JP2006029693A - Demand control system of multi-air conditioner - Google Patents

Demand control system of multi-air conditioner Download PDF

Info

Publication number
JP2006029693A
JP2006029693A JP2004209557A JP2004209557A JP2006029693A JP 2006029693 A JP2006029693 A JP 2006029693A JP 2004209557 A JP2004209557 A JP 2004209557A JP 2004209557 A JP2004209557 A JP 2004209557A JP 2006029693 A JP2006029693 A JP 2006029693A
Authority
JP
Japan
Prior art keywords
demand
air conditioner
intermittent
time
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004209557A
Other languages
Japanese (ja)
Other versions
JP4552119B2 (en
Inventor
Hideo Fukai
日出男 深井
Masahiro Kawai
昌裕 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2004209557A priority Critical patent/JP4552119B2/en
Publication of JP2006029693A publication Critical patent/JP2006029693A/en
Application granted granted Critical
Publication of JP4552119B2 publication Critical patent/JP4552119B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce peak amount of electric power consumption of the whole building efficiently while ensuring work environment by simple control by operating and controlling air conditioning facility depending on system. <P>SOLUTION: This demand control system of the multi-air conditioner is provided with a prediction computing means 6 for computing prediction amount of electric power used per demand calculation time, an intermittent shutting-off time computing means 8 for determining whether prediction amount of electric power computed by the prediction computing means exceeds a demand value or not and computing intermittent shutting-off time corresponding to exceeding amount of electric power when prediction amount of electric power exceeds the demand value, and an operation control means 9 for performing intermittent/rotation operation switching control in accordance with predetermined order of priority for a plurality of systems dividing the multi-air conditioner into a plurality of groups based on intermittent shutting-off time computed by the intermittent shutting-off time computing means to perform operation switching control of the multi-air conditioner per system so that amount of used electric power within demand calculation time is within a scope of demand value. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、マルチエアコンを複数のグループに分割した複数の系統により建物のデマンド計算時間毎の使用電力量を制御するマルチエアコンのデマンド制御システムに関する。   The present invention relates to a demand control system for a multi-air conditioner that controls power consumption for each demand calculation time of a building by a plurality of systems obtained by dividing the multi-air conditioner into a plurality of groups.

図10は或る建物における各年、月別のデマンド電力量の例を示す図である。電力料金は、基本料金と従量料金からなっている。基本料金は、最大使用電力量(デマンド電力量)といった電力の使われ方によって決定される。このデマンド電力量は、図10に示すように季節により大きく変化し、業務用電力の場合、1年間の期間中に最も消費電力量が多かった30分間の実績で決定される。したがって、365日×24時間×2=17,520回のうち最も大きい消費電力量が年間の電気料金のうちの基本料金を決定することになる。このため、できるだけ平準的な電力消費を実現することが電力料金の低減につながる。   FIG. 10 is a diagram showing an example of demand electric energy for each year and month in a certain building. Electricity charges consist of basic charges and pay-as-you-go charges. The basic charge is determined by how the power is used, such as the maximum power consumption (demand power consumption). As shown in FIG. 10, the demand power amount varies greatly depending on the season, and in the case of business power, the demand power amount is determined based on a 30-minute track record in which the amount of power consumption is the largest during a period of one year. Therefore, the largest amount of power consumption among 365 days × 24 hours × 2 = 17,520 times determines the basic charge of the annual electricity charge. For this reason, realizing as much leveled power consumption as possible leads to a reduction in power charges.

一般の事務所ビルにおいては、電力使用量の約40%が空調設備で消費されている。空調設備における消費電力量は、外部気象条件(外部気温、日射等)、建物の蓄熱状況(夜間、休日等)によって大きく変動し、特に夏季・冬季のピーク負荷時や休日開けの空調運転時に空調負荷が増大するので、これに伴い消費電力量も増大する。   In general office buildings, about 40% of the power consumption is consumed by air conditioning equipment. The amount of power consumed by air conditioning equipment varies greatly depending on external weather conditions (external temperature, solar radiation, etc.) and the heat storage status of the building (nighttime, holidays, etc.), especially during peak loads in summer and winter, and during air conditioning operations during open holidays Since the load increases, the power consumption increases accordingly.

従来の空調制御システムにおいて、最大負荷時のデマンド値を低減させるものとして、空調設備を通常の運転時間より早めに運転する予冷・予熱制御、さらに冷房または暖房の停止中に冷水または温水を冷温水循環用配管と空調機の熱交換器に循環させ、冷房または暖房の開始直前の冷温水循環用配管内の冷水または温水の温度と空調機の熱交換器の温度とを冷房中の冷水温度または暖房中の温水温度に近い温度に保持する運転方法などが考えられている(例えば、特許文献1参照)。
特開2004−108658号公報
In conventional air-conditioning control systems, pre-cooling / preheating control that operates air-conditioning equipment earlier than the normal operating time, as well as cold / hot water circulation during cooling or heating stop, to reduce the demand value at maximum load Circulate to the heat exchanger of the air conditioning pipe and the air conditioner, and the temperature of the chilled water or hot water in the chilled / hot water circulating pipe immediately before the start of cooling or heating and the temperature of the heat exchanger of the air conditioner are cooling water temperature during heating or heating An operation method for maintaining a temperature close to the hot water temperature is considered (for example, see Patent Document 1).
JP 2004-108658 A

しかし、上記従来の予冷・予熱制御では、室内環境を営業開始時間に適正値に収束させることに主眼がおかれ、外気条件、室内温度、空調機能力など多くのパラメータを計算して運転時間を計算し、また、冷房または暖房の停止中に冷水または温水を循環させる方法では、空調機への熱媒体の出側または入側に設置された二方弁とその前後に連通するバイパス管に設置された開閉弁のいずれか一方または双方を冷房または暖房の停止中に開いて循環ポンプの運転を続けていなければならない。   However, the above-mentioned conventional precooling / preheating control focuses on converging the indoor environment to an appropriate value at the start of business hours, and calculates many parameters such as outside air conditions, indoor temperature, air conditioning function, etc. In the method of calculating and circulating cold water or hot water while cooling or heating is stopped, it is installed on the two-way valve installed on the outlet side or inlet side of the heat medium to the air conditioner and the bypass pipe communicating with the two-way valve One or both of the opened / closed valves must be opened while cooling or heating is stopped, and the circulation pump must be operated.

本発明は、上記課題を解決するものであって、空調設備を系統別に運転制御して簡単な制御により執務環境を確保しつつ効率的に建物全体のピーク消費電力量を低減できるようにするものである。   The present invention solves the above-described problems, and enables the peak power consumption of the entire building to be efficiently reduced while ensuring the work environment through simple control by operating and controlling the air conditioning equipment for each system. It is.

そのために本発明は、マルチエアコンを複数のグループに分割した複数の系統により建物のデマンド計算時間毎の使用電力量を制御するマルチエアコンのデマンド制御システムであって、前記デマンド計算時間毎に使用される予測電力量を演算する予測演算手段と、前記予測演算手段により演算された予測電力量が前記デマンド値を超えるか否かを判定して前記予測電力量が予め設定されたデマンド値を超える場合に当該超える電力量に応じた間欠遮断時間を演算する間欠遮断時間演算手段と、前記間欠遮断時間演算手段により演算された間欠遮断時間に基づき前記複数の系統に対して所定の優先順に従って間欠・ローテーション運転による間欠遮断の切り換え制御を行う運転制御手段とを備え、前記デマンド計算時間内での使用電力量が前記デマンド値の範囲内となるように前記各系統毎にマルチエアコンの運転による間欠遮断の切り換え制御を行うようにしたことを特徴とする。   Therefore, the present invention is a demand control system for a multi-air conditioner that controls the amount of power used for each demand calculation time of a building by a plurality of systems in which the multi-air conditioner is divided into a plurality of groups, and is used for each demand calculation time. A prediction calculation unit that calculates a predicted power amount, and a case where the predicted power amount calculated by the prediction calculation unit exceeds the demand value by determining whether or not the predicted power amount exceeds the demand value Intermittent interruption time calculating means for calculating an intermittent interruption time according to the amount of electric power exceeding, and intermittently according to a predetermined priority order for the plurality of systems based on the intermittent interruption time calculated by the intermittent interruption time calculating means. Operation control means for performing intermittent interruption switching control by rotation operation, and the amount of power used within the demand calculation time is Characterized in that the said to be within the scope of the demand value to perform switching control of the intermittent blocking by multi-air conditioner operation for each line.

前記予測演算手段は、デマンド計算時間毎の初期の一定時間に使用される電力量を計測し積算した値に基づき前記予測電力量を演算し、あるいは空調負荷に関する情報の計測により空調負荷を演算して該空調負荷より前記予測電力量を演算し、前記計測される空調負荷に関する情報として、少なくとも日射量、外気温度、室内温度を含むことを特徴とする。   The prediction calculation means calculates the predicted electric energy based on a value obtained by measuring and integrating the electric energy used for an initial fixed time every demand calculation time, or calculates an air conditioning load by measuring information on the air conditioning load. The predicted electric energy is calculated from the air conditioning load, and at least the amount of solar radiation, the outside air temperature, and the room temperature are included as information on the measured air conditioning load.

前記間欠遮断時間演算手段は、前記予測電力量が前記デマンド値を超える電力量に一定の定数を掛けた値に空調機器の特性により決定される最小間欠遮断時間に加えて前記間欠遮断時間を演算し、前記運転制御手段は、空調運転開始時か空調運転中かに応じて、空調運転開始時の場合には、前記間欠遮断時間に基づき前記複数の系統の順次起動を行うことを特徴とする。   The intermittent interruption time calculating means calculates the intermittent interruption time in addition to the minimum intermittent interruption time determined by the characteristics of the air conditioner to a value obtained by multiplying the electric energy in which the predicted electric energy exceeds the demand value by a certain constant. The operation control means sequentially activates the plurality of systems based on the intermittent interruption time when the air conditioning operation is started depending on whether the air conditioning operation is started or during the air conditioning operation. .

本発明によれば、予測電力量が予め設定されたデマンド値を超える場合にその超える電力量に応じて間欠遮断時間が演算され、その間欠遮断時間の経過により予め定められた優先順に従って間欠・ローテーション運転による間欠遮断の切り換え制御が実行されるので、ピーク消費電力の抑制とマルチエアコンにより執務環境の確保(系統別の均質化)を両立させることができる。   According to the present invention, when the predicted power amount exceeds a preset demand value, the intermittent cutoff time is calculated according to the excess power amount, and intermittent / Since switching control of intermittent interruption by rotation operation is executed, it is possible to achieve both reduction of peak power consumption and securing of work environment (homogenization by system) by a multi-air conditioner.

以下、本発明の実施の形態を図面を参照しつつ説明する。図1は本発明に係るマルチエアコンのデマンド制御システムの実施の形態を説明する図である。図中、1は蓄熱負荷情報センサ、2はセンサ情報累積部、3は係数記憶部、4は休日情報記憶部、5は運転開始時間偏差演算部、6は電力量予測演算部、7は設定電力量記憶部、8は間欠遮断時間演算部、9は運転制御部を示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining an embodiment of a demand control system for a multi-air conditioner according to the present invention. In the figure, 1 is a heat storage load information sensor, 2 is a sensor information accumulation unit, 3 is a coefficient storage unit, 4 is a holiday information storage unit, 5 is an operation start time deviation calculation unit, 6 is an electric energy prediction calculation unit, and 7 is a setting. An electric energy storage unit, 8 is an intermittent interruption time calculation unit, and 9 is an operation control unit.

図1において、蓄熱負荷情報センサ1は、建物の蓄熱負荷に相関する情報を計測するものであり、例えば日射量、外気温度、室内温度などを計測するものである。センサ情報累積部2は、蓄熱負荷情報センサ1により計測された蓄熱負荷に相関する情報について、例えば前回空調終了時から登録された空調開始時刻のN時間前(通常は2時間程度前)までを累積するものである。係数記憶部3は、センサ情報累積部2に累積された値に基づき運転開始時間偏差を計算するための係数を記憶するものであり、休日情報記憶部4は、休日開け(運転日前休日数)を判定するため年間カレンダーや週間スケジュール等を記憶するものである。運転開始時間偏差演算部5は、センサ情報累積部2に累積された値、係数記憶部3に記憶された係数、休日情報記憶部4に記憶された年間カレンダーや週間スケジュール等に基づき空調開始時間偏差を演算するものである。   In FIG. 1, a heat storage load information sensor 1 measures information correlated with a heat storage load of a building, and measures, for example, an amount of solar radiation, an outside air temperature, an indoor temperature, and the like. For example, the sensor information accumulating unit 2 can obtain information related to the heat storage load measured by the heat storage load information sensor 1 up to N hours before the registered air-conditioning start time (usually about two hours before). It is cumulative. The coefficient storage unit 3 stores a coefficient for calculating the driving start time deviation based on the value accumulated in the sensor information accumulating unit 2, and the holiday information storage unit 4 opens a holiday (the number of holidays before the driving day). This is to memorize an annual calendar, weekly schedule, etc. The operation start time deviation calculation unit 5 is based on the value accumulated in the sensor information accumulation unit 2, the coefficient stored in the coefficient storage unit 3, the annual calendar or weekly schedule stored in the holiday information storage unit 4, and the like. The deviation is calculated.

電力量予測演算部6は、デマンド計算時間を30分として、30分デマンド予測を行うため、例えば受電電力計の電力量パルスを常時計測することにより、所定時間での電力量を計測、積算して30分間での予測電力量を演算するものである。設定電力量記憶部7は、予め設定されたデマンド値(設定電力量)として、電力会社との契約電力量を記憶しておくものである。間欠遮断時間演算部8は、電力量予測演算部6により求められた予測電力量と設定電力量記憶部7に記憶されたデマンド値との偏差から間欠遮断時間を演算し、あるいは、運転開始時間偏差演算部5よりセンサ情報の累積した値や係数、カレンダー等を受け取り予測電力量に換算して、その予測電力量とデマンド値との偏差から間欠遮断時間を演算するものである。   The power amount prediction calculation unit 6 sets the demand calculation time to 30 minutes and performs 30-minute demand prediction. For example, by constantly measuring the power amount pulse of the power receiving wattmeter, the power amount prediction calculation unit 6 measures and integrates the power amount in a predetermined time. The predicted electric energy for 30 minutes is calculated. The set power amount storage unit 7 stores the contract power amount with the power company as a preset demand value (set power amount). The intermittent interruption time calculation unit 8 calculates the intermittent interruption time from the deviation between the predicted electric energy obtained by the electric energy prediction calculation unit 6 and the demand value stored in the set electric energy storage unit 7, or the operation start time The accumulated value, coefficient, calendar and the like of the sensor information are received from the deviation calculation unit 5 and converted into the predicted power amount, and the intermittent interruption time is calculated from the deviation between the predicted power amount and the demand value.

運転制御部9は、運転開始時間偏差演算部5により演算され設定された空調開始時間偏差、間欠遮断時間演算部8により演算され設定された間欠遮断時間に基づき複数の系統A、B、……からなるマルチエアコンに対してそれぞれの運転開始時の順次起動制御、間欠・ローテーション運転による間欠遮断の切り換え制御を行うものである。   The operation control unit 9 includes a plurality of systems A, B,... Based on the air conditioning start time deviation calculated and set by the operation start time deviation calculation unit 5 and the intermittent cutoff time calculated and set by the intermittent cutoff time calculation unit 8. For the multi-air conditioner comprising the above, sequential start control at the start of each operation and intermittent cut-off switching control by intermittent / rotation operation are performed.

このように本実施形態では、デマンド計算時間毎に使用される予測電力量を演算し、その予測電力量が予め設定されたデマンド値を超えるか否かを判定して予測電力量が前記デマンド値を超える場合に当該超える電力量ΔPに応じた間欠遮断時間を演算することにより、その間欠遮断時間に基づき、マルチエアコンを複数のグループに分割した複数の系統A、B、Cに対して所定の優先順に従って間欠・ローテーション運転による間欠遮断の切り換え制御を行い、このことにより、デマンド計算時間内での使用電力量がデマンド値の範囲内となるようにするものである。   As described above, in the present embodiment, the predicted power amount used for each demand calculation time is calculated, it is determined whether the predicted power amount exceeds a preset demand value, and the predicted power amount is the demand value. Is calculated for the plurality of systems A, B, C obtained by dividing the multi air conditioner into a plurality of groups based on the intermittent interruption time. In accordance with the priority order, switching control of intermittent interruption by intermittent / rotation operation is performed, so that the amount of power used within the demand calculation time is within the range of the demand value.

図2はマルチエアコンの系統別順次起動運転を説明する図、図3は30分デマンド予測を説明する図、図4はマルチエアコンの系統別間欠・ローテーション運転を説明する図、図5は電力量予測演算処理の概要を説明する図である。   2 is a diagram for explaining sequential start-up operation for each system of a multi-air conditioner, FIG. 3 is a diagram for explaining 30-minute demand prediction, FIG. 4 is a diagram for explaining intermittent / rotation operation for each system of a multi-air conditioner, and FIG. It is a figure explaining the outline | summary of a prediction calculation process.

運転開始時間偏差演算部5により空調開始時刻のN時間前(通常は2時間程度前)に対して調整すべき空調開始時間偏差N′を演算すると、運転制御部9によるマルチエアコンの系統別順次起動運転では、図2に示すように空調開始時刻より空調開始時間偏差N′で決まる時間前からまず系統Aを起動し、次にK3(定数)遅延させて系統B、さらにK3遅延させて系統Cと、K3ずつ遅延させて順次起動運転を行う。この空調開始時間偏差N′は、負荷変換係数をK1(定数)、建物蓄熱係数をK2(定数)とすると、例えば外気温度を建物の蓄熱負荷に相関する情報とした場合、
N′=累積外気温×K1×K2
の数式により求められ、
日射量を建物の蓄熱負荷に相関する情報とした場合、
N′=累積日射量×K1×K2
の数式により求められ、
外気温度と日射量を建物の蓄熱負荷に相関する情報とした場合、
N′=(累積外気温+累積日射量/α)×K1×K2
ただし、α:定数(日射変換係数)
の数式により求められ、
室内温度を建物の蓄熱負荷に相関する情報とした場合、
N′=(室内温度と空調時設定温度の偏差)×K1×K2
ただし、α:定数(日射変換係数)
の数式により求められる。
When the operation start time deviation calculation unit 5 calculates the air conditioning start time deviation N ′ to be adjusted with respect to N hours before the air conditioning start time (usually about 2 hours before), the operation control unit 9 sequentially selects the multi air conditioners for each system. In the start-up operation, as shown in FIG. 2, the system A is started first before the time determined by the air conditioning start time deviation N ′ from the air conditioning start time, then the system B is delayed by K3 (constant), and the system is further delayed by K3. The start-up operation is sequentially performed with a delay of C and K3. The air conditioning start time deviation N ′ is, for example, when the load conversion coefficient is K1 (constant) and the building heat storage coefficient is K2 (constant), for example, when the outside air temperature is information correlated with the heat storage load of the building,
N ′ = cumulative outside temperature × K1 × K2
Calculated by the following formula:
When the amount of solar radiation is information that correlates with the heat storage load of the building,
N '= cumulative solar radiation x K1 x K2
Calculated by the following formula:
When the outside air temperature and solar radiation amount are correlated with the heat storage load of the building,
N ′ = (cumulative outside air temperature + cumulative solar radiation / α) × K1 × K2
Where α is a constant (solar radiation conversion coefficient)
Calculated by the following formula:
When the room temperature is information correlated with the heat storage load of the building,
N ′ = (deviation between indoor temperature and set temperature during air conditioning) × K1 × K2
Where α is a constant (solar radiation conversion coefficient)
It is calculated | required by the numerical formula of.

近年の空調設備システムでは、個別空調対応のビルマルチシステムが多く採用されており、複数の系統で構成されている。また、系統別のオン/オフ制御が可能になっている。このため全ての系統を同時刻に運転するのではなく、建物の蓄熱負荷に相関する情報を計測し、当日が休日開け(運転日前休日数)か否かを加味し運転開始時間を決定して、系統別に優先度に従って順次起動を行うことによって、空調機器の運転開始時のピーク消費電力量を分散させることができる。なお、空調負荷に関する情報を計測し累積する時間を運転開始前の数時間乃至10数時間とする場合には、休日開けか否かに関係なく年間カレンダーや週間スケジュール等も使用されない。また、運転開始前の空調負荷に関する情報を計測した値を累積することなく演算に使用してもよい。   In recent air conditioning equipment systems, many building multi-systems for individual air conditioning are employed, and the system is composed of a plurality of systems. Further, on / off control for each system is possible. For this reason, instead of operating all systems at the same time, measure the information correlating with the heat storage load of the building, and determine the operation start time taking into account whether the day is open (the number of holidays before the operation day) By sequentially starting according to the priority for each system, the peak power consumption at the start of operation of the air conditioner can be dispersed. Note that when the information related to the air conditioning load is measured and accumulated for a few hours to a few dozen hours before the start of operation, an annual calendar, a weekly schedule, or the like is not used regardless of whether the holiday is open or not. Moreover, you may use for the calculation, without accumulating the value which measured the information regarding the air-conditioning load before a driving | operation start.

30分デマンド予測では、図3に示すようにデマンド計算時間を30分としてデマンド計算時間毎の初期の一定時間に使用される電力量を計測、積算した値に基づき予測電力量を演算する。そして、予測電力量が求められると、間欠遮断時間演算部3による間欠遮断時間演算は、予測電力量がデマンド値をオーバーするか否かを判定して、予測電力量がデマンド値を超える場合には予測電力量と設定電力量(デマンド値)との差ΔPを求め、この差の電力量ΔPに基づき、次の演算により間欠遮断時間TA を求める。 In the 30-minute demand prediction, as shown in FIG. 3, the demand calculation time is set to 30 minutes, and the amount of power used in the initial fixed time for each demand calculation time is measured and calculated based on the integrated value. When the predicted power amount is obtained, the intermittent cutoff time calculation by the intermittent cutoff time calculation unit 3 determines whether the predicted power amount exceeds the demand value, and the predicted power amount exceeds the demand value. obtains the difference ΔP between the set power amount and the predicted power amount (demand value), based on the amount of power ΔP of the difference, obtaining the intermittent interruption time T a by the following calculation.

Figure 2006029693
ここで、最小間欠遮断時間T0 は、空調機器の特性によって決定される(通常3分程度)。
Figure 2006029693
Here, the minimum intermittent interruption time T 0 is determined by the characteristics of the air conditioner (usually about 3 minutes).

このようにして求められた間欠遮断時間TA により、間欠・ローテーション運転では、図4に示すように予め設定される優先度に基づく優先順に従って系統Aを間欠遮断時間TA だけオフにし、次に系統Bに切り換えて間欠遮断時間TA 、さらにその後系統Cに切り換えて間欠遮断時間TA だけ順にオフにする。 By this way, the intermittent interruption time T A obtained, the intermittent-rotation operation, to turn off the system A only intermittent interruption time T A according to the priority order based on the priority set in advance as shown in FIG. 4, the following Then, the system is switched to the system B and the intermittent cutoff time T A is switched to the system C, and then the intermittent cutoff time T A is turned off in order.

このようにマルチエアコンの間欠・ローテーション運転では、N個のグループ設定を行い、これら各グループのうち順次優先度の高いグループから切り換えて間欠遮断運転を行う。優先度は、期間設定機能により季節別、つまり、季節(冷房モード、暖房モード)によって上下階により変更する。そして、再演算により空調機器以外の負荷も含めて予測電力量が間欠・ローテーション運転中に低減した場合には、間欠・ローテーション運転がリセットされる。   As described above, in the intermittent / rotation operation of the multi air conditioner, N groups are set, and the intermittent interruption operation is performed by sequentially switching from the group having the higher priority among these groups. The priority is changed according to the season by the period setting function, that is, the upper and lower floors depending on the season (cooling mode, heating mode). When the predicted power amount including the load other than the air conditioner is reduced during the intermittent / rotation operation by recalculation, the intermittent / rotation operation is reset.

電力量予測演算部1の電力量予測演算処理は、例えば図5に示すように毎時0分、30分を予測演算開始時刻として、その時刻になるのを待ち(ステップS11)、予測演算開始時刻になると、例えば電力量を積算して保持するレジスタをリセットし(ステップS12)、しかる後、このレジスタに受電電力量計より受信される電力量パルスを計数して電力量を積算し保持する(ステップS13)。予測演算開始時刻(デマンド開始時刻)からN分経過(例えば10分)を積算時間終了とすると、その間電力量の積算を継続して積算時間終了を判定し(ステップS14)、その積算した電力量の値から30分後の予測電力量を演算する(ステップS15)。   For example, as shown in FIG. 5, the power amount prediction calculation process of the power amount prediction calculation unit 1 sets the prediction calculation start time to 0 minutes per hour and 30 minutes, and waits for that time (step S <b> 11). Then, for example, the register that accumulates and holds the electric energy is reset (step S12), and then the electric energy pulse received from the received watt-hour meter is counted in this register to accumulate and hold the electric energy ( Step S13). If N minutes have elapsed (for example, 10 minutes) from the prediction calculation start time (demand start time), and the integration time ends, the integration of the electric energy is continued during that period to determine the end of the integration time (step S14), and the integrated electric energy The predicted power amount after 30 minutes is calculated from the value of (step S15).

図6は本発明に係るマルチエアコンのデマンド制御システムの他の実施の形態を示す図、図7はマルチエアコンの系統別順次起動運転によるピーク消費電力量の削減効果を説明する図である。   FIG. 6 is a diagram showing another embodiment of the demand control system for a multi-air conditioner according to the present invention, and FIG. 7 is a diagram for explaining the effect of reducing the peak power consumption by the sequential start-up operation for each multi-air conditioner system.

図6に示す本発明に係るマルチエアコンのデマンド制御システムでは、電力制御装置11でトランスジューサ12の受電電力量パルスを常時計測し、センサ13、14から日射量や外気温度などの空調負荷に関する情報を取得し、また、これらの受電電力量や、空調負荷に関する情報、系統の運転制御情報を外部通信部よりインターネットを通してホストコンピュータ15と通信するように構成されている。そして、先の実施形態のシステムと同様、電力制御装置11が系統別順次起動運転、間欠・ローテーション運転による間欠遮断の切り換え制御を行うと共に、ホストコンピュータ15では、実績日射量や実績外気温度を取得すると共に、建物の建築仕様から熱負荷を計算して空調負荷を予測し、例えば運転開始時間偏差N′を
N′=空調開始時刻空調負荷/空調機定格能力
により計算して電力制御装置11に運転指示を送る。このことにより、電力制御装置11はホストコンピュータ15からの運転指示に基づく運転制御を行う。これらの制御を実現することにより、特に起動時に現れるピーク消費電力量は、図7(A)から(B)に示すように削減することができる。
In the demand control system for a multi-air conditioner according to the present invention shown in FIG. 6, the power control device 11 constantly measures the received power amount pulse of the transducer 12, and the sensors 13 and 14 provide information on the air conditioning load such as the solar radiation amount and the outside air temperature. It is configured to acquire the received power amount, information on the air conditioning load, and system operation control information from the external communication unit through the Internet and communicate with the host computer 15. Then, similarly to the system of the previous embodiment, the power control device 11 performs switching control of sequential start-up operation by system and intermittent interruption by intermittent / rotation operation, and the host computer 15 acquires the actual solar radiation amount and the actual outside air temperature. In addition, the heat load is calculated from the building specifications of the building to predict the air conditioning load. For example, the operation start time deviation N ′ is calculated by N ′ = air conditioning start time air conditioning load / air conditioner rated capacity and Send driving instructions. As a result, the power control apparatus 11 performs operation control based on the operation instruction from the host computer 15. By realizing these controls, the peak power consumption that appears particularly at startup can be reduced as shown in FIGS. 7A to 7B.

図8はオン/オフ制御とインバータ制御のエアコンを組み合わせ運転したときのCOP(成績係数)の変化の例を示す図、図9はオフ回数に対応する平均COP(成績係数)の傾向を説明する図である。   FIG. 8 is a diagram showing an example of a change in COP (coefficient of performance) when an on / off control and inverter-controlled air conditioner are operated in combination, and FIG. 9 explains a tendency of average COP (coefficient of performance) corresponding to the number of times of off. FIG.

インバータ制御(ロ)のエアコンでは、図8に示すようにオン/オフ制御(イ)のエアコンを組み合わせ軽負荷運転にしている(L)の領域の方が、オン/オフ制御(イ)のエアコンを停止させた(R)の領域の方よりCOP(成績係数)は悪くなる。また、オン/オフ制御(イ)のエアコンでは、図9に示すように単位時間当たりでオフ回数が増えるのに伴いCOP(成績係数)は悪くなる。これらのことから明らかなようにエアコンをオフにする回数を減らすと、全体としてCOP(成績係数)を良くすることができ、したがって、オフの時間を長くすることによりエアコンのCOP(成績係数)を良くすることができる。   In the inverter controlled (b) air conditioner, as shown in FIG. 8, the on / off control (b) air conditioner is in the region (L) where the on / off control (b) air conditioner is combined to achieve light load operation. The COP (coefficient of performance) is worse than that in the region (R) where the process is stopped. Further, in an air conditioner with on / off control (b), the COP (coefficient of performance) becomes worse as the number of times of off per unit time increases as shown in FIG. As is clear from these facts, the COP (coefficient of performance) can be improved as a whole by reducing the number of times the air conditioner is turned off. Therefore, the COP (coefficient of performance) of the air conditioner can be improved by increasing the off time. Can be better.

なお、本発明は、上記実施の形態に限定するものではなく、種々の変形が可能である。例えばマルチエアコンの各系統をどのようなグループに設定するかは、当該建物の各グループ(複数系統)の重要度(室内環境)、消費電力量および目標とする契約電力量により任意に設定可能とされることはいうまでもない。また、空調機器の間欠・ローテーション運転は、室内環境にほとんど影響を与えることなく省エネルギーを実現できるので、予測電力量に関わらず間欠・ローテーション運転を行うようにしてもよいし、ピーク負荷時に有効な制御を行うものとして、基準値を設けて該基準値を超えたことを条件に所望の運転制御を行うようにしてもよい。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation is possible. For example, what kind of group each multi-air conditioner system can be set can be set according to the importance (room environment), power consumption, and target contract power consumption of each group (multiple systems) of the building. It goes without saying that it is done. In addition, intermittent / rotation operation of air conditioning equipment can achieve energy savings with little impact on the indoor environment. Therefore, intermittent / rotation operation may be performed regardless of the predicted power consumption. As control, a reference value may be provided and desired operation control may be performed on condition that the reference value is exceeded.

近年の空調機器は、軽負荷時にインバータ制御を行う機能を有するものがあるが、空調機器の制御機能を考慮しない間欠運転は、室内環境を悪化させる場合がある。制御適応期間を設けて当該期間を常時省エネ運転モードとして間欠・ローテーション運転を行い、春や秋の中間期には常時省エネ運転モードを活用しないようにしてもよい。   Some recent air conditioners have a function of performing inverter control at light loads, but intermittent operation that does not consider the control function of the air conditioner may deteriorate the indoor environment. A control adaptation period may be provided to perform intermittent / rotation operation with the period as a constant energy saving operation mode, and the energy saving operation mode may not be used in the middle of spring or autumn.

本発明に係るマルチエアコンのデマンド制御システムの実施の形態を説明する図である。It is a figure explaining embodiment of the demand control system of the multi air-conditioner which concerns on this invention. マルチエアコンの系統別順次起動運転を説明する図である。It is a figure explaining the starting operation according to the system | strain of a multi air conditioner. 30分デマンド予測を説明する図である。It is a figure explaining 30 minute demand prediction. マルチエアコンの系統別間欠・ローテーション運転を説明する図である。It is a figure explaining the intermittent and rotation operation according to system of a multi air conditioner. 電力量予測演算処理の概要を説明する図である。It is a figure explaining the outline | summary of an electric energy prediction calculation process. 本発明に係るマルチエアコンのデマンド制御システムの他の実施の形態を示す図である。It is a figure which shows other embodiment of the demand control system of the multi air-conditioner which concerns on this invention. マルチエアコンの系統別順次起動運転によるピーク消費電力量の削減効果を説明する図である。It is a figure explaining the reduction effect of the peak power consumption by the sequential starting operation according to the system of a multi air conditioner. オン/オフ制御とインバータ制御のエアコンを組み合わせ運転したときのCOP(成績係数)の変化の例を示す図である。It is a figure which shows the example of a change of COP (coefficient of performance) when carrying out the combination driving | operation of the air conditioner of on / off control and inverter control. オフ回数に対応する平均COP(成績係数)の傾向を説明する図である。It is a figure explaining the tendency of the average COP (performance coefficient) corresponding to the frequency | count of OFF. 或る建物における各年、月別のデマンド電力量の例を示す図である。It is a figure which shows the example of the demand electric energy according to each year and month in a certain building.

符号の説明Explanation of symbols

1…蓄熱負荷情報センサ、2…センサ情報累積部、3…係数記憶部、4…休日情報記憶部、5…運転開始時間偏差演算部、6…電力量予測演算部、7…設定電力量記憶部、8…間欠遮断時間演算部、9…運転制御部   DESCRIPTION OF SYMBOLS 1 ... Thermal storage load information sensor, 2 ... Sensor information accumulation part, 3 ... Coefficient memory | storage part, 4 ... Holiday information storage part, 5 ... Operation start time deviation calculating part, 6 ... Electric power amount prediction calculating part, 7 ... Setting electric energy storage Part, 8 ... intermittent interruption time calculation part, 9 ... operation control part

Claims (6)

マルチエアコンを複数のグループに分割した複数の系統により建物のデマンド計算時間毎の使用電力量を制御するマルチエアコンのデマンド制御システムであって、
前記デマンド計算時間毎に使用される予測電力量を演算する予測演算手段と、
前記予測演算手段により演算された予測電力量が予め設定されたデマンド値を超えるか否かを判定して前記予測電力量が前記デマンド値を超える場合に当該超える電力量に応じた間欠遮断時間を演算する間欠遮断時間演算手段と、
前記間欠遮断時間演算手段により演算された間欠遮断時間に基づき前記複数の系統に対して所定の優先順に従って間欠・ローテーション運転による間欠遮断の切り換え制御を行う運転制御手段と
を備え、前記デマンド計算時間内での使用電力量が前記デマンド値の範囲内となるように前記各系統毎にマルチエアコンの運転による間欠遮断の切り換え制御を行うようにしたことを特徴とするマルチエアコンのデマンド制御システム。
A multi-air conditioner demand control system that controls the amount of power used for each demand calculation time of a building by a plurality of systems in which the multi-conditioner is divided into a plurality of groups.
Prediction calculation means for calculating a predicted power amount used for each demand calculation time;
It is determined whether or not the predicted power amount calculated by the prediction calculation means exceeds a preset demand value, and when the predicted power amount exceeds the demand value, an intermittent interruption time corresponding to the excess power amount is determined. Intermittent interruption time calculating means for calculating,
An operation control means for controlling switching of intermittent interruption by intermittent / rotation operation according to a predetermined priority order for the plurality of systems based on the intermittent interruption time calculated by the intermittent interruption time calculating means, and the demand calculation time A demand control system for a multi air conditioner, wherein switching control of intermittent interruption by operation of the multi air conditioner is performed for each of the systems so that the amount of electric power used in the system falls within the range of the demand value.
前記予測演算手段は、デマンド計算時間毎の初期の一定時間に使用される電力量を計測し積算した値に基づき前記予測電力量を演算することを特徴とする請求項1に記載のマルチエアコンのデマンド制御システム。 2. The multi-air conditioner according to claim 1, wherein the prediction calculation unit calculates the prediction power amount based on a value obtained by measuring and integrating the power amount used in an initial fixed time for each demand calculation time. Demand control system. 前記予測演算手段は、空調負荷に関する情報の計測により空調負荷を演算して該空調負荷より前記予測電力量を演算することを特徴とする請求項1に記載のマルチエアコンのデマンド制御システム。 The demand control system for a multi-air conditioner according to claim 1, wherein the prediction calculation means calculates an air conditioning load by measuring information on the air conditioning load and calculates the predicted electric energy from the air conditioning load. 前記計測される空調負荷に関する情報として、少なくとも日射量、外気温度、室内温度を含むことを特徴とする請求項3に記載のマルチエアコンのデマンド制御システム。 4. The demand control system for a multi-air conditioner according to claim 3, wherein the information on the measured air conditioning load includes at least an amount of solar radiation, an outside air temperature, and an indoor temperature. 前記間欠遮断時間演算手段は、前記予測電力量が前記デマンド値を超える電力量に一定の定数を掛けた値に空調機器の特性により決定される最小間欠遮断時間に加えて前記間欠遮断時間を演算することを特徴とする請求項1に記載のマルチエアコンのデマンド制御システム。 The intermittent interruption time calculating means calculates the intermittent interruption time in addition to the minimum intermittent interruption time determined by the characteristics of the air conditioner to a value obtained by multiplying the electric energy in which the predicted electric energy exceeds the demand value by a certain constant. The demand control system for a multi-air conditioner according to claim 1. 前記運転制御手段は、空調運転開始時か空調運転中かに応じて、空調運転開始時の場合には、前記間欠遮断時間に基づき前記複数の系統の順次起動を行うことを特徴とする請求項1に記載のマルチエアコンのデマンド制御システム。 The operation control means sequentially activates the plurality of systems based on the intermittent cutoff time when the air conditioning operation is started, depending on whether the air conditioning operation is started or during the air conditioning operation. The demand control system for a multi-air conditioner according to 1.
JP2004209557A 2004-07-16 2004-07-16 Multi air conditioner demand control system Expired - Fee Related JP4552119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004209557A JP4552119B2 (en) 2004-07-16 2004-07-16 Multi air conditioner demand control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004209557A JP4552119B2 (en) 2004-07-16 2004-07-16 Multi air conditioner demand control system

Publications (2)

Publication Number Publication Date
JP2006029693A true JP2006029693A (en) 2006-02-02
JP4552119B2 JP4552119B2 (en) 2010-09-29

Family

ID=35896271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004209557A Expired - Fee Related JP4552119B2 (en) 2004-07-16 2004-07-16 Multi air conditioner demand control system

Country Status (1)

Country Link
JP (1) JP4552119B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123092A1 (en) * 2006-04-17 2007-11-01 Daikin Industries, Ltd. Air conditioning system
JP2007313412A (en) * 2006-05-25 2007-12-06 Miura Co Ltd Deoxygenation system
KR100844324B1 (en) * 2007-01-26 2008-07-07 엘지전자 주식회사 Demand control system and demand control method for multi-air conditioner
KR100844326B1 (en) * 2007-01-26 2008-07-07 엘지전자 주식회사 Demand control system and demand control method for multi-air conditioner
KR100844325B1 (en) * 2007-01-26 2008-07-07 엘지전자 주식회사 Demand control system for multi-air conditioner
JP2008170141A (en) * 2007-01-12 2008-07-24 Samsung Electronics Co Ltd Indoor unit group setting device for system air conditioner and method for it
JP2010075015A (en) * 2008-09-22 2010-04-02 Mitsubishi Electric Corp Demand control system for household electric appliance
US7797953B2 (en) * 2006-08-31 2010-09-21 Sanyo Electric Co., Ltd. Air conditioning system and controller for the same
WO2012053230A1 (en) 2010-10-18 2012-04-26 三菱電機株式会社 Air conditioner control device, air conditioner control method, and program
JP2013132187A (en) * 2011-12-22 2013-07-04 Toshiba Corp Operation control system and method of electric apparatus
KR101286596B1 (en) 2007-10-24 2013-07-22 엘지전자 주식회사 Demand Controller of an electric system
KR101294291B1 (en) * 2013-01-09 2013-08-07 바스코리아 주식회사 Apparatus for controlling air conditioner and fan coil unit
WO2013145810A1 (en) * 2012-03-26 2013-10-03 三菱電機株式会社 Air conditioner control device and air conditioner control program
WO2013150885A1 (en) * 2012-04-06 2013-10-10 三菱重工業株式会社 Control device, method, and program, and multi-type air conditioning system comprising same
JPWO2012023297A1 (en) * 2010-08-18 2013-10-28 三菱電機株式会社 Air conditioning control device, air conditioning control method and program
JP2014009895A (en) * 2012-06-29 2014-01-20 Daikin Ind Ltd Air-conditioning control system
JP2014009824A (en) * 2012-06-28 2014-01-20 Mitsubishi Electric Corp Power management device
KR101376769B1 (en) * 2007-10-24 2014-04-01 엘지전자 주식회사 Demand Controller of an electric system
JP2014170355A (en) * 2013-03-04 2014-09-18 Toho Electronics Inc Peak power suppression device
KR101447659B1 (en) * 2007-11-22 2014-10-06 엘지전자 주식회사 Demand Controller of an electric system
KR101554179B1 (en) * 2007-12-27 2015-09-18 엘지전자 주식회사 A Power Control Method of a Multi Air-Conditioning System
WO2016020953A1 (en) * 2014-08-06 2016-02-11 三菱電機株式会社 Management device and management method
JP2016114280A (en) * 2014-12-12 2016-06-23 オムロン株式会社 Control device, control method, control system, program and recording medium
JPWO2015193976A1 (en) * 2014-06-17 2017-04-20 三菱電機株式会社 Air conditioning system
JP2017181189A (en) * 2016-03-29 2017-10-05 エスペック株式会社 Environment test device
JP2018077008A (en) * 2016-11-09 2018-05-17 株式会社エヌワーク Air conditioning apparatus control system
CN114744608A (en) * 2021-01-08 2022-07-12 北京国网普瑞特高压输电技术有限公司 Power demand response aggregation air conditioner load cooperative control method and system
WO2022153534A1 (en) * 2021-01-18 2022-07-21 三菱電機ビルテクノサービス株式会社 Power consumption estimation device, and program

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103206767B (en) * 2012-07-09 2014-09-03 广东美的制冷设备有限公司 Energy-saving control method and device for frequency conversion air conditioner
JP6067602B2 (en) 2014-02-14 2017-01-25 三菱電機ビルテクノサービス株式会社 Demand control apparatus and program
CN105222266B (en) * 2014-06-26 2017-09-22 广东美的制冷设备有限公司 Electric quantity controlling method, the apparatus and system of air conditioner

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0139018B2 (en) * 1981-04-28 1989-08-17 Tokyo Shibaura Electric Co
JPH0682085A (en) * 1992-09-04 1994-03-22 Sanyo Electric Co Ltd Control device for air-conditioner
JPH08100940A (en) * 1992-10-23 1996-04-16 Matsushita Electric Ind Co Ltd Load estimating device for air-conditioning machine
JP2002010532A (en) * 2000-06-19 2002-01-11 Daikin Ind Ltd Demand control system, demand control method, demand control management device, and demand control management method for electric apparatus
JP2002013776A (en) * 2000-06-27 2002-01-18 Sumitomo Fudosan Kk Secondary-side system of local air conditioning
JP2002095162A (en) * 2000-09-12 2002-03-29 Merix:Kk Power controlling system
JP2003023729A (en) * 2001-05-02 2003-01-24 Kazuo Miwa Power-saving controller and energy saving system
JP2003035447A (en) * 2001-07-23 2003-02-07 Sanki Eng Co Ltd Energy saving system of air conditioner
JP2003262380A (en) * 2002-03-08 2003-09-19 Harada:Kk Electric power control device
JP2004116972A (en) * 2002-09-30 2004-04-15 Daikin Ind Ltd Energy-conservation control system for air conditioner, energy-conservation controller, energy-conservation control program, and energy-conservation control method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0139018B2 (en) * 1981-04-28 1989-08-17 Tokyo Shibaura Electric Co
JPH0682085A (en) * 1992-09-04 1994-03-22 Sanyo Electric Co Ltd Control device for air-conditioner
JPH08100940A (en) * 1992-10-23 1996-04-16 Matsushita Electric Ind Co Ltd Load estimating device for air-conditioning machine
JP2002010532A (en) * 2000-06-19 2002-01-11 Daikin Ind Ltd Demand control system, demand control method, demand control management device, and demand control management method for electric apparatus
JP2002013776A (en) * 2000-06-27 2002-01-18 Sumitomo Fudosan Kk Secondary-side system of local air conditioning
JP2002095162A (en) * 2000-09-12 2002-03-29 Merix:Kk Power controlling system
JP2003023729A (en) * 2001-05-02 2003-01-24 Kazuo Miwa Power-saving controller and energy saving system
JP2003035447A (en) * 2001-07-23 2003-02-07 Sanki Eng Co Ltd Energy saving system of air conditioner
JP2003262380A (en) * 2002-03-08 2003-09-19 Harada:Kk Electric power control device
JP2004116972A (en) * 2002-09-30 2004-04-15 Daikin Ind Ltd Energy-conservation control system for air conditioner, energy-conservation controller, energy-conservation control program, and energy-conservation control method

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123092A1 (en) * 2006-04-17 2007-11-01 Daikin Industries, Ltd. Air conditioning system
JP2007313412A (en) * 2006-05-25 2007-12-06 Miura Co Ltd Deoxygenation system
US7797953B2 (en) * 2006-08-31 2010-09-21 Sanyo Electric Co., Ltd. Air conditioning system and controller for the same
JP2008170141A (en) * 2007-01-12 2008-07-24 Samsung Electronics Co Ltd Indoor unit group setting device for system air conditioner and method for it
US7937961B2 (en) 2007-01-26 2011-05-10 Lg Electronics Inc. System and method for controlling demand of multi-air-conditioner
EP1950504A3 (en) * 2007-01-26 2011-10-26 LG Electronics, Inc. System and method for controlling demand of multi-air conditioner
EP1950504A2 (en) * 2007-01-26 2008-07-30 Lg Electronics Inc. System and method for controlling demand of multi-air conditioner
KR100844324B1 (en) * 2007-01-26 2008-07-07 엘지전자 주식회사 Demand control system and demand control method for multi-air conditioner
KR100844326B1 (en) * 2007-01-26 2008-07-07 엘지전자 주식회사 Demand control system and demand control method for multi-air conditioner
US7870750B2 (en) 2007-01-26 2011-01-18 Lg Electronics Inc. System and method for controlling demand of multi-air-conditioner
EP1950507A3 (en) * 2007-01-26 2011-10-26 LG Electronics Inc. System and method for controlling demand of multi-air-conditioner
KR100844325B1 (en) * 2007-01-26 2008-07-07 엘지전자 주식회사 Demand control system for multi-air conditioner
KR101286596B1 (en) 2007-10-24 2013-07-22 엘지전자 주식회사 Demand Controller of an electric system
KR101376769B1 (en) * 2007-10-24 2014-04-01 엘지전자 주식회사 Demand Controller of an electric system
KR101447659B1 (en) * 2007-11-22 2014-10-06 엘지전자 주식회사 Demand Controller of an electric system
KR101554179B1 (en) * 2007-12-27 2015-09-18 엘지전자 주식회사 A Power Control Method of a Multi Air-Conditioning System
JP2010075015A (en) * 2008-09-22 2010-04-02 Mitsubishi Electric Corp Demand control system for household electric appliance
JPWO2012023297A1 (en) * 2010-08-18 2013-10-28 三菱電機株式会社 Air conditioning control device, air conditioning control method and program
US9222688B2 (en) 2010-08-18 2015-12-29 Mitsubishi Electric Corporation Air conditioning control device, air conditioning control method and program
JP5535320B2 (en) * 2010-08-18 2014-07-02 三菱電機株式会社 Air conditioning control device, air conditioning control method and program
US9303930B2 (en) 2010-10-18 2016-04-05 Mitsubishi Electric Corporation Air conditioner control device, air conditioner control method, and program
WO2012053230A1 (en) 2010-10-18 2012-04-26 三菱電機株式会社 Air conditioner control device, air conditioner control method, and program
JP2013132187A (en) * 2011-12-22 2013-07-04 Toshiba Corp Operation control system and method of electric apparatus
WO2013145810A1 (en) * 2012-03-26 2013-10-03 三菱電機株式会社 Air conditioner control device and air conditioner control program
CN104246384A (en) * 2012-03-26 2014-12-24 三菱电机株式会社 Air conditioner control device and air conditioner control program
EP2835594A4 (en) * 2012-03-26 2016-06-22 Mitsubishi Electric Corp Air conditioner control device and air conditioner control program
US9752791B2 (en) 2012-03-26 2017-09-05 Mitsubishi Electric Corporation Air-conditioning unit control device and air-conditioning unit control program for minimizing power consumption
CN104081131B (en) * 2012-04-06 2016-11-16 三菱重工业株式会社 Control device and method and program, include the multi-gang air conditioner of this control device
CN104081131A (en) * 2012-04-06 2014-10-01 三菱重工业株式会社 Control device, method, and program, and multi-type air conditioning system comprising same
WO2013150885A1 (en) * 2012-04-06 2013-10-10 三菱重工業株式会社 Control device, method, and program, and multi-type air conditioning system comprising same
JP2013217550A (en) * 2012-04-06 2013-10-24 Mitsubishi Heavy Ind Ltd Control device, method, and program, and multi-type air conditioning system including the same
EP2835595A4 (en) * 2012-04-06 2015-12-30 Mitsubishi Heavy Ind Ltd Control device, method, and program, and multi-type air conditioning system comprising same
JP2014009824A (en) * 2012-06-28 2014-01-20 Mitsubishi Electric Corp Power management device
JP2014009895A (en) * 2012-06-29 2014-01-20 Daikin Ind Ltd Air-conditioning control system
KR101294291B1 (en) * 2013-01-09 2013-08-07 바스코리아 주식회사 Apparatus for controlling air conditioner and fan coil unit
JP2014170355A (en) * 2013-03-04 2014-09-18 Toho Electronics Inc Peak power suppression device
JPWO2015193976A1 (en) * 2014-06-17 2017-04-20 三菱電機株式会社 Air conditioning system
WO2016020953A1 (en) * 2014-08-06 2016-02-11 三菱電機株式会社 Management device and management method
JPWO2016020953A1 (en) * 2014-08-06 2017-04-27 三菱電機株式会社 Management apparatus and management method
US10234157B2 (en) 2014-08-06 2019-03-19 Mitsubishi Electric Corporation Management system and management method
JP2016114280A (en) * 2014-12-12 2016-06-23 オムロン株式会社 Control device, control method, control system, program and recording medium
JP2017181189A (en) * 2016-03-29 2017-10-05 エスペック株式会社 Environment test device
JP2018077008A (en) * 2016-11-09 2018-05-17 株式会社エヌワーク Air conditioning apparatus control system
CN114744608B (en) * 2021-01-08 2024-03-26 北京国网普瑞特高压输电技术有限公司 Cooperative control method and system for power demand response aggregation air conditioner load
CN114744608A (en) * 2021-01-08 2022-07-12 北京国网普瑞特高压输电技术有限公司 Power demand response aggregation air conditioner load cooperative control method and system
WO2022153534A1 (en) * 2021-01-18 2022-07-21 三菱電機ビルテクノサービス株式会社 Power consumption estimation device, and program

Also Published As

Publication number Publication date
JP4552119B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP4552119B2 (en) Multi air conditioner demand control system
JP4435533B2 (en) Heat source system and control device
JP4431965B2 (en) Multi air conditioner distributed control system
JP2014236605A (en) Management system of air-conditioner
US20110238224A1 (en) Setpoint recovery with utility time of day pricing
US20210148592A1 (en) Building cooling systems with energy optimization and model predictive control
EP3862644B1 (en) Information processing device and air-conditioning system provided with same
JP6716238B2 (en) Refrigerating and air-conditioning device, control device, and computer program
JP2011043306A (en) Energy saving air conditioning control system
KR101571806B1 (en) Self-operating Optimal Control Method for Air Conditioning System
JP4523461B2 (en) Operation control method for 1-pump heat source equipment
WO2016125583A1 (en) Heat source system operation management device, heat source system operation management method, and computer program
US4061185A (en) Temperature control system
US3998267A (en) Temperature control system
JP4446244B2 (en) Multi air conditioner energy-saving control system
JP4440147B2 (en) Operation control method for two-pump heat source equipment
JP2007147094A (en) Method of operating air conditioning equipment
WO2014115247A1 (en) System controller, facility management system, demand control method, and program
JP2012007835A (en) Air conditioner group controller and air conditioning system
JP3442037B2 (en) Secondary system for district cooling and heating
JP5677198B2 (en) Air cooling heat pump chiller
JP5062555B2 (en) Energy saving air conditioning control system
JP2007028873A (en) Demand control system
WO2014199427A1 (en) Control device for air conditioning device, and control method for air conditioning device
WO2017199298A1 (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100301

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4552119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140723

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees