JP2005169311A - Production method for complex oxide catalyst - Google Patents

Production method for complex oxide catalyst Download PDF

Info

Publication number
JP2005169311A
JP2005169311A JP2003415020A JP2003415020A JP2005169311A JP 2005169311 A JP2005169311 A JP 2005169311A JP 2003415020 A JP2003415020 A JP 2003415020A JP 2003415020 A JP2003415020 A JP 2003415020A JP 2005169311 A JP2005169311 A JP 2005169311A
Authority
JP
Japan
Prior art keywords
component
oxide catalyst
producing
raw material
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003415020A
Other languages
Japanese (ja)
Inventor
Nariyasu Kanuka
成康 嘉糠
Tsutomu Teshigawara
力 勅使河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003415020A priority Critical patent/JP2005169311A/en
Priority to PCT/JP2004/013461 priority patent/WO2005056185A1/en
Priority to CN 200480000345 priority patent/CN1697701A/en
Publication of JP2005169311A publication Critical patent/JP2005169311A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a complex oxide catalyst for producing an unsaturated aldehyde or an unsaturated carboxylic acid from a corresponding olefin with a high yield; and a production method for the catalyst. <P>SOLUTION: The complex oxide catalyst is used for producing, from an olefin, the unsaturated aldehyde or the unsaturated carboxylic acid each corresponding to the olefin, by vapor phase catalytic oxidation with a molecular-oxygen-containing gas and at least contains (A) molybdenum, (B) bismuth, (C) cobalt and/or nickel, and (D) iron. The method for producing the catalyst comprises drying a water dispersion which contains a component (A)-containing material, a component (B)-containing material, a component (C)-containing material, and a component (D)-containing material in a unified state and has a nitrate group content satisfying the formula: 2≤NO<SB>3</SB>/(3×Fe+2×(Co+Ni)), subjecting the dried product to a pretreatment for thermally treating to give a catalyst precursor powder, unifying the precursor powder with a component (B)-containing material, and drying and sintering the resultant unified product. In the formula, NO<SB>3</SB>, Fe, Co and Ni show the molar contents of nitrate group, iron, cobalt, and nickel, respectively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、オレフィンを分子状酸素含有ガスにより気相接触酸化してそれぞれ対応する不飽和アルデヒド及び不飽和カルボン酸を高収率で再現性よく有利に製造できる複合酸化物触媒の製造方法に関する。   The present invention relates to a method for producing a composite oxide catalyst capable of advantageously producing a corresponding unsaturated aldehyde and unsaturated carboxylic acid with high reproducibility and high reproducibility by gas phase catalytic oxidation of olefin with molecular oxygen-containing gas.

従来、プロピレンを分子状酸素により気相接触酸化してアクロレイン及びアクリル酸を製造するための触媒、また、イソブチレンを分子状酸素含有ガスにより気相接触酸化してメタクロレイン及びメタクリル酸を製造するための触媒が種々提案されている。   Conventionally, a catalyst for producing acrolein and acrylic acid by vapor-phase catalytic oxidation of propylene with molecular oxygen, and for producing methacrolein and methacrylic acid by vapor-phase catalytic oxidation of isobutylene with molecular oxygen-containing gas. Various catalysts have been proposed.

これらの触媒は、原料オレフィン資源の有効利用及び反応における工程の合理化の観点から、少しでも高いオレフィンの転化率や目的物の選択率の触媒性能が求められる。この場合、例えば、プロピレンからアクロレイン及びアクリル酸を製造するプロセスは、上記転化率や選択率が0.1%でも向上すると、得られる生成物である、アクロレイン及びアクリル酸の量は、数百〜数千トン/年のレベルで大きく増加する。したがって、原料転化率や選択率等の触媒性能の向上は、たとえ少しの値であっても、資源の有効活用や工程の合理化に大きく寄与する。   From the viewpoint of effective utilization of raw material olefin resources and rationalization of processes in the reaction, these catalysts are required to have catalytic performances that are as high as possible in terms of olefin conversion and target product selectivity. In this case, for example, in the process of producing acrolein and acrylic acid from propylene, when the conversion rate and selectivity are improved even by 0.1%, the amount of acrolein and acrylic acid that are obtained is several hundred to Significant increase at several thousand tons / year. Therefore, improvement of catalyst performance such as raw material conversion rate and selectivity greatly contributes to effective utilization of resources and rationalization of processes even if a small value.

従来、これらの反応の原料転化率や選択率等の触媒性能の改善を目指して種々の提案がなされている。例えば、特許文献1には、モリブデンービスマス系複合酸化物触媒において、各原料成分を均一に分散させるのではなく、モリブデン成分は水溶性原料を使用し、ビスマス成分は水に不溶性原料を使用した不均一系での製造方法が記載されている。その目的は、ビスマス成分が水溶性の硝酸塩の場合には、硝酸塩などの多量の使用により触媒性能が低下するのを避けるためと説明されている。この場合、モリブデン、ビスマスなどの成分は、最終工程である焼成工程での熱拡散により固溶化し一体化されると説明されている。   Conventionally, various proposals have been made with the aim of improving the catalyst performance such as the raw material conversion rate and selectivity of these reactions. For example, in Patent Document 1, in the molybdenum-bismuth composite oxide catalyst, each raw material component is not uniformly dispersed, but the molybdenum component uses a water-soluble raw material, and the bismuth component uses a water-insoluble raw material. A production method in a heterogeneous system is described. The purpose is explained to avoid a decrease in catalyst performance due to the use of a large amount of nitrate or the like when the bismuth component is a water-soluble nitrate. In this case, it is described that components such as molybdenum and bismuth are solidified and integrated by thermal diffusion in the firing step which is the final step.

また、特許文献2には、モリブデンービスマス系複合酸化物触媒の活性、選択性及び触媒寿命が、その調製時における触媒成分の原料混合物水溶液中の硝酸根量が関係することが開示されている。そして、触媒性能を向上させるために、触媒調製時における原料混合物水溶液中の硝酸根量を低下させ、具体的には、NO/Moの含有量の比率を1.8以下にすることが提案されている。 Patent Document 2 discloses that the activity, selectivity, and catalyst life of a molybdenum-bismuth-based composite oxide catalyst are related to the amount of nitrate radical in the raw material mixture aqueous solution of the catalyst component at the time of preparation. . And in order to improve catalyst performance, the nitrate radical amount in the raw material mixture aqueous solution at the time of catalyst preparation is reduced, specifically, the ratio of the content of NO 3 / Mo is set to 1.8 or less. Has been.

さらに、特許文献3には、モリブデン、ビスマス、鉄、コバルト及び/又はニッケル系の複合酸化物触媒の製造方法が開示されている。そこでは、モリブデン、鉄、コバルト及び/又はニッケルなどの成分を含む触媒前駆体粉末を予め調製し、得られた触媒前駆体粉末に、ビスマス成分を混合、一体化して、乾燥、焼成することにより、高性能の触媒が製造されることが提案されている。   Furthermore, Patent Document 3 discloses a method for producing molybdenum, bismuth, iron, cobalt and / or nickel-based composite oxide catalysts. There, a catalyst precursor powder containing components such as molybdenum, iron, cobalt and / or nickel is prepared in advance, and a bismuth component is mixed and integrated into the obtained catalyst precursor powder, followed by drying and firing. It has been proposed that high performance catalysts be produced.

しかしながら、これら従来技術によるモリブデンービスマス系複合酸化物触媒は、なお、原料転化率や選択率等の触媒性能が不充分であり、更なる触媒性能の向上が求められている。
特公平5−87299号公報 特開2000−325795号公報 特開2003−205240号公報
However, these molybdenum-bismuth complex oxide catalysts according to the prior art still have insufficient catalyst performance such as raw material conversion and selectivity, and further improvement in catalyst performance is required.
Japanese Patent Publication No. 5-87299 JP 2000-325795 A JP 2003-205240 A

上記のような従来技術に鑑み、本発明の目的は、オレフィンを分子状酸素含有ガスにより気相接触酸化してそれぞれ対応する不飽和アルデヒド及び不飽和カルボン酸を高収率で再現性よく有利に製造できる触媒の製造方法を提供することにある。   In view of the prior art as described above, the object of the present invention is to favorably produce a corresponding unsaturated aldehyde and unsaturated carboxylic acid in a high yield with good reproducibility by gas phase catalytic oxidation of an olefin with a molecular oxygen-containing gas. The object is to provide a method for producing a catalyst that can be produced.

本発明者は、上記課題を解決すべく鋭意研究を進めたところ、(A)モリブデン、(B)ビスマス、(C)コバルト及び/又はニッケル、及び(D)鉄を少なくとも含む複合酸化物触媒の製造方法において、前記(A)成分原料、前記(C)成分原料、及び前記(D)成分原料を含む水分散液を乾燥し、該乾燥物を加熱処理して製造された触媒前駆体粉末と、前記(B)成分原料とを水性溶媒中で一体化し、該一体化物を乾燥、焼成して複合酸化物触媒を製造する場合において、上記水分散液中に含有される硝酸根(NO)の量が製造される複合酸化物触媒の触媒性能と大きく関係し、該硝酸根の含有量を所定の範囲に制御することにより優れた特性の触媒を製造できることを見出した。 As a result of diligent research to solve the above-mentioned problems, the present inventors have found that a composite oxide catalyst containing at least (A) molybdenum, (B) bismuth, (C) cobalt and / or nickel, and (D) iron. In the production method, a catalyst precursor powder produced by drying an aqueous dispersion containing the component (A) raw material, the component (C) raw material, and the component (D) raw material, and heat-treating the dried product, In the case of producing a composite oxide catalyst by integrating the component (B) raw material in an aqueous solvent and drying and calcining the integrated product, the nitrate radical (NO 3 ) contained in the aqueous dispersion is used. It has been found that a catalyst having excellent characteristics can be produced by controlling the content of the nitrate radical within a predetermined range.

かくして、本発明は、下記の特徴を有する構成を要旨とするものである。
1.オレフィンを分子状酸素含有ガスにより気相接触酸化してそれぞれ対応する不飽和アルデヒド及び不飽和カルボン酸を製造する際に使用される、(A)モリブデン、(B)ビスマス、(C)コバルト及び/又はニッケル、及び(D)鉄を少なくとも含む複合酸化物触媒の製造方法において、前記(A)成分原料、前記(C)成分原料及び前記(D)成分原料を一体化して含み、かつ硝酸根の含有量が下記の式(1)を満足する水分散液を乾燥し、該乾燥物を加熱処理する前工程を経て製造された触媒前駆体粉末と、前記(B)成分原料とを水性溶媒中で一体化し、該一体化物を乾燥、焼成することを特徴とする複合酸化物触媒の製造方法。

1.2≦NO/(3×Fe+2×(Co+Ni)) (1)

但し、式中、NO、Fe、Co、及びNiは、それぞれ、上記水分散液中の硝酸根、鉄、コバルト、及びニッケルのモル含有量を示す。
2.上記前工程の水分散液に硝酸塩化合物が添加される上記1に記載の複合酸化物触媒の製造方法。
3.上記(B)成分原料が、水に難溶性乃不溶性のビスマス化合物である上記1又は2に記載の複合酸化物触媒の製造方法。
4.上記前工程の水分散液中の硝酸根の含有量が下記の式(2)を満足する上記1〜3のいずれかに記載の複合酸化物触媒の製造方法。

1.2≦NO/(3×Fe+2×(Co+Ni))≦10 (2)

5.上記複合酸化物触媒、下記一般式(3)で表される上記1〜4のいずれかに記載の複合酸化物触媒の製造方法。

MoaBibCocNidFeeXfYgZhQiSijOk (3)

但し、XはNa、K、Rb、Cs及びTlからなる群から選ばれる少なくとも一種を示し、YはB、P、As及びWからなる群から選ばれる少なくとも一種を示し、ZはMg、Ca、Zn、Ce及びSmからなる群から選ばれる少なくとも一種を示す。Qはハロゲンを示し、また、a〜kはそれぞれの元素の原子比を表わし、a=12とするとき、b=0.5〜7、c=0〜10、d=0〜10、c+d=1〜10、e=0.05〜3、f=0.0005〜3、g=0〜3、h=0〜1、i=0〜0.5、j=0〜40、の範囲にあり、また、kは他の元素の酸化状態を満足させる値である。)
6.上記1〜5のいずれかに記載の製造方法で得られた複合酸化物触媒の存在下にプロピレンを分子状酸素含有ガスにより気相接触酸化してアクロレイン及びアクリル酸を製造する方法。
Thus, the gist of the present invention is the configuration having the following characteristics.
1. (A) Molybdenum, (B) Bismuth, (C) Cobalt and / or used in the production of the corresponding unsaturated aldehyde and unsaturated carboxylic acid by vapor phase catalytic oxidation of olefin with molecular oxygen-containing gas, respectively. Alternatively, in the method for producing a composite oxide catalyst containing at least nickel and (D) iron, the (A) component raw material, the (C) component raw material, and the (D) component raw material are integrated, and the nitrate radical An aqueous dispersion satisfying the following formula (1) is dried, and the catalyst precursor powder produced through the previous step of heat-treating the dried product and the component (B) raw material in an aqueous solvent And the integrated product is dried and calcined.

1.2 ≦ NO 3 / (3 × Fe + 2 × (Co + Ni)) (1)

However, in the formula, NO 3 , Fe, Co, and Ni represent the molar contents of nitrate radical, iron, cobalt, and nickel in the aqueous dispersion, respectively.
2. 2. The method for producing a composite oxide catalyst according to 1 above, wherein a nitrate compound is added to the aqueous dispersion in the preceding step.
3. 3. The method for producing a composite oxide catalyst according to 1 or 2 above, wherein the component (B) raw material is a bismuth compound that is hardly soluble or insoluble in water.
4). 4. The method for producing a composite oxide catalyst according to any one of the above 1 to 3, wherein the content of nitrate radical in the aqueous dispersion in the preceding step satisfies the following formula (2).

1.2 ≦ NO 3 / (3 × Fe + 2 × (Co + Ni)) ≦ 10 (2)

5). The said complex oxide catalyst, The manufacturing method of the complex oxide catalyst in any one of said 1-4 represented by following General formula (3).

MoaBibCocNidFeeXfYgZhQiSijOk (3)

However, X shows at least 1 type chosen from the group which consists of Na, K, Rb, Cs, and Tl, Y shows at least 1 type chosen from the group which consists of B, P, As, and W, Z shows Mg, Ca, At least one selected from the group consisting of Zn, Ce and Sm is shown. Q represents halogen, and a to k represent atomic ratios of the respective elements. When a = 12, b = 0.5 to 7, c = 0 to 10, d = 0 to 10, c + d = 1 to 10, e = 0.05 to 3, f = 0.0005 to 3, g = 0 to 3, h = 0 to 1, i = 0 to 0.5, j = 0 to 40 In addition, k is a value that satisfies the oxidation state of other elements. )
6). A method for producing acrolein and acrylic acid by vapor-phase catalytic oxidation of propylene with a molecular oxygen-containing gas in the presence of the composite oxide catalyst obtained by the production method according to any one of 1 to 5 above.

本発明の方法によれば、オレフィンを分子状酸素含有ガスにより気相接触酸化してそれぞれ対応する不飽和アルデヒド及び不飽和カルボン酸を製造する際に使用される、オレフィンの転化率及び目的物の選択率について優れた特性を有する、(A)モリブデン、(B)ビスマス、(C)コバルト及び/又はニッケル、及び(D)鉄を少なくとも含む複合酸化物触媒の製造方法が提供される。   According to the method of the present invention, the olefin conversion rate and the target product used in producing the corresponding unsaturated aldehyde and unsaturated carboxylic acid by vapor phase catalytic oxidation of olefin with molecular oxygen-containing gas, respectively. Provided is a method for producing a composite oxide catalyst having at least excellent selectivity with respect to (A) molybdenum, (B) bismuth, (C) cobalt and / or nickel, and (D) iron.

本発明において、硝酸根(NO)の量の上記範囲内への制御により何故に触媒の性能が向上するかについては必ずしも明らかではないが、上記前工程により調製される触媒前駆体粉末がより安定化され、目的の触媒がより好適に再現性良く得られるためと推定される。 In the present invention, it is not necessarily clear why the performance of the catalyst is improved by controlling the amount of nitrate radical (NO 3 ) within the above range, but the catalyst precursor powder prepared by the previous step is more It is estimated that the target catalyst is stabilized and the target catalyst can be obtained more preferably with good reproducibility.

本発明により製造される触媒は、(A)モリブデン、(B)ビスマス、(C)コバルト及び/又はニッケル、及び(D)鉄を少なくとも含む複合酸化物触媒である。かかる成分を含む複合酸化物触媒であれば、特に制限はないが、なかでも、下記の一般式(3)で表される触媒が好ましく適用できる。

MoaBibCocNidFeeXfYgZhQiSijOk (3)

上記の一般式における、X、Y、Z、a、b、c、d、e、f、g、h、i及びjは、上記において定義したとおりである。なかでも、本発明では、Qが塩素原子であるのが好適であり、また、a=12のとき、b=0.5〜7、c=0〜10、d=0〜10、c+d=1〜10、e=0.05〜3、f=0.0005〜3、g=0〜3、h=0〜1、i=0〜0.05、j=0〜48の範囲が特に好ましい。
The catalyst produced according to the present invention is a composite oxide catalyst containing at least (A) molybdenum, (B) bismuth, (C) cobalt and / or nickel, and (D) iron. There is no particular limitation as long as it is a composite oxide catalyst containing such components, but among them, a catalyst represented by the following general formula (3) can be preferably applied.

MoaBibCocNidFeeXfYgZhQiSijOk (3)

X, Y, Z, a, b, c, d, e, f, g, h, i, and j in the above general formula are as defined above. Among these, in the present invention, Q is preferably a chlorine atom, and when a = 12, b = 0.5 to 7, c = 0 to 10, d = 0 to 10, c + d = 1. 10 to e, 0.05 to 3, f = 0.005 to 3, g = 0 to 3, h = 0 to 1, i = 0 to 0.05, and j = 0 to 48 are particularly preferable.

本発明の上記組成を有する触媒は、前記(A)成分原料、前記(C)成分原料及び前記(D)成分原料を水性媒体系で一体化した分散液を乾燥し、該乾燥物を加熱処理する前工程を経て製造された触媒前駆体粉末と、前記(B)成分原料と水性媒体系で一体化し、該一体化物を乾燥、焼成することによって製造される。   The catalyst having the above composition of the present invention comprises drying a dispersion obtained by integrating the component (A) raw material, the component (C) raw material, and the component (D) raw material in an aqueous medium system, and subjecting the dried product to a heat treatment. It is manufactured by integrating the catalyst precursor powder manufactured through the previous step, the component (B) raw material and the aqueous medium system, and drying and firing the integrated product.

本発明において、各成分原料の「一体化」とは、各成分の原料化合物の水溶液あるいは水分散液を一括に若しくは段階的に混合若しくは熟成処理し、又は混合及び熟成処理を行うことをいう。即ち、(a)上記の各成分原料化合物を一括して混合する方法、(b)上記の各成分原料化合物を一括して混合し、そして熟成処理する方法、(c)上記の各成分原料化合物を段階的に混合する方法、(d)上記の各成分原料化合物を段階的に混合・熟成処理を繰り返す方法、及び(a)〜(d)を組み合わせた方法のいずれもが含まれる。ここで、熟成とは、一定時間、一定温度等の特定条件で処理し、所望の物理性、及び/又は化学性を得る操作をいう。ここで、一定時間とは、通常10分〜24時間の範囲であり、一定温度とは通常室温〜水溶液又は水分散液の沸点の範囲、好ましくは10〜95℃をいう。   In the present invention, “integration” of each component raw material means that an aqueous solution or aqueous dispersion of raw material compounds of each component is mixed or aged in a batch or stepwise, or mixed and aged. That is, (a) a method of mixing each of the above component raw material compounds at once, (b) a method of mixing the above respective component raw material compounds at the same time, and aging treatment, (c) each of the above component raw material compounds (D) a method of stepwise mixing, (d) a method of repeating each component raw material compound stepwise mixing / aging process, and a method of combining (a) to (d). Here, aging refers to an operation for obtaining a desired physical property and / or chemical property by treatment under a specific condition such as a constant temperature for a certain period of time. Here, the fixed time is usually in the range of 10 minutes to 24 hours, and the fixed temperature is usually in the range of room temperature to the boiling point of the aqueous solution or aqueous dispersion, preferably 10 to 95 ° C.

かくして、上記前工程における具体的な方法としては、例えば、モリブデン化合物の水溶液に、鉄化合物とニッケル化合物及び/又はコバルト化合物との混合物を添加し、更に、必要に応じて、X成分含有化合物、Y成分含有化合物、Z成分含有化合物、Q成分含有化合物、シリカなどのビスマスを除く他の成分含有化合物を添加し、水性媒体中で上記した一体化処理が行われる。   Thus, as a specific method in the preceding step, for example, a mixture of an iron compound and a nickel compound and / or a cobalt compound is added to an aqueous solution of a molybdenum compound, and, if necessary, an X component-containing compound, The Y component-containing compound, the Z component-containing compound, the Q component-containing compound, and other component-containing compounds other than bismuth such as silica are added, and the above-described integration treatment is performed in an aqueous medium.

本発明では、かかる前工程における各成分原料を一体化して含む水分散液中に含有される硝酸根含有量が下記の式(1)を満足することが必要である。但し、式中、NO、Fe、Co、及びNiは、それぞれ、硝酸根、鉄、コバルト、及びニッケルのモル含有量を示す。

1.2 ≦ NO/(3×Fe+2×(Co+Ni)) (1)

本発明において、式(1)における硝酸根、鉄及びニッケルの含有量を含む右辺の値が1.2より小さい場合には本発明の効果を充分に得ることができない。なかでも、上記右辺の値は、好ましくは1.3以上、特に好ましくは、1.5以上が好適である。一方、上記右辺の値が過度に大きい場合にもさらなる効果が得られず、その場合には、硝酸根含有化合物や水を多量に添加することになるため触媒製造上経済的に不利である。従って、右辺の値は、好ましくは50以下、特に好ましくは10以下が好適である。
In the present invention, it is necessary that the nitrate radical content contained in the aqueous dispersion containing the respective component raw materials in such a previous step satisfies the following formula (1). In the formula, NO 3, Fe, Co, and Ni, respectively, showing nitrate, iron, cobalt, and the molar content of nickel.

1.2 ≦ NO 3 / (3 × Fe + 2 × (Co + Ni)) (1)

In the present invention, when the value on the right side including the nitrate radical, iron and nickel contents in the formula (1) is smaller than 1.2, the effect of the present invention cannot be sufficiently obtained. Among them, the value on the right side is preferably 1.3 or more, particularly preferably 1.5 or more. On the other hand, even when the value on the right side is excessively large, further effects cannot be obtained. In this case, a large amount of a nitrate group-containing compound and water is added, which is economically disadvantageous for catalyst production. Therefore, the right side value is preferably 50 or less, particularly preferably 10 or less.

本発明において、前工程における水分散液中に含有される硝酸根の含有量を上記の範囲に制御するために、通常、好ましくは、各触媒成分原料として硝酸塩化合物を使用するか、又は、水分散液中に好ましくは熱分解性の硝酸塩、好ましくは硝酸アンモニウムなどを添加することが行われる。   In the present invention, in order to control the content of nitrate radicals contained in the aqueous dispersion in the previous step to the above range, usually, a nitrate compound is preferably used as each catalyst component raw material, or water. Preferably, a thermally decomposable nitrate, preferably ammonium nitrate is added to the dispersion.

上記前工程で触媒成分原料を一体化して得られたスラリー状の水分散液は充分に撹拌した後、乾燥される。乾燥方法及び得られる乾燥物の状態については特に限定はなく、例えば、通常のスプレードライヤー、スラリードライヤー、ドラムドライヤー等を用いて粉体状の乾燥物を得てもよいし、また、通常の箱型乾燥器、トンネル型焼成炉を用いてブロック状又はフレーク状の乾燥物を得てもよい。   The slurry-like aqueous dispersion obtained by integrating the catalyst component raw materials in the previous step is sufficiently stirred and then dried. There is no particular limitation on the drying method and the state of the resulting dried product, and for example, a powdered dried product may be obtained using a normal spray dryer, slurry dryer, drum dryer, etc. A block-shaped or flake-shaped dried product may be obtained using a mold dryer or a tunnel-type firing furnace.

乾燥された顆粒あるいはケーキ状のものは空気中で200〜400℃、好ましくは250〜350℃の温度で短時間の熱処理を行う。その際の炉の形式及びその方法については特に限定はなく、例えば、通常の箱型加熱炉、トンネル型加熱炉等を用いて乾燥物を固定した状態で加熱してもよいし、また、ロータリーキルン等を用いて乾燥物を流動させながら加熱してもよい。   The dried granule or cake is heat-treated in air at a temperature of 200 to 400 ° C, preferably 250 to 350 ° C. There are no particular limitations on the type and method of the furnace at that time, and for example, it may be heated with a dry matter fixed using a normal box-type furnace, tunnel-type furnace, etc., or a rotary kiln. It is possible to heat the dried product while flowing it.

本発明では、次いで、上記の前工程において得られる触媒前駆体粉体とビスマス原料化合物とを水性媒体中で一体化させる。この際、スラリーの安定化のために水性媒体中にアンモニアなどの塩基性物質を好ましくは0.01〜20重量%になるように添加するのが好ましい。上記ビスマス原料化合物は、水に難溶性乃至不溶性の化合物が好ましく、また、ビスマス原料化合物は、粉末の形態で使用することが好ましい。触媒前駆体粉体及びビスマス原料化合物は大きな径の粒子であってもよいが、次いで行われる焼成工程で粒子間の熱拡散反応を効率的に進めるためには小さい粒子である方が好ましい。かくして、これらの原料化合物は、粉砕を行って好ましくは平均粒径が0.1〜1000μmにするのが好適である。   In the present invention, the catalyst precursor powder obtained in the preceding step and the bismuth raw material compound are then integrated in an aqueous medium. At this time, it is preferable to add a basic substance such as ammonia to the aqueous medium so that the slurry is stabilized preferably at 0.01 to 20% by weight. The bismuth raw material compound is preferably a compound that is hardly soluble or insoluble in water, and the bismuth raw material compound is preferably used in the form of a powder. The catalyst precursor powder and the bismuth raw material compound may be particles having a large diameter, but are preferably small particles in order to efficiently promote the thermal diffusion reaction between the particles in the subsequent firing step. Thus, these raw material compounds are preferably pulverized to preferably have an average particle size of 0.1 to 1000 μm.

次に、得られたスラリーを充分に撹拌した後、乾燥される。このようにして得られた乾燥品を、押出し成型、打錠成型、あるいは担持成型等の方法により任意の形状に賦形する。次に、このものを、好ましくは450〜600℃の温度にて、好ましくは1〜16時間程度の最終熱処理に付される。このようにして、高活性で、かつ目的とする酸化生成物を高い収率で与える複合酸化物触媒が得られる。   Next, the obtained slurry is sufficiently stirred and then dried. The dried product thus obtained is shaped into an arbitrary shape by a method such as extrusion molding, tableting molding or support molding. Next, this is preferably subjected to a final heat treatment at a temperature of 450 to 600 ° C., preferably for about 1 to 16 hours. In this way, a composite oxide catalyst that is highly active and provides the desired oxidation product in high yield is obtained.

次に、本発明による複合酸化物触媒の製造方法の具体例を示す。まず、適当なモリブデン化合物、好ましくはモリブデン酸アンモニウムの水溶液に、鉄、コバルト、及びニッケルの化合物を好ましくはそれぞれの硝酸塩の水溶液を加える。更に必要に応じて、ナトリウム、カリウム、ルビジウム、タリウム、ホウ素、リン、ヒ素、及び/又はタングステンの化合物を、好ましくはそれぞれの水溶性塩又はそれらの水溶液として加える。更に好ましくは硝酸アンモニウムを水溶液として加え、水溶液中のNOを上記した本発明の範囲に調整する。更にシリカを加える。次に、得られたスラリーを充分に撹拌した後、乾燥する。乾燥された顆粒あるいはケーキ状のものは空気中で好ましくは200〜400℃、特に好ましくは250〜350℃の温度にて好ましくは0.1秒〜24時間の熱処理を行う。 Next, the specific example of the manufacturing method of the complex oxide catalyst by this invention is shown. First, an iron, cobalt, and nickel compound are added to an appropriate molybdenum compound, preferably an ammonium molybdate solution, and each nitrate solution is preferably added. Further, if necessary, sodium, potassium, rubidium, thallium, boron, phosphorus, arsenic and / or tungsten compounds are preferably added as respective water-soluble salts or aqueous solutions thereof. More preferably, ammonium nitrate is added as an aqueous solution, and NO 3 in the aqueous solution is adjusted to the above-described range of the present invention. Add more silica. Next, the obtained slurry is sufficiently stirred and then dried. The dried granule or cake is preferably heat-treated in air at a temperature of 200 to 400 ° C., particularly preferably 250 to 350 ° C., preferably for 0.1 seconds to 24 hours.

次に、得られた熱処理物を水に分散し、好ましくはアンモニア水を添加した後、ビスマス化合物粉末を加える。ビスマス化合物粉末としては、(1)酸化ビスマス又は次炭酸ビスマスの少なくとも一方、(2)Naを固溶した次炭酸ビスマス、(3)BiとX成分(Xは、上記の定義と同じ)との複合炭酸塩化合物 、又は(4)Na及びX成分を含むBiとNaとXとの複合炭酸塩化合物が好ましい。   Next, the obtained heat-treated product is dispersed in water, and preferably after adding aqueous ammonia, bismuth compound powder is added. As the bismuth compound powder, (1) at least one of bismuth oxide or bismuth carbonate, (2) bismuth carbonate in which Na is dissolved, (3) Bi and X component (X is the same as defined above) A composite carbonate compound or (4) a composite carbonate compound of Bi, Na and X containing Na and X components is preferred.

次に、得られたスラリー状物を充分に撹拌した後、乾燥する。このようにして得られた乾燥品を、押出成型、打錠成型、あるいは担持成型等の方法により任意の形状に成形する。次に、成形物を、空気中で好ましくは450〜600℃の温度条件にて好ましくは1〜16時間程度焼成する。   Next, the obtained slurry is sufficiently stirred and then dried. The dried product thus obtained is molded into an arbitrary shape by a method such as extrusion molding, tableting molding or support molding. Next, the molded product is preferably fired in air, preferably at a temperature of 450 to 600 ° C., preferably for about 1 to 16 hours.

本発明で製造される複合酸化物触媒の有する比表面積、平均細孔直径、及び細孔容積については、既存の触媒の有する範囲のもので、特に制限されないが、それぞれ、比表面積は5〜25m/g、平均細孔直径は0.03〜1μm、細孔容積は0.2〜0.7cc/gが好ましい。 The specific surface area, average pore diameter, and pore volume of the composite oxide catalyst produced in the present invention are within the range of the existing catalyst and are not particularly limited, but the specific surface area is 5 to 25 m, respectively. 2 / g, the average pore diameter is preferably 0.03 to 1 μm, and the pore volume is preferably 0.2 to 0.7 cc / g.

本発明において、上記の触媒を使用し、オレフィンを分子状酸素又は分子状酸素含有ガスを使用した気相酸化し、それぞれ対応する不飽和アルデヒド及び不飽和カルボン酸を製造する手段は、既存の方法により行うことができる。例えば、反応器としては、固定床管型反応器を用いて行われる。この場合、反応は、反応器を通じて単流通法でもリサイクル法であってもよく、この種の反応に一般的に使用される条件下で実施できる。   In the present invention, means for producing a corresponding unsaturated aldehyde and unsaturated carboxylic acid by gas phase oxidation using olefins described above using molecular oxygen or a molecular oxygen-containing gas, respectively, is an existing method. Can be performed. For example, a fixed bed tube reactor is used as the reactor. In this case, the reaction may be a single flow method or a recycle method through the reactor, and can be carried out under conditions generally used for this type of reaction.

例えば、プロピレン1〜15容量%、分子状酸素3〜30容量%、水蒸気0〜60容量%、窒素、炭酸ガスなどの不活性ガス20〜80容量%などからなる混合ガスを、内径が好ましくは15〜50mmの各反応管に充填した触媒層に250〜450℃、0.1〜1MPaの圧力下、空間速度(SV)300〜5000hr-1で導入される。また、本発明では、より生産性を上げるために高負荷反応条件下、例えば、より高い原料濃度、又は高い空間速度の条件下でも運転することもできる。 For example, a mixed gas composed of 1 to 15% by volume of propylene, 3 to 30% by volume of molecular oxygen, 0 to 60% by volume of water vapor, 20 to 80% by volume of an inert gas such as nitrogen or carbon dioxide, It introduce | transduces into the catalyst layer with which each 15-50 mm reaction tube was filled at 250-450 degreeC and the pressure of 0.1-1 Mpa, and the space velocity (SV) 300-5000 hr < -1 >. Moreover, in this invention, in order to raise productivity more, it can also drive | operate also on high load reaction conditions, for example, the conditions of higher raw material concentration or high space velocity.

以下に本発明の実施例を挙げて本発明をさらに詳細に説明するが、本発明はかかる実施例に限定して解釈されるものでないことはもちろんである。なお、下記において、プロピレン転化率、アクロレイン収率、アクリル酸収率は、及び合計収率の定義はそれぞれ次の式で算出される。

・プロピレン転化率(モル%)=(反応したプロピレンのモル数/供給したプロピレンのモル数)×100
・アクロレイン収率(モル%)=(生成したアクロレインのモル数)/供給したプロピレンのモル数)×100
・アクリル酸の収率(モル%)=(生成したアクリル酸のモル数)/供給したプロピレンのモル数)×100
・合計収率(モル%)=アクロレイン収率(モル%)+アクリル酸収率(モル%)
EXAMPLES The present invention will be described in more detail below with reference to examples of the present invention, but the present invention should not be construed as being limited to such examples. In the following, the definitions of propylene conversion rate, acrolein yield, acrylic acid yield, and total yield are calculated by the following equations, respectively.

Propylene conversion rate (mol%) = (number of moles of reacted propylene / number of moles of supplied propylene) × 100
Acrolein yield (mol%) = (mol number of produced acrolein) / mol number of supplied propylene) × 100
-Yield of acrylic acid (mol%) = (number of moles of acrylic acid produced) / number of moles of propylene supplied) x 100
Total yield (mol%) = acrolein yield (mol%) + acrylic acid yield (mol%)

実施例1
(複合酸化物触媒の調製)
パラモリブデン酸アンモン94.1gを純水400mlに加温して溶解させた。次に硝酸第二鉄7.18g、硝酸コバルト38.7g及び硝酸ニッケル25.8gを純水60mlに加温して溶解させた。これらの溶液を、充分に撹拌しながら徐々に混合した。
次に、純水40mlにホウ砂0.85g及び硝酸カリウム0.36gを加温下に溶解させて、上記スラリーに加えた。次に、純水20mlに硝酸アンモニウム19.9gを加温下に溶解させて、上記スラリーに加えた。次に、シリカ64gを加えて、充分に撹拌した。
このスラリーを加熱乾燥した後、空気雰囲気で300℃/1時間の熱処理に付した。
得られた粒状固体を粉砕し、純水150mlにアンモニア水10mlを加え分散させた。次に、Naが0.52%固溶した次炭酸ビスマス58.1gを加えて、撹拌混合した。
このスラリーを加熱乾燥した後、得られた粒状固体を小型成形機にて径5mm、高さ4mmの錠剤に打錠成型し、次に500℃/4時間の焼成を行うことにより、触媒を得た。
仕込み原料から計算される触媒は、次の原子比を有する複合酸化物である。
Mo:Bi:Co:Ni:Fe:Na:B:K:Si=12:5:3:2:0.4:0.4:0.2:0.08:24
また、仕込み原料から計算される前工程の水分散液中の硝酸根のモル量とFe、Co及びNiのモル量の比率は次の通りであった。
NO/(3×Fe+2×(Co+Ni))=1.51
Example 1
(Preparation of composite oxide catalyst)
94.1 g of ammonium paramolybdate was dissolved in 400 ml of pure water by heating. Next, 7.18 g of ferric nitrate, 38.7 g of cobalt nitrate and 25.8 g of nickel nitrate were heated and dissolved in 60 ml of pure water. These solutions were gradually mixed with thorough stirring.
Next, 0.85 g of borax and 0.36 g of potassium nitrate were dissolved in 40 ml of pure water under heating and added to the slurry. Next, 19.9 g of ammonium nitrate was dissolved in 20 ml of pure water under heating and added to the slurry. Next, 64 g of silica was added and stirred thoroughly.
The slurry was heat-dried and then subjected to a heat treatment at 300 ° C./1 hour in an air atmosphere.
The obtained granular solid was pulverized and dispersed in 150 ml of pure water by adding 10 ml of aqueous ammonia. Next, 58.1 g of bismuth subcarbonate in which Na was dissolved in 0.52% was added and mixed with stirring.
After drying this slurry by heating, the resulting granular solid was formed into tablets with a diameter of 5 mm and a height of 4 mm using a small molding machine, and then calcined at 500 ° C. for 4 hours to obtain a catalyst. It was.
The catalyst calculated from the charged raw materials is a complex oxide having the following atomic ratio.
Mo: Bi: Co: Ni: Fe: Na: B: K: Si = 12: 5: 3: 2: 0.4: 0.4: 0.2: 0.08: 24
Moreover, the ratio of the molar amount of nitrate radicals and the molar amounts of Fe, Co and Ni in the aqueous dispersion of the previous step calculated from the charged raw materials was as follows.
NO 3 /(3×Fe+2×(Co+Ni))=1.51

(プロピレンの酸化反応)
上記のようにして調製した複合酸化物触媒20mlを内径15mmのステンレス鋼製ナイタージャケット付反応管に充填し、プロピレン濃度10%、スチーム濃度17%、及び空気濃度73%の原料ガスを常圧にて、反応浴温305℃、接触時間1.8秒にて通過させて、プロピレンの酸化反応を実施した。その結果、表1に示す、プロピレン転化率、アクロレイン収率、及びアクリル酸収率が得られた。
(Propylene oxidation reaction)
20 ml of the composite oxide catalyst prepared as described above was filled into a stainless steel nighter jacketed reaction tube with an inner diameter of 15 mm, and a raw material gas having a propylene concentration of 10%, a steam concentration of 17%, and an air concentration of 73% was brought to normal pressure. Then, the reaction was conducted at a reaction bath temperature of 305 ° C. and a contact time of 1.8 seconds to carry out an oxidation reaction of propylene. As a result, the propylene conversion rate, acrolein yield, and acrylic acid yield shown in Table 1 were obtained.

比較例1
実施例1において、硝酸アンモニウムを加えないこと以外は同様に実施し、実施例1と同一組成の複合酸化物触媒を製造した。仕込み原料から計算される前工程の水分散液中の硝酸根のモル量とFe、Co及びNiのモル量の比率は次の通りであった。
NO/(3×Fe+2×(Co+Ni))=1.01
実施例1と同様にプロピレンの酸化反応を実施し、得られた結果を表1に示した。
Comparative Example 1
In Example 1, it carried out similarly except not adding ammonium nitrate, and manufactured the complex oxide catalyst of the same composition as Example 1. The ratio of the molar amount of nitrate radical and the molar amount of Fe, Co, and Ni in the aqueous dispersion of the previous step calculated from the charged raw materials was as follows.
NO 3 /(3×Fe+2×(Co+Ni))=1.01
The oxidation reaction of propylene was carried out in the same manner as in Example 1, and the obtained results are shown in Table 1.

実施例2
パラモリブデン酸アンモン94.1gを純水400mlに加温して溶解させた。次に硝酸第二鉄7.18g、硝酸コバルト38.7g及び硝酸ニッケル25.8gを純水60mlに加温して溶解させた。これらの溶液を、充分に撹拌しながら徐々に混合した。
次に、純水40mlにホウ砂0.85g及び硝酸カリウム0.36gを加温下に溶解させて、上記スラリーに加えた。次に、純水80mlに硝酸アンモニウム79.6gを加温下に溶解させて、上記スラリーに加えた。次に、シリカ64gを加えて、充分に撹拌した。このスラリーを加熱乾燥した後、空気雰囲気で300℃/1時間の熱処理に付した。
得られた粒状固体を粉砕し、純水150mlにアンモニア水10mlを加え分散させた。次に、Naを0.52%固溶した次炭酸ビスマス58.1gを加えて、撹拌混合した。
このスラリーを加熱乾燥した後、得られた粒状固体を小型成形機にて径5mm、高さ4mmの錠剤に打錠成型し、次に500℃/4時間の焼成を行うことにより、触媒を得た。
仕込み原料から計算される触媒は、次の原子比を有する複合酸化物である。
Mo:Bi:Co:Ni:Fe:Na:B:K:Si=12:5:3:2:0.4:0.4:0.2:0.08:24
また、仕込み原料から計算される前工程の水分散液中の硝酸根のモル量とFeCo及びNiのモル量の比率は次の通りであった。
NO/(3×Fe+2×(Co+Ni))=3.01
実施例1と同様にプロピレンの酸化反応を実施し、得られた結果を表1に示した。
Example 2
94.1 g of ammonium paramolybdate was dissolved in 400 ml of pure water by heating. Next, 7.18 g of ferric nitrate, 38.7 g of cobalt nitrate and 25.8 g of nickel nitrate were heated and dissolved in 60 ml of pure water. These solutions were gradually mixed with thorough stirring.
Next, 0.85 g of borax and 0.36 g of potassium nitrate were dissolved in 40 ml of pure water under heating and added to the slurry. Next, 79.6 g of ammonium nitrate was dissolved in 80 ml of pure water under heating and added to the slurry. Next, 64 g of silica was added and stirred thoroughly. The slurry was heat-dried and then subjected to a heat treatment at 300 ° C./1 hour in an air atmosphere.
The obtained granular solid was pulverized and dispersed in 150 ml of pure water by adding 10 ml of aqueous ammonia. Next, 58.1 g of bismuth carbonate in which 0.52% of Na was dissolved was added and mixed with stirring.
After drying this slurry by heating, the resulting granular solid was formed into tablets with a diameter of 5 mm and a height of 4 mm using a small molding machine, and then calcined at 500 ° C. for 4 hours to obtain a catalyst. It was.
The catalyst calculated from the charged raw materials is a complex oxide having the following atomic ratio.
Mo: Bi: Co: Ni: Fe: Na: B: K: Si = 12: 5: 3: 2: 0.4: 0.4: 0.2: 0.08: 24
Moreover, the ratio of the molar amount of the nitrate radical and the molar amount of FeCo and Ni in the aqueous dispersion of the previous step calculated from the charged raw materials was as follows.
NO 3 /(3×Fe+2×(Co+Ni))=3.01
The oxidation reaction of propylene was carried out in the same manner as in Example 1, and the obtained results are shown in Table 1.

実施例3
パラモリブデン酸アンモン94.1gを純水400mlに加温して溶解させた。次に硝酸第二鉄7.18g、硝酸コバルト38.7g及び硝酸ニッケル25.8gを純水60mlに加温して溶解させた。これらの溶液を、充分に撹拌しながら徐々に混合した。
次に、純水40mlにホウ砂0.85g及び硝酸カリウム0.36gを加温下に溶解させて、上記スラリーに加えた。次に、純水360mlに硝酸アンモニウム358.2gを加温下に溶解させて、上記スラリーに加えた。次に、シリカ64gを加えて、充分に撹拌した。このスラリーを加熱乾燥した後、空気雰囲気で300℃/1時間の熱処理に付した。
得られた粒状固体を粉砕し、純水150mlにアンモニア水10mlを加え分散させた。次に、Naを0.52%固溶した次炭酸ビスマス58.1gを加えて、撹拌混合した。
このスラリーを加熱乾燥した後、得られた粒状固体を小型成形機にて径5mm、高さ4mmの錠剤に打錠成型し、次に500℃/4時間の焼成を行うことにより、触媒を得た。
仕込み原料から計算される触媒は、次の原子比を有する複合酸化物である。
Mo:Bi:Co:Ni:Fe:Na:B:K:Si=12:5:3:2:0.4:0.4:0.2:0.08:24
また、仕込み原料から計算される前工程の水分散液中の硝酸根のモル量とFeCo及びNiのモル量の比率は次の通りであった。
NO/(3×Fe+2×(Co+Ni))=10.01
実施例1と同様にプロピレンの酸化反応を実施し、得られた結果を表1に示した。
Example 3
94.1 g of ammonium paramolybdate was dissolved in 400 ml of pure water by heating. Next, 7.18 g of ferric nitrate, 38.7 g of cobalt nitrate and 25.8 g of nickel nitrate were heated and dissolved in 60 ml of pure water. These solutions were gradually mixed with thorough stirring.
Next, 0.85 g of borax and 0.36 g of potassium nitrate were dissolved in 40 ml of pure water under heating and added to the slurry. Next, 358.2 g of ammonium nitrate was dissolved in 360 ml of pure water under heating, and added to the slurry. Next, 64 g of silica was added and stirred thoroughly. The slurry was heat-dried and then subjected to a heat treatment at 300 ° C./1 hour in an air atmosphere.
The obtained granular solid was pulverized and dispersed in 150 ml of pure water by adding 10 ml of aqueous ammonia. Next, 58.1 g of bismuth carbonate in which 0.52% of Na was dissolved was added and mixed with stirring.
After drying this slurry by heating, the resulting granular solid was formed into tablets with a diameter of 5 mm and a height of 4 mm using a small molding machine, and then calcined at 500 ° C. for 4 hours to obtain a catalyst. It was.
The catalyst calculated from the charged raw materials is a complex oxide having the following atomic ratio.
Mo: Bi: Co: Ni: Fe: Na: B: K: Si = 12: 5: 3: 2: 0.4: 0.4: 0.2: 0.08: 24
Moreover, the ratio of the molar amount of the nitrate radical and the molar amount of FeCo and Ni in the aqueous dispersion of the previous step calculated from the charged raw materials was as follows.
NO 3 /(3×Fe+2×(Co+Ni))=10.01
The oxidation reaction of propylene was carried out in the same manner as in Example 1, and the obtained results are shown in Table 1.

Figure 2005169311
Figure 2005169311

本発明の方法により製造された触媒は、オレフィンを分子状酸素含有ガスにより気相接触酸化してそれぞれ対応する不飽和アルデヒド及び不飽和カルボン酸を高収率で製造するために使用される。製造された不飽和アルデヒド及び不飽和カルボン酸は、各種化学品の原料、汎用樹脂のモノマー、吸水性樹脂などの機能性樹脂のモノマー、凝集剤、増粘剤となどとして広範な用途に使用される。
The catalyst produced by the method of the present invention is used to produce a corresponding unsaturated aldehyde and unsaturated carboxylic acid in high yield by gas phase catalytic oxidation of olefin with molecular oxygen-containing gas. The produced unsaturated aldehydes and unsaturated carboxylic acids are used in a wide range of applications as raw materials for various chemicals, monomers for general-purpose resins, monomers for functional resins such as water-absorbing resins, flocculants, and thickeners. The

Claims (6)

オレフィンを分子状酸素含有ガスにより気相接触酸化してそれぞれ対応する不飽和アルデヒド及び不飽和カルボン酸を製造する際に使用される、(A)モリブデン、(B)ビスマス、(C)コバルト及び/又はニッケル、及び(D)鉄を少なくとも含む複合酸化物触媒の製造方法において、前記(A)成分原料、前記(C)成分原料及び前記(D)成分原料を一体化して含み、かつ硝酸根の含有量が下記の式(1)を満足する水分散液を乾燥し、該乾燥物を加熱処理する前工程を経て製造された触媒前駆体粉末と、前記(B)成分原料とを水性溶媒中で一体化し、該一体化物を乾燥、焼成することを特徴とする複合酸化物触媒の製造方法。

1.2≦NO/(3×Fe+2×(Co+Ni)) (1)

但し、式中、NO、Fe、Co、及びNiは、それぞれ、上記水分散液中の硝酸根、鉄、コバルト、及びニッケルのモル含有量を示す。
(A) Molybdenum, (B) Bismuth, (C) Cobalt and / or used in the production of the corresponding unsaturated aldehyde and unsaturated carboxylic acid by vapor phase catalytic oxidation of olefin with molecular oxygen-containing gas, respectively. Alternatively, in the method for producing a composite oxide catalyst containing at least nickel and (D) iron, the (A) component raw material, the (C) component raw material, and the (D) component raw material are integrated, and the nitrate radical An aqueous dispersion satisfying the following formula (1) is dried, and the catalyst precursor powder produced through the previous step of heat-treating the dried product and the component (B) raw material in an aqueous solvent And the integrated product is dried and calcined.

1.2 ≦ NO 3 / (3 × Fe + 2 × (Co + Ni)) (1)

However, in the formula, NO 3 , Fe, Co, and Ni represent the molar contents of nitrate radical, iron, cobalt, and nickel in the aqueous dispersion, respectively.
上記前工程の水分散液に硝酸塩化合物が添加される請求項1に記載の複合酸化物触媒の製造方法。   The method for producing a composite oxide catalyst according to claim 1, wherein a nitrate compound is added to the aqueous dispersion in the preceding step. 上記(B)成分原料が、水に難溶性乃不溶性のビスマス化合物である請求項1又は2に記載の複合酸化物触媒の製造方法。   The method for producing a composite oxide catalyst according to claim 1 or 2, wherein the component (B) raw material is a bismuth compound that is hardly soluble or insoluble in water. 上記前工程の水分散液中の硝酸根の含有量が下記の式(2)を満足する請求項1〜3のいずれかに複合酸化物触媒の製造方法。

1.2≦NO/(3×Fe+2×(Co+Ni))≦10 (2)
The method for producing a composite oxide catalyst according to any one of claims 1 to 3, wherein the content of nitrate radical in the aqueous dispersion in the preceding step satisfies the following formula (2).

1.2 ≦ NO 3 / (3 × Fe + 2 × (Co + Ni)) ≦ 10 (2)
上記複合酸化物触媒が下記一般式(3)で表される請求項1〜4のいずれかに記載の複合酸化物触媒の製造方法。

MoaBibCocNidFeeXfYgZhQiSijOk (3)

但し、XはNa、K、Rb、Cs及びTlからなる群から選ばれる少なくとも一種を示し、YはB、P、As及びWからなる群から選ばれる少なくとも一種を示し、ZはMg、Ca、Zn、Ce及びSmからなる群から選ばれる少なくとも一種を示す。Qはハロゲンを示し、また、a〜kはそれぞれの元素の原子比を表わし、a=12とするとき、b=0.5〜7、c=0〜10、d=0〜10、c+d=1〜10、e=0.05〜3、f=0.0005〜3、g=0〜3、h=0〜1、i=0〜0.5、j=0〜40の範囲にあり、またkは他の元素の酸化状態を満足させる値である。)
The method for producing a composite oxide catalyst according to any one of claims 1 to 4, wherein the composite oxide catalyst is represented by the following general formula (3).

MoaBibCocNidFeeXfYgZhQiSijOk (3)

However, X shows at least 1 type chosen from the group which consists of Na, K, Rb, Cs, and Tl, Y shows at least 1 type chosen from the group which consists of B, P, As, and W, Z shows Mg, Ca, At least one selected from the group consisting of Zn, Ce and Sm is shown. Q represents halogen, and a to k represent atomic ratios of the respective elements. When a = 12, b = 0.5 to 7, c = 0 to 10, d = 0 to 10, c + d = 1 to 10, e = 0.05 to 3, f = 0.0005 to 3, g = 0 to 3, h = 0 to 1, i = 0 to 0.5, j = 0 to 40, K is a value that satisfies the oxidation state of other elements. )
請求項1〜5のいずれかに記載の製造方法で得られた複合酸化物触媒の存在下にプロピレンを分子状酸素含有ガスにより気相接触酸化してアクロレイン及びアクリル酸を製造する方法。   A method for producing acrolein and acrylic acid by vapor-phase catalytic oxidation of propylene with a molecular oxygen-containing gas in the presence of the composite oxide catalyst obtained by the production method according to claim 1.
JP2003415020A 2003-12-12 2003-12-12 Production method for complex oxide catalyst Withdrawn JP2005169311A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003415020A JP2005169311A (en) 2003-12-12 2003-12-12 Production method for complex oxide catalyst
PCT/JP2004/013461 WO2005056185A1 (en) 2003-12-12 2004-09-15 Process for producing composite oxide catalyst
CN 200480000345 CN1697701A (en) 2003-12-12 2004-09-15 Process for producing composite oxide catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003415020A JP2005169311A (en) 2003-12-12 2003-12-12 Production method for complex oxide catalyst

Publications (1)

Publication Number Publication Date
JP2005169311A true JP2005169311A (en) 2005-06-30

Family

ID=34675112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003415020A Withdrawn JP2005169311A (en) 2003-12-12 2003-12-12 Production method for complex oxide catalyst

Country Status (3)

Country Link
JP (1) JP2005169311A (en)
CN (1) CN1697701A (en)
WO (1) WO2005056185A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075735A (en) * 2005-09-14 2007-03-29 Mitsubishi Rayon Co Ltd Method of producing oxide catalyst containing molybdenum, bismuth and iron
US8361923B2 (en) 2009-09-30 2013-01-29 Sumitomo Chemical Company, Limited Process for producing complex oxide catalyst
JP2015147188A (en) * 2014-02-07 2015-08-20 日本化薬株式会社 Catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid and method for producing the same, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP2016514618A (en) * 2013-03-20 2016-05-23 クラリアント・インターナシヨナル・リミテツド Bismuth-molybdenum-nickel-mixed oxide or composite material containing bismuth-molybdenum-cobalt-mixed oxide and SiO 2
JP2017176931A (en) * 2016-03-28 2017-10-05 三菱ケミカル株式会社 catalyst
KR20230159842A (en) 2021-03-24 2023-11-22 미쯔비시 케미컬 주식회사 Catalyst, method for producing catalyst, and method for producing α,β-unsaturated aldehyde, α,β-unsaturated carboxylic acid, and α,β-unsaturated carboxylic acid ester

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005002336A1 (en) 2005-01-17 2006-07-20 Boehringer Ingelheim Pharma Gmbh & Co. Kg Process for conducting continuous olefin-ring closure metathesis in compressed carbon dioxide
CN110227482A (en) * 2018-03-05 2019-09-13 上海华谊新材料有限公司 Composite oxide catalysts and preparation method thereof
CN112439442B (en) * 2019-09-05 2023-08-11 中石油吉林化工工程有限公司 Preparation method of catalyst for preparing acrolein by propylene oxidation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234549A (en) * 1986-03-24 1987-10-14 Mitsubishi Petrochem Co Ltd Production of composite oxide catalyst
JPH02227140A (en) * 1989-03-01 1990-09-10 Mitsubishi Rayon Co Ltd Method for preparation of catalyst for use in manufacturing methacrolein and methacrylic acid
JP2000288396A (en) * 1999-04-09 2000-10-17 Sumitomo Chem Co Ltd Production of compound oxide catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
WO2002049757A2 (en) * 2000-12-18 2002-06-27 Basf Aktiengesellschaft Method for producing a multi-metal oxide active material containing mo, bi, fe and ni and/or co
JP2003220335A (en) * 2001-11-21 2003-08-05 Mitsubishi Chemicals Corp Method for manufacturing compound oxide catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234549A (en) * 1986-03-24 1987-10-14 Mitsubishi Petrochem Co Ltd Production of composite oxide catalyst
JPH02227140A (en) * 1989-03-01 1990-09-10 Mitsubishi Rayon Co Ltd Method for preparation of catalyst for use in manufacturing methacrolein and methacrylic acid
JP2000288396A (en) * 1999-04-09 2000-10-17 Sumitomo Chem Co Ltd Production of compound oxide catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
WO2002049757A2 (en) * 2000-12-18 2002-06-27 Basf Aktiengesellschaft Method for producing a multi-metal oxide active material containing mo, bi, fe and ni and/or co
JP2003220335A (en) * 2001-11-21 2003-08-05 Mitsubishi Chemicals Corp Method for manufacturing compound oxide catalyst

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075735A (en) * 2005-09-14 2007-03-29 Mitsubishi Rayon Co Ltd Method of producing oxide catalyst containing molybdenum, bismuth and iron
US8361923B2 (en) 2009-09-30 2013-01-29 Sumitomo Chemical Company, Limited Process for producing complex oxide catalyst
JP2016514618A (en) * 2013-03-20 2016-05-23 クラリアント・インターナシヨナル・リミテツド Bismuth-molybdenum-nickel-mixed oxide or composite material containing bismuth-molybdenum-cobalt-mixed oxide and SiO 2
US9975111B2 (en) 2013-03-20 2018-05-22 Clariant International Ltd. Composite material containing a bismuth-molybdenum-nickel mixed oxide or a bismuth-molybdenum-cobalt mixed oxide and SiO2
JP2015147188A (en) * 2014-02-07 2015-08-20 日本化薬株式会社 Catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid and method for producing the same, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP2017176931A (en) * 2016-03-28 2017-10-05 三菱ケミカル株式会社 catalyst
KR20230159842A (en) 2021-03-24 2023-11-22 미쯔비시 케미컬 주식회사 Catalyst, method for producing catalyst, and method for producing α,β-unsaturated aldehyde, α,β-unsaturated carboxylic acid, and α,β-unsaturated carboxylic acid ester

Also Published As

Publication number Publication date
CN1697701A (en) 2005-11-16
WO2005056185A1 (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP4280797B2 (en) Method for producing composite oxide catalyst
CN101495229B (en) Multi-metal oxide catalyst and method for producing (meth)acrylic acid by using the same
US8586499B2 (en) Method for producing catalyst for preparation of methacrylic acid and method for preparing methacrylic acid
JP4242597B2 (en) Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst
JP4922614B2 (en) Method for producing a catalyst for methacrylic acid production
JP6812869B2 (en) Method for producing composite oxide catalyst
JP2005169311A (en) Production method for complex oxide catalyst
JP4442317B2 (en) Method for producing composite oxide catalyst
JP3939187B2 (en) Process for producing unsaturated aldehyde
JP2006007205A (en) Compound oxide catalyst and its manufacturing method
JP3797148B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5831329B2 (en) Composite oxide catalyst
JP2005305421A (en) Method of producing compound oxide catalyst
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP6136436B2 (en) Catalyst production method
JP4970986B2 (en) Method for producing composite oxide catalyst and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
JP2003164763A (en) Method for manufacturing composite oxide catalyst for oxidizing propylene
JP3999972B2 (en) Method for producing acrylic acid or methacrylic acid
JP4385587B2 (en) Method for producing composite oxide catalyst
JP2003251184A (en) Method for manufacturing catalyst for composite oxide
US7279442B2 (en) Process for producing catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid
WO2005113139A1 (en) Composite oxide catalyst and method for production thereof
JP2008284508A (en) Production method of catalyst for methacrylic-acid production and production method of methacrylic acid
JP2003236383A (en) Method for manufacturing multiple oxide catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090520