JP2005305421A - Method of producing compound oxide catalyst - Google Patents

Method of producing compound oxide catalyst Download PDF

Info

Publication number
JP2005305421A
JP2005305421A JP2005073936A JP2005073936A JP2005305421A JP 2005305421 A JP2005305421 A JP 2005305421A JP 2005073936 A JP2005073936 A JP 2005073936A JP 2005073936 A JP2005073936 A JP 2005073936A JP 2005305421 A JP2005305421 A JP 2005305421A
Authority
JP
Japan
Prior art keywords
catalyst
producing
oxide catalyst
composite oxide
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005073936A
Other languages
Japanese (ja)
Inventor
Yoshimune Abe
佳宗 阿部
Tsutomu Teshigawara
力 勅使河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2005073936A priority Critical patent/JP2005305421A/en
Publication of JP2005305421A publication Critical patent/JP2005305421A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing a compound oxide catalyst for producing a corresponding unsaturated carboxylic acid by subjecting an unsaturated aldehyde to gas phase catalytic oxidation by a molecular oxygen-containing gas stably for a long period of time and also at high yield. <P>SOLUTION: In the production of the compound oxide catalyst expressed by the formula: Mo<SB>12</SB>V<SB>a</SB>X<SB>b</SB>Cu<SB>c</SB>Y<SB>d</SB>C<SB>e</SB>Si<SB>f</SB>O<SB>g</SB>(where, X indicates at least one kind of element selected from Nb and W, Y indicates at least one kind of element selected from a group configured of Sb, Mg, Ca, Sr, Ba and Zn, a, b, c, d, e, f and g represent the atomic ratio of respective elements and satisfy, against 12 for molybdenum atom, the expressions of 0<a≤12, 0≤b≤12, 0<c≤12, 0≤d≤8, 0≤e≤1000, 0≤f≤1000, and g is the number of oxygen atoms which satisfies the oxidation state of the elements other than Si and C of the component elements in the formula), the feed source compounds of each component element are integrated in an aqueous medium and in the presence of an organic acid, and the aqueous solution or dispersion of an integrated object obtained is dried to prepare a powder material and a molded product obtained by molding the powder material is calcined. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、不飽和アルデヒドを分子状酸素含有ガスにより気相接触酸化して、長期にわたり安定して、かつ高収率で対応する不飽和カルボン酸を製造するための複合酸化物触媒の製造方法に関する。   The present invention relates to a method for producing a composite oxide catalyst for producing a unsaturated carboxylic acid corresponding to a long-term stable and high yield by gas-phase catalytic oxidation of an unsaturated aldehyde with a molecular oxygen-containing gas. About.

従来、アクロレイン、メタクロレインなどの不飽和アルデヒドを分子状酸素により気相接触酸化してアクリル酸、メタクリル酸などの不飽和カルボン酸を製造するための触媒が種々提案されている。これらの触媒は、オレフィンから製造される不飽和アルデヒド原料の有効利用及び反応における工程の合理化の観点から、少しでも高い不飽和アルデヒドの転化率や目的物である不飽和カルボンの選択率が求められる。この場合、例えば、アクロレインを反応してアクリル酸を製造する生産規模は、通常、300万トン/年の規模で行われるので、上記転化率や選択率が0.1%でも向上すると、得られるアクリル酸の量は、数百〜数千トンのレベルで大きく増加する。したがって、転化率や選択率等の触媒性能の向上は、たとえ少しの向上であっても、資源の有効活用や工程の合理化に大幅に寄与する。   Conventionally, various catalysts for producing unsaturated carboxylic acids such as acrylic acid and methacrylic acid by vapor-phase catalytic oxidation of unsaturated aldehydes such as acrolein and methacrolein with molecular oxygen have been proposed. From the viewpoint of effective utilization of unsaturated aldehyde raw materials produced from olefins and rationalization of processes in the reaction, these catalysts are required to have a slightly higher unsaturated aldehyde conversion rate and the selectivity of the unsaturated carboxylic acid as the target product. . In this case, for example, the production scale for producing acrylic acid by reacting with acrolein is usually carried out at a scale of 3 million tons / year, so that it can be obtained when the conversion rate and selectivity are improved even by 0.1%. The amount of acrylic acid increases greatly at the level of hundreds to thousands of tons. Therefore, improvement in catalyst performance such as conversion rate and selectivity greatly contributes to effective utilization of resources and rationalization of processes even if a slight improvement.

従来、これらの反応の原料転化率や選択率等の触媒性能の改善を目指して種々の提案がなされている。本出願人も、そのための優れた性能を有する複合酸化物触媒として、例えば、特許文献1などを提案してきた。特許文献1は、Mo12NbabCuoSidhi(式中、Xは、アルカリ金属及びTlから選ばれた少なくとも1種の元素を示し、YはMg、Ca、Sr、Ba及びZnから選ばれた少なくとも1種の元素を示し、ZはW、Ce、Sn、Cr、Mn、Fe、Co、Y、Nd、Sm、Ge及びTiから選ばれた少なくとも1種の元素を表す。a、b、c、d、e、f及びgは各元素の原子比を表し、モリブデン原子12に対して、aは0<a≦12、0<b≦10、0<c≦8、0<d≦1000、0<e≦1000、0≦f≦2、0≦g<5、0≦h<5、iは前記各成分のうちSiとCを除いた酸化度によって決まる数である)を有する組成を有する触媒である。 Conventionally, various proposals have been made with the aim of improving the catalyst performance such as the raw material conversion rate and selectivity of these reactions. The present applicant has also proposed, for example, Patent Document 1 as a composite oxide catalyst having excellent performance therefor. Patent Document 1, in Mo 12 Nb a V b Cu o Si d C e X f Y g Z h O i ( wherein, X represents at least one element selected from alkali metals and Tl, Y is And at least one element selected from Mg, Ca, Sr, Ba and Zn, and Z is selected from W, Ce, Sn, Cr, Mn, Fe, Co, Y, Nd, Sm, Ge and Ti Represents at least one element, wherein a, b, c, d, e, f and g represent the atomic ratio of each element, and a is 0 <a ≦ 12 and 0 <b ≦ 10 with respect to the molybdenum atom 12. , 0 <c ≦ 8, 0 <d ≦ 1000, 0 <e ≦ 1000, 0 ≦ f ≦ 2, 0 ≦ g <5, 0 ≦ h <5, i excludes Si and C from the above components A catalyst having a composition having a number determined by the degree of oxidation.

また、特許文献2には、本出願人とは別個の出願人にかかるが、同じ反応に使用される触媒として、式:Mo12gSbhii(式中、AはNb及びTaからなる群から選ばれた一種以上の元素であり、Bは、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Cr、W、Mn、Fe、Ru、Co、Ni又はPであり、またCは、Ag、Zn、Ti、Sn、Pb、Cu、As又はSeである。g及びhは各々0.01〜1.5であり、かつh/g=0.3〜1.0であり、iは0.001〜3.0、Jは0001〜0.1、Kは0〜0.05である)で表される触媒が開示されている。 Further, Patent Document 2, although the present applicant according to a separate applicant, as a catalyst used for the same reaction, the formula: Mo 12 V g Sb h A i B i C k ( In the formula, A One or more elements selected from the group consisting of Nb and Ta, and B is Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Cr, W, Mn, Fe, Ru, Co, Ni or P, and C is Ag, Zn, Ti, Sn, Pb, Cu, As, or Se, g and h are each 0.01 to 1.5, and h / g = 0.3 to 1.0, i is 0.001 to 3.0, J is 0001 to 0.1, and K is 0 to 0.05).

しかしながら、これらの従来の複合酸化物触媒は、それぞれ優れた性能を示すものの、更なる高い原料不飽和アルデヒド転化率や不飽和カルボン酸選択率の性能向上が望まれている。
特開2003−200055号公報 特開2000−317309号公報
However, although these conventional complex oxide catalysts each show excellent performance, further improvement in performance of raw material unsaturated aldehyde conversion rate and unsaturated carboxylic acid selectivity is desired.
JP 2003-200055 A JP 2000-317309 A

本発明は、不飽和アルデヒドを分子状酸素含有ガスにより気相接触酸化して不飽和カルボン酸を製造する際に、原料不飽和アルデヒドの高転化率及び不飽和カルボン酸の高選択率を与え、かつ長期にわたって安定した性能を示す複合酸化物触媒の新規な製造方法を提供する。   The present invention provides a high conversion of raw material unsaturated aldehyde and high selectivity of unsaturated carboxylic acid when producing unsaturated carboxylic acid by gas phase catalytic oxidation of unsaturated aldehyde with molecular oxygen-containing gas, The present invention also provides a novel method for producing a composite oxide catalyst that exhibits stable performance over a long period of time.

本発明者は、上記目的を達成すべく鋭意研究を進めたところ、上記した特許文献1や特許文献2と同一乃至類似のMo、V、X(Nb及びWからなる群から選ばれた少なくとも一種の元素)、Y(Sb、Mg、Ca、Sr、Ba及びZnからなる群から選ばれた少なくとも一種の元素)、Cu、Si及びCを含有する複合酸化物触媒であるが、この触媒を製造する場合に、各元素の原料化合物を有機酸の存在下に水性媒体中にて一体化し、得られる一体化物を乾燥し、成形し、焼成することにより、その触媒性能、不飽和アルデヒドの転化率が向上し、特に目的物である不飽和カルボン酸の選択率が向上することを見出した。   The present inventor has intensively studied to achieve the above object, and as a result, at least one selected from the group consisting of Mo, V, X (Nb and W) which is the same or similar to the above-mentioned Patent Document 1 and Patent Document 2. Element), Y (at least one element selected from the group consisting of Sb, Mg, Ca, Sr, Ba, and Zn), Cu, Si, and C. In this case, the raw material compounds of each element are integrated in an aqueous medium in the presence of an organic acid, and the resulting integrated product is dried, molded, and calcined, so that its catalytic performance, conversion rate of unsaturated aldehyde It has been found that the selectivity of the unsaturated carboxylic acid as the target product is improved.

本発明の上記複合酸化物触媒の製造において、各元素の供給源化合物を有機酸の存在下に水性媒体中にて一体化するという手段は、特許文献1や特許文献2に開示されるような通常の方法とは異なるものである。特許文献1の触媒の製造過程では有機酸自体が使用されていない。特許文献2には、触媒製造過程で本発明で使用される有機酸であるシュウ酸が使用されているが、そもそも、Cuを必須の成分とする本発明で製造される触媒とは組成が異なり、また、特許文献2の場合には、かかるシュウ酸はニオブ酸と反応させて錯体を形成して水不溶性のニオブ酸を溶解させるために使用されるものであり、本発明のように触媒の各成分の供給源化合物を水性媒体中にて一体化させるためには使用されてはいない。   In the production of the composite oxide catalyst of the present invention, means for integrating each element source compound in an aqueous medium in the presence of an organic acid is disclosed in Patent Document 1 and Patent Document 2. It is different from the usual method. In the production process of the catalyst of Patent Document 1, no organic acid itself is used. Patent Document 2 uses oxalic acid, which is an organic acid used in the present invention in the process of producing a catalyst, but in the first place, the composition differs from the catalyst produced in the present invention containing Cu as an essential component. In the case of Patent Document 2, such oxalic acid is used to react with niobic acid to form a complex and dissolve water-insoluble niobic acid. It is not used to integrate the source compounds of each component in an aqueous medium.

本発明の製造方法で、触媒の各成分の供給源化合物を有機酸の存在下にて水性媒体中にて一体化させる場合、有機酸は触媒を構成する各成分元素に配位することにより、成分元素同士の結合を抑制し、最終的に得られる複合酸化物触媒の構造、酸化還元状態、及び触媒成分の担体上での分散状態を変化させることによりその特性が改良されるものである。   In the production method of the present invention, when the source compound of each component of the catalyst is integrated in an aqueous medium in the presence of an organic acid, the organic acid is coordinated with each component element constituting the catalyst, By suppressing the bonding between the component elements and changing the structure of the composite oxide catalyst finally obtained, the oxidation-reduction state, and the dispersion state of the catalyst component on the carrier, the characteristics are improved.

かくして、本発明は、下記の要旨を特徴とするものである。
(1)式:Mo12abCucdeSifg(式中、Moはモリブデン、Vはバナジウム、Cuは銅、Cは炭素、Siはケイ素、Oは酸素を示し、Xは,Nb及びWから選ばれた少なくとも一種の元素を示し、YはSb、Mg、Ca、Sr、Ba及びZnからなる群から選ばれた少なくとも一種の元素を示す。a、b、c、d、e、f及びgは各元素の原子比を示し、0<a≦12、0≦b≦12、0<c≦12、0≦d≦8、0≦e≦1000、0≦f≦1000を満足し、gは、前記各成分のうちSiとCを除いた他の元素の酸化状態を満足するのに必要な酸素原子数によって決まる数である)で表される複合酸化物触媒の製造において、各成分元素の供給源化合物を有機酸の存在下に一体化させ、得られる一体化物の水溶液又は分散液を乾燥して粉体を調製し、該粉末を成形した成形物を焼成することを特徴とする複合酸化物触媒の製造方法。
(2)有機酸を、モリブデン1モルに対して0.001〜1モル存在させる上記(1)に記載の複合酸化物触媒の製造方法。
(3)有機酸がクエン酸、シュウ酸及びリンゴ酸から選ばれた少なくとも1種である上記(1)又は(2)に記載の複合酸化物触媒の製造方法。
(4)複合酸化物触媒が、不飽和アルデヒドを分子状酸素含有ガスにより気相接触酸化して対応する不飽和カルボン酸を製造するための触媒である上記(1)〜(3)のいずれかに記載の複合酸化物触媒の製造方法。
(5)上記(1)〜(4)のいずれかに記載の製造方法で製造された複合酸化物触媒の存在下にアクロレインを分子状酸素含有ガスにより気相接触酸化して対応するアクリル酸を製造する方法。
Thus, the present invention is characterized by the following gist.
(1): Mo 12 V a X b Cu c Y d C e Si f O g ( wherein, Mo is molybdenum, V is vanadium, Cu is copper, C is carbon, Si is silicon, O is an oxygen , X represents at least one element selected from Nb and W, and Y represents at least one element selected from the group consisting of Sb, Mg, Ca, Sr, Ba, and Zn. , D, e, f and g indicate the atomic ratio of each element, 0 <a ≦ 12, 0 ≦ b ≦ 12, 0 <c ≦ 12, 0 ≦ d ≦ 8, 0 ≦ e ≦ 1000, 0 ≦ f ≦ 1000, and g is a number determined by the number of oxygen atoms necessary to satisfy the oxidation state of other elements other than Si and C among the above components). In the production of the above, the source compound of each component element is integrated in the presence of an organic acid, and an aqueous solution or an integrated product obtained is integrated. Is a method for producing a composite oxide catalyst, comprising: drying a dispersion to prepare a powder; and firing a molded product obtained by molding the powder.
(2) The method for producing a composite oxide catalyst according to the above (1), wherein the organic acid is present in an amount of 0.001 to 1 mol with respect to 1 mol of molybdenum.
(3) The method for producing a composite oxide catalyst according to the above (1) or (2), wherein the organic acid is at least one selected from citric acid, oxalic acid and malic acid.
(4) Any of (1) to (3) above, wherein the composite oxide catalyst is a catalyst for producing a corresponding unsaturated carboxylic acid by gas phase catalytic oxidation of an unsaturated aldehyde with a molecular oxygen-containing gas. A method for producing the composite oxide catalyst described in 1.
(5) Acrolein is vapor-phase contact oxidized with a molecular oxygen-containing gas in the presence of the composite oxide catalyst produced by the production method according to any one of (1) to (4) above, and the corresponding acrylic acid is obtained. How to manufacture.

本発明によれば、不飽和アルデヒドを分子状酸素含有ガスにより気相接触酸化して不飽和カルボン酸を製造する場合において、原料不飽和アルデヒドの高転化率及び不飽和カルボン酸の高選択率を与え、かつ長期にわたって安定した性能を示す複合酸化物触媒の製造方法が提供される。   According to the present invention, when producing unsaturated carboxylic acid by gas phase catalytic oxidation of unsaturated aldehyde with molecular oxygen-containing gas, high conversion of raw material unsaturated aldehyde and high selectivity of unsaturated carboxylic acid are achieved. Provided is a method for producing a composite oxide catalyst that exhibits stable performance over a long period of time.

特に、触媒単位あたりのアクロレインの転化率が向上し、さらに触媒のアクリル酸の選択率が改良され、アクロレインの気相接触酸化反応を効率よく行なえる活性の高い複合酸化物触媒が製造できる。   In particular, the conversion rate of acrolein per catalyst unit is improved, the selectivity of acrylic acid of the catalyst is improved, and a highly active composite oxide catalyst capable of efficiently performing the gas phase catalytic oxidation reaction of acrolein can be produced.

本発明で製造される複合酸化物触媒は前記の式で表される。前記式において、X、Y、a、b、c、d、e、f及びgは、それぞれ前記したとおりである。なかでも、特に好ましくは0.1≦a≦6、0.1≦b≦6、0.1≦c≦6、0.01≦d≦6、5≦e≦500、5≦f≦500である。   The composite oxide catalyst produced in the present invention is represented by the above formula. In the above formula, X, Y, a, b, c, d, e, f and g are as described above. Among them, particularly preferably 0.1 ≦ a ≦ 6, 0.1 ≦ b ≦ 6, 0.1 ≦ c ≦ 6, 0.01 ≦ d ≦ 6, 5 ≦ e ≦ 500, 5 ≦ f ≦ 500. is there.

本発明のかかる複合酸化物触媒は、上記の式を構成する各触媒成分の供給源化合物を有機酸の存在下での一体化することによって製造される。ここで、各触媒成分の供給源化合物を一体化するとは、好ましくは水溶液又は水分散液からなる水性媒体系において各触媒成分元素の供給源化合物を混合し、必要に応じて熟成処理することをいう。すなわち、(イ)上記の各供給源化合物を一括して混合する方法、(ロ)上記の各供給源化合物を一括して混合し、さらに熟成処理する方法、(ハ)上記の各供給源化合物を段階的に混合する方法、(ニ)上記の各供給源化合物を段階的に混合・熟成処理を繰り返す方法及び/又はかかる(イ)〜(ニ)を組み合わせた方法は、いずれも上記各触媒成分元素の供給源化合物の水性媒体系での一体化に含まれる。   Such a composite oxide catalyst of the present invention is produced by integrating the source compounds of the respective catalyst components constituting the above formula in the presence of an organic acid. Here, integrating the source compounds of the respective catalyst components preferably means mixing the source compounds of the respective catalyst component elements in an aqueous medium system composed of an aqueous solution or an aqueous dispersion, and aging treatment as necessary. Say. (B) a method of mixing each of the above-mentioned source compounds at once, (b) a method of mixing each of the above-mentioned source compounds at once, and further aging treatment, (c) each of the above-mentioned source compounds (D) a method in which each of the above-mentioned source compounds is mixed and aged repeatedly in a stepwise manner and / or a method in which the above (a) to (d) are combined. Included in the integration of the component element source compounds in the aqueous medium system.

なお、上記の「熟成」は、化学大辞典(共立出版)にも記載があるように「工業原料または半製品を、一定時間、一定温度などの特定条件の下に処理して必要とする物理性、化学性の取得、上昇または所定反応の進行などを図る操作」のことをいう。なお、上記の一定時間は、この発明において好ましくは1分〜24時間の範囲をいい、また、上記の一定温度は好ましくは室温〜200℃の範囲である。また、上記一体化においては、触媒を構成する各元素の供給源化合物のみならず、アルミナ、シリカ、耐熱性酸化物などの担体材料もそのような一体化の対象として含むことができる。   As described in the Chemical Dictionary (Kyoritsu Shuppan), the above-mentioned “aging” means “physical properties required by processing industrial raw materials or semi-finished products under specific conditions such as constant temperature for a certain period of time. This refers to an operation for obtaining, increasing, or progressing a predetermined reaction. In the present invention, the above-mentioned fixed time preferably refers to a range of 1 minute to 24 hours, and the above-mentioned fixed temperature is preferably in the range of room temperature to 200 ° C. In the above integration, not only the source compound of each element constituting the catalyst but also support materials such as alumina, silica, and heat-resistant oxide can be included as targets for such integration.

本発明のかかる触媒を構成する各元素の供給源化合物の一体化の際に存在させる有機酸としては、水に易溶な性質を有する有機酸が使用できる。なかでも、クエン酸、シュウ酸及びリンゴ酸から選ばれた少なくとも1種であるのが好ましい。有機酸の存在量は、Mo1モルに対し0.001〜1モルが好ましく、特に好ましくは0.01〜0.5モルが好適である。有機酸の存在量が、0.001モルより小さい場合には、触媒性能の向上が見られなくなり、逆に、有機酸の存在量が、1モルより大きい場合には、触媒性能が低下し好ましくない。   As the organic acid that is present when the source compound of each element constituting the catalyst of the present invention is integrated, an organic acid having a property of being easily soluble in water can be used. Among these, at least one selected from citric acid, oxalic acid, and malic acid is preferable. The amount of the organic acid present is preferably 0.001 to 1 mol, particularly preferably 0.01 to 0.5 mol, relative to 1 mol of Mo. When the amount of the organic acid is less than 0.001 mol, the catalyst performance is not improved, and conversely, when the amount of the organic acid is more than 1 mol, the catalyst performance is decreased, which is preferable. Absent.

本発明の複合酸化物触媒の各成分の供給源化合物は、炭化珪素化合物を除き、焼成によって酸化物になる化合物であれば、水溶性でも水難溶性でも特に制限されるものではない。化合物の具体例としては、各成分のハロゲン化物、硫酸塩、硝酸塩、アンモニウム塩、酸化物、カルボン酸塩、カルボン酸アンモニウム塩、ハロゲン化アンモニウム塩、水素酸、アセチルアセトナート、アルコキシド等が挙げられる。また、ケイ素および炭素の原料化合物の具体例としては、緑色炭化ケイ素、黒色炭化ケイ素などが挙げられ、炭化珪素は微粉体のものが好ましい。原料化合物は、各成分を単独で含有するものを用いてもよく、2種以上の成分を含有する原料化合物を用いてもよい。   The source compound of each component of the composite oxide catalyst of the present invention is not particularly limited as long as it is a compound that becomes an oxide by firing except a silicon carbide compound, whether it is water-soluble or poorly water-soluble. Specific examples of the compound include halides, sulfates, nitrates, ammonium salts, oxides, carboxylates, ammonium carboxylates, ammonium halides, hydrogen acids, acetylacetonates, alkoxides, and the like of each component. . Specific examples of silicon and carbon raw material compounds include green silicon carbide and black silicon carbide, and silicon carbide is preferably a fine powder. As the raw material compound, one containing each component alone may be used, or a raw material compound containing two or more components may be used.

本発明の製造方法における好ましい具体的態様を順に説明すると、まず上記した触媒構成元素成分の供給源化合物の水溶液または水分散体を調製する。本発明では、これらの水溶液または水分散液をスラリー溶液ともいう。スラリー溶液は、各構成成分の供給源化合物を水と均一に混合して得ることができる。スラリー溶液における各構成成分の原料化合物の使用割合は、各触媒構成元素の原子比が上記した式に示される範囲であればよい。有機酸は、スラリー溶液を調製した後、又は調製する途中に添加することができるが、なかでも、MoおよびVを溶解した後の段階で添加するのが好ましい。   The preferred specific embodiments in the production method of the present invention will be described in order. First, an aqueous solution or aqueous dispersion of the above-mentioned catalyst component element source compound is prepared. In the present invention, these aqueous solutions or aqueous dispersions are also referred to as slurry solutions. The slurry solution can be obtained by uniformly mixing the source compound of each constituent component with water. The use ratio of the raw material compound of each constituent component in the slurry solution may be in a range in which the atomic ratio of each catalyst constituent element is represented by the above formula. The organic acid can be added after the slurry solution is prepared or in the middle of the preparation. Among them, it is preferable to add the organic acid at a stage after dissolving Mo and V.

スラリー溶液中の水の量は、各成分の原料化合物を完全に溶解又は均一に分散できる量であれば特に限定されないが、続いて行われる乾燥方法や乾燥温度や乾燥時間等の乾燥条件を勘案して適宜に決定すればよい。水の量は、通常、原料化合物の合計100重量部に対して100〜2000重量部である。水の量が上記所定量未満の少量では化合物を完全に溶解できず、又は均一に混合できないことがある。また、水の量が多量であれば、熱処理時のエネルギーコストがかさむという恐れが生じる。スラリー溶液の調製過程における混合や攪拌を通じて、上記触媒を構成する各元素成分の一体化は進行するが、一体化をさらに促進するために、好ましくは室温〜200℃、特に好ましくは70〜100℃で、好ましくは1分〜24時間、特に好ましくは30分〜6時間熟成処理されるのが好適である。   The amount of water in the slurry solution is not particularly limited as long as it can dissolve or uniformly disperse the raw material compounds of each component, but taking into consideration drying conditions such as the subsequent drying method, drying temperature, and drying time. And may be determined appropriately. The amount of water is usually 100 to 2000 parts by weight with respect to a total of 100 parts by weight of the raw material compounds. If the amount of water is less than the above predetermined amount, the compound may not be completely dissolved or may not be uniformly mixed. Further, if the amount of water is large, there is a risk that the energy cost during the heat treatment is increased. Integration of each element component constituting the catalyst proceeds through mixing and stirring in the preparation process of the slurry solution. However, in order to further promote the integration, preferably room temperature to 200 ° C., particularly preferably 70 to 100 ° C. And preferably aging treatment for 1 minute to 24 hours, particularly preferably 30 minutes to 6 hours.

次いで、上記水溶液又は水分散液は乾燥することにより粉体とされる。乾燥は、水溶液又は水分散液を充分に乾燥でき、粉体が得られる方法であれば特に制限はなく、例えばドラム乾燥、凍結乾燥、噴霧乾燥等が好ましい方法として挙げられる。噴霧乾燥は、水溶液又は水分散液から短時間に均質な粉体状態に乾燥することができるので、本発明に好ましく適用できる方法である。   Next, the aqueous solution or aqueous dispersion is dried to form a powder. There is no particular limitation on the drying as long as the aqueous solution or aqueous dispersion can be sufficiently dried and a powder can be obtained. For example, drum drying, freeze drying, spray drying and the like are preferable methods. Spray drying is a method that can be preferably applied to the present invention because it can be dried from an aqueous solution or aqueous dispersion into a homogeneous powder state in a short time.

上記乾燥の温度は、スラリー溶液の濃度等によっても異なるが、通常90〜200℃、好ましくは130〜170℃にて行われる。かかる乾燥により得られる粉体の粒径は、好ましくは10〜200μmとなるようにするのが好ましい。このため粉体は、場合により乾燥後粉砕することもできる。   The drying temperature is usually 90 to 200 ° C, preferably 130 to 170 ° C, although it varies depending on the concentration of the slurry solution. The particle size of the powder obtained by such drying is preferably 10 to 200 μm. For this reason, the powder can optionally be pulverized after drying.

上記乾燥により得られる粉体は、次いで成形される。成形方法に特に制限はなく、好ましくはバインダーを使用して成形される。好ましいバインダーは、シリカ、グラファイト及び結晶性セルロースからなる群から選ばれる。バインダーは、粉体100重量部に対して好ましくは約1〜50重量部程度使用できる。また、また、必要によりセラミックス繊維、ウイスカー等の無機繊維を触媒粒子の機械的強度向上材として用いることもできる。しかし、チタン酸カリウムウイスカーや塩基性炭酸マグネシウムウイスカーのような触媒成分と反応する繊維は好ましくない。強度向上のためには、セラミックス繊維が特に好ましい。これらの繊維の使用量は、粉体100重量部に対して好ましくは1〜30重量部である。上記成形助剤は、予め通常粉体と混合して用いられる。   The powder obtained by the drying is then molded. There is no restriction | limiting in particular in a shaping | molding method, Preferably it shape | molds using a binder. Preferred binders are selected from the group consisting of silica, graphite and crystalline cellulose. The binder is preferably used in an amount of about 1 to 50 parts by weight with respect to 100 parts by weight of the powder. Further, if necessary, inorganic fibers such as ceramic fibers and whiskers can be used as a material for improving the mechanical strength of the catalyst particles. However, fibers that react with catalyst components such as potassium titanate whiskers and basic magnesium carbonate whiskers are not preferred. For improving the strength, ceramic fiber is particularly preferable. The amount of these fibers used is preferably 1 to 30 parts by weight with respect to 100 parts by weight of the powder. The molding aid is usually used in advance mixed with powder.

バインダーなどの成形助剤と混合された粉体は、(A)打錠成形、(B)押出成形、(C)球状その他の形状の担持成形法などの方法で成形される。成形体の形状は、好ましくは球状、円柱状、リング状などの適宜の形状が選択される。このようにして成形された成形物は、次いで焼成して複合酸化物触媒を得ることができる。焼成温度は、通常250〜500℃を採用でき、好ましくは300〜420℃であり、焼成時間は1〜50時間である。焼成は、不活性ガス又は分子状酸素の存在下の雰囲気で行うことができる。焼成温度が低すぎる場合はモリブデン元素の熱拡散が十分でなく、高すぎる場合はモリブデン元素が昇華により失われる恐れがある。   The powder mixed with a molding aid such as a binder is molded by a method such as (A) tableting molding, (B) extrusion molding, or (C) spherical or other shape support molding method. As the shape of the molded body, an appropriate shape such as a spherical shape, a cylindrical shape, or a ring shape is preferably selected. The molded product thus molded can then be calcined to obtain a composite oxide catalyst. The firing temperature can be usually 250 to 500 ° C, preferably 300 to 420 ° C, and the firing time is 1 to 50 hours. Firing can be performed in an atmosphere in the presence of an inert gas or molecular oxygen. If the firing temperature is too low, thermal diffusion of the molybdenum element is not sufficient, and if it is too high, the molybdenum element may be lost by sublimation.

本発明により製造された触媒を使用し、不飽和アルデヒドを分子状酸素又は分子状酸素含有ガスを使用して気相酸化し、対応する不飽和カルボン酸を製造する手段は、既存の方法により行うことができる。例えば、反応器としては、固定床管型反応器を用いて行われる。この場合、反応は、反応器を通じて単流通法でもリサイクル法であってもよく、この種の反応に一般的に使用される条件下で実施できる。   The means for producing a corresponding unsaturated carboxylic acid by vapor phase oxidation of an unsaturated aldehyde using molecular oxygen or a molecular oxygen-containing gas using the catalyst produced according to the present invention is performed by an existing method. be able to. For example, a fixed bed tube reactor is used as the reactor. In this case, the reaction may be a single flow method or a recycle method through the reactor, and can be carried out under conditions generally used for this type of reaction.

例えば、アクロレイン1〜15容量%、分子状酸素0.5〜25容量%、水蒸気0〜40容量%、窒素、炭酸ガスなどの不活性ガス20〜80容量%などからなる混合ガスを、内径が好ましくは15〜50mmの各反応管の各反応帯に充填した触媒層に250〜450℃、0.1〜1MPaの加圧下、空間速度(SV)300〜5000hr-1で導入される。本発明では、より生産性を上げるために高負荷反応条件下、例えば、より高い原料ガス度、又は高い空間速度の条件下でも運転することもできる。かくして、本発明で製造された触媒により、高選択率及び高収率でアクリル酸を製造することができる。 For example, a mixed gas composed of 1 to 15% by volume of acrolein, 0.5 to 25% by volume of molecular oxygen, 0 to 40% by volume of water vapor, 20 to 80% by volume of inert gas such as nitrogen and carbon dioxide, etc. Preferably, it is introduced at a space velocity (SV) of 300 to 5000 hr −1 under a pressure of 250 to 450 ° C. and a pressure of 0.1 to 1 MPa in a catalyst layer filled in each reaction zone of each reaction tube of 15 to 50 mm. In the present invention, it is possible to operate even under high-load reaction conditions, for example, higher feed gas degree or higher space velocity conditions in order to increase productivity. Thus, acrylic acid can be produced with high selectivity and high yield by the catalyst produced in the present invention.

以下に、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されて解釈されるべきでないことはもちろんである。なお、実施例で使用したナイター浴は、アルカリ金属の硝酸塩からなる熱媒体に反応管を入れて反応させる塩浴をいい、この熱媒体は200℃以上で溶融し、400℃まで使用可能で除熱効率がよいので、発熱量の大きな酸化反応に適した反応浴である。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention should not be construed as being limited to these examples. The night bath used in the examples refers to a salt bath in which a reaction tube is placed in a heat medium made of an alkali metal nitrate and reacted. This heat medium melts at 200 ° C. or higher and can be used up to 400 ° C. Since the thermal efficiency is good, it is a reaction bath suitable for an oxidation reaction with a large calorific value.

また、アクロレイン転化率、アクリル酸選択率、アクリル酸収率は、下記の式で定義されるものである。   The acrolein conversion, acrylic acid selectivity, and acrylic acid yield are defined by the following formulas.

アクロレイン転化率(モル%)=100×(反応したアクロレインのモル数)/(供給したアクロレインのモル数)
アクリル酸選択率(モル%)=100×(生成したアクリル酸モル数)/(転化したアクロレインモル数)
アクリル酸収率(モル%)=100×(生成したアクリル酸モル数)/(供給したアクロレインモル数)
Acrolein conversion (mol%) = 100 × (number of moles of reacted acrolein) / (number of moles of supplied acrolein)
Acrylic acid selectivity (mol%) = 100 × (number of moles of acrylic acid produced) / (number of moles of converted acrolein)
Acrylic acid yield (mol%) = 100 × (number of moles of acrylic acid produced) / (number of moles of acrolein supplied)

実施例1
酸素を除く構成成分の実験式がMo122.4Nb1Cu2Si200200である複合金属酸化物を以下のようにして調製した。
先ず、純水1446mlを80℃に加熱し、これに対して、パラモリブデン酸アンモニウム207g、メタバナジン酸アンモニウム27.5g及びクエン酸12.0gを順次攪拌しながら溶解した.該水溶液に、硫酸銅48.6gを純水204mlに溶解させた硫酸銅水溶液を加え,さらに水酸化ニオブ19.3gを加えて攪拌し、スラリー溶液を得た。
Example 1
A composite metal oxide in which the empirical formula of the constituent components excluding oxygen was Mo 12 V 2.4 Nb 1 Cu 2 Si 200 C 200 was prepared as follows.
First, 1446 ml of pure water was heated to 80 ° C., and 207 g of ammonium paramolybdate, 27.5 g of ammonium metavanadate, and 12.0 g of citric acid were dissolved while sequentially stirring. A copper sulfate aqueous solution in which 48.6 g of copper sulfate was dissolved in 204 ml of pure water was added to the aqueous solution, and 19.3 g of niobium hydroxide was further added and stirred to obtain a slurry solution.

このスラリー溶液に炭化珪素粉末782gを加えて、充分に撹拌混合した。このスラリー状液を130℃に加熱して乾燥した。これに1.5重量%のグラファイトを添加混合し、小型打錠成形機にて成形し、これを焼成炉にて窒素気流中380℃で3時間焼成したものを触媒とした。   782 g of silicon carbide powder was added to the slurry solution, and the mixture was sufficiently stirred and mixed. The slurry liquid was heated to 130 ° C. and dried. 1.5% by weight of graphite was added to and mixed with this, molded with a small tableting machine, and calcined at 380 ° C. for 3 hours in a nitrogen stream in a firing furnace as a catalyst.

得られた触媒を評価するために、20〜28メッシュに粉砕し整粒したもの0.3gを、内径4mmのU字型反応管に充填し、この反応管を加熱したナイター浴(温度:288℃)に入れ、該反応管中に組成ガス(アクロレイン 5容量%、酸素 8容量%、スチーム 15容量%及び窒素ガス 72容量%)を導入し、SV(空間速度;単位時間当たりの原料ガスの流量/充填した触媒の見かけ容積)を14900/hr-1で反応させた。 反応の結果、アクロレイン転化率=99.0%、アクリル酸選択率=98.6%、アクリル酸収率=97.6%であった。 In order to evaluate the obtained catalyst, 0.3 g of a 20-28 mesh pulverized and sized particle was charged into a U-shaped reaction tube having an inner diameter of 4 mm, and this reaction tube was heated in a night bath (temperature: 288). The composition gas (5% by volume of acrolein, 8% by volume of oxygen, 15% by volume of steam and 72% by volume of nitrogen gas) is introduced into the reaction tube, and SV (space velocity; the raw material gas per unit time) is introduced. The flow rate / apparent volume of catalyst charged was reacted at 14900 / hr −1 . As a result of the reaction, the acrolein conversion was 99.0%, the acrylic acid selectivity was 98.6%, and the acrylic acid yield was 97.6%.

実施例2
酸素を除く構成成分の実験式がMo122.4Nb1Cu2Si200200である複合金属酸化物を以下のようにして調製した。
先ず、純水1446mlを80℃に加熱し、これに対して、パラモリブデン酸アンモニウム207g、メタバナジン酸アンモニウム27.5g、及びシュウ酸12.0g順次攪拌しながら溶解した.これに硫酸銅48.6gを純水204mlに溶解させた硫酸銅水溶液を加え,さらに水酸化ニオブ19.3gを加えて攪拌し、スラリー溶液を得た。
Example 2
A composite metal oxide in which the empirical formula of the constituent components excluding oxygen was Mo 12 V 2.4 Nb 1 Cu 2 Si 200 C 200 was prepared as follows.
First, 1446 ml of pure water was heated to 80 ° C., and 207 g of ammonium paramolybdate, 27.5 g of ammonium metavanadate, and 12.0 g of oxalic acid were dissolved in this order with stirring. To this was added an aqueous copper sulfate solution in which 48.6 g of copper sulfate was dissolved in 204 ml of pure water, and 19.3 g of niobium hydroxide was further added and stirred to obtain a slurry solution.

このスラリー溶液に炭化珪素粉末782gを加えて、充分に撹拌混合した。このスラリー状液を130℃に加熱して乾燥した。これに1.5重量%のグラファイトを添加混合し、小型打錠成形機にて成形し、これを焼成炉にて窒素気流中380℃で3時間焼成したものを触媒とした。   782 g of silicon carbide powder was added to the slurry solution, and the mixture was sufficiently stirred and mixed. The slurry liquid was heated to 130 ° C. and dried. 1.5% by weight of graphite was added to and mixed with this, molded with a small tableting machine, and calcined at 380 ° C. for 3 hours in a nitrogen stream in a firing furnace as a catalyst.

得られた触媒を評価するために、20〜28メッシュに粉砕し整粒したもの0.3gを、内径4mmのU字型反応管に充填し、この反応管を加熱したナイター浴(温度:290 ℃)に入れ、該反応管中に組成ガス(アクロレイン 5容量%、酸素 8容量%、スチーム 15容量%、窒素ガス 72容量%)を導入し、SV(空間速度;単位時間当たりの原料ガスの流量/充填した触媒の見かけ容積)を14900/hr-1で反応させた。 In order to evaluate the obtained catalyst, 0.3 g of a 20-28 mesh pulverized and sized particle was charged into a U-shaped reaction tube having an inner diameter of 4 mm, and this reaction tube was heated in a night bath (temperature: 290). ) And a composition gas (5% by volume of acrolein, 8% by volume of oxygen, 15% by volume of steam, 72% by volume of nitrogen gas) is introduced into the reaction tube, and SV (space velocity; raw material gas per unit time) is introduced. The flow rate / apparent volume of catalyst charged was reacted at 14900 / hr −1 .

反応の結果、アクロレイン転化率=99.0%、アクリル酸選択率=97.2%、アクリル酸収率=96.2%であった。   As a result of the reaction, the acrolein conversion rate was 99.0%, the acrylic acid selectivity was 97.2%, and the acrylic acid yield was 96.2%.

〔実施例3〕
酸素を除く構成成分の実験式がMo122.4Nb10.5Cu2Sb1Si200200である複合金属酸化物を以下のようにして調製した。
先ず、純水1446mlを80℃に加熱し、これに対して、パラモリブデン酸アンモニウム201g、メタバナジン酸アンモニウム26.7g,クエン酸12.0g、及びメタタングステン酸アンモニウム21.9gを順次攪拌しながら溶解した.これに三酸化アンチモン13.8gを加え,さらに硫酸銅47.3gを純水204mlに溶解させた硫酸銅水溶液を加え,水酸化ニオブ18.7gを加えて攪拌し、スラリー溶液を得た。
Example 3
A composite metal oxide in which the empirical formula of the constituent components excluding oxygen is Mo 12 V 2.4 Nb 1 W 0.5 Cu 2 Sb 1 Si 200 C 200 was prepared as follows.
First, 1446 ml of pure water is heated to 80 ° C., and 201 g of ammonium paramolybdate, 26.7 g of ammonium metavanadate, 12.0 g of citric acid, and 21.9 g of ammonium metatungstate are dissolved while sequentially stirring. did. To this was added 13.8 g of antimony trioxide, and an aqueous copper sulfate solution in which 47.3 g of copper sulfate was dissolved in 204 ml of pure water was added, and 18.7 g of niobium hydroxide was added and stirred to obtain a slurry solution.

このスラリー溶液に炭化珪素粉末761gを加えて、充分に撹拌混合した。このスラリー状液を130℃に加熱して乾燥した。これに1.5重量%のグラファイトを添加混合し、小型打錠成形機にて成形し、これを焼成炉にて窒素気流中380℃で3時間焼成したものを触媒とした。   To this slurry solution, 761 g of silicon carbide powder was added and mixed thoroughly. The slurry liquid was heated to 130 ° C. and dried. 1.5% by weight of graphite was added to and mixed with this, molded with a small tableting machine, and calcined at 380 ° C. for 3 hours in a nitrogen stream in a firing furnace as a catalyst.

得られた触媒を評価するために、20〜28メッシュに粉砕し整粒したもの0.3gを、内径4mmのU字型反応管に充填し、この反応管を加熱したナイター浴(温度:290℃)に入れ、該反応管中に組成ガス(アクロレイン 5容量%、酸素 8容量%、スチーム 15容量%、窒素ガス 72容量%)を導入し、SV(空間速度;単位時間当たりの原料ガスの流量/充填した触媒の見かけ容積)を14900/hr-1で反応させた。 In order to evaluate the obtained catalyst, 0.3 g of a 20-28 mesh pulverized and sized particle was charged into a U-shaped reaction tube having an inner diameter of 4 mm, and this reaction tube was heated in a night bath (temperature: 290). ) And a composition gas (5% by volume of acrolein, 8% by volume of oxygen, 15% by volume of steam, 72% by volume of nitrogen gas) is introduced into the reaction tube, and SV (space velocity; raw material gas per unit time) is introduced. The flow rate / apparent volume of catalyst charged was reacted at 14900 / hr −1 .

反応の結果、アクロレイン転化率=99.0%、アクリル酸選択率=98.7%、アクリル酸収率=97.7%であった。   As a result of the reaction, acrolein conversion was 99.0%, acrylic acid selectivity was 98.7%, and acrylic acid yield was 97.7%.

比較例
酸素を除く構成成分の実験式がMo122.4Nb1Cu2Si200200である複合金属酸化物を以下のようにして調製した。
先ず、純水1446mlを80℃に加熱し、これに対して、パラモリブデン酸アンモニウム207g、及びメタバナジン酸アンモニウム27.5gを順次攪拌しながら溶解した。これに硫酸銅48.6gを純水204mlに溶解させた硫酸銅水溶液を加え、さらに水酸化ニオブ19.3gを加えて攪拌し、スラリー溶液を得た。
Comparative Example A composite metal oxide in which the empirical formula of constituent components excluding oxygen was Mo 12 V 2.4 Nb 1 Cu 2 Si 200 C 200 was prepared as follows.
First, 1446 ml of pure water was heated to 80 ° C., and 207 g of ammonium paramolybdate and 27.5 g of ammonium metavanadate were dissolved while sequentially stirring. To this was added an aqueous copper sulfate solution in which 48.6 g of copper sulfate was dissolved in 204 ml of pure water, and 19.3 g of niobium hydroxide was further added and stirred to obtain a slurry solution.

このスラリー溶液に炭化珪素粉末782gを加えて、充分に撹拌混合した。このスラリー状液を130℃に加熱して乾燥した。これに1.5重量%のグラファイトを添加混合し、小型打錠成形機にて成形し、これを焼成炉にて窒素気流中380℃で3時間焼成したものを触媒とした。   782 g of silicon carbide powder was added to the slurry solution, and the mixture was sufficiently stirred and mixed. The slurry liquid was heated to 130 ° C. and dried. 1.5% by weight of graphite was added to and mixed with this, molded with a small tableting machine, and calcined at 380 ° C. for 3 hours in a nitrogen stream in a firing furnace as a catalyst.

得られた触媒の反応性を実施例と全く同様の条件で評価した。反応の結果、ナイター浴温度が296℃でアクロレイン転化率=99.0%、アクリル酸選択率=97.0%、アクリル酸収率=96.0%であった。   The reactivity of the obtained catalyst was evaluated under exactly the same conditions as in the examples. As a result of the reaction, the acrolein conversion rate was 99.0%, the acrylic acid selectivity was 97.0%, and the acrylic acid yield was 96.0% at a night bath temperature of 296 ° C.

このように、有機酸を添加しなかった比較例ではアクリル酸選択率が低く、実施例1に比べて収率は1.6%低い結果であった。   Thus, the comparative example in which no organic acid was added had a low acrylic acid selectivity, and the yield was 1.6% lower than that in Example 1.

これに対し、有機酸を添加した実施例1、実施例2、実施例3ではいずれもアクロレイン転化率、アクリル酸選択率およびアクリル酸収率に優れ、アクロレインの気相接触酸化反応を効率よく行なえた。   In contrast, Example 1, Example 2, and Example 3 to which an organic acid was added were all excellent in acrolein conversion, acrylic acid selectivity, and acrylic acid yield, so that the gas phase catalytic oxidation reaction of acrolein could be performed efficiently. It was.

本発明の方法により製造された触媒は、不飽和アルデヒドを分子状酸素含有ガスにより気相接触酸化し、高い収率で対応する不飽和カルボン酸を製造するために使用される。製造された、アクリル酸などの不飽和カルボン酸は、各種化学品の原料、汎用樹脂のモノマー、吸水性樹脂などの機能性樹脂のモノマー、凝集剤、増粘剤などとして広範な用途に使用される。   The catalyst produced by the process of the present invention is used for the gas phase catalytic oxidation of unsaturated aldehydes with molecular oxygen-containing gas to produce the corresponding unsaturated carboxylic acid in high yield. The produced unsaturated carboxylic acids such as acrylic acid are used in a wide range of applications as raw materials for various chemicals, monomers for general-purpose resins, monomers for functional resins such as water-absorbing resins, flocculants, and thickeners. The

Claims (5)

式:Mo12abCucdeSifg
(式中、Xは,Nb及びWから選ばれた少なくとも一種の元素を示し、YはSb、Mg、Ca、Sr、Ba及びZnからなる群から選ばれた少なくとも一種の元素を示し、a、b、c、d、e、f及びgは各元素の原子比を示し、0<a≦12、0≦b≦12、0<c≦12、0≦d≦8、0≦e≦1000、0≦f≦1000を満足し、gは、前記各成分元素のうちSiとCを除いた他の元素の酸化状態を満足するのに必要な酸素原子数である)で表される複合酸化物触媒の製造において、各成分元素の供給源化合物を水性媒体系にて有機酸の存在下に一体化させ、得られる一体化物の水溶液又は分散液を乾燥し、成形し、焼成することを特徴とする複合酸化物触媒の製造方法。
Formula: Mo 12 V a X b Cu c Y d C e Si f O g
(Wherein X represents at least one element selected from Nb and W, Y represents at least one element selected from the group consisting of Sb, Mg, Ca, Sr, Ba and Zn; b, c, d, e, f and g indicate the atomic ratio of each element, and 0 <a ≦ 12, 0 ≦ b ≦ 12, 0 <c ≦ 12, 0 ≦ d ≦ 8, 0 ≦ e ≦ 1000, 0 ≦ f ≦ 1000 is satisfied, and g is the number of oxygen atoms necessary to satisfy the oxidation state of other elements excluding Si and C among the component elements) In the production of a catalyst, the source compound of each component element is integrated in the presence of an organic acid in an aqueous medium system, and the aqueous solution or dispersion of the resulting integrated product is dried, molded, and calcined. A method for producing a composite oxide catalyst.
有機酸を、モリブデン1モルに対して0.001〜1モル存在させる請求項1に記載の複合酸化物触媒の製造方法。   2. The method for producing a composite oxide catalyst according to claim 1, wherein the organic acid is present in an amount of 0.001 to 1 mole relative to 1 mole of molybdenum. 有機酸がクエン酸、シュウ酸及びリンゴ酸からなる群から選ばれた少なくとも1種である請求項1又は2に記載の複合酸化物触媒の製造方法。   The method for producing a composite oxide catalyst according to claim 1 or 2, wherein the organic acid is at least one selected from the group consisting of citric acid, oxalic acid and malic acid. 複合酸化物触媒が、不飽和アルデヒドを分子状酸素含有ガスにより気相接触酸化して対応する不飽和カルボン酸を製造するための触媒である請求項1〜3のいずれかに記載の複合酸化物触媒の製造方法。   The composite oxide according to any one of claims 1 to 3, wherein the composite oxide catalyst is a catalyst for producing a corresponding unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde with a molecular oxygen-containing gas. A method for producing a catalyst. 請求項1〜4のいずれかに記載の製造方法で製造された複合酸化物触媒の存在下にアクロレインを分子状酸素含有ガスにより気相接触酸化して対応するアクリル酸を製造する方法。   A method for producing a corresponding acrylic acid by vapor-phase catalytic oxidation of acrolein with a molecular oxygen-containing gas in the presence of the composite oxide catalyst produced by the production method according to claim 1.
JP2005073936A 2004-03-23 2005-03-15 Method of producing compound oxide catalyst Withdrawn JP2005305421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005073936A JP2005305421A (en) 2004-03-23 2005-03-15 Method of producing compound oxide catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004085297 2004-03-23
JP2005073936A JP2005305421A (en) 2004-03-23 2005-03-15 Method of producing compound oxide catalyst

Publications (1)

Publication Number Publication Date
JP2005305421A true JP2005305421A (en) 2005-11-04

Family

ID=35434789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005073936A Withdrawn JP2005305421A (en) 2004-03-23 2005-03-15 Method of producing compound oxide catalyst

Country Status (1)

Country Link
JP (1) JP2005305421A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238098A (en) * 2007-03-28 2008-10-09 Mitsubishi Chemicals Corp Method for preparing composite oxide catalyst
JP2016174999A (en) * 2015-03-18 2016-10-06 株式会社日本触媒 Method for producing catalyst for producing acrylic acid and the catalyst, and method for producing acrylic acid using the catalyst
JP2017176932A (en) * 2016-03-28 2017-10-05 三菱ケミカル株式会社 catalyst
WO2020246476A1 (en) * 2019-06-05 2020-12-10 株式会社日本触媒 Catalyst for acrylic acid production, method for producing same, and method for producing acrylic acid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238098A (en) * 2007-03-28 2008-10-09 Mitsubishi Chemicals Corp Method for preparing composite oxide catalyst
JP2016174999A (en) * 2015-03-18 2016-10-06 株式会社日本触媒 Method for producing catalyst for producing acrylic acid and the catalyst, and method for producing acrylic acid using the catalyst
JP2017176932A (en) * 2016-03-28 2017-10-05 三菱ケミカル株式会社 catalyst
WO2020246476A1 (en) * 2019-06-05 2020-12-10 株式会社日本触媒 Catalyst for acrylic acid production, method for producing same, and method for producing acrylic acid
JPWO2020246476A1 (en) * 2019-06-05 2021-11-25 株式会社日本触媒 Acrylic acid production catalyst and its production method and acrylic acid production method
JP7186295B2 (en) 2019-06-05 2022-12-08 株式会社日本触媒 Catalyst for producing acrylic acid, method for producing the same, and method for producing acrylic acid

Similar Documents

Publication Publication Date Title
US7132384B2 (en) Process for producing composite oxide catalyst
JP3892244B2 (en) Process for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid
US7414008B2 (en) Catalyst for synthesis of unsaturated aldehyde, production process for said catalyst, and production process for unsaturated aldehyde using said catalyst
US7217680B2 (en) Method for producing composite oxide catalyst
KR20170125827A (en) Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
EP1350784A1 (en) Process for production of unsaturated aldehyde or acid using Mo-Bi-Fe catalyst
JP2005305421A (en) Method of producing compound oxide catalyst
JP2006007205A (en) Compound oxide catalyst and its manufacturing method
JP4858266B2 (en) Method for producing composite oxide catalyst
JP2008284416A (en) Method for manufacturing metal oxide catalyst
JP5831329B2 (en) Composite oxide catalyst
JP2005169311A (en) Production method for complex oxide catalyst
JP2015120133A (en) Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst
US20050261520A1 (en) Process for producing catalyst for production of unsaturated carboxylic acid
JP6136436B2 (en) Catalyst production method
JP2004351297A (en) Catalyst for methacrylic acid production, its production method, and production method of methacrylic acid
JP3999972B2 (en) Method for producing acrylic acid or methacrylic acid
WO2005089943A1 (en) Process for producing composite oxide catalyst
JP2005205263A (en) Manufacturing method of composite oxide catalyst
JP3999965B2 (en) Method for producing acrylic acid or methacrylic acid
WO2005113139A1 (en) Composite oxide catalyst and method for production thereof
JP4902991B2 (en) Method for producing oxide catalyst
US7279442B2 (en) Process for producing catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid
JP2003200055A (en) Method for manufacturing compound oxide catalyst
JP2005186064A (en) Production method for catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090709