相違している。
(Second Embodiment)
(Configuration of LED element 1)
FIG. 3 is a longitudinal sectional view of an LED element according to the second embodiment. The flip-chip type LED element 1 is different from the first embodiment in a configuration in which a phosphor-containing glass member 11B containing a phosphor is provided instead of the glass member 11 described in the first embodiment. ing.

蛍光体含有ガラス部材11Bは、蛍光体として、例えば、青色光によって励起されて黄色光を放射するYAG:Ceの蛍光体粒子を用いることができる。また、他の蛍光体として蛍光錯体を用いることができる。   In the phosphor-containing glass member 11B, for example, YAG: Ce phosphor particles that are excited by blue light and emit yellow light can be used as the phosphor. Moreover, a fluorescent complex can be used as another fluorescent substance.

(第2の実施の形態の効果)
第2の実施の形態によると、高屈折率のガラス部材に蛍光体を含有した蛍光体含有ガラス部材11Bを用いることにより、高屈折率材料外に蛍光体を備えるものと比べ、蛍光体へ至る光量を増すことができ、波長変換できる光量を増すことができる。また、蛍光体による波長変換光(黄色光)は、GaN層内吸収、電極吸収とも青色光と比較し大幅に小さい。このため、光取り出し性に優れ、かつ、蛍光体の良好な励起に基づく色むらのない白色光を放射する波長変換型のLED素子1が得られる。
(Effect of the second embodiment)
According to the second embodiment, by using the phosphor-containing glass member 11B containing a phosphor in a glass member having a high refractive index, the phosphor reaches a phosphor as compared with a material having a phosphor outside the high refractive index material. The amount of light can be increased, and the amount of light that can be wavelength-converted can be increased. In addition, the wavelength-converted light (yellow light) by the phosphor is much smaller than the blue light in both GaN layer absorption and electrode absorption. For this reason, the wavelength conversion type LED element 1 which is excellent in light extraction property and radiates white light having no color unevenness based on good excitation of the phosphor is obtained.

(第3の実施の形態)
(LED素子1の構成)
図4は、第3の実施の形態に係るLED素子の縦断面図である。このフリップチップ型のLED素子1は、第1の実施の形態で説明したn−GaN層13に平坦なガラス部材11を熱融着し、その光取り出し面に微細な凹凸形状部11Cを設けている構成において第1の実施の形態と相違している。
(Third embodiment)
(Configuration of LED element 1)
FIG. 4 is a longitudinal sectional view of an LED element according to the third embodiment. In this flip-chip type LED element 1, a flat glass member 11 is thermally fused to the n-GaN layer 13 described in the first embodiment, and a fine uneven portion 11C is provided on the light extraction surface. This configuration is different from the first embodiment.

凹凸形状部11Cは、ガラス部材11をn−GaN層13にホットプレスする金型に設けられた凹凸によって転写される。なお、凹凸形状は転写以外の方法で形成することも可能であり、予め凹凸形状を形成されたガラス部材11をホットプレスによりn−GaN層13に一体化するようにしても良い。   The concavo-convex shape portion 11 </ b> C is transferred by the concavo-convex provided in a mold for hot pressing the glass member 11 onto the n-GaN layer 13. The uneven shape can be formed by a method other than transfer, and the glass member 11 on which the uneven shape has been formed in advance may be integrated with the n-GaN layer 13 by hot pressing.

(第3の実施の形態の効果)
第3の実施の形態によると、n−GaN層13に接合されるガラス部材11に光取り出し面に微細な凹凸形状部11Cを設けたので、表面積を増すこと等によって、ガラス部材11の光取り出し面における青色光の光取り出し性を、向上させることができる。
(Effect of the third embodiment)
According to the third embodiment, the glass member 11 bonded to the n-GaN layer 13 is provided with the fine uneven portion 11C on the light extraction surface. The light extraction property of blue light on the surface can be improved.

(第4の実施の形態)
(LED素子1の構成)
図5(a)から(c)は、第4の実施の形態に係るLED素子を示す図であり、(a)
は縦断面図、(b)は(a)の外形および切断部を示す平面図、(c)はカット部に入射
する光を示す図である。このフリップチップ型のLED素子1は、第1の実施の形態で説明したLED素子1のガラス部材11の角部を45度にカットしたカット部110を設けて青色光の光取り出し性を高めている構成において第1の実施の形態と相違している。
(Fourth embodiment)
(Configuration of LED element 1)
FIGS. 5A to 5C are diagrams showing an LED element according to the fourth embodiment, and FIG.
(B) is a top view which shows the external shape and cutting part of (a), (c) is a figure which shows the light which injects into a cut part. This flip-chip type LED element 1 is provided with a cut portion 110 in which the corner of the glass member 11 of the LED element 1 described in the first embodiment is cut at 45 degrees to enhance the light extraction property of blue light. This configuration is different from the first embodiment.

カット部110は、LED素子1の切り出し後にガラス部材11の角部をカットして形成されている。また、LED素子1の切り出し時にダイサー等の切削に基づいてV字状の切り込みを形成し、この切り込みの底部を中心に分断することによって傾斜面を形成するようにしても良い。コーナーカット部形状は、平面による45度カットに限らず、45度以外のカット、あるいは凸面によるカット形状でもよい。   The cut part 110 is formed by cutting a corner of the glass member 11 after the LED element 1 is cut out. Further, when the LED element 1 is cut out, a V-shaped cut may be formed based on cutting with a dicer or the like, and an inclined surface may be formed by dividing the cut at the bottom of the cut. The shape of the corner cut portion is not limited to a 45 degree cut by a flat surface, but may be a cut other than 45 degrees or a cut shape by a convex surface.

図5(b)は、LED素子1の平面図である。LED素子1は、p−電極18の設けられる領域の発光層14において発光し、ガラス部材11を介して青色光を外部放射する。   FIG. 5B is a plan view of the LED element 1. The LED element 1 emits light in the light emitting layer 14 in the region where the p-electrode 18 is provided, and emits blue light to the outside via the glass member 11.

図5(c)は、発光層で生じた青色光Lのガラス部材11における透過を示す図であ
る。発光層14で生じた青色光Lのうち、上面方向に放射された青色光Lだけでなく
45度方向に放射された光についてもカット部110において垂直入射に近づくこととなることにより、界面反射による光ロスの発生を防げる。
5 (c) is a diagram showing the transmission in the glass member 11 of the blue light L B generated in the light emitting layer. Of the blue light L B generated in the light emitting layer 14, by the approach the normal incidence at a cut portion 110 also light Not radiated in the 45-degree direction by the blue light L B emitted to the upper surface direction, Prevents optical loss due to interface reflection.

(第4の実施の形態の効果)
第4の実施の形態によると、ガラス部材11の角部を45度にカットしたカット部110を設けたことにより、ガラス部材11に入射した青色光を外部により効率良く取り出すことができ、光放射効率を向上させることができる。また、LED素子1を硬質部材で封止する際などエッジが鋭角でないため、クラックが発生しにくいといった利点もある。
(Effect of the fourth embodiment)
According to the fourth embodiment, by providing the cut portion 110 in which the corner portion of the glass member 11 is cut at 45 degrees, the blue light incident on the glass member 11 can be taken out more efficiently and light emission. Efficiency can be improved. Moreover, since the edge is not an acute angle, such as when the LED element 1 is sealed with a hard member, there is an advantage that cracks hardly occur.

(第5の実施の形態)
(LED素子1の構成)
図6は、第5の実施の形態に係るLED素子の縦断面図である。このフリップチップ型のLED素子1は、第4の実施の形態で説明したLED素子1のp−電極18を素子中央部に配置し、曲面で形成される光学形状を有したガラス部材11の上面に青色光が垂直入射するようにした構成において第4の実施の形態と相違している。
(Fifth embodiment)
(Configuration of LED element 1)
FIG. 6 is a longitudinal sectional view of an LED element according to the fifth embodiment. This flip-chip type LED element 1 has the p-electrode 18 of the LED element 1 described in the fourth embodiment disposed at the center of the element, and an upper surface of a glass member 11 having an optical shape formed by a curved surface. The fourth embodiment is different from the fourth embodiment in the configuration in which the blue light is perpendicularly incident to the first embodiment.

(第5の実施の形態の効果)
第5の実施の形態によると、第4の実施の形態の好ましい効果に加えて、発光層14から放射される青色光の配光をp−電極18の配置とガラス部材11の形状に基づいて設定することにより、制御することができる。但し、屈折によるレンズ効果を得るためには、LED素子の封止材料の屈折率に対し有意な差のあるガラス部材11の屈折率とする必要がある。このためにも、n=1.7以上の屈折率が望ましい。
(Effect of 5th Embodiment)
According to the fifth embodiment, in addition to the preferable effects of the fourth embodiment, the light distribution of the blue light emitted from the light emitting layer 14 is based on the arrangement of the p-electrode 18 and the shape of the glass member 11. It is possible to control by setting. However, in order to obtain the lens effect by refraction, it is necessary to set the refractive index of the glass member 11 having a significant difference from the refractive index of the sealing material of the LED element. For this reason, a refractive index of n = 1.7 or more is desirable.

なお、第5の実施の形態では、n−GaN層13に光学形状を有したガラスを設けた構成を説明したが、例えばTiO、SiC、あるいはGaNといった発光層14と同等の屈折率を有する基板を貼り付けたものであっても良い。これにより、GaN層方向伝搬光を発光層14等の吸収率の高い層の影響を受けることなく側面に至らしめることができ、高い外部放射効率を得ることができる。 In the fifth embodiment, the structure in which the glass having an optical shape is provided on the n-GaN layer 13 has been described. However, for example, the refractive index is equivalent to that of the light emitting layer 14 such as TiO 2 , SiC, or GaN. A substrate may be attached. As a result, the light propagating in the GaN layer direction can be brought to the side surface without being affected by a layer having a high absorption rate such as the light emitting layer 14, and high external radiation efficiency can be obtained.

特に、LED素子サイズの1/5以上の基板厚があれば、LED素子1の中心軸に対し、90°付近の角度をなすGaN層方向伝搬光を外部放射するにあたり、十分有意なものとすることができる。   In particular, if there is a substrate thickness of 1/5 or more of the LED element size, it will be sufficiently significant for externally radiating GaN layer propagation light having an angle of about 90 ° with respect to the central axis of the LED element 1. be able to.

また、LED素子1はフリップチップ型であるため、サファイア基板をリフトオフした面は電気的な制約や、エピタキシャル成長のための格子定数の整合性といった制約なく光取り出し効率を向上させるための基板を選択することが可能になる。   In addition, since the LED element 1 is a flip chip type, the surface on which the sapphire substrate is lifted off selects a substrate for improving the light extraction efficiency without restrictions such as electrical restrictions and lattice constant matching for epitaxial growth. It becomes possible.

(第6の実施の形態)
(LED素子1の構成)
図7は、第6の実施の形態に係るLED素子の縦断面図である。このフリップチップ型のLED素子1は、第1の実施の形態で説明したガラス部材11とn−GaN層13との界面に微細な凹凸部1Bを設けた構成において第1の実施の形態と相違している。
(Sixth embodiment)
(Configuration of LED element 1)
FIG. 7 is a longitudinal sectional view of an LED element according to the sixth embodiment. The flip-chip type LED element 1 is different from the first embodiment in the configuration in which the fine uneven portion 1B is provided at the interface between the glass member 11 and the n-GaN layer 13 described in the first embodiment. is doing.

凹凸部1Bは、サファイア基板をリフトオフしたn−GaN層13を粗面化加工して形成されており、凹凸部1B上にガラス部材11をホットプレスすることによってガラス部材11を一体化している。   The uneven portion 1B is formed by roughening the n-GaN layer 13 obtained by lifting off the sapphire substrate, and the glass member 11 is integrated by hot pressing the glass member 11 on the uneven portion 1B.

(第6の実施の形態の効果)
第6の実施の形態によると、ガラス部材11をホットプレスにより粘度を下げ加圧することで、界面に微細な凹凸部を設けたエピ成長させた半導体層であるGaN層形状に対応させることができる。そして、第1の実施形態では図1(b)のように界面方向に対し、56度以上の角度方向で界面に入射する光は、全反射が生じガラス部材11へは入射されないが、ガラス部材11とn−GaN層13との界面に凹凸部1Bを設けることによって、n−GaN層13における層内閉込光をGaN層面方向に対し56度以上の光も界面へ臨界角以内で入射させることができ、ガラス部材11へ至る光量が増す。これによって外部放射効率を向上させることができる。
(Effect of 6th Embodiment)
According to the sixth embodiment, the glass member 11 can be made to correspond to the shape of the GaN layer, which is an epitaxially grown semiconductor layer provided with fine irregularities at the interface, by reducing the viscosity by hot pressing. . In the first embodiment, as shown in FIG. 1B, the light incident on the interface at an angle direction of 56 degrees or more with respect to the interface direction causes total reflection and does not enter the glass member 11, but the glass member. By providing the concavo-convex portion 1B at the interface between the n-GaN layer 13 and the n-GaN layer 13, in-layer confinement light in the n-GaN layer 13 is also incident on the interface within a critical angle within the critical angle. The amount of light reaching the glass member 11 can be increased. Thereby, external radiation efficiency can be improved.

(第7の実施の形態)
(LED素子1の構成)
図8(a)から(c)は、第7の実施の形態に係るLED素子を示す図である。このフリップチップ型のLED素子1は、第1の実施の形態で説明したガラス部材11とn−GaN層13との界面に凹部13Aを設けた構成において第1の実施の形態と相違している。n−GaN層13に形成される凹部13Aは略柱状形状であり、凹部13Aの傾斜面は図の中心軸Aに対し略平行な角度で形成されている。
(Seventh embodiment)
(Configuration of LED element 1)
FIGS. 8A to 8C are diagrams showing LED elements according to the seventh embodiment. The flip-chip type LED element 1 is different from the first embodiment in the configuration in which the concave portion 13A is provided at the interface between the glass member 11 and the n-GaN layer 13 described in the first embodiment. . The recess 13A formed in the n-GaN layer 13 has a substantially columnar shape, and the inclined surface of the recess 13A is formed at an angle substantially parallel to the center axis A in the figure.

(第7の実施の形態の効果)
第7の実施の形態によると、ガラス部材11とn−GaN層13との界面に略柱状形状の凹部13Aを設けることによって、n−GaN層13における層内閉込光のガラス部材11への取り出し性がより向上し、青色光の外部放射効率を高めることができる。すなわち、n−GaN層13とガラス部材11との界面を平坦面から特に配慮なくランダムな粗面とした場合、平坦面であればn−GaN層13からガラス部材11へ入射することができる方向で界面に達した光の一部は、界面の角度が変っているため、ガラス部材11へ入射することができなくなる。しかし、図1(a)に示すLED素子1のn−GaN層13からガラス部材11へ放射される光は、図8(c)のa、b、cのように同等効率で放射される。さらに図1(a)に示すようにガラス部材11との界面が平坦である場合、ガラス部材11とn−GaN層13との屈折率差による全反射によってガラス部材11へ放射されなかった光も、dのように放射される。尚、cのようにガラス部材11へ放射される光は、図8(c)のような2次元では45度あるいは50度以上の臨界角となるものとすれば有効なガラス部材11への光放射となる。臨界角が45度以上であれば、2度の界面入射内でガラス部材11への光放射ができ、更に50度以上であれば、フレネル反射が大きくない角度とできるので、さらなる効率を得ることができる。3次元では柱形状によるが、図8のような直方形状であれば、55度あるいは60度以上の臨界角となるものとすれば、3度の界面入射内でガラス部材11への光放射ができる。高屈折率のガラス部材11を用いることで、これを満たしたもの、あるいはこれに近づけるものとできる。
(Effect of 7th Embodiment)
According to the seventh embodiment, by providing the substantially columnar recess 13A at the interface between the glass member 11 and the n-GaN layer 13, the confinement light in the layer in the n-GaN layer 13 is applied to the glass member 11. The extractability is further improved, and the external radiation efficiency of blue light can be increased. That is, when the interface between the n-GaN layer 13 and the glass member 11 is a random rough surface from the flat surface without particular consideration, the direction in which the n-GaN layer 13 can be incident on the glass member 11 is a flat surface. Thus, part of the light reaching the interface cannot enter the glass member 11 because the angle of the interface changes. However, the light emitted from the n-GaN layer 13 of the LED element 1 shown in FIG. 1A to the glass member 11 is emitted with the same efficiency as a, b, and c in FIG. 8C. Further, when the interface with the glass member 11 is flat as shown in FIG. 1A, the light that has not been emitted to the glass member 11 due to total reflection due to the refractive index difference between the glass member 11 and the n-GaN layer 13 is also obtained. , D. The light emitted to the glass member 11 as shown in c is effective light to the glass member 11 if the critical angle is 45 degrees or 50 degrees or more in two dimensions as shown in FIG. It becomes radiation. If the critical angle is 45 degrees or more, light can be emitted to the glass member 11 within 2 degrees of incidence on the interface, and if it is 50 degrees or more, the Fresnel reflection can be set to an angle that is not large, so that further efficiency can be obtained. Can do. In three dimensions, depending on the column shape, if the rectangular shape is as shown in FIG. 8, if the critical angle is 55 degrees or 60 degrees or more, light emission to the glass member 11 is performed within 3 degrees of interface incidence. it can. By using the glass member 11 having a high refractive index, the glass member 11 satisfying this can be approached or close to this.

なお、凹部13Aは、GaN側に側面まで連続した溝を形成したものとして説明したが、GaN側にドット状の溝を形成したものとしてもよい。但し残留気泡なしにGaN層13とガラス部材11とを良好に接着するためには、連続した溝形成を行う方が好ましい。また、図5のように、ガラス部材11のコーナーカットを施してもよく、あるいは蛍光体含有ガラスを用いたものとしてもよい。   In addition, although the recessed part 13A was demonstrated as what formed the groove | channel which continued to the side surface on the GaN side, it is good also as what formed the dot-shaped groove | channel on the GaN side. However, in order to bond the GaN layer 13 and the glass member 11 satisfactorily without residual bubbles, it is preferable to perform continuous groove formation. Moreover, as shown in FIG. 5, the glass member 11 may be subjected to a corner cut or a phosphor-containing glass may be used.

(第8の実施の形態)
(LED素子1の構成)
図9は、第8の実施の形態に係るLED素子の縦断面図である。以下の説明において、第1の実施の形態と同一の構成および機能を有する部分については共通の引用数字を付している。このLED素子1は、第1の実施の形態で説明したガラス部材11に代えて、屈折率n=2.0の乳白色ガラス部材11Aを設けた構成およびフェイスアップ型のLED素子であることにおいて第1の実施の形態と相違している。
(Eighth embodiment)
(Configuration of LED element 1)
FIG. 9 is a longitudinal sectional view of an LED element according to the eighth embodiment. In the following description, parts having the same configuration and function as those of the first embodiment are denoted by common reference numerals. This LED element 1 is a face-up type LED element in which a milky white glass member 11A having a refractive index n = 2.0 is provided instead of the glass member 11 described in the first embodiment. This is different from the first embodiment.

(第8の実施の形態の効果)
第8の実施の形態によると、n−GaN層13内を伝搬する層内閉込光が乳白色ガラス部材11Aで拡散されるので、光取り出し性が向上する。また、LED素子1を実装する部材の光吸収影響を受けないという効果もある。Agペーストや有機接着剤等ではLED素子1の発する光や熱によって劣化し、光吸収度合いが大になるといった問題があるが、これを回避することができる。このようにフリップタイプに限らずフェイスアップタイプとして用いてもよい。
(Effect of 8th Embodiment)
According to the eighth embodiment, the in-layer confinement light propagating in the n-GaN layer 13 is diffused by the milky white glass member 11A, so that the light extraction property is improved. In addition, there is an effect that the member that mounts the LED element 1 is not affected by light absorption. The Ag paste, the organic adhesive, or the like has a problem that the LED element 1 is deteriorated by light or heat emitted from the LED element 1, and the light absorption degree is increased. However, this can be avoided. In this way, not only the flip type but also a face up type may be used.

なお、第1から第8の実施の形態では、GaNからなる半導体層を有するLED素子として説明したが、GaAs、AlInGaP等他の材料を用いたものとしてもよい。また、サファイア基板10をリフトオフしたものとして説明したが、半導体層と基板とが同等の屈折率であれば、基板を除去しなくても良い。また、Bi系材料、屈折率2.0のガラス部材として説明したが、Bi系に限らずSiO−Nb系、SiO−Bなど他の材料であってもよい。また、LED素子封止材料あるいは、半導体成長基板より高い屈折率であれば、光取出効率向上効果を得ることができる。例えば、一般に屈折率n=1.5のエポキシ樹脂がLED素子封止材料として一般に用いられているが、GaAsやAlInGaPに屈折率n=1.6以上のガラス部材11を貼り付ければ効果を得ることができる。サファイア基板(屈折率n=1.7)10に成長させたGaNの場合、基板以上の屈折率材料を半導体層へ接着することで効果を得ることができる。基板自体の光透過率が高い場合は、基板以上の屈折率材料とする必要がある。もちろん、GaAsやAlInGaPでも、屈折率n=1.7以上のガラス部材11の方が大きな効果を得ることができる。 In the first to eighth embodiments, the LED element having the semiconductor layer made of GaN has been described. However, other materials such as GaAs and AlInGaP may be used. Moreover, although it demonstrated as what lifted off the sapphire substrate 10, if a semiconductor layer and a board | substrate are the same refractive index, it is not necessary to remove a board | substrate. Further, Bi 2 O 3 based material has been described as a glass member having a refractive index 2.0, SiO 2 -Nb 2 O 5 system is not limited to Bi 2 O 3 system, other materials such as SiO 2 -B 2 O 3 It may be. Further, if the refractive index is higher than that of the LED element sealing material or the semiconductor growth substrate, the effect of improving the light extraction efficiency can be obtained. For example, an epoxy resin having a refractive index n = 1.5 is generally used as an LED element sealing material. However, if a glass member 11 having a refractive index n = 1.6 or more is attached to GaAs or AlInGaP, an effect is obtained. be able to. In the case of GaN grown on a sapphire substrate (refractive index n = 1.7) 10, an effect can be obtained by adhering a refractive index material higher than the substrate to the semiconductor layer. When the light transmittance of the substrate itself is high, it is necessary to use a refractive index material higher than that of the substrate. Of course, even with GaAs or AlInGaP, the glass member 11 having a refractive index n = 1.7 or more can provide a greater effect.

また、光取出し側に設ける高屈折率材料層は、上記したガラス以外の他の材料からなるものであっても良く、例えば、樹脂からなる高屈折率材料層であっても良い。また、GaN系半導体層100からの光取出し性を高める他の無機材料で構成することも可能である。   Further, the high refractive index material layer provided on the light extraction side may be made of a material other than the glass described above, and may be a high refractive index material layer made of resin, for example. Moreover, it is also possible to comprise other inorganic materials that enhance light extraction from the GaN-based semiconductor layer 100.

(第9の実施の形態)
図10は、第9の実施の形態に係るLED素子を示す断面図である。このフリップチップ型のLED素子1は、第1の実施の形態で説明したように、サファイア基板をリフトオフすることにより露出させたn−GaN層13の表面に無機材料からなる薄膜状の高屈折率材料層19を設けた構成を有している。
(Ninth embodiment)
FIG. 10 is a cross-sectional view showing an LED element according to the ninth embodiment. As described in the first embodiment, the flip-chip type LED element 1 has a thin high refractive index made of an inorganic material on the surface of the n-GaN layer 13 exposed by lifting off the sapphire substrate. The material layer 19 is provided.

高屈折率材料層19は、電子ビーム蒸着法により原材料である酸化タンタル(Ta)を加熱蒸気化させてn−GaN層13の表面に膜厚1μmとなるように形成される。Taは、屈折率n=2.2であり、n−GaN層13との屈折率比に基づく臨界角θcは66°となる。また、高屈折率材料層19の光取出し側となる面には、電子ビーム蒸着法に基づく粗面部19Aが形成される。 The high refractive index material layer 19 is formed to have a film thickness of 1 μm on the surface of the n-GaN layer 13 by heating and vaporizing tantalum oxide (Ta 2 O 5 ) as a raw material by electron beam evaporation. Ta 2 O 5 has a refractive index n = 2.2, and the critical angle θc based on the refractive index ratio with the n-GaN layer 13 is 66 °. A rough surface portion 19A based on an electron beam evaporation method is formed on the surface of the high refractive index material layer 19 on the light extraction side.

(第9の実施の形態の効果)
第9の実施の形態によると、n−GaN層13の表面にn=2.2のTaからなる高屈折率材料層19を設けたことにより、立体角の拡大を図ることができる。また、Ta成膜時においてn−GaN層13の表面にTaが再結晶化する際に粗面部19Aが形成されるので、LED素子1と外部との界面におけるランダムな入射角度を付与することができ、光取出し効率が向上する。
(Effect of 9th Embodiment)
According to the ninth embodiment, by providing the high refractive index material layer 19 made of Ta 2 O 5 with n = 2.2 on the surface of the n-GaN layer 13, the solid angle can be expanded. . Further, since the rough surface portion 19A is formed when Ta 2 O 5 is recrystallized on the surface of the n-GaN layer 13 during the Ta 2 O 5 film formation, random incidence at the interface between the LED element 1 and the outside is performed. An angle can be given, and the light extraction efficiency is improved.

なお、上記した高屈折率材料層19は、Ta以外の他の材料で形成しても良く、例えば、ZnS(n=2.4)、SiC(n=2.4)、HfO(n=2.0)、ITO(n=2.0)、あるいはGaNであっても良い。これら成膜材料は導電性材料でなくても良く、付着力に優れ、光学特性に優れるものであれば良い。 The high refractive index material layer 19 may be formed of a material other than Ta 2 O 5 , for example, ZnS (n = 2.4), SiC (n = 2.4), HfO 2 (N = 2.0), ITO (n = 2.0), or GaN may be used. These film-forming materials may not be conductive materials, and may be any material that has excellent adhesion and optical characteristics.

(第10の実施の形態)
図11は、第10の実施の形態に係るLED素子を示す断面図である。このフリップチップ型のLED素子1は、第9の実施の形態で説明したLED素子1の高屈折率材料層19の表面にn=1.75のガラス部材11を接合した構成を有している。
(Tenth embodiment)
FIG. 11 is a cross-sectional view showing an LED element according to the tenth embodiment. This flip-chip type LED element 1 has a configuration in which a glass member 11 of n = 1.75 is bonded to the surface of the high refractive index material layer 19 of the LED element 1 described in the ninth embodiment. .

(第10の実施の形態の効果)
第10の実施の形態によると、n−GaN層13から高屈折率材料層19へ入射した光がガラス部材11との界面で光拡散し、より外部放射性が高められる。これは、Taからなる高屈折率材料層19の粗面部19Aに加えて、Taから放射される際の臨界角θcがガラス部材11を介することで大になり、n−GaN層13から高屈折率材料層19への出射効率を高めることができることによる。
(Effect of 10th Embodiment)
According to the tenth embodiment, the light incident on the high refractive index material layer 19 from the n-GaN layer 13 is diffused at the interface with the glass member 11, and the external radiation is further enhanced. This is in addition to the rough surface portion 19A of the high refractive index material layer 19 made of Ta 2 O 5, the critical angle θc when emitted from the Ta 2 O 5 becomes large by through the glass member 11, n- This is because the emission efficiency from the GaN layer 13 to the high refractive index material layer 19 can be increased.

(第11の実施の形態)
図12は、第11の実施の形態に係るLED素子を示す断面図である。このフリップチップ型のLED素子1は、第9の実施の形態で説明したLED素子1のp−電極18に代えて、熱膨張率が7.7×10−6/℃のITOコンタクト電極20と、Al層21AとAu層21Bからなるボンディングパッド21を設けた構成を有している。
(Eleventh embodiment)
FIG. 12 is a sectional view showing an LED element according to the eleventh embodiment. The flip-chip type LED element 1 includes an ITO contact electrode 20 having a thermal expansion coefficient of 7.7 × 10 −6 / ° C. instead of the p-electrode 18 of the LED element 1 described in the ninth embodiment. The bonding pad 21 including the Al layer 21A and the Au layer 21B is provided.

(第11の実施の形態の効果)
第11の実施の形態によると、第9の実施の形態の好ましい効果に加えてGaN系半導体層100と略同等の熱膨張率を有するITOコンタクト電極20を設けたので、p側電極の付着性が向上し、LED素子1の封止加工に伴う熱や、発光に伴って生じる発熱によってp側電極の剥離を生じない信頼性の高いLED素子1が得られる。また、ITOの電流拡散性に基づいて発光むらを小にすることができる。
(Effect of 11th Embodiment)
According to the eleventh embodiment, since the ITO contact electrode 20 having a thermal expansion coefficient substantially equal to that of the GaN-based semiconductor layer 100 is provided in addition to the preferable effects of the ninth embodiment, the adhesion of the p-side electrode is increased. As a result, the LED element 1 with high reliability that does not cause the p-side electrode to peel off due to heat generated by the sealing process of the LED element 1 or heat generated due to light emission can be obtained. In addition, unevenness in light emission can be reduced based on the current diffusivity of ITO.

(第12の実施の形態)
図13(a)および(b)は、第12の実施の形態に係るLED素子を示し、(a)はLED素子の平面図、(b)は(a)のA−A部における断面図である。このフリップチップ型のLED素子1は、第11の実施の形態で説明したLED素子1のn−GaN層13に対して、図13(a)に示すように所定の幅および深さを有した溝状の凹部13Aを格子状に設け、その表面に図13(b)に示すように高屈折率材料層19を設けた構成を有する。
(Twelfth embodiment)
FIGS. 13A and 13B show an LED element according to a twelfth embodiment, where FIG. 13A is a plan view of the LED element, and FIG. 13B is a cross-sectional view taken along the line AA in FIG. is there. The flip-chip type LED element 1 has a predetermined width and depth as shown in FIG. 13A with respect to the n-GaN layer 13 of the LED element 1 described in the eleventh embodiment. The groove-like recesses 13A are provided in a lattice shape, and a high refractive index material layer 19 is provided on the surface thereof as shown in FIG.

(第12の実施の形態の効果)
第12の実施の形態によると、第11の実施の形態の好ましい効果に加えて、溝状の凹部13Aを格子状に設けることで、光取出し面が拡大され、かつ平面と垂直面からなる光取出し面となることで、光取出し性が高められる。さらにn−GaN層13の表面に粗面部19Aを有する高屈折率材料層19が設けられているので、n−GaN層13閉込伝搬光は側面に至る前に溝状の凹部13Aから外部放射でき、その際の臨界角は高屈折率材料層19によって広げられる。このため、外部放射性に優れるLED素子1が得られる。
(Effect of 12th Embodiment)
According to the twelfth embodiment, in addition to the preferable effects of the eleventh embodiment, the light-extracting surface is enlarged by providing the groove-like recesses 13A in a lattice shape, and light having a plane and a vertical plane is provided. The light extraction property is enhanced by providing the extraction surface. Further, since the high refractive index material layer 19 having the rough surface portion 19A is provided on the surface of the n-GaN layer 13, the propagation light confined in the n-GaN layer 13 is externally emitted from the groove-shaped recess 13A before reaching the side surface. In this case, the critical angle is widened by the high refractive index material layer 19. For this reason, the LED element 1 excellent in external radiation is obtained.

(第13の実施の形態)
図14は、第13の実施の形態に係るLED素子を示す断面図である。このフリップチップ型のLED素子1は、第12の実施の形態で説明したLED素子1の高屈折率材料層19表面にn=1.75のガラス部材11を貼り付けた構成を有する。
(Thirteenth embodiment)
FIG. 14 is a sectional view showing an LED element according to the thirteenth embodiment. This flip-chip type LED element 1 has a configuration in which a glass member 11 of n = 1.75 is attached to the surface of the high refractive index material layer 19 of the LED element 1 described in the twelfth embodiment.

(第13の実施の形態の効果)
第13の実施の形態によると、第12の実施の形態の好ましい効果に加えて、n−GaN層13から高屈折率材料層19へ入射した光がガラス部材11との界面でランダムな入射角度で入射するが、その際の臨界角を大にできるため、より外部放射性を高めることができる。
(Effect of 13th Embodiment)
According to the thirteenth embodiment, in addition to the preferable effects of the twelfth embodiment, the light incident on the high refractive index material layer 19 from the n-GaN layer 13 is randomly incident at the interface with the glass member 11. However, since the critical angle at that time can be increased, the external radiation can be further increased.

(第14の実施の形態)
図15は、第14の実施の形態に係るLED素子を示す断面図である。このフリップチップ型のLED素子1は、第13の実施の形態で説明したLED素子1のガラス部材11端部に45°の傾斜を有するカット部110を設けた構成を有する。
(Fourteenth embodiment)
FIG. 15 is a sectional view showing an LED element according to the fourteenth embodiment. This flip-chip type LED element 1 has a configuration in which a cut portion 110 having an inclination of 45 ° is provided at the end of the glass member 11 of the LED element 1 described in the thirteenth embodiment.

(第14の実施の形態の効果)
第14の実施の形態によると、第13の実施の形態の好ましい効果に加えて、ガラス部材11を横伝搬する光がカット部110から外部放射されるようになり、より光取出し性を向上させることができる。
(Effect of 14th Embodiment)
According to the fourteenth embodiment, in addition to the preferable effects of the thirteenth embodiment, light that propagates laterally through the glass member 11 is emitted from the cut portion 110 to the outside, thereby further improving the light extraction performance. be able to.

(a)および(b)は、第1の実施の形態に係るLED素子であり、(a)は縦断面図、(b)は臨界角を示す説明図である。(A) And (b) is the LED element which concerns on 1st Embodiment, (a) is a longitudinal cross-sectional view, (b) is explanatory drawing which shows a critical angle. LED素子の製造工程を示す図であり、(a)は、基板準備工程を示す図、(b)は、サファイア基板へのバッファ層形成工程を示す図、(c)は、GaN系半導体層の形成工程を示す図、(d)は、サファイア基板とGaN系半導体層とのリフトオフ工程を示す図、(e)は、サファイア基板が剥離されたGaN系半導体層に熱融着されるガラス部材を準備するガラス準備工程を示す図、(f)は、n−GaN層にガラス部材を熱融着するガラス圧着工程を示す図、(g)は、電極を形成する電極形成工程を示す図である。It is a figure which shows the manufacturing process of an LED element, (a) is a figure which shows a board | substrate preparation process, (b) is a figure which shows the buffer layer formation process to a sapphire substrate, (c) is a figure of a GaN-type semiconductor layer. The figure which shows a formation process, (d) is a figure which shows the lift-off process of a sapphire substrate and a GaN-type semiconductor layer, (e) is a glass member heat-sealed to the GaN-type semiconductor layer from which the sapphire substrate was peeled off. The figure which shows the glass preparatory process to prepare, (f) is a figure which shows the glass crimping | compression-bonding process which heat-seal | fuses a glass member to an n-GaN layer, (g) is a figure which shows the electrode formation process which forms an electrode. . 第2の実施の形態に係るLED素子の縦断面図である。It is a longitudinal cross-sectional view of the LED element which concerns on 2nd Embodiment. 第3の実施の形態に係るLED素子の縦断面図である。It is a longitudinal cross-sectional view of the LED element which concerns on 3rd Embodiment. (a)から(c)は、第4の実施の形態に係るLED素子を示す図であり、(a)は縦断面図、(b)は(a)の外形および切断部を示す平面図、(c)はカット部に入射する光を示す図である。(A)-(c) is a figure which shows the LED element which concerns on 4th Embodiment, (a) is a longitudinal cross-sectional view, (b) is a top view which shows the external shape and cutting part of (a), (C) is a figure which shows the light which injects into a cut part. 第5の実施の形態に係るLED素子の縦断面図である。It is a longitudinal cross-sectional view of the LED element which concerns on 5th Embodiment. 第6の実施の形態に係るLED素子の縦断面図である。It is a longitudinal cross-sectional view of the LED element which concerns on 6th Embodiment. 第7の実施の形態に係るLED素子を示す図である。It is a figure which shows the LED element which concerns on 7th Embodiment. 第8の実施の形態に係るLED素子の縦断面図である。It is a longitudinal cross-sectional view of the LED element which concerns on 8th Embodiment. 第9の実施の形態に係るLED素子を示す断面図である。It is sectional drawing which shows the LED element which concerns on 9th Embodiment. 第10の実施の形態に係るLED素子を示す断面図である。It is sectional drawing which shows the LED element which concerns on 10th Embodiment. 第11の実施の形態に係るLED素子を示す断面図である。It is sectional drawing which shows the LED element which concerns on 11th Embodiment. (a)および(b)は、第12の実施の形態に係るLED素子を示し、(a)はLED素子の平面図、(b)は(a)のA−A部における断面図である。(A) And (b) shows the LED element which concerns on 12th Embodiment, (a) is a top view of an LED element, (b) is sectional drawing in the AA part of (a). 第13の実施の形態に係るLED素子を示す断面図である。It is sectional drawing which shows the LED element which concerns on 13th Embodiment. 第14の実施の形態に係るLED素子を示す断面図である。It is sectional drawing which shows the LED element which concerns on 14th Embodiment.

符号の説明Explanation of symbols

1…LED素子、1A…界面、1B…凹凸部、10…サファイア基板、11…ガラス部材、11A…乳白色ガラス部材、11B…蛍光体含有ガラス部材、11C…凹凸形状部、12…バッファ層、13…n−GaN層、13A…凹部、14…発光層、15…p−GaN層、16…n−電極、18…p−電極、19…高屈折率材料層、19A…粗面部、20…ITOコンタクト電極、21…ボンディングパッド、21A…Al層、21B…Au層、100…GaN系半導体層、110…カット部 DESCRIPTION OF SYMBOLS 1 ... LED element, 1A ... Interface, 1B ... Uneven part, 10 ... Sapphire substrate, 11 ... Glass member, 11A ... Milky white glass member, 11B ... Phosphor containing glass member, 11C ... Uneven shape part, 12 ... Buffer layer, 13 ... n-GaN layer, 13A ... recess, 14 ... light emitting layer, 15 ... p-GaN layer, 16 ... n-electrode, 18 ... p-electrode, 19 ... high refractive index material layer, 19A ... rough surface part, 20 ... ITO Contact electrode, 21 ... bonding pad, 21A ... Al layer, 21B ... Au layer, 100 ... GaN-based semiconductor layer, 110 ... cut portion

Claims (15)

発光層を含む半導体層を有し、実装面側に第1および第2の電極が設けられるフリップチップ型の発光素子において、
前記半導体層の光放射面側に設けられる屈折率n=1.6以上の透光性高屈折率材料層とを有することを特徴とする発光素子。
In a flip chip type light emitting element having a semiconductor layer including a light emitting layer and provided with first and second electrodes on the mounting surface side,
A light-emitting element comprising: a light-transmitting high-refractive-index material layer having a refractive index n = 1.6 or more provided on the light emitting surface side of the semiconductor layer.
前記透光性高屈折率材料層は、表面に凹凸状の粗面部を有する請求項1に記載の発光素子。   The light-emitting element according to claim 1, wherein the translucent high-refractive-index material layer has an uneven rough surface portion on a surface. 前記半導体層は、形成基板を除去したものであり、前記透光性高屈折率材料層は前記発光素子幅の1/5以上の厚みを有する請求項1に記載の発光素子。   2. The light emitting device according to claim 1, wherein the semiconductor layer is obtained by removing a formation substrate, and the light transmissive high refractive index material layer has a thickness of 1/5 or more of the width of the light emitting device. 前記透光性高屈折率材料層は、前記半導体層に接する第1の層と、前記第1の層に積層される第2の層からなる請求項1に記載の発光素子。   2. The light-emitting element according to claim 1, wherein the translucent high refractive index material layer includes a first layer in contact with the semiconductor layer and a second layer stacked on the first layer. 発光層を含む半導体層と、
前記半導体層に貼り付けられる屈折率n=1.6以上の透光性高屈折率材料層とを有し、前記透光性高屈折率材料層はガラスであることを特徴とする発光素子。
A semiconductor layer including a light emitting layer;
A light-transmitting high-refractive-index material layer having a refractive index of n = 1.6 or more attached to the semiconductor layer, and the light-transmitting high-refractive index material layer is made of glass.
前記半導体層は、形成基板を除去したものであることを特徴とする請求項1,2,4あるいは5に記載の発光素子。   6. The light emitting element according to claim 1, wherein the semiconductor layer is formed by removing a formation substrate. 前記透光性高屈折率材料層は、蛍光体を含むことを特徴とする請求項4又は5に記載の発光素子。   The light emitting device according to claim 4, wherein the light transmissive high refractive index material layer includes a phosphor. 前記透光性高屈折率材料層は、表面に凹凸形状部が設けられていることを特徴とする請求項5から7のいずれか1項に記載の発光素子。   The light-emitting element according to claim 5, wherein the translucent high-refractive-index material layer has a concavo-convex shape portion on a surface thereof. 前記透光性高屈折率材料層は、コーナーカットされた形状であることを特徴とする請求項5に記載の発光素子。   6. The light emitting device according to claim 5, wherein the translucent high refractive index material layer has a corner cut shape. 前記半導体層と前記透光性高屈折率材料層との界面に凹凸形状部を有することを特徴とする請求項5から9のいずれか1項に記載の発光素子。   10. The light-emitting element according to claim 5, further comprising an uneven portion at an interface between the semiconductor layer and the translucent high refractive index material layer. 前記凹凸形状部は、柱面形状であることを特徴とする請求項10に記載の発光素子。   The light emitting device according to claim 10, wherein the uneven portion has a columnar shape. 前記半導体層は、サファイア基板上に結晶成長に基づいて形成されたGaN系半導体層であり、前記透光性高屈折率材料層は、屈折率n=1.7以上であることを特徴とする請求項3から10のいずれか1項に記載の発光素子。   The semiconductor layer is a GaN-based semiconductor layer formed on a sapphire substrate based on crystal growth, and the translucent high refractive index material layer has a refractive index n = 1.7 or more. The light emitting device according to claim 3. 前記蛍光体は、蛍光錯体あるいは粒子状の蛍光体であることを特徴とする請求項7に記載の発光素子。   The light emitting device according to claim 7, wherein the phosphor is a fluorescent complex or a particulate phosphor. 下地基板を準備する基板準備工程と、
前記下地基板に半導体層を形成する半導体層形成工程と、
前記半導体層から前記下地基板をリフトオフするリフトオフ工程と、
前記下地基板をリフトオフされた前記半導体層の前記下地基板取り付け側に透光性高屈折率材料層を設ける透光性高屈折率材料層形成工程と、
前記透光性高屈折率材料層を設けられた前記半導体層に電極を形成する電極形成工程とを含むことを特徴とする発光素子の製造方法。
A substrate preparation step of preparing a base substrate;
A semiconductor layer forming step of forming a semiconductor layer on the base substrate;
A lift-off step of lifting off the base substrate from the semiconductor layer;
A translucent high refractive index material layer forming step of providing a translucent high refractive index material layer on the base substrate mounting side of the semiconductor layer lifted off the base substrate;
An electrode formation step of forming an electrode on the semiconductor layer provided with the light-transmitting high refractive index material layer.
前記半導体層形成工程は、前記下地基板としてのサファイア基板上に前記半導体層としてのGaN系半導体層を形成することを特徴とする請求項14に記載の発光素子の製造方法。   The method of manufacturing a light emitting element according to claim 14, wherein the semiconductor layer forming step forms a GaN-based semiconductor layer as the semiconductor layer on a sapphire substrate as the base substrate.
JP2005133750A 2004-06-07 2005-04-28 Method for manufacturing light emitting device Active JP4857596B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005133750A JP4857596B2 (en) 2004-06-24 2005-04-28 Method for manufacturing light emitting device
US11/145,167 US7560294B2 (en) 2004-06-07 2005-06-06 Light emitting element and method of making same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004187097 2004-06-24
JP2004187097 2004-06-24
JP2005133750A JP4857596B2 (en) 2004-06-24 2005-04-28 Method for manufacturing light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011182419A Division JP5234149B2 (en) 2004-06-24 2011-08-24 Method for manufacturing light emitting device

Publications (3)

Publication Number Publication Date
JP2006041479A true JP2006041479A (en) 2006-02-09
JP2006041479A5 JP2006041479A5 (en) 2007-09-13
JP4857596B2 JP4857596B2 (en) 2012-01-18

Family

ID=35906091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005133750A Active JP4857596B2 (en) 2004-06-07 2005-04-28 Method for manufacturing light emitting device

Country Status (1)

Country Link
JP (1) JP4857596B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136065A1 (en) * 2006-05-23 2007-11-29 Alps Electric Co., Ltd. Method for manufacturing semiconductor light emitting element
JP2007311784A (en) * 2006-05-15 2007-11-29 Samsung Electro Mech Co Ltd Semiconductor light-emitting device having multi-pattern structure
JP2008103626A (en) * 2006-10-20 2008-05-01 Hitachi Cable Ltd Semiconductor light emitting element
JP2009289801A (en) * 2008-05-27 2009-12-10 Toshiba Discrete Technology Kk Light-emitting device and method of manufacturing the same
JP2010512662A (en) * 2006-12-11 2010-04-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Transparent light emitting diode
JP2010135693A (en) * 2008-12-08 2010-06-17 Toshiba Corp Optical semiconductor device and method of manufacturing optical semiconductor device
JP2011513946A (en) * 2008-02-25 2011-04-28 鶴山麗得電子實業有限公司 Manufacturing method of LED device
US8003419B2 (en) 2008-11-18 2011-08-23 Samsung Electronics Co., Ltd. Method of manufacturing light emitting device
JP2011166148A (en) * 2010-02-12 2011-08-25 Lg Innotek Co Ltd Light emitting element, method of manufacturing the same, and light emitting element package
JP2011258658A (en) * 2010-06-07 2011-12-22 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
JP2012038889A (en) * 2010-08-06 2012-02-23 Koito Mfg Co Ltd Fluorescent member and light-emitting module
JP2012195345A (en) * 2011-03-15 2012-10-11 Toshiba Corp Semiconductor light-emitting device
JP2013197309A (en) * 2012-03-19 2013-09-30 Toshiba Corp Light-emitting device
KR20140053361A (en) * 2011-08-26 2014-05-07 코닌클리케 필립스 엔.브이. Method of processing a semiconductor structure
JP2014525683A (en) * 2011-08-30 2014-09-29 コーニンクレッカ フィリップス エヌ ヴェ Method for bonding substrate to semiconductor light emitting device
JP2015514312A (en) * 2012-03-19 2015-05-18 コーニンクレッカ フィリップス エヌ ヴェ Light-emitting devices grown on silicon substrates
JP2015111659A (en) * 2013-10-28 2015-06-18 日亜化学工業株式会社 Light-emitting device, and method of manufacturing the same
JP2015216408A (en) * 2015-09-01 2015-12-03 株式会社東芝 Semiconductor light-emitting device
JP2016219593A (en) * 2015-05-20 2016-12-22 シャープ株式会社 Nitride semiconductor light emitting element and manufacturing method of the same
JP2016219821A (en) * 2010-09-29 2016-12-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Wavelength converted light emitting device
JP2017501589A (en) * 2014-01-07 2017-01-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Adhesive-free light-emitting device with fluorescent converter
JP2017034218A (en) * 2015-08-03 2017-02-09 株式会社東芝 Semiconductor light-emitting device
JP2018014423A (en) * 2016-07-21 2018-01-25 株式会社ディスコ Method for manufacturing light-emitting diode chip
JP2018014422A (en) * 2016-07-21 2018-01-25 株式会社ディスコ Method for manufacturing light-emitting diode chip, and light-emitting diode chip
JP2018074110A (en) * 2016-11-04 2018-05-10 株式会社ディスコ Method for manufacturing light-emitting diode chip and light-emitting diode chip
US10147843B2 (en) 2008-07-24 2018-12-04 Lumileds Llc Semiconductor light emitting device including a window layer and a light-directing structure
JP2022075717A (en) * 2019-01-11 2022-05-18 日亜化学工業株式会社 Light-emitting device
US11557704B2 (en) 2019-11-19 2023-01-17 Nichia Corporation Light-emitting device having a higher luminance
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device
JP7469719B2 (en) 2021-01-12 2024-04-17 日亜化学工業株式会社 Light-emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210123064A (en) * 2020-04-02 2021-10-13 웨이브로드 주식회사 Method of manufacturing a iii-nitride semiconducter device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296040A (en) * 1993-02-10 1994-10-21 Sharp Corp Manufacture of light-emitting diode
JPH08139361A (en) * 1994-11-08 1996-05-31 Toshiba Corp Compound semiconductor light emitting device
JPH11177129A (en) * 1997-12-16 1999-07-02 Rohm Co Ltd Chip type led, led lamp and led display
JPH11243229A (en) * 1997-12-02 1999-09-07 Murata Mfg Co Ltd Semiconductor light-emitting element and manufacture thereof
JP2002246651A (en) * 2001-02-20 2002-08-30 Hitachi Cable Ltd Light-emitting diode and its manufacturing method
JP2004128445A (en) * 2002-07-29 2004-04-22 Matsushita Electric Works Ltd Light emitting element and its manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296040A (en) * 1993-02-10 1994-10-21 Sharp Corp Manufacture of light-emitting diode
JPH08139361A (en) * 1994-11-08 1996-05-31 Toshiba Corp Compound semiconductor light emitting device
JPH11243229A (en) * 1997-12-02 1999-09-07 Murata Mfg Co Ltd Semiconductor light-emitting element and manufacture thereof
JPH11177129A (en) * 1997-12-16 1999-07-02 Rohm Co Ltd Chip type led, led lamp and led display
JP2002246651A (en) * 2001-02-20 2002-08-30 Hitachi Cable Ltd Light-emitting diode and its manufacturing method
JP2004128445A (en) * 2002-07-29 2004-04-22 Matsushita Electric Works Ltd Light emitting element and its manufacture

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10217916B2 (en) 2004-06-03 2019-02-26 The Regents Of The University Of California Transparent light emitting diodes
JP2007311784A (en) * 2006-05-15 2007-11-29 Samsung Electro Mech Co Ltd Semiconductor light-emitting device having multi-pattern structure
WO2007136065A1 (en) * 2006-05-23 2007-11-29 Alps Electric Co., Ltd. Method for manufacturing semiconductor light emitting element
JP2008103626A (en) * 2006-10-20 2008-05-01 Hitachi Cable Ltd Semiconductor light emitting element
US10593854B1 (en) 2006-12-11 2020-03-17 The Regents Of The University Of California Transparent light emitting device with light emitting diodes
US10454010B1 (en) 2006-12-11 2019-10-22 The Regents Of The University Of California Transparent light emitting diodes
US8835959B2 (en) 2006-12-11 2014-09-16 The Regents Of The University Of California Transparent light emitting diodes
JP2010512662A (en) * 2006-12-11 2010-04-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Transparent light emitting diode
US10658557B1 (en) 2006-12-11 2020-05-19 The Regents Of The University Of California Transparent light emitting device with light emitting diodes
US10644213B1 (en) 2006-12-11 2020-05-05 The Regents Of The University Of California Filament LED light bulb
JP2011513946A (en) * 2008-02-25 2011-04-28 鶴山麗得電子實業有限公司 Manufacturing method of LED device
US8482024B2 (en) 2008-05-27 2013-07-09 Kabushiki Kaisha Toshiba Light emitting device and method for manufacturing same
US8963194B2 (en) 2008-05-27 2015-02-24 Kabushiki Kaisha Toshiba Light emitting device
JP2009289801A (en) * 2008-05-27 2009-12-10 Toshiba Discrete Technology Kk Light-emitting device and method of manufacturing the same
US10147843B2 (en) 2008-07-24 2018-12-04 Lumileds Llc Semiconductor light emitting device including a window layer and a light-directing structure
US8003419B2 (en) 2008-11-18 2011-08-23 Samsung Electronics Co., Ltd. Method of manufacturing light emitting device
JP2010135693A (en) * 2008-12-08 2010-06-17 Toshiba Corp Optical semiconductor device and method of manufacturing optical semiconductor device
US8906716B2 (en) 2008-12-08 2014-12-09 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US8581291B2 (en) 2008-12-08 2013-11-12 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US9431588B2 (en) 2008-12-08 2016-08-30 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US8421110B2 (en) 2010-02-12 2013-04-16 Lg Innotek Co., Ltd. Light emitting device and light emitting device package
US8710535B2 (en) 2010-02-12 2014-04-29 Lg Innotek Co., Ltd. Light emitting device and light emitting device package
JP2012104849A (en) * 2010-02-12 2012-05-31 Lg Innotek Co Ltd Light emitting device, method of manufacturing the same, and light emitting device package
JP2011166148A (en) * 2010-02-12 2011-08-25 Lg Innotek Co Ltd Light emitting element, method of manufacturing the same, and light emitting element package
US9246065B2 (en) 2010-06-07 2016-01-26 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP2011258658A (en) * 2010-06-07 2011-12-22 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
JP2012038889A (en) * 2010-08-06 2012-02-23 Koito Mfg Co Ltd Fluorescent member and light-emitting module
JP2016219821A (en) * 2010-09-29 2016-12-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Wavelength converted light emitting device
US11171265B2 (en) 2010-09-29 2021-11-09 Lumileds Llc Light emitting device having an optically pumped semiconductor wavelength converting element
US8941124B2 (en) 2011-03-15 2015-01-27 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing same
JP2012195345A (en) * 2011-03-15 2012-10-11 Toshiba Corp Semiconductor light-emitting device
KR20190038671A (en) * 2011-08-26 2019-04-08 루미리즈 홀딩 비.브이. Method of processing a semiconductor structure
KR101965265B1 (en) * 2011-08-26 2019-04-04 루미리즈 홀딩 비.브이. Method of processing a semiconductor structure
JP2016213490A (en) * 2011-08-26 2016-12-15 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Processing method for semiconductor structure
JP2014525674A (en) * 2011-08-26 2014-09-29 コーニンクレッカ フィリップス エヌ ヴェ Semiconductor structure processing method
KR102082499B1 (en) * 2011-08-26 2020-02-27 루미리즈 홀딩 비.브이. Method of processing a semiconductor structure
KR20140053361A (en) * 2011-08-26 2014-05-07 코닌클리케 필립스 엔.브이. Method of processing a semiconductor structure
US10056531B2 (en) 2011-08-26 2018-08-21 Lumileds Llc Method of processing a semiconductor structure
US10158049B2 (en) 2011-08-30 2018-12-18 Lumileds Llc Method of bonding a substrate to a semiconductor light emitting device
JP2014525683A (en) * 2011-08-30 2014-09-29 コーニンクレッカ フィリップス エヌ ヴェ Method for bonding substrate to semiconductor light emitting device
JP2015514312A (en) * 2012-03-19 2015-05-18 コーニンクレッカ フィリップス エヌ ヴェ Light-emitting devices grown on silicon substrates
JP2013197309A (en) * 2012-03-19 2013-09-30 Toshiba Corp Light-emitting device
JP2015111659A (en) * 2013-10-28 2015-06-18 日亜化学工業株式会社 Light-emitting device, and method of manufacturing the same
JP2017501589A (en) * 2014-01-07 2017-01-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Adhesive-free light-emitting device with fluorescent converter
US11024781B2 (en) 2014-01-07 2021-06-01 Lumileds Llc Glueless light emitting device with phosphor converter
JP2016219593A (en) * 2015-05-20 2016-12-22 シャープ株式会社 Nitride semiconductor light emitting element and manufacturing method of the same
JP2017034218A (en) * 2015-08-03 2017-02-09 株式会社東芝 Semiconductor light-emitting device
JP2015216408A (en) * 2015-09-01 2015-12-03 株式会社東芝 Semiconductor light-emitting device
JP2018014423A (en) * 2016-07-21 2018-01-25 株式会社ディスコ Method for manufacturing light-emitting diode chip
JP2018014422A (en) * 2016-07-21 2018-01-25 株式会社ディスコ Method for manufacturing light-emitting diode chip, and light-emitting diode chip
JP2018074110A (en) * 2016-11-04 2018-05-10 株式会社ディスコ Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2022075717A (en) * 2019-01-11 2022-05-18 日亜化学工業株式会社 Light-emitting device
JP7260828B2 (en) 2019-01-11 2023-04-19 日亜化学工業株式会社 light emitting device
US11557704B2 (en) 2019-11-19 2023-01-17 Nichia Corporation Light-emitting device having a higher luminance
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11796163B2 (en) 2020-05-12 2023-10-24 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device
JP7469719B2 (en) 2021-01-12 2024-04-17 日亜化学工業株式会社 Light-emitting device

Also Published As

Publication number Publication date
JP4857596B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP4857596B2 (en) Method for manufacturing light emitting device
US10644213B1 (en) Filament LED light bulb
US7560294B2 (en) Light emitting element and method of making same
US7453092B2 (en) Light emitting device and light emitting element having predetermined optical form
KR101158242B1 (en) Semiconductor light emitting device and method of fabricating semiconductor light emitting device
KR100483049B1 (en) A METHOD OF PRODUCING VERTICAL GaN LIGHT EMITTING DIODES
JP6038443B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP7068771B2 (en) Wavelength conversion type semiconductor light emitting device
US6838704B2 (en) Light emitting diode and method of making the same
JP5377985B2 (en) Semiconductor light emitting device
JP6419077B2 (en) Wavelength conversion light emitting device
JP2006253298A (en) Semiconductor light emitting element and device therefor
US20060001035A1 (en) Light emitting element and method of making same
US20080121918A1 (en) High light extraction efficiency sphere led
JP2009049342A (en) Light emitting device
JP2017520118A (en) Wavelength-converted light-emitting device with small light source
JP2007266571A (en) Led chip, its manufacturing method, and light emitting device
CN100433383C (en) Light emitting device and light emitting element
JP2006073618A (en) Optical element and manufacturing method thereof
JP5400943B2 (en) Semiconductor light emitting device
JP2005347700A (en) Light emitting device and its manufacturing method
JP5234149B2 (en) Method for manufacturing light emitting device
JP2011066453A (en) Semiconductor light emitting element, and semiconductor light emitting device
KR100774995B1 (en) VERTICAL TYPE LIGHT EMITTING DIODE WITH Zn COMPOUND LAYER AND METHOD FOR MAKING THE SAME DIODE

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R150 Certificate of patent or registration of utility model

Ref document number: 4857596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3