JP2005272653A - Granulating process of hydrogel and granulating device - Google Patents

Granulating process of hydrogel and granulating device Download PDF

Info

Publication number
JP2005272653A
JP2005272653A JP2004088411A JP2004088411A JP2005272653A JP 2005272653 A JP2005272653 A JP 2005272653A JP 2004088411 A JP2004088411 A JP 2004088411A JP 2004088411 A JP2004088411 A JP 2004088411A JP 2005272653 A JP2005272653 A JP 2005272653A
Authority
JP
Japan
Prior art keywords
water
screw
hydrogel
extruder
absorbent resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004088411A
Other languages
Japanese (ja)
Inventor
Kenji Utashima
賢治 歌島
Kazumi Hasegawa
和美 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2004088411A priority Critical patent/JP2005272653A/en
Publication of JP2005272653A publication Critical patent/JP2005272653A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a granulating process using a screw type of extruder, where a hydrogel is granulated without deteriorating physical properties thereof and without using a special device and, further, the filling factor in the extruder has no influence on the granulation. <P>SOLUTION: The screw type of the extruder is characterized by an equipped function which prevents reverse flow of hydrogel toward a supplying port without adding a specific system. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、吸水性樹脂の材料として好適に用いられる含水ゲルを粉砕するといった、含水ゲルの細粒化方法に関する。   The present invention relates to a method for refining a water-containing gel, such as pulverizing a water-containing gel suitably used as a material for a water absorbent resin.

吸水性樹脂は,その特性を生かして紙オムツ、生理用品、簡易便器、創傷保護材、創傷治癒材などの衛生材料の構成材としての使用をはじめとして、農林業分野、土木分野、食品分野、医療分野、住宅分野など多くの分野で使用されている。
このような吸水性樹脂としては、例えばポリアクリル酸部分中和物架橋体、デンプン−アクリロニトリルグラフト重合体の加水分解物、デンプン−アクリル酸グラフト重合体の中和物、酢酸ビニル−アクリル酸エステル共重合体のケン化物、アクリロニトリル共重合体もしくはアクリルアミド共重合体の加水分解物またはこれらの架橋体、等が知られている。
The water-absorbent resin is used as a component of sanitary materials such as paper diapers, sanitary products, simple toilets, wound protection materials, and wound healing materials, and is used in the agriculture, forestry, civil engineering, food, It is used in many fields such as medical field and housing field.
Examples of such water-absorbing resins include polyacrylic acid partially neutralized crosslinked products, starch-acrylonitrile graft polymer hydrolysates, starch-acrylic acid graft polymer neutralized products, and vinyl acetate-acrylic acid ester copolymers. Known are saponified polymers, hydrolysates of acrylonitrile copolymers or acrylamide copolymers, or cross-linked products thereof.

上記吸水性樹脂は通常半固体状で弾性に富むゲル状物である含水ゲル(以下、単に含水ゲルと表記する)として得られるが、そのまま使用されることはほとんど無く、多くの場合は乾燥効率を高める為に一端解砕などにより細粒化を行った後に乾燥され、更に必要に応じて粉砕される。
その後、上記含水ゲルを乾燥し、粉末状態としたものは、吸水性樹脂として各種用途に使用される。
The above water-absorbing resin is usually obtained as a water-containing gel (hereinafter simply referred to as a water-containing gel) which is a semi-solid and highly elastic gel, but it is rarely used as it is and often has a drying efficiency. In order to increase the viscosity, it is dried after being finely divided by pulverization or the like, and further pulverized as necessary.
Then, what dried the said hydrogel and made it the powder state is used for various uses as a water absorbing resin.

従来、上記含水ゲルの細粒化方法としては、例えば重合後の含水ゲルをミートチョッパーなどのスクリュー式押し出し機で解砕する方法などが用いられている。上記スクリュー式押出機を用いて含水ゲルを粉砕する技術としては、含水ゲルを45℃〜95℃の温度で加温し、孔径6.5mm〜18mmの孔を有する多孔板を備えるスクリュー式押出機から押し出し、その後、押し出された含水ゲルをロールミルなどで粉砕して細粒化を行う方法(特許文献1参照)、含水ゲルが供給口側へ逆戻りすることを防止する逆戻り防止部材を少なくとも押出口近傍に備えたスクリュー式押出機を用いる方法、およびスクリュー式押出機内部における含水ゲルの充填率を規定する方法(特許文献2参照)などが挙げられる。   Conventionally, as a method for refining the hydrated gel, for example, a method of crushing the hydrated gel after polymerization with a screw type extruder such as a meat chopper has been used. As a technique for pulverizing a hydrogel using the screw extruder, a screw extruder provided with a perforated plate having a pore diameter of 6.5 mm to 18 mm is obtained by heating the hydrogel at a temperature of 45 ° C. to 95 ° C. A method of pulverizing the extruded hydrous gel with a roll mill or the like (see Patent Document 1), and at least an anti-reverse member for preventing the hydrous gel from returning to the supply port side. Examples thereof include a method using a screw extruder provided in the vicinity, a method of defining the filling rate of the hydrogel inside the screw extruder (see Patent Document 2), and the like.

特許文献1記載の方法では、平均ゲル粒径が0.5mm〜3mmの範囲内で、粒度分布の狭い粒子状の含水ゲルが得られる。それゆえ、乾燥効率が大幅に改善され、残存単量体の著しく少ない吸水性樹脂を高い生産性で得ることができる。
しかし、含水ゲルが細粒化される際の機械的外力により、含水ゲルにおける架橋重合鎖が切断されることにより、最終的に得られる吸水性樹脂の水可溶性成分量が増大するおそれがある。
また、特許文献2記載の方法では、上記逆戻り防止部材を設けることによってほとんど機械的外力を加えることなく含水ゲルを良好に押し出して粉砕を行うことができる。
In the method described in Patent Document 1, a particulate hydrogel having a narrow particle size distribution is obtained within an average gel particle size range of 0.5 mm to 3 mm. Therefore, the drying efficiency is greatly improved, and a water-absorbing resin with significantly less residual monomer can be obtained with high productivity.
However, the amount of water-soluble components in the finally obtained water-absorbing resin may be increased by cutting the cross-linked polymer chain in the hydrogel due to mechanical external force when the hydrogel is finely divided.
Further, according to the method described in Patent Document 2, by providing the above-described reversion preventing member, the hydrogel can be well extruded and pulverized with little mechanical external force applied.

しかし、上記スクリュー式押出機に特定の逆戻り防止部材を設ける必要があり、設備が複雑化しその装置の設計が困難となる。
さらに同号公報記載の方法では、スクリュー式押出機内部における含水ゲルの充填率を規定することにより、ほとんど機械的外力を加えることなく含水ゲルを良好に押し出して粉砕を行うことができる。
しかし、該押出機内部の充填率を規定することから上記架橋重合体の粉砕処理速度が制約されてしまう。
特開平5−70597号公報 特開2000−67527号公報
However, it is necessary to provide a specific anti-reverse member on the screw extruder, which complicates equipment and makes it difficult to design the apparatus.
Further, according to the method described in the publication, by specifying the filling rate of the hydrogel in the screw type extruder, the hydrogel can be extruded and pulverized with little mechanical external force.
However, since the filling rate inside the extruder is defined, the pulverization speed of the crosslinked polymer is limited.
Japanese Patent Laid-Open No. 5-70597 JP 2000-67527 A

本発明は上記問題点に鑑みてなされたものであって、その目的は、スクリュー式押出機を用いた含水ゲルの細粒化処理において、含水ゲルが細粒化される際の機械的外力により、含水ゲルにおける架橋重合鎖が切断されることにより、最終的に得られる吸水性樹脂の水可溶成分量が増大するなどの含水ゲルの物性低下をほとんど伴わない均一な粉砕を、逆戻り防止部材などの特殊な機構を付加した装置を用いることなく行うことができ、さらに押出機内部の充填率に含水ゲルの細粒化処理速度が影響されない細粒化方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and its purpose is due to mechanical external force when the hydrogel is refined in the hydrogel refinement process using a screw type extruder. In addition, when the cross-linked polymer chain in the hydrogel is cut, the uniform pulverization is hardly accompanied by almost no decrease in the physical properties of the hydrogel, such as the amount of water-soluble components in the finally obtained water-absorbent resin is increased. An object of the present invention is to provide a fine granulation method that can be carried out without using a device with a special mechanism such as the above, and that the rate of fine granulation of the hydrogel is not affected by the filling rate inside the extruder.

本発明者らは、前記課題を解決するために鋭意検討した結果、上記粉砕処理に使用するスクリュー式押出機の構造を最適化することで、特定の逆戻り防止部材を付加することなく含水ゲルを良好に押し出しうることを見出した。
また本発明者らは、上記逆戻り防止機構によって押出機内部における含水ゲルの充填率に影響を受けず良好に押し出しうることについても見出し、本発明を完成させるに至った。
すなわち、本発明は、
[1]
含水ゲルをスクリュー式押出機の供給口から供給し、多孔板を備える押出口から押し出して粉砕処理を行う含水ゲルの細粒化方法において、該スクリュー式押出機のスクリュー末端部から供給口先端までの長さをAとし、供給口先端からスクリュー先端までの長さをBとした場合、下記式(1)
C=(B/A)×100 (1)
で定義される値Cを100%〜500%の範囲内とすることで、含水ゲルが供給側へ逆戻りすることを防止する機能を備えたスクリュー式押出機を用いることを特徴とする含水ゲルの細粒化方法、
[2]
該細粒化方法において、該スクリュー式押出機のスクリュー末端部から供給口先端までの長さをAとし、供給口先端からスクリュー先端までの長さをBとした場合、下記式(1)
C=(B/A)×100 (1)
で定義される値Cを100%〜500%の範囲内とすることで、含水ゲルが供給側へ逆戻りすることを防止する機能を備えた含水ゲルのスクリュー式押出機細粒化装置、
である。
As a result of intensive studies to solve the above problems, the present inventors have optimized the structure of the screw-type extruder used for the above pulverization treatment, and thereby added a water-containing gel without adding a specific reversal prevention member. It was found that it can be extruded well.
The inventors have also found that the above-described reversion preventing mechanism can be extruded well without being affected by the filling rate of the hydrogel inside the extruder, and have completed the present invention.
That is, the present invention
[1]
In the hydrogel refinement method in which the hydrogel is supplied from the supply port of the screw-type extruder and extruded from the extrusion port provided with the perforated plate to perform the pulverization process, from the screw end of the screw-type extruder to the tip of the supply port When the length of the nozzle is A and the length from the supply port tip to the screw tip is B, the following formula (1)
C = (B / A) × 100 (1)
Of the water-containing gel characterized by using a screw type extruder having a function of preventing the water-containing gel from returning to the supply side by making the value C defined by the above in the range of 100% to 500%. Fine graining method,
[2]
In the fine granulation method, when the length from the screw end of the screw type extruder to the tip of the supply port is A and the length from the tip of the supply port to the screw tip is B, the following formula (1)
C = (B / A) × 100 (1)
By making the value C defined in the range of 100% to 500%, the water-containing gel screw-type extruder atomizer having the function of preventing the water-containing gel from returning to the supply side,
It is.

本発明にかかる含水ゲルの細粒化方法では、用いられるスクリュー式押出機の供給口をスクリューに対して特定の位置に設定することにより、含水ゲルが供給口側に逆戻りせず、円滑に押出口から押し出される。
このため、スクリュー式押出機のスクリューケース内で含水ゲルが滞留することがなくなり、含水ゲルに対して必要最低限以上の機械的外力が加えられることが回避される。すなわち、含水ゲルが細粒化される際の機械的外力により、含水ゲルにおける架橋重合鎖が切断されることにより、最終的に得られる吸水性樹脂の水可溶成分量が増大するなどの含水ゲルの物性低下を伴わず容易に細粒化を行うことができる。
In the hydrogel refinement method according to the present invention, the feed port of the screw extruder used is set at a specific position with respect to the screw, so that the hydrogel does not return to the feed port side and is pushed smoothly. Extruded from the exit.
For this reason, the water-containing gel does not stay in the screw case of the screw-type extruder, and it is avoided that a mechanical external force exceeding the necessary minimum is applied to the water-containing gel. That is, water content such as the amount of water-soluble components in the water-absorbent resin finally obtained is increased by cutting the cross-linked polymer chain in the water-containing gel due to mechanical external force when the water-containing gel is refined. Fine graining can be easily performed without lowering the physical properties of the gel.

しかも、スクリュー式押出機の内部に特別な加工を施すことなしに上記目的は実現されるため、押出機の構造を複雑にすることもない。
また、上記逆戻り防止機構は押出機内部における含水ゲルの充填率に含水ゲルの細粒化処理速度が影響を受けずに細粒化を行うことができるため、押出機の運転条件に幅を持たせることが可能となる。
And since the said objective is implement | achieved without giving a special process inside the screw type extruder, the structure of an extruder is not complicated.
In addition, since the above reversion preventing mechanism can perform fine granulation without affecting the filling rate of the hydrogel in the extruder without affecting the fine gelation rate of the hydrogel, there is a wide range of operating conditions of the extruder. It becomes possible to make it.

本発明にかかる含水ゲルの細粒化方法を、図に基づいて以下に詳しく説明するが、本発明はこれに限定されるものではない。
本発明において細粒化される含水ゲルは、例えば、吸水性樹脂として好適に用いられるものであって、エチレン系不飽和単量体を、架橋構造を形成するように水溶液重合することによって得られるものである。
The method for refining a hydrogel according to the present invention will be described in detail below based on the drawings, but the present invention is not limited to this.
The water-containing gel to be finely divided in the present invention is suitably used as a water-absorbing resin, for example, and is obtained by aqueous solution polymerization of an ethylenically unsaturated monomer so as to form a crosslinked structure. Is.

上記含水ゲルの原料として用いられるエチレン性不飽和単量体は、水溶性を有する単量体であり、このようなものとしては、例えば、(メタ)アクリル酸、β−アクリロイルオキシプロピオン酸、マレイン酸、無水マレイン酸、フマル酸、クロトン酸、イタコン酸、ケイ皮酸、2−(メタ)アクリロイルエタンスルホン酸、2−(メタ)アクリロイルプロパンスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、ビニルスルホン酸、スチレンスルホン酸、アリルスルホン酸、ビニルホスホン酸、2−(メタ)アクリロイルオキシエチルリン酸などの酸基含有単量体、およびこれらのアルカリ金属塩やアルカリ土類金属塩、アンモニウム塩、アルキルアミン塩;N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリルアミドなどのジアルキルアミノアルキル(メタ)アクリレート類およびこれら四級化物(例えば、アルキルハイドライドとの反応物、ジアルキル硫酸との反応物など);N−アルキルビニルピリジニウムハライド;2−ヒドロキシエチルメタアクリレート、2−ヒドロキシプロピル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート;(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−n−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド;メトキシポリエチレングリコール(メタ)アクリレートなどのアルコキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート;ビニルピリジン、N−ビニルピリジン、N−ビニルピロリドン、N−アクリロイルピペリジン;N−ビニルアセトアミド;などが挙げられる。   The ethylenically unsaturated monomer used as the raw material for the hydrous gel is a monomer having water solubility, and examples thereof include (meth) acrylic acid, β-acryloyloxypropionic acid, maleic acid. Acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, cinnamic acid, 2- (meth) acryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid, 2- (meth) acrylamido-2-methylpropane Acid group-containing monomers such as sulfonic acid, vinyl sulfonic acid, styrene sulfonic acid, allyl sulfonic acid, vinyl phosphonic acid, 2- (meth) acryloyloxyethyl phosphoric acid, and alkali metal salts and alkaline earth metal salts thereof , Ammonium salt, alkylamine salt; N, N-dimethylaminoethyl (meth) acrylate, N Dialkylaminoalkyl (meth) acrylates such as N-dimethylaminopropyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylamide and the quaternized compounds thereof (for example, reaction with alkyl hydride, dialkyl sulfate N-alkylvinylpyridinium halide; hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl methacrylate and 2-hydroxypropyl (meth) acrylate; (meth) acrylamide, N-ethyl (meth) acrylamide, N -N-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide; alkoxy polyethylene such as methoxypolyethylene glycol (meth) acrylate Glycol (meth) acrylate, polyethylene glycol mono (meth) acrylate; vinylpyridine, N-vinylpyridine, N-vinylpyrrolidone, N-acryloylpiperidine; N-vinylacetamide;

これらエチレン性不飽和単量体は、一種類のみを用いてもよく、また、二種類以上を適宜混合してもよい。
上記例示のエチレン性不飽和単量体のうち、アクリル酸塩系単量体を主成分として含む単量体を用いると、得られる含水ゲルの吸水特性や安全性がより一層向上するので好ましい。ここで、アクリル酸塩系単量体とは、アクリル酸、および/またはアクリル酸の水溶性塩類を示す。
また、アクリル酸の水溶性塩類とは、中和率が30モル%〜100モル%の範囲内であるアクリル酸のアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、ヒドロキシアンモニウム塩、アミン塩、アルキルアミン塩を示す。
Only one kind of these ethylenically unsaturated monomers may be used, or two or more kinds may be appropriately mixed.
Among the ethylenically unsaturated monomers exemplified above, it is preferable to use a monomer containing an acrylate monomer as a main component because the water absorption characteristics and safety of the resulting hydrogel are further improved. Here, the acrylate monomer refers to acrylic acid and / or water-soluble salts of acrylic acid.
The water-soluble salts of acrylic acid are alkali metal salts, alkaline earth metal salts, ammonium salts, hydroxyammonium salts, amine salts of acrylic acid having a neutralization rate in the range of 30 mol% to 100 mol%, An alkylamine salt is shown.

これらアクリル酸塩系単量体は、単独で用いてもよく、また、二種類以上を併用してもよい。なお、吸水性樹脂の平均分子量(重合度)は、特に限定されるものではない。
上記エチレン性不飽和単量体を主成分として含む単量体組成物を、架橋剤の存在下で重合させることによって上記の含水ゲルを得ることができるが、上記単量体組成物には、得られる含水ゲルの親水性を阻害しない程度に、上記エチレン性不飽和単量体と共重合可能な他の単量体(共重合性モノマー)を含んでいてもよい。
These acrylate monomers may be used alone or in combination of two or more. In addition, the average molecular weight (degree of polymerization) of the water absorbent resin is not particularly limited.
The water-containing gel can be obtained by polymerizing the monomer composition containing the ethylenically unsaturated monomer as a main component in the presence of a crosslinking agent. Another monomer (copolymerizable monomer) copolymerizable with the ethylenically unsaturated monomer may be included to such an extent that the hydrophilicity of the resulting hydrogel is not inhibited.

上記の共重合性モノマーとしては、具体的には、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレートなどの(メタ)アクリル酸エステル類;酢酸ビニル、プロピオン酸ビニルなどの疏水性単量体;などが挙げられる。これら共重合性モノマーは、単独で用いてもよく、また、二種類以上を適宜混合して用いてもよい。
また、上記単量体成分を重合させる際に用いられる架橋剤としては、例えば、分子内にビニル基を複数有する化合物;分子内にカルボキシル基やスルホン酸基と反応することのできる官能基を複数含有する化合物;などが挙げられる。これら架橋剤は、単独で用いてもよく、また、二種類以上を併用してもよい。
Specific examples of the copolymerizable monomer include (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate; vinyl acetate, vinyl propionate, and the like. And the like. These copolymerizable monomers may be used alone or in combination of two or more.
Examples of the crosslinking agent used when polymerizing the monomer component include a compound having a plurality of vinyl groups in the molecule; a plurality of functional groups capable of reacting with a carboxyl group or a sulfonic acid group in the molecule. And the like. These crosslinking agents may be used alone or in combination of two or more.

分子内にビニル基を複数含有する化合物としては、具体的には、例えば、N,N−メチレンビス(メタ)アクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、グリセリンアクリレートメタクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、N,N−ジアリルアクリルアミド、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルホスフェート、トリアリルアミン、ジアリルオキシ酢酸、N−メチル−N−ビニルアクリルアミド、ビス(N−ビニルカルボン酸アミド)、テトラアリロキシエタンなどが挙げられる。   Specific examples of the compound containing a plurality of vinyl groups in the molecule include N, N-methylenebis (meth) acrylamide, (poly) ethylene glycol di (meth) acrylate, and (poly) propylene glycol di (meth). Acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane di (meth) acrylate, glycerin tri (meth) acrylate, glycerin acrylate methacrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate , Dipentaerythritol hexa (meth) acrylate, N, N-diallylacrylamide, triallyl cyanurate, triallyl isocyanurate, triallyl phosphate, triallyl Min, diallyloxyacetic acid, N- methyl -N- vinyl acrylamide, bis (N- vinylcarboxamides), such as tetraallyloxyethane, and the like.

分子内にカルボキシル基やスルホン酸基と反応することのできる官能基を複数有する化合物としては、例えば、(ポリ)エチレングリコール、(ポリ)プロピレングリコール、1,3−プロパンジオール、2,2,4−トリメチル−1,3−ペンタンジオール、(ポリ)グリセリン、2−ブテン−1,4−ジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,2−シクロヘキサンジメタノール、トリメチロールプロパン、ジエタノールアミン、トリエタノールアミン、ペンタエリスリトール、ソルビトールなどの多価アルコール化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、グリシドールなどのエポキシ化合物;エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ポリアミドポリアミン、ポリエチレンイミンなどの多価アミン化合物、並びに、それら多価アミンとハロエポキシ化合物との縮合物;2,4−トリレンジイソシアネート、ヘキサメチレンジイソシアネートなどの多価イソシアネート化合物;1,2−エチレンビスオキサゾリンなどの多価オキサゾリン化合物;γ−グリシドキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシランなどのシランカップリング剤;1,3−ジオキソラン−2−オン、4−メチル−1,3−ジオキソラン−2−オン、4,5−ジメチル−1,3−ジオキソラン−2−オン、4,4−ジメチル−1,3−ジオキソラン−2−オン、4−エチル−1,3−ジオキソラン−2−オン、4−ヒドロキシメチル−1,3−ジオキソラン−2−オン、1,3−ジオキサン−2−オン、4−メチル−1,3−ジオキサン−2−オン、4,6−ジメチル−1,3−ジオキサン−2−オン、1,3−ジオキソパン−2−オンなどのアルキレンカーボネート化合物;エピクロロヒドリンなどのハロエポキシ化合物;亜鉛、カルシウム、マグネシウム、アルミニウム、鉄、ジルコニウムなどの水酸化物あるいは塩化物などが挙げられる。   Examples of the compound having a plurality of functional groups capable of reacting with a carboxyl group or a sulfonic acid group in the molecule include (poly) ethylene glycol, (poly) propylene glycol, 1,3-propanediol, 2,2,4 -Trimethyl-1,3-pentanediol, (poly) glycerin, 2-butene-1,4-diol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,2- Polyhydric alcohol compounds such as cyclohexanedimethanol, trimethylolpropane, diethanolamine, triethanolamine, pentaerythritol, sorbitol; (poly) ethylene glycol diglycidyl ether, (poly) glycerol polyglycidyl ether, diglycerol polyglycidyl ether, (poly )Professional Epoxy compounds such as lenglycol diglycidyl ether and glycidol; polyvalent amine compounds such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, polyamidepolyamine, polyethyleneimine, and those polyamines and haloepoxy compounds Condensates with polyhydric acids; polyvalent isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; polyvalent oxazoline compounds such as 1,2-ethylenebisoxazoline; γ-glycidoxypropyltrimethoxysilane, γ-amino Silane coupling agents such as propyltrimethoxysilane; 1,3-dioxolan-2-one, 4-methyl-1,3-dioxolan-2-one, 4,5-dimethyl- , 3-dioxolan-2-one, 4,4-dimethyl-1,3-dioxolan-2-one, 4-ethyl-1,3-dioxolan-2-one, 4-hydroxymethyl-1,3-dioxolane- 2-one, 1,3-dioxan-2-one, 4-methyl-1,3-dioxan-2-one, 4,6-dimethyl-1,3-dioxan-2-one, 1,3-dioxopane- Examples include alkylene carbonate compounds such as 2-one; haloepoxy compounds such as epichlorohydrin; hydroxides or chlorides such as zinc, calcium, magnesium, aluminum, iron, and zirconium.

上記の架橋剤の使用量としては、特に限定されるものではないが、上記単量体成分に対して、0.0001モル%〜10モル%の範囲内であることが好ましく、0.001モル%〜1モル%の範囲内であることがより好ましい。
本発明において、上記の単量体成分を重合する方法は、特に限定されるものではなく、バルク重合、沈澱重合、水溶液重合または逆相懸濁重合など、従来公知の種々の重合方法を採用することができる。その中でも、得られる吸水性樹脂の吸水特性を向上させるとともに、重合の制御の容易さから、上記の単量体成分を水溶液とした水溶液重合が好ましい。
上記重合反応中は、単量体成分を撹拌することなく、静置して重合させるほうが好ましい。さらに、上記のエチレン性不飽和単量体を水溶液重合させる際には、連続式重合、または回分重合の何れかの方式を採用してもよく、また、常圧、減圧、加圧の何れの圧力下で実施してもよい。なお、重合反応は、窒素、ヘリウム、アルゴン、二酸化炭素などの不活性ガスの気流下で行うことが好ましい。
The amount of the crosslinking agent used is not particularly limited, but is preferably in the range of 0.0001 mol% to 10 mol% with respect to the monomer component, and 0.001 mol. More preferably, it is in the range of% to 1 mol%.
In the present invention, the method for polymerizing the above monomer components is not particularly limited, and various conventionally known polymerization methods such as bulk polymerization, precipitation polymerization, aqueous solution polymerization, and reverse phase suspension polymerization are employed. be able to. Among them, aqueous solution polymerization using the above monomer components as an aqueous solution is preferable from the viewpoint of improving the water absorption characteristics of the obtained water absorbent resin and ease of polymerization control.
During the above polymerization reaction, it is preferable that the monomer component is allowed to stand for polymerization without stirring. Furthermore, when the above ethylenically unsaturated monomer is polymerized in an aqueous solution, any one of continuous polymerization or batch polymerization may be employed, and any of normal pressure, reduced pressure, and pressurized pressure may be employed. You may implement under pressure. The polymerization reaction is preferably carried out under an inert gas stream such as nitrogen, helium, argon, carbon dioxide.

上記重合反応における重合開始時には、例えば、重合開始剤、あるいは放射線や電子線、紫外線、電磁線などの活性化エネルギー線などを用いることができる。上記重合開始剤としては、具体的には、例えば、過硫酸ナトリウム、過硫酸アンモニウム、過硫酸カリウム、過酸化水素などの無機化合物;t−ブチルハイドロパーオキサイド、過酸化ベンゾイル、クメンハイドロパーオキサイドなどの有機過酸化物;2,2’−アゾビス(N,N’−メチレンイソブチルアミジン)またはその塩、2,2’−アゾビス(2−メチルプロピオンアミジン)またはその塩、2,2’−アゾビス(2−アミジノプロパン)またはその塩、4,4’−アゾビス−4−シアノ吉草酸などのアゾ化合物;などのラジカル重合開始剤が挙げられる。
これら重合開始剤は、単独で用いてもよく、また、二種類以上を併用してもよい。また、重合開始剤として過酸化物を用いる場合には、例えば、亜硫酸塩、重亜硫酸塩、L−アスコルビン酸(塩)などの還元剤を併用して酸化還元(レドックス)重合を行ってもよい。
At the start of polymerization in the polymerization reaction, for example, a polymerization initiator or activation energy rays such as radiation, electron beam, ultraviolet ray, electromagnetic ray, or the like can be used. Specific examples of the polymerization initiator include inorganic compounds such as sodium persulfate, ammonium persulfate, potassium persulfate, and hydrogen peroxide; t-butyl hydroperoxide, benzoyl peroxide, cumene hydroperoxide, and the like. Organic peroxide; 2,2′-azobis (N, N′-methyleneisobutylamidine) or a salt thereof, 2,2′-azobis (2-methylpropionamidine) or a salt thereof, 2,2′-azobis (2 -Amidinopropane) or a salt thereof, and an azo compound such as 4,4′-azobis-4-cyanovaleric acid;
These polymerization initiators may be used alone or in combination of two or more. When a peroxide is used as the polymerization initiator, for example, redox polymerization may be performed using a reducing agent such as sulfite, bisulfite, and L-ascorbic acid (salt) in combination. .

また、本発明において上記単量体成分を重合して得られる含水ゲルについては、内部に気泡を含有していると、得られる吸水性樹脂の吸水特性を向上させることができるので特に好ましい。内部に気泡を含有する含水ゲルは、上記単量体成分を、気泡を含有するように、架橋剤の存在下で重合させることによって容易に得ることができる。このような重合方法としては、アゾ系開始剤の存在下での重合方法、発泡剤として炭酸塩(特開平5−237378号公報、開平7−185331号公報)を用いての重合方法、ペンタンやトリフルオロエタンなどの水に不溶な発泡剤をモノマー中に分散させての重合方法(米国特許第5328935号公報、米国特許第5338766号公報)、固体微粒子状発泡剤を用いての重合法(国際公開WO96/17884号公報)、界面活性剤の存在下に、不活性気体を分散させながら重合する方法など、従来公知の種々の方法を採用することができる。   In the present invention, it is particularly preferable that the water-containing gel obtained by polymerizing the monomer component contains bubbles inside because the water-absorbing property of the resulting water-absorbent resin can be improved. A water-containing gel containing bubbles inside can be easily obtained by polymerizing the monomer component in the presence of a crosslinking agent so as to contain bubbles. Examples of such a polymerization method include a polymerization method in the presence of an azo-based initiator, a polymerization method using a carbonate (JP-A-5-237378 and Kaihei 7-185331) as a foaming agent, pentane and A polymerization method in which a water-insoluble blowing agent such as trifluoroethane is dispersed in a monomer (US Pat. No. 5,328,935, US Pat. No. 5,338,766), a polymerization method using a solid particulate foaming agent (international Publicly known WO96 / 17884), various conventionally known methods such as a method of polymerizing while dispersing an inert gas in the presence of a surfactant can be employed.

上記単量体成分を架橋剤の存在下で重合させる際には、得られる吸水性樹脂の吸水特性を向上させるため、また気泡を含有するように重合させる場合には、発泡を効率的に行うため溶媒としては水、もしくは水と、水に可溶な有機溶媒との混合溶媒を用いることが好ましい。
該有機溶媒としては、具体的には、例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール、アセトン、アセトニトリル、エチレングリコールモノメチルエーテルなどが挙げられる。これら有機溶媒は、単独で用いてもよく、また、2種類以上を併用してもよい。
When the monomer component is polymerized in the presence of a cross-linking agent, in order to improve the water absorption characteristics of the resulting water absorbent resin, and when polymerizing so as to contain bubbles, foaming is performed efficiently. Therefore, it is preferable to use water or a mixed solvent of water and an organic solvent soluble in water as the solvent.
Specific examples of the organic solvent include methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, acetonitrile, ethylene glycol monomethyl ether, and the like. These organic solvents may be used alone or in combination of two or more.

上記水溶液(以下、単量体水溶液とする)中の単量体成分の濃度は、20重量%〜60重量%の範囲内がより好ましい。単量体成分の濃度が20重量%以上の場合、得られる吸水性樹脂の水可溶成分量が増加することを抑制できるとともに、発泡剤による発泡が十分となり、吸水速度を向上させることが出来るので好ましい。一方、単量体成分の濃度が60重量%以下の場合、反応温度並びに発泡剤による発泡を制御することが容易となり好ましい。
上記のようにして得られた含水ゲルの含水率は、一般に10〜90重量%の範囲であり、好ましくは20〜80重量%の範囲である。含水率が10重量%以上の場合、含水ゲルの押出が容易となり、また、気泡を含有する含水ゲルの場合は気泡が潰れにくくなるため好ましい。一方、含水率が90重量%以下の場合、押出後の乾燥に時間を要しすぎることがなく好ましい。
The concentration of the monomer component in the aqueous solution (hereinafter referred to as the monomer aqueous solution) is more preferably in the range of 20 wt% to 60 wt%. When the concentration of the monomer component is 20% by weight or more, it is possible to suppress an increase in the amount of the water-soluble component of the obtained water-absorbent resin, and foaming by the foaming agent is sufficient, and the water absorption rate can be improved. Therefore, it is preferable. On the other hand, when the concentration of the monomer component is 60% by weight or less, it is preferable because the reaction temperature and foaming by the foaming agent can be easily controlled.
The water content of the water-containing gel obtained as described above is generally in the range of 10 to 90% by weight, and preferably in the range of 20 to 80% by weight. When the water content is 10% by weight or more, it is preferable to extrude the water-containing gel, and when the water-containing gel contains air bubbles, the air bubbles are less likely to be crushed. On the other hand, when the water content is 90% by weight or less, it is preferable that drying after extrusion does not take too much time.

上記含水ゲルは、所定の大きさに押出した後で乾燥し、粉砕することによって吸水性樹脂とすることができるが、上記押出に際して、含水ゲルは均一かつ可能な限り混錬されないように押出すことが好ましい。これは、得られる吸水性樹脂の物性が低下することになるためである。
具体的には、含水ゲルが均一に押出されない場合、個々の含水ゲルを均一に乾燥することができなくなり、一部未乾燥物が発生する可能性がある。この未乾燥物は非常に大きな粘着力を有しているため、乾燥後の粉砕工程で粉砕機内に付着して粉砕を妨げてしまう。また、未乾燥物が最終製品である吸水性樹脂に混入すると該吸水性樹脂の物性が低下する。
The water-containing gel can be made into a water-absorbent resin by extruding to a predetermined size, then drying and pulverizing, but during the extrusion, the water-containing gel is extruded so as to be as uniform and not kneaded as possible. It is preferable. This is because the physical properties of the resulting water-absorbent resin are lowered.
Specifically, when the water-containing gel is not uniformly extruded, it becomes impossible to dry each water-containing gel uniformly, and a part of undried material may be generated. Since this undried product has a very large adhesive force, it adheres to the pulverizer in the pulverization step after drying and prevents pulverization. Moreover, when an undried product mixes in the water absorbent resin which is the final product, the physical properties of the water absorbent resin are lowered.

さらに、含水ゲルが押出過程で混錬されてしまうと、含水ゲルの架橋鎖が切断され、可溶成分量の増大を招来して最終製品である吸水性樹脂の物性を低下させる。また、含水ゲルが気泡を有しているような場合には、該気泡が押出過程で練り潰され、やはり吸水性樹脂の物性を低下させる。
そこで、上記含水ゲルが均一に押出されるとともに、押出時に含水ゲルが混錬されないようにすることが好ましい。このような含水ゲルの押出を行うために、本発明では、特定の付加機構なしに含水ゲルが供給側へ逆戻りすることを防止する機構を備えたスクリュー式押出機を用いている。
Furthermore, if the hydrogel is kneaded during the extrusion process, the crosslinked chains of the hydrogel are broken, leading to an increase in the amount of soluble components and reducing the physical properties of the water-absorbent resin as the final product. Further, when the hydrogel has bubbles, the bubbles are crushed during the extrusion process, and the physical properties of the water-absorbent resin are also lowered.
Therefore, it is preferable that the water-containing gel is uniformly extruded and that the water-containing gel is not kneaded during the extrusion. In order to carry out such extrusion of the hydrogel, in the present invention, a screw type extruder having a mechanism for preventing the hydrogel from returning to the supply side without a specific additional mechanism is used.

本発明に用いられる上記スクリュー式押出機は、筒状のスクリューケース内に回転する1軸または多軸のスクリューを有する構成であれば特に限定されるものではない。上記スクリュー式押出機としては、例えば、図1に示すように、スクリューケース11、スクリューシャフト12、供給口13、ホッパー14、押出口15、多孔板16、ダイスホルダー17、ダイス押え18などを備えている構成のものを好適に用いることができる。
上記スクリューケース11は筒状となっており、スクリューケース11の長手方向に沿って内部にスクリューシャフト12が配置されている。筒状のスクリューケース11における一方の端部には、含水ゲルが押し出される押出口15が設けられており、もう一方の端部には、スクリューシャフト12を回転させるためのモータや駆動系などが設けられる。スクリューケースの上方には、含水ゲルを供給するための供給口13が設けられており、好ましくは、含水ゲルを供給し易くするためのホッパー14が備えられている。
The screw extruder used in the present invention is not particularly limited as long as it has a uniaxial or multiaxial screw that rotates in a cylindrical screw case. As the screw type extruder, for example, as shown in FIG. 1, a screw case 11, a screw shaft 12, a supply port 13, a hopper 14, an extrusion port 15, a perforated plate 16, a die holder 17, a die presser 18 and the like are provided. The thing of the structure which can be used suitably can be used.
The screw case 11 has a cylindrical shape, and a screw shaft 12 is disposed along the longitudinal direction of the screw case 11. An extrusion port 15 through which the hydrogel is extruded is provided at one end of the cylindrical screw case 11, and a motor, a drive system, and the like for rotating the screw shaft 12 are provided at the other end. Provided. Above the screw case, a supply port 13 for supplying the hydrogel is provided, and preferably, a hopper 14 for facilitating the supply of the hydrogel is provided.

上記スクリューケース11の形状や大きさは、スクリューシャフト12の形状に対応するような円筒状の内面を有していれば特に限定されるものではないが、上記スクリュー式押出機スクリュー末端部から供給口先端までの長さをAとし、供給口先端からスクリュー先端までの長さをBとした場合、下記式(1)、
C=(B/A)×100 (1)
で定義される値Cを100%〜500%の範囲内とすることが好ましい。
ここで、Cの値が100%より小さいと、含水ゲルが正常に押出されず、スクリューケース内に滞留するため不適であり、また、Cの値が500%より大きいと、押出の際に含水ゲルが混錬されてしまい、含水ゲルの架橋鎖が切断され、可溶成分量の増大を招来して最終製品である吸水性樹脂の物性を低下させるため不適である。
The shape and size of the screw case 11 is not particularly limited as long as it has a cylindrical inner surface corresponding to the shape of the screw shaft 12, but is supplied from the screw end of the screw extruder. When the length to the tip of the mouth is A and the length from the tip of the supply port to the tip of the screw is B, the following formula (1),
C = (B / A) × 100 (1)
The value C defined by is preferably in the range of 100% to 500%.
Here, if the value of C is less than 100%, the hydrous gel is not properly extruded and stays in the screw case, which is unsuitable. If the value of C is greater than 500%, the hydrous gel is contained during extrusion. This is unsuitable because the gel is kneaded, the crosslinked chain of the hydrous gel is broken, the amount of soluble components is increased, and the physical properties of the water-absorbent resin as the final product are lowered.

また、スクリューシャフト12の回転数に関しては、1〜300rpmが好ましく、1〜240rpmであればさらに好ましく、1〜180rpmであれば特に好ましい。1〜300rpmの範囲内では、スクリューシャフト12の回転により過剰な機械的外力が含水ゲルに加えられることがなく、物性が低下することがないため好ましい。
上記押出口15には、複数の孔を有する多孔板16が配置されている。また、この多孔板16は、ダイス押え18によってダイスホルダー17に着脱可能に固定されている。これは、多孔板16上に開けられた孔の径によって紐状含水ゲルの太さが決定されるため、紐状含水ゲルの太さを調節するためには多孔板16を孔径の異なったものに適宜取り替える必要が生じるためである。
Further, the rotational speed of the screw shaft 12 is preferably 1 to 300 rpm, more preferably 1 to 240 rpm, and particularly preferably 1 to 180 rpm. Within the range of 1 to 300 rpm, an excessive mechanical external force is not applied to the hydrous gel due to the rotation of the screw shaft 12, and the physical properties are not deteriorated.
A perforated plate 16 having a plurality of holes is disposed at the extrusion port 15. Further, the perforated plate 16 is detachably fixed to the die holder 17 by a die presser 18. This is because the thickness of the string-like hydrogel is determined by the diameter of the holes opened on the porous plate 16, so that the porous plate 16 has a different hole diameter in order to adjust the thickness of the string-like hydrogel. This is because it will be necessary to replace it appropriately.

上記多孔板16の厚さは1mm〜20mmの範囲内である。またその孔径は、1mm〜28mmの範囲内にあることが好ましく、2mm〜20mmの範囲内にあることがより好ましい。孔径が上記の範囲内にあれば、押し出しに際して含水ゲルに対して過剰な機械的外力が加えられることが抑制されるため、含水ゲルを良好に押出することができる。
ここで、従来の方法では、含水ゲルをスクリュー式押出機により押出す際には、多孔板の孔径が6.5mm〜18mmの範囲内にあることが好ましいとされてきた。これは、逆戻り防止機構を備えていない従来のスクリュー式押出機では、孔の径が上記範囲から外れると、含水ゲルを良好に押出すことができなくなるためである。
The thickness of the porous plate 16 is in the range of 1 mm to 20 mm. The hole diameter is preferably in the range of 1 mm to 28 mm, and more preferably in the range of 2 mm to 20 mm. If the pore diameter is in the above range, excessive mechanical external force is suppressed from being applied to the water-containing gel during extrusion, so that the water-containing gel can be satisfactorily extruded.
Here, in the conventional method, when extruding the hydrous gel with a screw type extruder, it has been considered preferable that the pore diameter of the perforated plate is in the range of 6.5 mm to 18 mm. This is because, in a conventional screw-type extruder that does not include a reversal prevention mechanism, the water-containing gel cannot be favorably extruded when the diameter of the hole is out of the above range.

具体的には、上記範囲よりも孔の径が小さいと、従来の方法では多孔板から含水ゲルを押出すために非常に大きな力が必要となり、含水ゲルがスクリューケース内で混錬されて物性が低下するとともに滞留によって生産性が低下する。一方、孔の径が上記の範囲よりも大きいと、得られる紐状含水ゲルの太さが均一でなくなり、吸水性樹脂の製造に際して押出後の乾燥が均一に行われなくなって、吸水性樹脂の物性を低下させる。
これに対して、本発明にかかる含水ゲルの細粒化方法では、含水ゲルの逆戻りが発生しないために含水ゲルの押出しが円滑に行われ、滞留による生産性の低下を招来することがない。また、孔径が大きい場合であってもより均一かつ効率的な粉砕が可能となっている。
Specifically, if the pore diameter is smaller than the above range, the conventional method requires a very large force to extrude the hydrogel from the perforated plate, and the hydrogel is kneaded in the screw case and the physical properties And productivity decreases due to retention. On the other hand, when the pore diameter is larger than the above range, the thickness of the resulting string-like hydrogel is not uniform, and drying after extrusion is not performed uniformly during the production of the water absorbent resin, Reduces physical properties.
On the other hand, in the method for refining the hydrogel according to the present invention, since the hydrogel does not reverse, the hydrogel is smoothly pushed out, and the productivity is not lowered due to retention. Moreover, even when the hole diameter is large, more uniform and efficient pulverization is possible.

上記多孔板16の開口率は、5%以上であることが好ましく、10%〜40%の範囲内であることがより好ましく、20%前後であることが特に好ましい。開口率が5%未満であると、含水ゲルが押し出されにくくなり生産性が低下する。また、含水ゲルが押し出されにくくなることから、多孔板16への圧送部位で含水ゲルが過度に細かく破砕されてしまうことにもなるため好ましくない。なお、上記開口率とは、多孔板16の総面積に対する全ての孔の合計面積の比率を指す。
上述したスクリュー式押出機により得られる紐状の含水ゲルは、かつ粉砕時に余計な機械的外力が加えられていない良質のものとなっている。ここで、上記紐状含水ゲルの平均直径は、1mm〜28mmの範囲内が好ましく、2mm〜20mmの範囲内がより好ましく、含水ゲルが固いものである場合、3mm〜10mmの範囲内が特に好ましい。
The aperture ratio of the porous plate 16 is preferably 5% or more, more preferably in the range of 10% to 40%, and particularly preferably around 20%. When the open area ratio is less than 5%, the hydrogel is difficult to be extruded and the productivity is lowered. Moreover, since it becomes difficult to extrude a hydrogel, it is not preferable because the hydrogel is excessively and finely crushed at the pumping site to the perforated plate 16. The aperture ratio refers to the ratio of the total area of all the holes to the total area of the porous plate 16.
The string-like hydrogel obtained by the above-described screw-type extruder is of a high quality with no extra mechanical external force applied during pulverization. Here, the average diameter of the string-like hydrogel is preferably within a range of 1 mm to 28 mm, more preferably within a range of 2 mm to 20 mm, and particularly preferably within a range of 3 mm to 10 mm when the hydrous gel is hard. .

本発明にかかる含水ゲルの細粒化方法では、充填率による影響を受けず、スクリューケース11内での滞留なしに含水ゲルを押出し、細粒化を行うことができるが、充填率10%〜100%の範囲内ではスクリューシャフト12の回転に伴う過剰な機械的外力が加えられることがないため、好ましい。
なお、上記充填率とは、上記スクリュー式押出機のスクリューケース11に含水ゲルを完全に充填して細粒化処理を行った場合の単位時間辺りの処理量に対する、このときと同一の回転数でスクリューシャフト12が回転する状態で供給される含水ゲルの供給量の比率を指す。
In the method for refining the water-containing gel according to the present invention, the water-containing gel can be extruded and refined without being affected by the filling rate and without being retained in the screw case 11. The range of 100% is preferable because an excessive mechanical external force accompanying rotation of the screw shaft 12 is not applied.
In addition, the said filling rate is the same rotation speed as this time with respect to the processing amount per unit time when the screw case 11 of the said screw-type extruder is completely filled with a hydrous gel and a fine granulation process is performed. The ratio of the supply amount of the hydrogel supplied with the screw shaft 12 rotating is indicated.

上記のように、スクリューケース11内での滞留なく、過剰な機械的外力が加えられることがない細粒化を行うことの可能な充填率の範囲が非常に広いため、含水ゲルの細粒化条件の設定が容易となり、細粒化装置の運転を容易にすることができる。
本発明にかかる含水ゲルの細粒化方法では、上記スクリュー式押出機から含水ゲルを押し出した後、回転刃などを用いて紐状の含水ゲルを適宜切断し小粒状に細粒化してもよい。これによって、乾燥の効率をさらに上昇させ、生産性を向上させることができる。
本発明にかかる含水ゲルの細粒化方法では、上記スクリュー式押出機に含水ゲルを供給する前に、塊状の含水ゲルを解砕処理してもよい。これによって、含水ゲルを供給し易くなるとともにスクリューケース11内に充填し易くなる。上記粗粉砕に用いられる解砕手段としては、含水ゲルを練らないように解砕できるものであれば特に限定されるものではないが、例えばギロチンカッターなどを挙げることができる。
As described above, since the range of the filling rate that can be finely divided so that excessive mechanical external force is not applied without staying in the screw case 11, the fineness of the hydrogel is reduced. The setting of conditions becomes easy, and the operation of the atomization apparatus can be facilitated.
In the method for refining the hydrogel according to the present invention, the hydrogel may be extruded from the screw-type extruder, and then the string-like hydrogel may be appropriately cut using a rotary blade or the like to be finely granulated. . As a result, the drying efficiency can be further increased and the productivity can be improved.
In the hydrogel refinement method according to the present invention, the massive hydrogel may be crushed before supplying the hydrogel to the screw extruder. This makes it easy to supply the hydrogel and to fill the screw case 11. The crushing means used for the coarse pulverization is not particularly limited as long as it can be crushed so as not to knead the hydrogel, and examples thereof include a guillotine cutter.

上記の解砕処理を行って得られる含水ゲルの粗粉砕生成物の大きさは、供給口13から供給することができるとともに、スクリューシャフト12で押出口15に送ることができる大きさであれば特に限定されるものではないが、一般に、5mm以上であることが好ましく、10mm以上であることがより好ましい。5mm未満であれば、スクリュー式押出機により解砕する意味がなくなるため好ましくない。
以上のような本発明にかかる細粒化方法により得られる細粒化含水ゲルを乾燥して得られた吸水性樹脂は、優れた吸水性能によって、例えば、紙オムツや生理用ナプキン、失禁パッド、創傷保護材、創傷治癒材等の衛生材料(体液吸収物品);ペット用の尿等の吸収物品;建材や土壌用保水材、止水材、パッキング材、ゲル水嚢等の土木建築用資材;ドリップ吸収材や鮮度保持材、保冷材等の食品用物品;油水分離材、結露防止材、凝固材等の各種産業用物品;植物や土壌等の保水材等の農園芸用物品等、種々の用途に好適に用いられるものとなっている。
なお、本発明にかかる含水ゲルの細粒化方法は、吸水性樹脂の製造に対してのみに適応されるものではなく、均一かつ練られないように含水ゲルを粉砕する工程が必要な場合に好適に用いられる方法である。
The size of the coarsely pulverized product of the hydrogel obtained by performing the above crushing treatment can be supplied from the supply port 13 and can be sent to the extrusion port 15 by the screw shaft 12. Although not particularly limited, in general, it is preferably 5 mm or more, and more preferably 10 mm or more. If it is less than 5 mm, it is not preferable because the meaning of crushing with a screw extruder is lost.
The water-absorbent resin obtained by drying the finely divided water-containing gel obtained by the finely divided method according to the present invention as described above is, for example, a paper diaper, a sanitary napkin, an incontinence pad, Sanitary materials (body fluid absorbing articles) such as wound protection materials and wound healing materials; Absorbing articles such as urine for pets; Construction materials such as building materials, soil water retaining materials, water-stopping materials, packing materials, gel water sacs, etc .; Food products such as drip absorbers, freshness-keeping materials, and cold insulation materials; various industrial products such as oil-water separators, anti-condensation materials, and coagulants; various agricultural and horticultural products such as water retention materials such as plants and soil It is suitable for use.
In addition, the method for finely granulating the water-containing gel according to the present invention is not only applicable to the production of the water-absorbent resin, and when the step of pulverizing the water-containing gel so as to be uniform and not kneaded is necessary. This method is preferably used.

本発明にかかる含水ゲルの細粒化方法について、以下の実施例および比較例に基づいてさらに具体的に説明するが、本発明はこれらの実施例および比較例により限定されるものではない。
以下の実施例および比較例では、吸水性樹脂の製造に、本発明にかかる含水ゲルの細粒化方法を適用している。まず、以下の実施例および比較例で得られる吸水性樹脂における各種物性および紐状含水ゲルの状態の測定は、次のようにして行った。なお、以下の実施例および比較例に記載している%は重量%を示す。
The method for refining the hydrogel according to the present invention will be described more specifically based on the following examples and comparative examples, but the present invention is not limited to these examples and comparative examples.
In the following Examples and Comparative Examples, the water-containing gel atomization method according to the present invention is applied to the production of a water-absorbent resin. First, various physical properties in the water-absorbent resins obtained in the following examples and comparative examples and the measurement of the state of the string-like hydrogel were performed as follows. In addition,% described in the following Examples and Comparative Examples represents% by weight.

〔吸水倍率〕
まず、吸水性樹脂の重量を秤量後、0.9%塩化ナトリウム水溶液(生理食塩水)に、60分間浸漬した。その後、吸水性樹脂を取り出して液切りを行った後に、吸水性樹脂の重量を秤量し、生理食塩水を吸収する前の重量と比較して吸水倍率を求めた。
〔水可溶分〕
100mLのビーカー中に、吸水性樹脂1gを生理食塩水25mLに膨潤させ、蓋をして25℃で16時間放置した。次いで、膨潤したゲルを975mLの脱イオン水中に分散させ、1時間撹拌した後、濾紙で濾過した。得られた濾液をコロイド滴定により滴定し、吸水性樹脂の可溶分(%)を算出した。
[Water absorption ratio]
First, after weighing the water absorbent resin, it was immersed in a 0.9% aqueous sodium chloride solution (physiological saline) for 60 minutes. Thereafter, after removing the water-absorbing resin and draining it, the weight of the water-absorbing resin was weighed, and the water absorption ratio was determined by comparing with the weight before absorbing the physiological saline.
[Water-soluble matter]
In a 100 mL beaker, 1 g of the water-absorbent resin was swollen in 25 mL of physiological saline, capped, and left at 25 ° C. for 16 hours. The swollen gel was then dispersed in 975 mL of deionized water, stirred for 1 hour, and then filtered through filter paper. The obtained filtrate was titrated by colloid titration, and the soluble content (%) of the water absorbent resin was calculated.

〔実施例1〕
70%中和アクリル酸ナトリウムおよびN’,N’−メチレンビスアクリルアミド0.04モル%(対アクリル酸ナトリウム)を含むモノマー水溶液を調製した。このときのアクリル酸ナトリウムの濃度は40重量%であった。このモノマー水溶液に窒素を吹き込み、水溶液中の溶存酸素濃度を0.1ppm以下とした。
次いで、過硫酸アンモニウム0.01モル%(対アクリル酸ナトリウムモノマー)、L−アスコルビン酸0.03モル%(対アクリル酸ナトリウムモノマー)を順番に添加し、重合を行った。重合開始温度は25℃であり、12分後、温度は85℃に達した。
重合後、得られた含水ゲルを15〜55mmの塊状に解砕した後、図1に示すようなスクリュー式押出機に、充填率がほぼ100%となるように投入し、多孔板16からスクリュー回転数60rpmで押し出した。
上記スクリュー式押出機としては、スクリューケース11の内径53mm、長さ220mmのものを用いた。また上記スクリューシャフト12としては、直径51mm、長さ191mmのものを用いた。さらに上記多孔板16としては、厚さ8mm、孔の径4.5mm、開口率35%のものを用いた。
また、上記スクリュー式押出機はスクリュー末端部から開口部先端までの長さAを調節可能な構造となっているものを使用し、本実施例ではAを55mmとした。
上記スクリュー式押出機を用い、含水ゲルを押し出して紐状含水ゲルを得た。押し出された含水ゲルはガラス状の透明な紐状であった。そのときの押出条件および押出機内の滞留の発生、上記A、B、Cの値を表1に示す。
上記紐状含水ゲルを180℃で30分間乾燥した後、さらに粉砕し、本発明における吸水性樹脂(1)を得た。該吸水性樹脂(1)の物性を表2に示す。
[Example 1]
An aqueous monomer solution containing 70% neutralized sodium acrylate and 0.04 mol% N ', N'-methylenebisacrylamide (relative to sodium acrylate) was prepared. The concentration of sodium acrylate at this time was 40% by weight. Nitrogen was blown into the aqueous monomer solution to adjust the dissolved oxygen concentration in the aqueous solution to 0.1 ppm or less.
Subsequently, 0.01 mol% of ammonium persulfate (based on sodium acrylate monomer) and 0.03 mol% of L-ascorbic acid (based on sodium acrylate monomer) were sequentially added to perform polymerization. The polymerization initiation temperature was 25 ° C., and after 12 minutes the temperature reached 85 ° C.
After the polymerization, the obtained hydrogel was crushed into a 15 to 55 mm lump, and then charged into a screw-type extruder as shown in FIG. Extrusion was performed at 60 rpm.
As the screw type extruder, a screw case 11 having an inner diameter of 53 mm and a length of 220 mm was used. The screw shaft 12 was 51 mm in diameter and 191 mm in length. Further, as the porous plate 16, a plate having a thickness of 8 mm, a hole diameter of 4.5 mm, and an aperture ratio of 35% was used.
Moreover, the said screw type extruder used what has the structure which can adjust the length A from a screw terminal part to an opening part front-end | tip, A was 55 mm in the present Example.
Using the screw type extruder, the hydrogel was extruded to obtain a string-like hydrogel. The extruded hydrogel was a glassy transparent string. Table 1 shows the extrusion conditions at that time, the occurrence of retention in the extruder, and the values of A, B, and C.
The string-like water-containing gel was dried at 180 ° C. for 30 minutes and then pulverized to obtain a water absorbent resin (1) in the present invention. Table 2 shows the physical properties of the water absorbent resin (1).

〔実施例2〕
実施例1において、充填率がほぼ50%となるように含水ゲルを投入した以外は同様にして、本発明における吸水性樹脂(2)を得た。このときの細粒化条件および押出機内の状態を表1に示す。また、吸水性樹脂(2)の物性を表2に示す。
[Example 2]
In Example 1, the water-absorbent resin (2) in the present invention was obtained in the same manner except that the hydrogel was added so that the filling rate was approximately 50%. Table 1 shows the atomization conditions and the state in the extruder at this time. In addition, Table 2 shows the physical properties of the water absorbent resin (2).

〔実施例3〕
実施例1において、充填率がほぼ25%となるように含水ゲルを投入した以外は同様にして、本発明における吸水性樹脂(3)を得た。このときの細粒化条件および押出機内の状態を表1に示す。また、吸水性樹脂(3)の物性を表2に示す。
Example 3
In Example 1, the water-absorbent resin (3) in the present invention was obtained in the same manner except that the hydrogel was added so that the filling rate was approximately 25%. Table 1 shows the atomization conditions and the state in the extruder at this time. In addition, Table 2 shows the physical properties of the water absorbent resin (3).

〔実施例4〕
実施例1において、スクリュー回転数を120rpmとした以外は同様にして、本発明における吸水性樹脂(4)を得た。このときの細粒化条件および押出機内の状態を表1に示す。また、吸水性樹脂(4)の物性を表2に示す。
Example 4
In Example 1, the water-absorbent resin (4) in the present invention was obtained in the same manner except that the screw rotation speed was 120 rpm. Table 1 shows the atomization conditions and the state in the extruder at this time. In addition, Table 2 shows the physical properties of the water absorbent resin (4).

〔実施例5〕
実施例1において、スクリュー回転数を30rpmとした以外は同様にして、本発明における吸水性樹脂(5)を得た。このときの細粒化条件および押出機内の状態を表1に示す。また、吸水性樹脂(5)の物性を表2に示す。
Example 5
A water absorbent resin (5) according to the present invention was obtained in the same manner as in Example 1 except that the screw rotation speed was changed to 30 rpm. Table 1 shows the atomization conditions and the state in the extruder at this time. In addition, Table 2 shows the physical properties of the water absorbent resin (5).

〔実施例6〕
実施例1において、上記多孔板として厚さ8mm、孔の径3.0mm、開口率37%のものを用いた以外は同様にして、本発明における吸水性樹脂(6)を得た。このときの細粒化条件および押出機内の状態を表1に示す。また、吸水性樹脂(6)の物性を表2に示す。
Example 6
In Example 1, the water-absorbent resin (6) according to the present invention was obtained in the same manner except that the perforated plate having a thickness of 8 mm, a hole diameter of 3.0 mm, and an aperture ratio of 37% was used. Table 1 shows the atomization conditions and the state in the extruder at this time. In addition, Table 2 shows the physical properties of the water absorbent resin (6).

〔実施例7〕
実施例1において、上記スクリュー式押出機スクリュー末端部から開口部先端までの長さAを40mmとした以外は同様にして、本発明における吸水性樹脂(7)を得た。このときの細粒化条件および押出機内の状態を表1に示す。また、吸水性樹脂(7)の物性を表2に示す。
Example 7
In Example 1, the water-absorbent resin (7) in the present invention was obtained in the same manner except that the length A from the screw terminal to the tip of the opening was 40 mm. Table 1 shows the atomization conditions and the state in the extruder at this time. In addition, Table 2 shows the physical properties of the water absorbent resin (7).

〔実施例8〕
実施例1において、上記スクリュー式押出機スクリュー末端部から開口部先端までの長さAを70mmとした以外は同様にして、本発明における吸水性樹脂(8)を得た。このときの細粒化条件および押出機内の状態を表1に示す。また、吸水性樹脂(8)の物性を表2に示す。
Example 8
In Example 1, the water-absorbent resin (8) in the present invention was obtained in the same manner except that the length A from the screw terminal to the tip of the opening was set to 70 mm. Table 1 shows the atomization conditions and the state in the extruder at this time. In addition, Table 2 shows the physical properties of the water absorbent resin (8).

〔実施例9〕
実施例1において、使用するスクリュー式押出機として、スクリューケース11の内径53mm、長さ283mmのものを用い、上記スクリューシャフト12として直径51mm、長さ254mmのものを用いた以外は同様にして本発明における吸水性樹脂(9)を得た。このときの細粒化条件および押出機内の状態を表1に示す。また、吸水性樹脂(9)の物性を表2に示す。
Example 9
In Example 1, the screw extruder used was the same as that of the screw case 11 having an inner diameter of 53 mm and a length of 283 mm, and the screw shaft 12 having a diameter of 51 mm and a length of 254 mm was used. The water absorbent resin (9) in the invention was obtained. Table 1 shows the atomization conditions and the state in the extruder at this time. In addition, Table 2 shows the physical properties of the water absorbent resin (9).

〔実施例10〕
実施例9において、上記スクリュー式押出機スクリュー末端部から開口部先端までの長さAを70mmとした以外は同様にして、本発明における吸水性樹脂(10)を得た。このときの細粒化条件および押出機内の状態を表1に示す。また、吸水性樹脂(10)の物性を表2に示す。
Example 10
In Example 9, the water-absorbent resin (10) in the present invention was obtained in the same manner except that the length A from the screw terminal to the tip of the opening was set to 70 mm. Table 1 shows the atomization conditions and the state in the extruder at this time. In addition, Table 2 shows the physical properties of the water absorbent resin (10).

〔実施例11〕
実施例9において、上記スクリュー式押出機スクリュー末端部から開口部先端までの長さAを100mmとした以外は同様にして、本発明における吸水性樹脂(11)を得た。このときの細粒化条件および押出機内の状態を表1に示す。また、吸水性樹脂(11)の物性を表2に示す。
Example 11
In Example 9, the water-absorbent resin (11) in the present invention was obtained in the same manner except that the length A from the screw end of the screw type extruder to the tip of the opening was set to 100 mm. Table 1 shows the atomization conditions and the state in the extruder at this time. In addition, Table 2 shows the physical properties of the water absorbent resin (11).

〔実施例12〕
実施例1において、使用するスクリュー式押出機として、スクリューケース11の内径53mm、長さ156mmのものを用い、上記スクリューシャフト12として直径51mm、長さ127mmのものを用いた以外は同様にして本発明における吸水性樹脂(12)を得た。このときの細粒化条件および押出機内の状態を表1に示す。また、吸水性樹脂(12)の物性を表2に示す。
Example 12
In Example 1, the present invention is the same except that the screw type extruder used has an inner diameter of 53 mm and a length of 156 mm, and the screw shaft 12 has a diameter of 51 mm and a length of 127 mm. The water absorbent resin (12) in the invention was obtained. Table 1 shows the atomization conditions and the state in the extruder at this time. In addition, Table 2 shows the physical properties of the water absorbent resin (12).

〔実施例13〕
実施例12において、上記スクリュー式押出機スクリュー末端部から開口部先端までの長さAを40mmとした以外は同様にして、本発明における吸水性樹脂(13)を得た。このときの細粒化条件および押出機内の状態を表1に示す。また、吸水性樹脂(13)の物性を表2に示す。
Example 13
In Example 12, the water-absorbent resin (13) in the present invention was obtained in the same manner except that the length A from the screw terminal to the tip of the opening was 40 mm. Table 1 shows the atomization conditions and the state in the extruder at this time. In addition, Table 2 shows the physical properties of the water absorbent resin (13).

〔比較例1〕
実施例1において、上記スクリュー式押出機スクリュー末端部から開口部先端までの長さAを100mmとした以外は同様にして、比較吸水性樹脂(1)を得た。このときの細粒化条件および押出機内の状態を表1に示す。また、比較吸水性樹脂(1)の物性を表2に示す。
[Comparative Example 1]
In Example 1, a comparative water-absorbent resin (1) was obtained in the same manner except that the length A from the screw terminal to the tip of the opening was set to 100 mm. Table 1 shows the atomization conditions and the state in the extruder at this time. In addition, Table 2 shows the physical properties of the comparative water absorbent resin (1).

〔比較例2〕
実施例9において、上記スクリュー式押出機スクリュー末端部から開口部先端までの長さAを40mmとした以外は同様にして、本発明における比較吸水性樹脂(2)を得た。このときの細粒化条件および押出機内の状態を表1に示す。また、比較吸水性樹脂(2)の物性を表2に示す。
[Comparative Example 2]
In Example 9, a comparative water-absorbent resin (2) according to the present invention was obtained in the same manner except that the length A from the screw terminal to the tip of the opening was 40 mm. Table 1 shows the atomization conditions and the state in the extruder at this time. In addition, Table 2 shows the physical properties of the comparative water absorbent resin (2).

〔比較例3〕
実施例13において、上記スクリュー式押出機スクリュー末端部から開口部先端までの長さAを70mmとした以外は同様にして、比較吸水性樹脂(3)を得た。このときの細粒化条件および押出機内の状態を表1に示す。また、比較吸水性樹脂(3)の物性を表2に示す。
[Comparative Example 3]
In Example 13, a comparative water absorbent resin (3) was obtained in the same manner except that the length A from the screw end of the screw extruder to the tip of the opening was set to 70 mm. Table 1 shows the atomization conditions and the state in the extruder at this time. In addition, Table 2 shows the physical properties of the comparative water absorbent resin (3).

〔比較例4〕
実施例13において、上記スクリュー式押出機スクリュー末端部から開口部先端までの長さAを100mmとした以外は同様にして、比較吸水性樹脂(4)を得た。このときの細粒化条件および押出機内の状態を表1に示す。また、比較吸水性樹脂(4)の物性を表2に示す。
[Comparative Example 4]
In Example 13, a comparative water absorbent resin (4) was obtained in the same manner except that the length A from the screw terminal to the tip of the opening was set to 100 mm. Table 1 shows the atomization conditions and the state in the extruder at this time. In addition, Table 2 shows the physical properties of the comparative water absorbent resin (4).

上記のように、本発明にかかる細粒化方法を用いた実施例1〜13では、特定の逆戻り防止部材の存在なしに含水ゲルが供給側へ逆戻りすることを防止する機構を備えたスクリュー式押出機を用いて粉砕処理を行っているため、上記スクリュー式押出機内で滞留を発生することなく効率的な処理を行うことができるとともに、押出機内で必要最低限以上の機械的外力が加えられることなく、乾燥が容易な紐状含水ゲルが得られたことが確認された。
特に、実施例2および3のように、本発明にかかる細粒化方法では、上記スクリュー式押出機内の充填率に関わらず、含水ゲルを良好に細粒化することが出来ることが確認された。
また、実施例4および5のように、スクリューシャフト12の回転数に関わらず、良好な細粒化が可能であることが確認された。
さらに、実施例6のように、多孔板孔径によらず良好な細粒化が可能であることも確認された。
As described above, in Examples 1 to 13 using the atomization method according to the present invention, a screw type equipped with a mechanism for preventing the water-containing gel from returning to the supply side without the presence of a specific anti-reverse member. Since the pulverization process is performed using an extruder, efficient processing can be performed without causing stagnation in the screw-type extruder, and mechanical external force exceeding the minimum necessary is applied in the extruder. Thus, it was confirmed that a string-like hydrous gel that was easy to dry was obtained.
In particular, as in Examples 2 and 3, it was confirmed that the pulverization method according to the present invention can finely hydrate the water-containing gel regardless of the filling rate in the screw type extruder. .
In addition, as in Examples 4 and 5, it was confirmed that good atomization was possible regardless of the rotational speed of the screw shaft 12.
Furthermore, as in Example 6, it was also confirmed that favorable fine graining was possible regardless of the hole diameter of the perforated plate.

加えて、実施例7〜13のように、上記スクリュー式押出機スクリュー末端部〜供給口先端までの長さをAとし、供給口先端からスクリュー先端までの長さをBとした場合、下記式(1)、
C=(B/A)×100 (1)
で定義される値Cが100%〜500%の範囲内であれば、含水ゲルを良好に細粒化可能であることが確認された。
さらに、上記Cの値が100<C<300である実施例1〜6、8、11〜14で得られた吸水性樹脂(1)〜(6)、(8)、(11)〜(14)は、可溶分や劣化可溶分が少なく、非常に良好な物性を示す高品質のものであることが確認された。
一方、上記Cの値が300≦C≦500である実施例7、9では、吸水性樹脂(1)〜(6)、(8)、(11)〜(14)に比べて若干の品質低下が見られるものの、良好な物性を示すことが確認された。
In addition, as in Examples 7 to 13, when the length from the screw-type extruder screw end to the feed port tip is A and the length from the feed port tip to the screw tip is B, the following formula (1),
C = (B / A) × 100 (1)
When the value C defined by is in the range of 100% to 500%, it was confirmed that the hydrogel can be finely divided.
Furthermore, the water-absorbing resins (1) to (6), (8), (11) to (14) obtained in Examples 1 to 6, 8, and 11 to 14 in which the value of C is 100 <C <300. ) Was confirmed to be of a high quality having very good physical properties with little soluble and deteriorated soluble components.
On the other hand, in Examples 7 and 9 in which the value of C is 300 ≦ C ≦ 500, the quality is slightly decreased as compared with the water absorbent resins (1) to (6), (8), and (11) to (14). However, it was confirmed that good physical properties were exhibited.

これに対して、上記Cの値がC>500である比較例2では、上記スクリュー式押出機内で滞留および逆戻りが発生することはないが、押出機内で必要最低限以上の機械的外力が加えられることから得られた紐状含水ゲル中には水可溶分が多くなり、吸水性樹脂としての品質が低いものであることが確認された。
また、上記Cの値がC<100となっている比較例1、3、4では、上記スクリュー式押出機内で滞留および逆戻りが発生するとともに、押出機内で必要最低限以上の機械的外力が加えられることから得られた紐状含水ゲル中には水可溶分が多くなり、吸水性樹脂としての品質が低いものであることが確認された。
On the other hand, in Comparative Example 2 where the value of C is C> 500, stagnation and reversion do not occur in the screw extruder, but a mechanical external force exceeding the minimum necessary is applied in the extruder. As a result, it was confirmed that the water-soluble gel contained in the string-like water-containing gel was increased and the quality of the water-absorbent resin was low.
Further, in Comparative Examples 1, 3, and 4 in which the value of C is C <100, stagnation and reversal occur in the screw extruder, and a mechanical external force exceeding the minimum necessary is applied in the extruder. As a result, it was confirmed that the water-soluble gel contained in the string-like water-containing gel was increased and the quality of the water-absorbent resin was low.

Figure 2005272653
Figure 2005272653

Figure 2005272653
Figure 2005272653

本発明にかかる含水ゲルの細粒化方法は、特定の付加機構なしに含水ゲルが供給側へ逆戻りすることを防止する機能を備えたスクリュー式押出機を用いて含水ゲルを粉砕する方法である。
このとき、上記スクリュー式押出機による粉砕処理においては、上記式(1)により定義される値Cが100%〜500%の範囲内であることが好ましい。
上記方法によれば、含水ゲルに対して過剰な機械的外力が加えられることが回避されるとともに均一な粉砕が可能となるので、含水ゲルの物性を低下させることなく容易に細粒化することができる。
The method for refining a water-containing gel according to the present invention is a method of pulverizing a water-containing gel using a screw-type extruder having a function of preventing the water-containing gel from returning to the supply side without a specific additional mechanism. .
At this time, in the pulverization treatment by the screw type extruder, the value C defined by the formula (1) is preferably in the range of 100% to 500%.
According to the above method, excessive mechanical external force is prevented from being applied to the hydrated gel, and uniform pulverization is possible, so that it can be easily finely granulated without deteriorating the properties of the hydrated gel. Can do.

また、押出機内で含水ゲルの滞留が発生しないため、細粒化の効率を大幅に向上させることができる。
さらに、値Cがこの範囲内であれば、押出機内部における含水ゲルの充填率に影響を受けず良好に細粒化を行うことができるため、押出機の運転条件に幅を持たせることが可能となる。
以上の利点から、本発明にかかる含水ゲルの細粒化方法は、吸水性樹脂の製造に対してのみに適応されるものではなく、均一かつ練られないように含水ゲルを粉砕する工程が必要な場合に好適に利用できる。
In addition, since the retention of the hydrogel does not occur in the extruder, the efficiency of fine granulation can be greatly improved.
Furthermore, if the value C is within this range, it can be finely granulated without being affected by the filling rate of the hydrogel inside the extruder, so that the operating conditions of the extruder can be widened. It becomes possible.
Because of the above advantages, the method for finely granulating a water-containing gel according to the present invention is not only applicable to the production of a water-absorbent resin, and requires a step of crushing the water-containing gel so as not to be uniformly and kneaded. It can be suitably used in such cases.

本発明にかかる細粒化方法により得られる細粒化含水ゲルを乾燥して得られた吸水性樹脂は、優れた吸水性能によって、例えば、紙オムツや生理用ナプキン、失禁パッド、創傷保護材、創傷治癒材等の衛生材料(体液吸収物品);ペット用の尿等の吸収物品;建材や土壌用保水材、止水材、パッキング材、ゲル水嚢等の土木建築用資材;ドリップ吸収材や鮮度保持材、保冷材等の食品用物品;油水分離材、結露防止材、凝固材等の各種産業用物品;植物や土壌等の保水材等の農園芸用物品等、種々の用途に好適に用いられるものとなっている。   The water-absorbent resin obtained by drying the finely divided hydrous gel obtained by the fine granulation method according to the present invention has excellent water absorption performance, such as paper diapers, sanitary napkins, incontinence pads, wound protection materials, Hygiene materials such as wound healing materials (body fluid absorbing articles); absorbent articles such as urine for pets; civil engineering and building materials such as building materials, water retention materials for soil, water-stopping materials, packing materials, gel water sacs; Suitable for various applications such as food products such as freshness-retaining materials and cold insulation materials; various industrial products such as oil-water separators, anti-condensation materials, and coagulants; and agricultural and horticultural products such as water-retaining materials such as plants and soil It is to be used.

本発明の実施の一形態にかかる含水ゲルの細粒化方法に用いられるスクリュー式押出機の構成を示す模式図。The schematic diagram which shows the structure of the screw type extruder used for the refinement | miniaturization method of the hydrogel concerning one Embodiment of this invention.

符号の説明Explanation of symbols

11 スクリューケース
12 スクリューシャフト
13 供給口
14 ホッパー
15 押出口
16 多孔板
17 ダイスホルダー
18 ダイス押え
11 Screw case 12 Screw shaft 13 Supply port 14 Hopper 15 Extrusion port 16 Perforated plate 17 Die holder 18 Die presser

Claims (2)

含水ゲルをスクリュー式押出機の供給口から供給し、多孔板を備える押出口から押し出して粉砕処理を行う含水ゲルの細粒化方法において、該スクリュー式押出機のスクリュー末端部から供給口先端までの長さをAとし、供給口先端からスクリュー先端までの長さをBとした場合、下記式(1)
C=(B/A)×100 (1)
で定義される値Cを100%〜500%の範囲内とすることで、含水ゲルが供給側へ逆戻りすることを防止する機能を備えたスクリュー式押出機を用いることを特徴とする含水ゲルの細粒化方法。
In the hydrogel refinement method in which the hydrogel is supplied from the supply port of the screw-type extruder and extruded from the extrusion port provided with the perforated plate to perform the pulverization process, from the screw end of the screw-type extruder to the tip of the supply port When the length of the nozzle is A and the length from the supply port tip to the screw tip is B, the following formula (1)
C = (B / A) × 100 (1)
Of the water-containing gel characterized by using a screw type extruder having a function of preventing the water-containing gel from returning to the supply side by making the value C defined by the above in the range of 100% to 500%. Fine graining method.
該細粒化方法において、該スクリュー式押出機のスクリュー末端部から供給口先端までの長さをAとし、供給口先端からスクリュー先端までの長さをBとした場合、下記式(1)
C=(B/A)×100 (1)
で定義される値Cを100%〜500%の範囲内とすることで、含水ゲルが供給側へ逆戻りすることを防止する機能を備えた含水ゲルのスクリュー式押出機細粒化装置。
In the fine granulation method, when the length from the screw end of the screw type extruder to the tip of the supply port is A and the length from the tip of the supply port to the screw tip is B, the following formula (1)
C = (B / A) × 100 (1)
A screw-type extruder for refining a water-containing gel having a function of preventing the water-containing gel from returning to the supply side by setting the value C defined by the above to be in the range of 100% to 500%.
JP2004088411A 2004-03-25 2004-03-25 Granulating process of hydrogel and granulating device Pending JP2005272653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088411A JP2005272653A (en) 2004-03-25 2004-03-25 Granulating process of hydrogel and granulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004088411A JP2005272653A (en) 2004-03-25 2004-03-25 Granulating process of hydrogel and granulating device

Publications (1)

Publication Number Publication Date
JP2005272653A true JP2005272653A (en) 2005-10-06

Family

ID=35172665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088411A Pending JP2005272653A (en) 2004-03-25 2004-03-25 Granulating process of hydrogel and granulating device

Country Status (1)

Country Link
JP (1) JP2005272653A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137936A (en) * 2005-11-15 2007-06-07 Fuji Seisakusho:Kk Method for granulating hydrogel
JP2016506981A (en) * 2013-01-29 2016-03-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing water-absorbing polymer particles having high permeability of swollen gel bed, fast swelling speed and high centrifugal retention capacity
WO2018114702A1 (en) 2016-12-21 2018-06-28 Basf Se Single-shaft extruder and use of a single-shaft extruder, and method for altering morphology of a superabsorbent polymer, specifically an sap polymer gel, using a single-shaft extruder
WO2018114703A1 (en) 2016-12-21 2018-06-28 Basf Se Single-shaft extruder and use of a single-shaft extruder, and method for altering morphology of a superabsorbent polymer gel using a single-shaft extruder
KR20210112446A (en) * 2020-03-04 2021-09-15 부산대학교 산학협력단 Tissue-attached biodegradable microgels and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087842A (en) * 1996-09-10 1998-04-07 Mitsubishi Chem Corp Method for grinding adherent water-containing gel-like polymer
JP2004002562A (en) * 2002-05-31 2004-01-08 Nippon Shokubai Co Ltd Cracking method for hydrous gel of water-soluble (meth)acrylic acid polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087842A (en) * 1996-09-10 1998-04-07 Mitsubishi Chem Corp Method for grinding adherent water-containing gel-like polymer
JP2004002562A (en) * 2002-05-31 2004-01-08 Nippon Shokubai Co Ltd Cracking method for hydrous gel of water-soluble (meth)acrylic acid polymer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137936A (en) * 2005-11-15 2007-06-07 Fuji Seisakusho:Kk Method for granulating hydrogel
JP2016506981A (en) * 2013-01-29 2016-03-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing water-absorbing polymer particles having high permeability of swollen gel bed, fast swelling speed and high centrifugal retention capacity
WO2018114702A1 (en) 2016-12-21 2018-06-28 Basf Se Single-shaft extruder and use of a single-shaft extruder, and method for altering morphology of a superabsorbent polymer, specifically an sap polymer gel, using a single-shaft extruder
WO2018114703A1 (en) 2016-12-21 2018-06-28 Basf Se Single-shaft extruder and use of a single-shaft extruder, and method for altering morphology of a superabsorbent polymer gel using a single-shaft extruder
US11458665B2 (en) 2016-12-21 2022-10-04 Basf Se Single-shaft extruder and use of a single-shaft extruder, and method for altering morphology of a superabsorbent polymer gel using a single-shaft extruder
US11560456B2 (en) 2016-12-21 2023-01-24 Basf Se Single-shaft extruder and use of a single-shaft extruder, and method for altering morphology of a superabsorbent polymer, specifically an SAP polymer gel, using a single-shaft extruder
KR20210112446A (en) * 2020-03-04 2021-09-15 부산대학교 산학협력단 Tissue-attached biodegradable microgels and preparation method thereof
KR102386655B1 (en) 2020-03-04 2022-04-15 부산대학교 산학협력단 Tissue-attached biodegradable microgels and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3415036B2 (en) Method for granulating hydrogel crosslinked polymer
JP4640923B2 (en) Method for producing particulate water-absorbing resin composition
JP5064032B2 (en) Method for producing water-absorbent resin granulated product and water-absorbent resin granulated product
EP0885917B1 (en) Process for producing a water-absorbent resin granule containing composition
EP1690887B1 (en) Water absorbent resin and method for production thereof
EP2272898B1 (en) Water-absorbent polymer particles and production process therefor
US9796820B2 (en) Method for producing water absorbent resin
JP4150252B2 (en) Method for producing water absorbent resin
EP2185631B1 (en) Binding method of water absorbent resin
JP4132592B2 (en) Water absorbent resin and method for producing the same
KR102143772B1 (en) Method for manufacturing polyacrylic acid (polyacrylate)-based absorbent, and absorbent
EP2289982A1 (en) Production method for water-absorbing resin composition
JP5044657B2 (en) Super absorbent manufacturing method
WO2020067311A1 (en) Method for producing water-absorbing resin and water-absorbing resin
JP2005272653A (en) Granulating process of hydrogel and granulating device
JP4087520B2 (en) Method for producing water absorbent resin
JP2005081204A (en) Method for manufacturing water absorbing resin composition
JP3795210B2 (en) Method for producing water absorbent resin
JP7253618B2 (en) Method for producing water-absorbing agent and polyacrylic acid (salt)-based water-absorbing resin
JP2016069418A (en) Method for producing poly(meth)acrylic acid (salt)-based water-absorbing resin
JP4198266B2 (en) Method for producing water absorbent resin
JP4097754B2 (en) Method for producing water absorbent resin
JP4198265B2 (en) Method for producing water absorbent resin
JP3439234B2 (en) Hydrophilic resin and method for producing the same
JPH10101735A (en) Water absorbent and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100728