JP2005268323A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP2005268323A
JP2005268323A JP2004074974A JP2004074974A JP2005268323A JP 2005268323 A JP2005268323 A JP 2005268323A JP 2004074974 A JP2004074974 A JP 2004074974A JP 2004074974 A JP2004074974 A JP 2004074974A JP 2005268323 A JP2005268323 A JP 2005268323A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting device
semiconductor light
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004074974A
Other languages
Japanese (ja)
Other versions
JP4020092B2 (en
Inventor
Hirohisa Saito
裕久 齊藤
Yoshiyuki Hirose
義幸 廣瀬
Shinsuke Fujiwara
伸介 藤原
Yoichi Nagai
陽一 永井
Hiroyuki Kitabayashi
弘之 北林
Ayako Ikeda
亜矢子 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004074974A priority Critical patent/JP4020092B2/en
Publication of JP2005268323A publication Critical patent/JP2005268323A/en
Application granted granted Critical
Publication of JP4020092B2 publication Critical patent/JP4020092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light emitting device capable of suppressing change in hue of light with an observation angle. <P>SOLUTION: This semiconductor light emitting device 1 has an LED 5 which emits 1st light L<SB>1</SB>; and a fluorescent plate 7 which has a light incidence surface 71 receiving the 1st light L<SB>1</SB>and a light projection surface 72, converts part of the 1st light L<SB>1</SB>into 2nd light having a longer wavelength than the 1st light, and emits the 2nd light and 1st light L<SB>1</SB>from the light projection surface 72. The light incidence surface 71 and light emission surface 72 of the fluorescent plate 7 have unevenness. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体発光装置に関するものである。   The present invention relates to a semiconductor light emitting device.

近年、青色発光ダイオード(LED)や紫外LEDといった短波長のLEDと、これらのLEDからの光によって蛍光を発する蛍光体とを用いた白色LEDが盛んに開発され、実用化されている。図8は、白色LEDの例を示す断面図である。図8に示す白色LED100は、窒化物半導体を含んでおり青色光を発する発光素子101と、発光素子101を窪み102a内に収容するケース102と、窪み102aを覆い、発光素子101からの青色光LBの一部を黄色の蛍光に変換する板状の蛍光体103とを備えている。そして、発光素子101からの青色光LBと蛍光体103において発生した黄色光とが合成された白色光LWが、蛍光体103から出射される。 In recent years, white LEDs using short-wavelength LEDs such as blue light-emitting diodes (LEDs) and ultraviolet LEDs and phosphors that emit fluorescence by light from these LEDs have been actively developed and put into practical use. FIG. 8 is a cross-sectional view showing an example of a white LED. A white LED 100 shown in FIG. 8 includes a light emitting element 101 that contains a nitride semiconductor and emits blue light, a case 102 that houses the light emitting element 101 in the recess 102a, and covers the recess 102a, and the blue light from the light emitting element 101 part of L B and a plate-like phosphor 103 for converting the fluorescent yellow. Then, the yellow light generated in the blue light L B and the phosphor 103 from the light emitting element 101 is synthesized white light L W is emitted from the phosphor 103.

また、図8に示したもの以外にも、例えば蛍光体を含む樹脂で発光素子を覆った構成が、特許文献1及び2に開示されている。また、発光素子上に蛍光体を塗布した構成が、特許文献3及び4に開示されている。また、スパッタ法を用いて発光素子上に蛍光体膜を形成した構成が、特許文献5に開示されている。
特開平07−99345号公報 特開平10−93146号公報 特開平11−31845号公報 特開平11−46019号公報 特開平11−46015号公報
In addition to the structure shown in FIG. 8, for example, Patent Documents 1 and 2 disclose a configuration in which a light emitting element is covered with a resin containing a phosphor. Moreover, the structure which apply | coated the fluorescent substance on the light emitting element is disclosed by patent document 3 and 4. FIG. Further, Patent Document 5 discloses a configuration in which a phosphor film is formed on a light emitting element by using a sputtering method.
Japanese Patent Application Laid-Open No. 07-99345 Japanese Patent Laid-Open No. 10-93146 JP-A-11-31845 Japanese Patent Laid-Open No. 11-46019 Japanese Patent Laid-Open No. 11-46015

上記各特許文献に開示された白色LED、または図8に示した白色LEDでは、以下の問題点を生じることを本発明者らは見出した。ここで、図9(a)は、これらの白色LEDからの白色光に含まれる青色光及び黄色光の、出射中心軸方向を基準とする観察角度に応じた光強度の変化を示すグラフである。なお、図9(a)においては、白色LEDからの出射光の中心軸方向を観察角度0度としている。また、図9(b)は、これらの白色LEDの観察角度による色合いの違いを示す図である。   The present inventors have found that the white LED disclosed in each of the above patent documents or the white LED shown in FIG. 8 causes the following problems. Here, FIG. 9A is a graph showing the change in light intensity according to the observation angle of the blue light and the yellow light contained in the white light from these white LEDs with reference to the emission central axis direction. . In FIG. 9A, the central axis direction of the light emitted from the white LED is set to an observation angle of 0 degree. Moreover, FIG.9 (b) is a figure which shows the difference in the hue by the observation angle of these white LED.

図9(a)に示すように、発光素子から出射されて蛍光体を透過した青色光(図中のグラフB2)の強度は、比較的小さい観察角度のときに大きくなり、観察角度が大きくなるにつれて急激に減少する。これは、発光素子からの青色光のうち、発光素子の光取出し面から該光取出し面に対してほぼ垂直な方向に出射される青色光の割合が高く、光取出し面に対して斜めに出射される青色光の割合が低いことに起因する。他方、蛍光体において発生する黄色光は、蛍光体内において様々な方向へ向けて発光する。これにより、蛍光体から出射される黄色光の強度は、観察角度が大きくなるにつれてなだらかに減少する。したがって、図9(b)に示すように、観察角度が小さいとき(図中X)には白色光に含まれる青色光成分が多くなり、青っぽい白色に見えてしまう。また、観察角度が大きいとき(図中Y)には白色光に含まれる黄色光成分が多くなり、黄色っぽい白色に見えてしまう。 As shown in FIG. 9A, the intensity of the blue light emitted from the light emitting element and transmitted through the phosphor (graph B 2 in the figure) increases at a relatively small observation angle, and the observation angle is large. It decreases rapidly as it becomes. This is because the ratio of blue light emitted from the light extraction surface of the light emitting element to the light extraction surface in a direction substantially perpendicular to the light extraction surface is high, and is emitted obliquely with respect to the light extraction surface. This is due to the low proportion of blue light emitted. On the other hand, yellow light generated in the phosphor emits light in various directions in the phosphor. As a result, the intensity of yellow light emitted from the phosphor gradually decreases as the observation angle increases. Therefore, as shown in FIG. 9B, when the observation angle is small (X in the figure), the blue light component contained in the white light is increased, and the image looks bluish white. Further, when the observation angle is large (Y in the figure), the yellow light component included in the white light increases, and the image looks yellowish white.

このように、従来の白色LEDにおいては、観察角度によって白色光の色合いが異なるという問題があった。本発明は、このような問題点を鑑みてなされたものであり、観察角度による光の色合いの変化を抑えることができる半導体発光装置を提供することを目的とする。   As described above, the conventional white LED has a problem that the hue of white light varies depending on the observation angle. The present invention has been made in view of such problems, and an object of the present invention is to provide a semiconductor light-emitting device capable of suppressing a change in light color depending on an observation angle.

上記した課題を解決するために、本発明による半導体発光装置は、第1の波長範囲の波長成分を含む第1の光を発光し、該第1の光を取り出す光取出し面を有する半導体発光素子と、第1の光を受ける光入射面、及び光出射面を有し、第1の光の一部を第1の波長範囲よりも長波長である第2の波長範囲の波長成分を含む第2の光に変換し、第1及び第2の光を光出射面から出射する蛍光部とを備え、蛍光部の光入射面及び光出射面のうち少なくとも一方の面が、凹凸形状を有することを特徴とする。   In order to solve the above-described problem, a semiconductor light emitting device according to the present invention emits first light including a wavelength component in a first wavelength range and has a light extraction surface for extracting the first light. And a light incident surface that receives the first light, and a light exit surface, and a part of the first light includes a wavelength component in a second wavelength range that is longer than the first wavelength range. A fluorescent portion that converts the light into two light and emits the first and second light from the light emitting surface, and at least one of the light incident surface and the light emitting surface of the fluorescent portion has an uneven shape. It is characterized by.

上記した半導体発光装置では、蛍光部の光入射面及び光出射面のうち少なくとも一方の面が凹凸形状を有している。これにより、半導体発光素子から出射された第1の光が該凹凸形状によって屈折するので、第1の光が蛍光部から拡散して出射されることとなる。従って、発光素子の光取出し面からほぼ垂直な方向に出射された第1の光が蛍光部を透過する際に拡散するので、比較的小さな観察角度における第1の光の強度の割合を従来の白色LEDより小さく抑えるとともに、比較的大きな観察角度における第1の光の強度の割合を従来の白色LEDより大きくすることができる。よって、この半導体発光装置によれば、第1の光の強度分布を第2の光の強度分布に近づけることができるので、第1の光と第2の光とを合成した光の、観察角度による色合いの変化を低減することができる。   In the semiconductor light emitting device described above, at least one of the light incident surface and the light emitting surface of the fluorescent part has an uneven shape. Thereby, since the 1st light radiate | emitted from the semiconductor light-emitting element is refracted by this uneven | corrugated shape, 1st light will be spread | diffused and radiate | emitted from a fluorescence part. Therefore, since the first light emitted in a direction substantially perpendicular to the light extraction surface of the light emitting element diffuses when passing through the fluorescent portion, the ratio of the intensity of the first light at a relatively small observation angle is set to the conventional value. While suppressing it smaller than white LED, the ratio of the intensity | strength of the 1st light in a comparatively big observation angle can be made larger than conventional white LED. Therefore, according to this semiconductor light emitting device, the intensity distribution of the first light can be brought close to the intensity distribution of the second light, and therefore the observation angle of the light obtained by combining the first light and the second light It is possible to reduce the change in hue due to.

また、半導体発光装置は、蛍光部の凹凸形状における凸状部の高さまたは凹状部の深さが、40nm以上10μm以下であることを特徴としてもよい。これによって、半導体発光素子から出射された第1の光を蛍光部において効果的に拡散させることができる。   In addition, the semiconductor light emitting device may be characterized in that the height of the convex portion or the depth of the concave portion in the concavo-convex shape of the fluorescent portion is 40 nm or more and 10 μm or less. Thereby, the 1st light radiate | emitted from the semiconductor light-emitting element can be diffused effectively in a fluorescence part.

また、半導体発光装置は、蛍光部の光入射面の面積が、半導体発光素子の光取出し面の面積よりも大きいことを特徴としてもよい。これによって、半導体発光素子の光取出し面から斜め方向に出射された第1の光を蛍光部に好適に入射させることができるので、半導体発光素子において発生した第1の光を効率よく利用できる。   The semiconductor light emitting device may be characterized in that the area of the light incident surface of the fluorescent part is larger than the area of the light extraction surface of the semiconductor light emitting element. Accordingly, the first light emitted in the oblique direction from the light extraction surface of the semiconductor light emitting element can be preferably incident on the fluorescent part, so that the first light generated in the semiconductor light emitting element can be efficiently used.

また、半導体発光装置は、蛍光部の凹凸形状が、複数の柱形状を含むことを特徴としてもよい。蛍光部の光入射面における凹凸形状が複数の柱形状を含むことによって、半導体発光素子から出射された第1の光の蛍光部への入射効率を高めることができる。また、蛍光部の光出射面における凹凸形状が複数の柱形状を含むことによって、蛍光部を透過した第1の光及び蛍光部において発生した第2の光の取り出し効率を高めることができる。従って、この半導体発光装置によれば、半導体発光装置の発光効率を高めることができる。   The semiconductor light emitting device may be characterized in that the uneven shape of the fluorescent part includes a plurality of columnar shapes. When the uneven shape on the light incident surface of the fluorescent part includes a plurality of columnar shapes, the incident efficiency of the first light emitted from the semiconductor light emitting element to the fluorescent part can be increased. Moreover, the uneven | corrugated shape in the light-projection surface of a fluorescence part can improve the taking-out efficiency of the 1st light which permeate | transmitted the fluorescence part, and the 2nd light generate | occur | produced in the fluorescence part by including several pillar shape. Therefore, according to this semiconductor light emitting device, the light emission efficiency of the semiconductor light emitting device can be increased.

また、半導体発光装置は、複数の柱形状の高さが5μm以下であることが好ましい。   In the semiconductor light emitting device, the height of the plurality of columnar shapes is preferably 5 μm or less.

また、半導体発光装置は、蛍光部の光入射面及び光出射面のうち少なくとも一方の面における、光取出し面の投影を含む領域の凹凸形状の平均傾斜角が、当該面の他の領域の凹凸形状の平均傾斜角よりも大きいことを特徴としてもよい。また、半導体発光装置は、蛍光部の光入射面及び光出射面のうち少なくとも一方の面における、光取出し面の投影を含む領域の凹凸形状の表面に、該凹凸形状よりも微細な凹凸形状をさらに有することを特徴としてもよい。これらのうち少なくとも一方の構成によって、半導体発光素子の光取出し面からほぼ垂直方向に出射される第1の光を、斜め方向に出射される第1の光と比較してより効果的に拡散させることができるので、比較的小さな観察角度における第1の光の強度の割合をさらに小さく抑えるとともに、比較的大きな観察角度における第1の光の強度の割合をさらに大きくすることができる。   Further, in the semiconductor light emitting device, the average inclination angle of the concavo-convex shape of the region including the projection of the light extraction surface on at least one of the light incident surface and the light output surface of the fluorescent portion is the concavo-convex of the other region of the surface. It may be characterized by being larger than the average inclination angle of the shape. In addition, the semiconductor light emitting device has a concavo-convex shape finer than the concavo-convex shape on the surface of the concavo-convex shape in the region including the projection of the light extraction surface on at least one of the light incident surface and the light output surface of the fluorescent part. Furthermore, it may be characterized by having. With at least one of these configurations, the first light emitted from the light extraction surface of the semiconductor light emitting element in the substantially vertical direction is more effectively diffused as compared with the first light emitted in the oblique direction. Therefore, the ratio of the intensity of the first light at a relatively small observation angle can be further reduced, and the ratio of the intensity of the first light at a relatively large observation angle can be further increased.

また、半導体発光装置は、蛍光部の光出射面上に、複数の開口が形成された光反射膜をさらに備えることを特徴としてもよい。また、半導体発光装置は、蛍光部の光出射面上に、複数の光反射膜をさらに備えることを特徴としてもよい。これらのうち少なくとも一方の構成によって、蛍光部を透過しようとする第1の光の一部が、蛍光部の光出射面に設けられた光反射膜において反射し、蛍光部内に戻される。従って、蛍光部内において第2の光に変換される第1の光の割合が高まり、観察角度による第1の光の強度分布に近い強度分布を有する第2の光を好適に発生させることができる。従って、第1の光と第2の光とを合成した光の、観察角度による色合いの変化をさらに抑えることができる。   The semiconductor light emitting device may further include a light reflecting film in which a plurality of openings are formed on the light emitting surface of the fluorescent part. The semiconductor light emitting device may further include a plurality of light reflecting films on the light emitting surface of the fluorescent part. With at least one of these configurations, a part of the first light which is about to pass through the fluorescent part is reflected by the light reflecting film provided on the light emitting surface of the fluorescent part and returned to the fluorescent part. Therefore, the ratio of the first light converted into the second light in the fluorescent part is increased, and the second light having an intensity distribution close to the intensity distribution of the first light depending on the observation angle can be suitably generated. . Accordingly, it is possible to further suppress a change in hue due to the observation angle of the light obtained by combining the first light and the second light.

また、半導体発光装置は、光出射面における光取出し面の投影を含む領域の光反射膜による被覆率が、光出射面における他の領域の光反射膜による被覆率よりも大きいことを特徴としてもよい。これによって、半導体発光素子の光取出し面からほぼ垂直方向に出射される光強度の大きな第1の光に蛍光部内を長く通過させて、この第1の光のうち第2の光に変換される割合を増すことができるので、観察角度による色合いの変化をさらに抑えることができる。   Further, the semiconductor light emitting device is characterized in that a coverage ratio of the region including the projection of the light extraction surface on the light emitting surface is larger than a coverage ratio of the light reflecting surface of the other region on the light emitting surface. Good. As a result, the first light having a high light intensity emitted from the light extraction surface of the semiconductor light emitting element in a substantially vertical direction is allowed to pass through the fluorescent portion for a long time, and is converted into the second light among the first light. Since the ratio can be increased, the change in hue due to the observation angle can be further suppressed.

また、半導体発光装置は、半導体発光素子の光取出し面と対向する蛍光部の部分の平均厚さが、蛍光部の他の部分の平均厚さよりも厚いことを特徴としてもよい。前述したように、半導体発光素子の光取出し面からほぼ垂直方向に出射される第1の光の強度は、斜め方向に出射される第1の光の強度よりも大きい傾向がある。この半導体発光装置では、ほぼ垂直方向に出射される第1の光の蛍光部内の光路が、斜め方向に出射される第1の光の蛍光部内の光路よりも長くなる。従って、この半導体発光装置によれば、半導体発光素子の光取出し面からほぼ垂直方向に出射される光強度の大きな第1の光に蛍光部内を長く通過させて、この第1の光のうち第2の光に変換される割合を増すことができるので、観察角度による色合いの変化をさらに抑えることができる。   The semiconductor light emitting device may be characterized in that the average thickness of the fluorescent part facing the light extraction surface of the semiconductor light emitting element is thicker than the average thickness of the other part of the fluorescent part. As described above, the intensity of the first light emitted in the substantially vertical direction from the light extraction surface of the semiconductor light emitting element tends to be larger than the intensity of the first light emitted in the oblique direction. In this semiconductor light emitting device, the optical path in the fluorescent part of the first light emitted in the substantially vertical direction is longer than the optical path in the fluorescent part of the first light emitted in the oblique direction. Therefore, according to this semiconductor light emitting device, the first light having a high light intensity emitted from the light extraction surface of the semiconductor light emitting element in a substantially vertical direction is allowed to pass through the fluorescent portion for a long time. Since the rate of conversion into the light of 2 can be increased, the change in hue due to the observation angle can be further suppressed.

また、半導体発光装置は、半導体発光素子を載置する載置面と、載置面に対して斜めに形成され、載置面を囲むように設けられた斜面とを有する容器をさらに備え、蛍光部の端面が光入射面に対して斜めに形成されており、容器の斜面が蛍光部の端面を支持していることを特徴としてもよい。これによって、蛍光部から容器へ熱を伝達する面の面積を広くすることができ、蛍光部における放熱効率を高めることができる。   The semiconductor light emitting device further includes a container having a mounting surface on which the semiconductor light emitting element is mounted, and an inclined surface that is formed obliquely with respect to the mounting surface and is provided so as to surround the mounting surface. The end surface of the part may be formed obliquely with respect to the light incident surface, and the inclined surface of the container may support the end surface of the fluorescent part. Thereby, the area of the surface for transferring heat from the fluorescent part to the container can be increased, and the heat radiation efficiency in the fluorescent part can be increased.

本発明による半導体発光装置によれば、観察角度による光の色合いの変化を抑えることができる。   According to the semiconductor light emitting device of the present invention, it is possible to suppress a change in light shade due to an observation angle.

以下、添付図面を参照しながら本発明による半導体発光装置の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。   Hereinafter, embodiments of a semiconductor light emitting device according to the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

(実施の形態)
図1は、本発明による半導体発光装置の実施形態の構成を示す側面断面図である。図1を参照すると、本実施形態の半導体発光装置1は、ケース3と、LED5と、蛍光板7と、リード端子11とを備えている。
(Embodiment)
FIG. 1 is a side sectional view showing a configuration of an embodiment of a semiconductor light emitting device according to the present invention. Referring to FIG. 1, the semiconductor light emitting device 1 of this embodiment includes a case 3, an LED 5, a fluorescent plate 7, and a lead terminal 11.

ケース3は、LED5を収容するための容器である。ケース3は、LED5を載置する載置面3aと、載置面3aに対して斜めに形成され、載置面3aを囲むように設けられた斜面3bとを有している。ケース3は、例えば金属などの導電性を有する材料を含んでおり、後述するLED5のカソード電極と半導体発光装置1の外部配線とを電気的に接続する役割を果たす。また、載置面3a及び斜面3bのうち少なくとも一方の面には、LED5からの光L1を好適に反射するように、例えば銀めっきなどによって光反射膜が形成されていることが好ましい。 Case 3 is a container for housing LED 5. The case 3 has a placement surface 3a on which the LED 5 is placed, and a slope 3b that is formed obliquely with respect to the placement surface 3a and is provided so as to surround the placement surface 3a. The case 3 includes a conductive material such as metal, for example, and serves to electrically connect a cathode electrode of the LED 5 described later and an external wiring of the semiconductor light emitting device 1. Further, at least one surface of the mounting surface 3a and the inclined surface 3b, so as to suitably reflect the light L 1 from the LED 5, preferably has a light reflecting film is formed by, for example, silver plating.

LED5は、本実施形態における半導体発光素子である。LED5は、AlInGa1−x−yN(1≧x≧0,1≧y≧0)といった窒化物半導体からなる発光層を有しており、波長370nm〜480nmの範囲内に含まれる第1の波長範囲の波長成分を含む第1の光L1を発光する。第1の光L1は、LED5の光取出し面5aから取り出される。第1の光L1の全光量のうち多くの部分は、光取出し面5aからほぼ垂直方向に出射されて蛍光板7に入射する。また、第1の光L1のうち、光取出し面5aまたはLED5の側面から斜め方向に出射される部分は、ケース3の斜面3bにおいて反射した後、蛍光板7に入射する。 The LED 5 is a semiconductor light emitting element in the present embodiment. The LED 5 has a light emitting layer made of a nitride semiconductor such as Al x In y Ga 1-xy N (1 ≧ x ≧ 0, 1 ≧ y ≧ 0), and is included in a wavelength range of 370 nm to 480 nm. The first light L 1 including the wavelength component in the first wavelength range is emitted. The first light L 1 is extracted from the light extraction surface 5 a of the LED 5. A large part of the total light amount of the first light L 1 is emitted from the light extraction surface 5 a in a substantially vertical direction and enters the fluorescent plate 7. In addition, a portion of the first light L 1 that is emitted obliquely from the light extraction surface 5 a or the side surface of the LED 5 is reflected by the inclined surface 3 b of the case 3 and then enters the fluorescent plate 7.

LED5は、光取出し面5aとは反対側の面5bとケース3の載置面3aとが対向するように載置面3a上に載置されている。LED5の面5bには図示しない第1の電極が設けられており、この第1の電極と載置面3aとは、例えばAuSnはんだといった図示しない導電性接着剤によって接合されている。また、光取出し面5aには図示しない第2の電極が設けられており、この第2の電極は、ボンディングワイヤ15を介してリード端子11と電気的に接続されている。リード端子11は、例えば金属といった導電性材料からなり、ケース3を貫通するように設けられている。リード端子11とケース3とは、絶縁性部材13によって互いに絶縁されている。リード端子11は、半導体発光装置1の外部配線と電気的に接続され、LED5を駆動するための電圧をケース3との間に印加される。   The LED 5 is mounted on the mounting surface 3a so that the surface 5b opposite to the light extraction surface 5a and the mounting surface 3a of the case 3 face each other. A first electrode (not shown) is provided on the surface 5b of the LED 5, and the first electrode and the mounting surface 3a are joined together by a conductive adhesive (not shown) such as AuSn solder. In addition, a second electrode (not shown) is provided on the light extraction surface 5 a, and this second electrode is electrically connected to the lead terminal 11 via the bonding wire 15. The lead terminal 11 is made of a conductive material such as metal and is provided so as to penetrate the case 3. The lead terminal 11 and the case 3 are insulated from each other by an insulating member 13. The lead terminal 11 is electrically connected to the external wiring of the semiconductor light emitting device 1, and a voltage for driving the LED 5 is applied between the case 3 and the lead terminal 11.

蛍光板7は、本実施形態における蛍光部である。蛍光板7は、例えばCu及びIが添加されたZnSSeといった蛍光材料が板状に成形されてなる。蛍光板7は、LED5の光取出し面5aと対向する光入射面71、及び該光入射面71に対してLED5とは反対側に位置する光出射面72を有している。蛍光板7は、LED5からの第1の光L1を光入射面71に受ける。また、蛍光板7は、第1の光L1の一部によって励起され、第1の波長範囲よりも長波長であり波長550nm〜610nmの範囲内に含まれる第2の波長範囲の波長成分を含む、第2の光を発光する。具体的には、この第2の光は、上記第2の波長範囲内にピークを有し、波長450nm〜750nmの範囲内に裾を引くブロードな発光スペクトル成分を含む。蛍光板7は、発生した第2の光と、蛍光板7を励起させた残りの第1の光L1とを含む白色光L3を、光出射面72から出射する。 The fluorescent plate 7 is a fluorescent part in this embodiment. The fluorescent plate 7 is formed of a fluorescent material such as ZnSSe to which Cu and I are added, for example, in a plate shape. The fluorescent plate 7 has a light incident surface 71 that faces the light extraction surface 5 a of the LED 5, and a light emitting surface 72 that is located on the opposite side of the LED 5 with respect to the light incident surface 71. The fluorescent plate 7 receives the first light L 1 from the LED 5 on the light incident surface 71. The fluorescent plate 7 is excited by a part of the first light L 1 and includes a wavelength component in the second wavelength range that is longer than the first wavelength range and is included in the wavelength range of 550 nm to 610 nm. The second light is emitted. Specifically, the second light includes a broad emission spectrum component having a peak in the second wavelength range and a tail in the wavelength range of 450 nm to 750 nm. The fluorescent plate 7 emits white light L 3 including the generated second light and the remaining first light L 1 that excites the fluorescent plate 7 from the light emitting surface 72.

蛍光板7の光入射面71及び光出射面72は、それぞれ凹凸形状を有している。ここで、光入射面71及び光出射面72の凹凸形状とは、LED5からの第1の光L1に対する凹凸形状を指し、該凹凸形状によって第1の光L1が屈折するように形成されたものである。また、光入射面71及び光出射面72の凹凸形状とは、高さ(深さ)が例えば40nm〜10μm程度ある凸部または凹部、或いはその両方を有する平面または曲面が、無秩序もしくは規則的に配置された形状を意味する。ここで、凹凸形状の高さ(深さ)は、上記のように40nm以上10μm以下の範囲内であることが好ましく、これにより、波長約400nm〜800nmの可視光を効果的に屈折させることができる。なお、凹凸形状の表面にさらに微小な凹凸形状が形成されているような場合には、微小な凹凸形状の高さ(深さ)が上記範囲にあることが好ましい。 Each of the light incident surface 71 and the light emitting surface 72 of the fluorescent plate 7 has an uneven shape. Here, the concavo-convex shape of the light incident surface 71 and the light exit surface 72 refers to the concavo-convex shape with respect to the first light L 1 from the LED 5, and is formed so that the first light L 1 is refracted by the concavo-convex shape. It is a thing. Further, the uneven shape of the light incident surface 71 and the light emitting surface 72 means that a flat surface or curved surface having a convex portion or a concave portion having a height (depth) of, for example, about 40 nm to 10 μm, or both, is disordered or regularly. It means the arranged shape. Here, the height (depth) of the concavo-convex shape is preferably in the range of 40 nm or more and 10 μm or less, as described above, and this effectively refracts visible light having a wavelength of about 400 nm to 800 nm. it can. In addition, when a fine uneven | corrugated shape is further formed in the uneven | corrugated shaped surface, it is preferable that the height (depth) of a fine uneven | corrugated shape exists in the said range.

また、蛍光板7の光入射面71の面積は、LED5の光取出し面5aの面積よりも大きく設定されることが好ましい。換言すれば、LED5の光取出し面5aを蛍光板7の光入射面71に投影したときの投影面が光取出し面5aに含まれるような大きさで光入射面71が設けられることが好ましい。なお、ここでいう光入射面71の面積とは、光入射面71の外形寸法によって求まる領域の大きさを指すものとする。   Further, the area of the light incident surface 71 of the fluorescent plate 7 is preferably set larger than the area of the light extraction surface 5a of the LED 5. In other words, the light incident surface 71 is preferably provided in such a size that the projection surface when the light extraction surface 5a of the LED 5 is projected onto the light incident surface 71 of the fluorescent plate 7 is included in the light extraction surface 5a. Here, the area of the light incident surface 71 refers to the size of the region determined by the outer dimensions of the light incident surface 71.

また、蛍光板7の端面81は、光入射面71に対して斜めに形成されている。厳密には、蛍光板7の端面81は、光入射面71の凹凸形状を平滑化したときの面、或いは光入射面71の凹凸形状をならしたときの面に対して斜めに交差するように形成されている。そして、蛍光板7は、端面81とケース3の斜面3bとが対向するようにケース3に嵌め込まれており、端面81が斜面3bに支持されるとともに、端面81と斜面3bとが接着剤17によって互いに固定されている。   Further, the end surface 81 of the fluorescent plate 7 is formed obliquely with respect to the light incident surface 71. Strictly speaking, the end surface 81 of the fluorescent plate 7 is formed so as to cross obliquely with respect to the surface when the uneven shape of the light incident surface 71 is smoothed or the surface when the uneven shape of the light incident surface 71 is smoothed. Has been. The fluorescent plate 7 is fitted into the case 3 so that the end surface 81 and the inclined surface 3b of the case 3 face each other, the end surface 81 is supported by the inclined surface 3b, and the end surface 81 and the inclined surface 3b are bonded by the adhesive 17. They are fixed to each other.

なお、図示しないが、蛍光板7の光入射面71、ケース3の載置面3a及び斜面3b、及びLED5の表面によって囲まれる領域は、第1の光L1を透過する樹脂によって満たされていることが好ましい。これによって、LED5の光取出し面5a内外の屈折率差、及び蛍光板7の光入射面71内外の屈折率差を緩和し、LED5から蛍光板7への第1の光L1の入射効率を高めることができる。また、蛍光板7の光出射面72は、白色光L3を透過する樹脂によって覆われていることが好ましい。これによって、蛍光板7の光出射面72内外の屈折率差を緩和し、白色光L3の出射効率を高めることができる。また、光出射面72を覆う樹脂をレンズ状に成型すれば、白色光L3を集光する集光レンズとしての機能を持たせることもできる。なお、上記樹脂としては、エポキシ樹脂や、シリコーン樹脂などが例示される。 Although not shown, a region surrounded by the light incident surface 71 of the fluorescent plate 7, the mounting surface 3a and the inclined surface 3b of the case 3, and the surface of the LED 5 is filled with a resin that transmits the first light L1. It is preferable. As a result, the refractive index difference inside and outside the light extraction surface 5a of the LED 5 and the refractive index difference inside and outside the light incident surface 71 of the fluorescent plate 7 are alleviated, and the incidence efficiency of the first light L 1 from the LED 5 to the fluorescent plate 7 is increased. Can do. Moreover, it is preferable that the light emission surface 72 of the fluorescent plate 7 is covered with a resin that transmits the white light L 3 . Thereby, the difference in refractive index between the inside and outside of the light emitting surface 72 of the fluorescent plate 7 can be relaxed, and the emission efficiency of the white light L 3 can be increased. Further, if the resin covering the light emitting surface 72 is molded into a lens shape, it can have a function as a condensing lens for condensing the white light L 3 . In addition, as said resin, an epoxy resin, a silicone resin, etc. are illustrated.

上記構成を備える半導体発光装置1は、次のように動作する。すなわち、半導体発光装置1の外部に設けられた配線を介してリード端子11とケース3との間に駆動電圧が印加されると、LED5の光取出し面5aから第1の光L1が出射される。第1の光L1は、その光量のうち多くの部分が光取出し面5aからほぼ垂直方向に出射され、蛍光板7の光入射面71に入射する。また、第1の光L1の他の部分は、光取出し面5aから斜め方向に出射され、ケース3の斜面3bにおいて反射した後、蛍光板7の光入射面71に入射する。第1の光L1は、蛍光板7の光入射面71に入射する際に、光入射面71に形成された凹凸形状によって様々な方向(主に、LED5の光取出し面5aの法線方向に対する角度が広がる方向)に屈折しながら入射する。 The semiconductor light emitting device 1 having the above configuration operates as follows. That is, when a driving voltage is applied between the lead terminal 11 and the case 3 via the wiring provided outside the semiconductor light emitting device 1, the first light L 1 is emitted from the light extraction surface 5 a of the LED 5. The Most of the first light L 1 is emitted from the light extraction surface 5 a in a substantially vertical direction and enters the light incident surface 71 of the fluorescent plate 7. Further, the other part of the first light L 1 is emitted obliquely from the light extraction surface 5 a, is reflected by the inclined surface 3 b of the case 3, and then enters the light incident surface 71 of the fluorescent plate 7. When the first light L 1 is incident on the light incident surface 71 of the fluorescent plate 7, the first light L 1 varies in various directions (mainly with respect to the normal direction of the light extraction surface 5 a of the LED 5) depending on the uneven shape formed on the light incident surface 71. Incident while being refracted in the direction in which the angle widens.

蛍光板7の光入射面71に第1の光L1が入射すると、蛍光板7内において第1の光L1の一部が蛍光材料を励起する。そして、蛍光板7内において第2の光が発生する。他方、蛍光材料を励起することなく蛍光板7を透過した第1の光L1は、蛍光板7の光出射面72から出射する。第1の光L1は、蛍光板7の光出射面72から出射する際に、光出射面72に形成された凹凸形状によって様々な方向(主に、LED5の光取出し面5aの法線方向に対する角度が広がる方向)に屈折しながら出射する。そして、蛍光板7の光出射面72から出射した第2の光と第1の光L1とが合成されて、白色光L3となる。白色光L3は、半導体発光装置1の外部へ取り出される。 When the first light L 1 is incident on the light incident surface 71 of the fluorescent plate 7, a part of the first light L 1 excites the fluorescent material in the fluorescent plate 7. Then, second light is generated in the fluorescent screen 7. On the other hand, the first light L 1 that has passed through the fluorescent plate 7 without exciting the fluorescent material is emitted from the light exit surface 72 of the fluorescent plate 7. When the first light L 1 is emitted from the light emitting surface 72 of the fluorescent plate 7, the first light L 1 is varied in various directions (mainly with respect to the normal direction of the light extraction surface 5 a of the LED 5) depending on the uneven shape formed on the light emitting surface 72. The light is emitted while being refracted in the direction in which the angle widens. Then, the second light and the first light L 1 emitted from the light emitting surface 72 of the fluorescent screen 7 is synthesized, a white light L 3. The white light L 3 is extracted outside the semiconductor light emitting device 1.

以上に述べた本実施形態による半導体発光装置1は、次の効果を有する。すなわち、本実施形態の半導体発光装置1では、蛍光板7の光入射面71及び光出射面72が凹凸形状を有している。これにより、LED5から出射した第1の光L1が該凹凸形状によって屈折するので、第1の光L1が蛍光板7から拡散して出射することとなる。 The semiconductor light emitting device 1 according to the present embodiment described above has the following effects. That is, in the semiconductor light emitting device 1 of the present embodiment, the light incident surface 71 and the light emitting surface 72 of the fluorescent plate 7 have an uneven shape. As a result, the first light L 1 emitted from the LED 5 is refracted by the uneven shape, so that the first light L 1 is diffused and emitted from the fluorescent plate 7.

ここで、図2は、蛍光板7から出射する白色光L3に含まれる第1の光L1(図中のグラフB1)及び第2の光(図中のグラフY1)の、出射中心軸方向を基準とする観察角度に応じた光強度の分布を示すグラフである。このグラフに示すように、本実施形態の半導体発光装置1においては、LED5の光取出し面5aからほぼ垂直な方向に出射された第1の光L1が蛍光板7において拡散することにより、第1の光L1の全光量のうち小さな観察角度における光量割合を従来の白色LED(図9参照)より低下させるとともに、大きな観察角度における光量割合を従来の白色LEDより大きくすることができる。これにより、第1の光L1及び第2の光それぞれの観察角度による強度の分布を近づけることができる。 Here, FIG. 2 shows the emission center of the first light L 1 (graph B 1 in the figure) and the second light (graph Y 1 in the figure) included in the white light L 3 emitted from the fluorescent plate 7. It is a graph which shows distribution of the light intensity according to the observation angle on the basis of an axial direction. As shown in this graph, in the semiconductor light emitting device 1 of the present embodiment, the first light L 1 emitted from the light extraction surface 5 a of the LED 5 in the substantially vertical direction is diffused in the fluorescent plate 7, whereby the first light L 1 is diffused. The light quantity ratio at a small observation angle out of the total light quantity of the light L 1 can be reduced as compared with the conventional white LED (see FIG. 9), and the light quantity ratio at a large observation angle can be made larger than that of the conventional white LED. As a result, the intensity distributions according to the observation angles of the first light L 1 and the second light can be made closer to each other.

従って、本実施形態の半導体発光装置1によれば、第1の光L1と第2の光とが合成されてなる白色光L3の、観察角度による色合いの変化を抑えることができる。 Therefore, according to the semiconductor light emitting device 1 of the present embodiment, it is possible to suppress a change in the hue due to the observation angle of the white light L 3 formed by combining the first light L 1 and the second light.

なお、本実施形態の半導体発光装置1では光入射面71及び光出射面72の双方が凹凸形状を有しているが、光入射面71及び光出射面72のうちいずれか一方のみ凹凸形状を有する構成であっても、上記効果を好適に得ることができる。特に、光入射面71が凹凸形状を有することによって、第1の光L1が光入射面71において全反射されにくくなり、蛍光板7に第1の光L1を効率よく取り込むことができる。また、光出射面72が凹凸形状を有すれば、光出射面72から第1の光L1及び第2の光を効率よく出射することができる。 In the semiconductor light emitting device 1 of the present embodiment, both the light incident surface 71 and the light emitting surface 72 have an uneven shape, but only one of the light incident surface 71 and the light emitting surface 72 has an uneven shape. Even if it is the structure which has, the said effect can be acquired suitably. In particular, since the light incident surface 71 has a concavo-convex shape, the first light L 1 is hardly totally reflected on the light incident surface 71, and the first light L 1 can be efficiently taken into the fluorescent plate 7. Further, if the light emitting surface 72 has an uneven shape, the first light L 1 and the second light can be efficiently emitted from the light emitting surface 72.

また、本実施形態のように、蛍光板7の光入射面71の面積は、LED5の光取出し面5aの面積よりも大きいことが好ましい。これによって、LED5の光取出し面5aから出射された第1の光L1のうち斜め方向に出射された第1の光L1を蛍光板7に好適に入射させることができるので、LED5において発生した第1の光L1を効率よく利用することができる。 Further, as in this embodiment, the area of the light incident surface 71 of the fluorescent plate 7 is preferably larger than the area of the light extraction surface 5a of the LED 5. Since this makes it possible to suitably enters the first light L 1 emitted in an oblique direction of the first light L 1 emitted from LED5 of the light extraction surface 5a to the fluorescent screen 7, it occurred at LED5 The first light L 1 can be used efficiently.

また、本実施形態のように、蛍光板7の端面81が光入射面71に対して斜めに形成されており、端面81がケース3の斜面3bに支持されていることが好ましい。蛍光板7においては、第1の光L1の一部を第2の光に変換する際に、ストークスシフトに起因するエネルギーロスによって熱が生じる。蛍光板7の端面81がケース3の斜面3bに支持されることによって、蛍光板7において発生した熱を蛍光板7からケース3へ好適に伝達することができる。また、蛍光板7の端面81を斜めに形成し、この端面81を斜面3bが支持することによって、蛍光板7からの熱をケース3へ伝達する面の面積を広く確保することができ、蛍光板7の放熱効率を高めることができる。また、例えば蛍光板の光入射面とケース上面とを接着する場合と比較して、蛍光板に接着のための接着代が必要ないので、蛍光板7の外形寸法を小さくすることが可能となる。また、蛍光板7の端面81は、光を遮蔽する部材(例えば、本実施形態のケース3)によって覆われていることが好ましい。これにより、蛍光板7の端面81から光が漏れることを防ぎ、観察角度による白色光L3の色合いの変化をさらに低減することができる。 Further, as in the present embodiment, it is preferable that the end surface 81 of the fluorescent plate 7 is formed obliquely with respect to the light incident surface 71 and the end surface 81 is supported by the inclined surface 3 b of the case 3. In the fluorescent plate 7, when a part of the first light L1 is converted into the second light, heat is generated due to energy loss caused by the Stokes shift. The end surface 81 of the fluorescent plate 7 is supported by the inclined surface 3 b of the case 3, so that heat generated in the fluorescent plate 7 can be suitably transmitted from the fluorescent plate 7 to the case 3. Further, the end surface 81 of the fluorescent plate 7 is formed obliquely, and the end surface 81 is supported by the inclined surface 3b, so that a large area of the surface for transmitting heat from the fluorescent plate 7 to the case 3 can be secured. Heat dissipation efficiency can be increased. Further, for example, as compared with the case where the light incident surface of the fluorescent plate and the upper surface of the case are bonded, there is no need for a bonding allowance for bonding to the fluorescent plate, so that the external dimensions of the fluorescent plate 7 can be reduced. Moreover, it is preferable that the end surface 81 of the fluorescent plate 7 is covered with a light shielding member (for example, the case 3 of the present embodiment). Thus, it is possible to prevent the light from leaking from the end face 81 of the fluorescent screen 7, further reducing the change in the hue of the white light L 3 by viewing angle.

なお、半導体発光装置1では、LED5の光取出し面5aもまた凹凸形状を有することが好ましい。これによって、LED5からの第1の光L1の光取出し効率を高めることができるとともに、第1の光L1が拡散して蛍光板7に入射するので、観察角度による第1の光L1の強度変化をさらに抑えることができる。また、蛍光板7の光入射面71、ケース3の載置面3a及び斜面3b、及びLED5の表面によって囲まれる領域に満たされる樹脂、及び蛍光板7の光出射面72を覆う樹脂は、例えばガラスビーズやSiO2,TiO2といった光拡散材を含むことが好ましい。これによって、白色光L3がより一層拡散するので、観察角度による色合いの変化をさらに抑えることができる。 In the semiconductor light emitting device 1, it is preferable that the light extraction surface 5a of the LED 5 also has an uneven shape. Thus, it is possible to increase the first light extraction efficiency of the light L 1 from the LED 5, since the first light L 1 is incident on the fluorescent plate 7 diffuses the observation angle of the first light L 1 The intensity change can be further suppressed. Further, a resin that fills a region surrounded by the light incident surface 71 of the fluorescent plate 7, the mounting surface 3a and the inclined surface 3b of the case 3, and the surface of the LED 5, and a resin that covers the light emitting surface 72 of the fluorescent plate 7 are, for example, glass beads. and SiO 2, preferably contains TiO 2 such as an optical diffusing material. As a result, the white light L 3 is further diffused, so that a change in hue due to the observation angle can be further suppressed.

また、本実施形態のLED5のように窒化物半導体からなる発光層を有する半導体発光素子では、第1の光L1が青色光だけでなくその周辺波長(例えば紫外光、近紫外光)の光を含む場合がある。このような紫外光や近紫外光といった光は、樹脂を劣化させ易い。これに対し、本実施形態の半導体発光装置1では、LED5からの第1の光L1が蛍光板7を通過する際に、第1の光L1に含まれる紫外光や近紫外光が蛍光板7に吸収されるので、蛍光板7を覆うように設けられる樹脂の劣化を抑えることができる。 Further, in the semiconductor light emitting device having the light emitting layer made of a nitride semiconductor like the LED 5 of the present embodiment, the first light L 1 is not only blue light but also light of the peripheral wavelength (for example, ultraviolet light, near ultraviolet light). May be included. Such light such as ultraviolet light and near ultraviolet light tends to deteriorate the resin. On the other hand, in the semiconductor light emitting device 1 of the present embodiment, when the first light L 1 from the LED 5 passes through the fluorescent plate 7, ultraviolet light or near ultraviolet light contained in the first light L 1 is applied to the fluorescent plate 7. Since it is absorbed, deterioration of the resin provided so as to cover the fluorescent screen 7 can be suppressed.

(第1の変形例)
次に、上記実施形態の半導体発光装置1の変形例について説明する。図3(a)は、第1の変形例による半導体発光装置1aの構成を示す側面断面図である。また、図3(b)は、蛍光板7aの光入射面73の拡大図である。本変形例の半導体発光装置1aと上記実施形態の半導体発光装置1との相違点は、蛍光板7aの光入射面73の表面形状である。なお、半導体発光装置1aの他の構成については、上記実施形態と同様であるので詳細な説明を省略する。
(First modification)
Next, a modification of the semiconductor light emitting device 1 of the above embodiment will be described. FIG. 3A is a side sectional view showing the configuration of the semiconductor light emitting device 1a according to the first modification. FIG. 3B is an enlarged view of the light incident surface 73 of the fluorescent screen 7a. The difference between the semiconductor light emitting device 1a of the present modification and the semiconductor light emitting device 1 of the above embodiment is the surface shape of the light incident surface 73 of the fluorescent plate 7a. Since the other configuration of the semiconductor light emitting device 1a is the same as that of the above embodiment, a detailed description thereof is omitted.

図3(a)及び図3(b)を参照すると、本変形例の蛍光板7aの光入射面73における凹凸形状は、複数の微小な円柱19が光入射面73の面方向に並んで配置された、いわゆるフォトニック結晶構造を呈している。円柱19同士のピッチpは例えば2μmであり、円柱19の径dは例えば1μmであり、円柱19の高さhは例えば1μmである。なお、LED5からの第1の光L1を蛍光板7aに効率よく入射させるために、円柱19の高さhは40nm以上5μm以下であることが好ましい。 Referring to FIGS. 3A and 3B, the uneven shape on the light incident surface 73 of the fluorescent plate 7a of the present modification is such that a plurality of minute cylinders 19 are arranged in the plane direction of the light incident surface 73. It also exhibits a so-called photonic crystal structure. The pitch p between the cylinders 19 is, for example, 2 μm, the diameter d of the cylinders 19 is, for example, 1 μm, and the height h of the cylinders 19 is, for example, 1 μm. In order to be incident efficiently first light L 1 from LED5 the fluorescent plate 7a, the height h of the cylinder 19 is preferably 40nm or more 5μm or less.

本変形例による半導体発光装置1aは、次の効果を有する。すなわち、この半導体発光装置1aによれば、蛍光板7aの光入射面73における凹凸形状が複数の円柱19を含むフォトニック結晶構造を呈することによって、LED5から出射した第1の光L1が蛍光板7aへ拡散しながら入射するとともに、第1の光L1の蛍光板7aへの入射効率を高めることができる。 The semiconductor light emitting device 1a according to this modification has the following effects. That is, according to the semiconductor light emitting device 1a, by irregularities in the light incident surface 73 of the fluorescent screen 7a exhibits a photonic crystal structure comprising a plurality of cylindrical 19, the first light L 1 is fluorescent plate 7a emitted from LED5 In addition, the incident efficiency of the first light L 1 on the fluorescent plate 7 a can be increased.

本変形例では、光入射面73の凹凸形状が複数の円柱19を含んでいるが、光出射面72の凹凸形状が複数の円柱19を含んでも良い。これによって、蛍光板7aを透過した第1の光L1及び蛍光板7aにおいて発生した第2の光の光出射面72からの取り出し効率を高めることができるので、半導体発光装置1aの発光効率を高めることができる。また、光入射面73(光出射面72)の凹凸形状は、円柱19のかわりに、四角柱や六角柱など、円柱以外の柱形状を含んでもよい。 In this modification, the uneven shape of the light incident surface 73 includes a plurality of cylinders 19, but the uneven shape of the light exit surface 72 may include a plurality of cylinders 19. As a result, it is possible to increase the extraction efficiency of the first light L 1 transmitted through the fluorescent plate 7a and the second light generated in the fluorescent plate 7a from the light emitting surface 72, so that the light emission efficiency of the semiconductor light emitting device 1a is increased. Can do. Further, the uneven shape of the light incident surface 73 (light emitting surface 72) may include a column shape other than a cylinder such as a square column or a hexagonal column instead of the column 19.

(第2の変形例)
図4(a)は、第2の変形例による半導体発光装置1bの構成を示す側面断面図である。本変形例の半導体発光装置1bと上記実施形態の半導体発光装置1との相違点は、蛍光板7bの光出射面74の形状である。なお、半導体発光装置1bの他の構成については、上記実施形態と同様である。
(Second modification)
FIG. 4A is a side sectional view showing the configuration of the semiconductor light emitting device 1b according to the second modification. The difference between the semiconductor light emitting device 1b of the present modification and the semiconductor light emitting device 1 of the above embodiment is the shape of the light emission surface 74 of the fluorescent plate 7b. The other configuration of the semiconductor light emitting device 1b is the same as that in the above embodiment.

図4(a)を参照すると、本変形例の蛍光板7bの光出射面74においては、LED5の光取出し面5aの投影を含む領域74aの凹凸形状の平均傾斜角が、他の領域の凹凸形状の平均傾斜角よりも大きくなるように、凹凸形状が形成されている。換言すれば、領域74aにおける凹凸形状が、他の領域における凹凸形状よりも急峻な側面でもって形成されている。平均傾斜角が大きい凹凸形状としては、例えば隣り合う凸部の頂点同士の間隔(或いは、隣り合う凹部の底同士の間隔)が他の領域よりも狭く形成されている形状や、隣り合う凸部の高さ(或いは、隣り合う凹部の深さ)が、他の領域よりも高く(深く)形成されている形状などが例示される。   Referring to FIG. 4A, in the light emitting surface 74 of the fluorescent plate 7b of this modification, the average inclination angle of the uneven shape of the region 74a including the projection of the light extraction surface 5a of the LED 5 is the uneven shape of the other region. The concavo-convex shape is formed so as to be larger than the average inclination angle. In other words, the concavo-convex shape in the region 74a is formed with a steeper side surface than the concavo-convex shape in other regions. As an uneven shape having a large average inclination angle, for example, the shape in which the interval between the apexes of adjacent convex portions (or the interval between the bottoms of adjacent concave portions) is formed narrower than other regions, or adjacent convex portions The shape etc. in which the height (or the depth of an adjacent recessed part) is formed higher (deeper) than another area | region are illustrated.

ここで、LED5の光取出し面5aの投影を含む領域74aとは、光取出し面5aの法線によって該光取出し面5aを光出射面74に投影したときの、投影面に相当する領域を含む領域を指すものとする。   Here, the region 74a including the projection of the light extraction surface 5a of the LED 5 includes a region corresponding to the projection surface when the light extraction surface 5a is projected onto the light emission surface 74 by the normal line of the light extraction surface 5a. It shall refer to an area.

本変形例による半導体発光装置1bは、次の効果を有する。すなわち、この半導体発光装置1bでは、LED5の光取出し面5aから出射される第1の光L1のうち、ほぼ垂直方向に出射される第1の光L1が傾斜角の大きな凹凸によって拡散し、斜め方向に出射される第1の光L1が傾斜角の小さな凹凸によって拡散するので、垂直方向に出射する第1の光L1が、斜め方向に出射する第1の光L1よりも広角度に拡散する。従って、この半導体発光装置1bによれば、小さな観察角度における第1の光L1の強度割合を効果的に抑えつつ、大きな観察角度における第1の光L1の強度割合を増すことができるので、第1の光L1及び第2の光それぞれの観察角度による強度分布をさらに近づけ、白色光L3の観察角度による色合いの変化をより効果的に抑えることができる。 The semiconductor light emitting device 1b according to this modification has the following effects. That is, in the semiconductor light-emitting device 1b, of the first light L 1 emitted from LED5 of the light extraction surface 5a, the first light L 1 is diffused by the large unevenness of the tilt angle to be emitted in a substantially vertical direction Since the first light L 1 emitted in the oblique direction is diffused by the unevenness having a small inclination angle, the first light L 1 emitted in the vertical direction is more than the first light L 1 emitted in the oblique direction. Diffuses over a wide angle. Therefore, according to the semiconductor light-emitting device 1b, while suppressing a first intensity ratio of the light L 1 in a small viewing angle effectively, it is possible to increase the first intensity ratio of the light L 1 in a large viewing angle The intensity distributions according to the observation angles of the first light L 1 and the second light can be made closer to each other, and the change in hue due to the observation angle of the white light L 3 can be more effectively suppressed.

なお、本変形例では、光出射面74における凹凸の平均傾斜角を領域によって異ならせているが、光入射面における凹凸の平均傾斜角を領域によって異ならせてもよい。具体的には、光入射面においてLED5の光取出し面5aの投影を含む領域の凹凸の平均傾斜角が、他の領域の凹凸の平均傾斜角よりも大きくなるように、光入射面の凹凸形状を形成してもよい。これによって、蛍光板に入射する第1の光L1のうち、光取出し面5aからほぼ垂直方向に出射された第1の光L1が傾斜角の比較的大きな凹凸によってより広角度に拡散しながら蛍光板に入射するので、光出射面74における凹凸の平均傾斜角を領域によって異ならせた場合と同様の効果を得ることができる。 In this modification, the average inclination angle of the unevenness on the light exit surface 74 varies depending on the region, but the average inclination angle of the unevenness on the light incident surface may vary depending on the region. Specifically, the uneven shape of the light incident surface is such that the average inclination angle of the unevenness in the region including the projection of the light extraction surface 5a of the LED 5 on the light incident surface is larger than the average inclination angle of the unevenness in the other regions. May be formed. Accordingly, the first of the light L 1 incident on the fluorescent plate, while the first light L 1 emitted substantially vertically from the light extraction surface 5a is diffused more wide angle by a relatively large irregularities of the tilt angle Since the light enters the fluorescent plate, the same effect as that obtained when the average inclination angle of the unevenness on the light exit surface 74 varies depending on the region can be obtained.

また、本変形例では、光出射面74(または光入射面)における凹凸の平均傾斜角を領域によって異ならせることにより第1の光L1をより広角度に拡散させているが、図4(b)に示すように、光出射面75(または光入射面)における光取出し面5aの投影を含む領域の凹凸75aの表面に、該凹凸75aよりも微細な凹凸75bをさらに有することによっても、第1の光L1をより広角度に拡散させることができる。このような凹凸形状を蛍光板の光入射面及び光出射面の少なくとも一方が有することによって、本変形例と同様の効果を得ることができる。 Further, in this modification, the first light L 1 is diffused at a wider angle by varying the average inclination angle of the unevenness on the light exit surface 74 (or light incident surface) depending on the region. As shown in b), the surface of the unevenness 75a in the region including the projection of the light extraction surface 5a on the light exit surface 75 (or the light incident surface) further has unevenness 75b finer than the unevenness 75a. The first light L 1 can be diffused at a wider angle. By having such a concavo-convex shape on at least one of the light incident surface and the light emitting surface of the fluorescent plate, the same effect as in this modification can be obtained.

(第3の変形例)
図5(a)は、第3の変形例による半導体発光装置1cの構成を示す側面断面図である。本変形例の半導体発光装置1cが上記実施形態の半導体発光装置1と相違する点は、蛍光板7の光出射面72上に光反射膜21が設けられている点である。なお、半導体発光装置1cの他の構成については、上記実施形態と同様である。
(Third Modification)
FIG. 5A is a side sectional view showing a configuration of a semiconductor light emitting device 1c according to a third modification. The semiconductor light emitting device 1c of this modification is different from the semiconductor light emitting device 1 of the above embodiment in that the light reflecting film 21 is provided on the light emitting surface 72 of the fluorescent plate 7. The other configuration of the semiconductor light emitting device 1c is the same as that in the above embodiment.

本変形例において、光出射面72上の光反射膜21は、光出射面72の一部を覆うように形成される。ここで、図5(b)は、蛍光板7の光出射面72上に設けられた光反射膜21の形状の一例として、光反射膜22を示す拡大平面図である。図5(b)を参照すると、光反射膜22は、複数の開口22aを有しており、該開口22aにおいて蛍光板7の光出射面72が露出している。また、図5(c)は、光反射膜21の形状の他の一例として、光反射膜23を示す拡大平面図である。図5(c)を参照すると、蛍光板7の光出射面72上に複数の光反射膜23が互いに隔離して設けられている。   In this modification, the light reflecting film 21 on the light emitting surface 72 is formed so as to cover a part of the light emitting surface 72. Here, FIG. 5B is an enlarged plan view showing the light reflecting film 22 as an example of the shape of the light reflecting film 21 provided on the light emitting surface 72 of the fluorescent plate 7. Referring to FIG. 5B, the light reflecting film 22 has a plurality of openings 22a, and the light emission surface 72 of the fluorescent plate 7 is exposed in the openings 22a. FIG. 5C is an enlarged plan view showing a light reflecting film 23 as another example of the shape of the light reflecting film 21. Referring to FIG. 5C, a plurality of light reflecting films 23 are provided on the light emitting surface 72 of the fluorescent plate 7 so as to be separated from each other.

また、光反射膜21〜23の光出射面72に対する被覆率は、光出射面72における光取出し面5aの投影を含む領域において比較的大きく、他の領域において比較的小さいことが好ましい。   Further, the coverage of the light reflecting films 21 to 23 with respect to the light emitting surface 72 is preferably relatively large in the region including the projection of the light extraction surface 5a on the light emitting surface 72 and relatively small in the other regions.

また、光反射膜21〜23は、例えばAgといった金属を、レジストパターンを介して蒸着等により光出射面72に成膜し、レジストパターンを除去することによって、好適に形成される。   The light reflecting films 21 to 23 are preferably formed by forming a metal such as Ag on the light emitting surface 72 by vapor deposition or the like through a resist pattern and removing the resist pattern.

本変形例による半導体発光装置1cは、次の効果を有する。すなわち、半導体発光装置1cでは、蛍光板7を透過しようとする第1の光L1の一部が、蛍光板7の光出射面72に設けられた光反射膜21(または光反射膜22,23)において反射し、蛍光板7内に戻される。従って、蛍光板7内において第2の光に変換される第1の光L1の割合が高まり、観察角度による第1の光L1の強度分布に近い強度分布を有する第2の光を好適に発生させることができる。従って、第1の光L1と第2の光とを合成した白色光L3の、観察角度による色合いの変化をさらに抑えることができる。 The semiconductor light emitting device 1c according to this modification has the following effects. That is, in the semiconductor light emitting device 1 c, a part of the first light L 1 that is about to pass through the fluorescent plate 7 is the light reflecting film 21 (or the light reflecting films 22 and 23) provided on the light emitting surface 72 of the fluorescent plate 7. And is returned into the fluorescent screen 7. Therefore, the ratio of the first light L 1 converted into the second light in the fluorescent plate 7 is increased, and the second light having an intensity distribution close to the intensity distribution of the first light L 1 according to the observation angle is preferably used. Can be generated. Accordingly, it is possible to further suppress the change in the hue due to the observation angle of the white light L 3 obtained by combining the first light L 1 and the second light.

また、本変形例のように、光出射面72の光取出し面5aの投影を含む領域における光反射膜21(または光反射膜22,23)による被覆率が、光出射面72の他の領域における被覆率よりも大きいことが好ましい。これによって、LED5の光取出し面5aからほぼ垂直方向に出射される光強度の大きな第1の光L1に蛍光板7内を長く通過させて、この第1の光L1のうち第2の光に変換される割合を増すことができるので、観察角度による色合いの変化をさらに抑えることができる。 Further, as in the present modification, the coverage by the light reflecting film 21 (or the light reflecting films 22, 23) in the region including the projection of the light extraction surface 5 a of the light emitting surface 72 is the other region of the light emitting surface 72. It is preferable that the coverage is greater than Thus, longer passed through the fluorescent plate in 7 large first light L 1 of the light intensity emitted substantially perpendicularly from LED5 of the light extraction surface 5a, the first second light of the light L 1 Therefore, the change in hue due to the observation angle can be further suppressed.

また、図5(b)に示したように、光反射膜22が複数の開口22aを有するような構成では、光反射膜22が一体に繋がっているため、蛍光板7において発生した熱を光反射膜22を介して効率よく放出することができる。この際、光反射膜22は、例えば金属などの熱伝導率が高い材料からなることが好ましい。   Further, as shown in FIG. 5B, in the configuration in which the light reflecting film 22 has a plurality of openings 22a, the light reflecting film 22 is integrally connected, so that heat generated in the fluorescent plate 7 is reflected by light. It can be efficiently released through the membrane 22. At this time, the light reflecting film 22 is preferably made of a material having high thermal conductivity such as metal.

(第4の変形例)
図6は、第4の変形例による半導体発光装置1dの構成を示す側面断面図である。本変形例の半導体発光装置1dが上記実施形態の半導体発光装置1と相違する点は、蛍光板7dの厚さが部位によって異なる点である。なお、半導体発光装置1dの他の構成については、上記実施形態と同様である。
(Fourth modification)
FIG. 6 is a side sectional view showing a configuration of a semiconductor light emitting device 1d according to a fourth modification. The semiconductor light emitting device 1d of the present modification is different from the semiconductor light emitting device 1 of the above embodiment in that the thickness of the fluorescent plate 7d differs depending on the part. Other configurations of the semiconductor light emitting device 1d are the same as those in the above embodiment.

図6を参照すると、本変形例の蛍光板7dは、次の特徴を有する。すなわち、LED5の光取出し面5aと対向する蛍光板7dの部分76の平均厚さが、蛍光板7dの他の部分の平均厚さよりも厚く形成されている。ここで、蛍光板7dの平均厚さとは、蛍光板7dの厚み方向における、光入射面71の凹凸形状の表面と光出射面72の凹凸形状の表面との距離の当該部分における平均値を指すものとする。   Referring to FIG. 6, the fluorescent plate 7d of the present modification has the following characteristics. That is, the average thickness of the portion 76 of the fluorescent plate 7d facing the light extraction surface 5a of the LED 5 is formed to be thicker than the average thickness of other portions of the fluorescent plate 7d. Here, the average thickness of the fluorescent plate 7d refers to the average value of the distance between the uneven surface of the light incident surface 71 and the uneven surface of the light exit surface 72 in the thickness direction of the fluorescent plate 7d. To do.

本変形例による半導体発光装置1dの効果について説明する。前述したように、LED5において発生した第1の光L1の全光量のうち多くの部分は、光取出し面5aからほぼ垂直方向に出射されて蛍光板7に入射する。本変形例による半導体発光装置1dでは、光取出し面5aと対向する蛍光板7dの部分76の平均厚さが他の部分の平均厚さよりも厚いことによって、光取出し面5aから垂直方向に出射される第1の光L1の蛍光板7d内における光路が、斜め方向に出射される第1の光L1の蛍光板7d内における光路よりも長くなる。従って、本変形例の半導体発光装置1dによれば、LED5の光取出し面5aからほぼ垂直方向に出射される光強度の大きな第1の光L1に蛍光板7内を長く通過させて、この第1の光L1の第2の光への変換効率を高めることができるので、観察角度による色合いの変化をさらに抑えることができる。 The effect of the semiconductor light emitting device 1d according to this modification will be described. As described above, a large part of the total amount of the first light L 1 generated in the LED 5 is emitted from the light extraction surface 5 a in a substantially vertical direction and enters the fluorescent plate 7. In the semiconductor light emitting device 1d according to the present modification, the average thickness of the portion 76 of the fluorescent plate 7d facing the light extraction surface 5a is larger than the average thickness of the other portions, so that the light is emitted from the light extraction surface 5a in the vertical direction. optical path in the first in fluorescent plate 7d of the optical L 1 is longer than the optical path of the first in fluorescent plate 7d of the light L 1 emitted in an oblique direction. Therefore, according to the semiconductor light emitting device 1d of the present modification, the first light L 1 having a large light intensity emitted from the light extraction surface 5a of the LED 5 in the substantially vertical direction is allowed to pass through the fluorescent plate 7 for a long time. Since the conversion efficiency of the first light L 1 into the second light can be increased, a change in hue due to the observation angle can be further suppressed.

また、本変形例では、蛍光板7を凸レンズ形状とすることも可能である。これによって、白色光L3を集光するためのレンズ機能と蛍光機能とを蛍光板7が兼備できるので、部品点数を削減することができる。 In this modification, the fluorescent plate 7 can also be formed in a convex lens shape. As a result, the fluorescent plate 7 can have both a lens function for condensing the white light L 3 and a fluorescent function, so that the number of parts can be reduced.

以上に述べた実施形態及び各変形例においては、LED5を複数備える構成でもよい。すなわち、ケース3の載置面3a上に複数のLED5を実装することにより、より高輝度の半導体発光装置を実現できる。図7(a)及び図7(b)は、それぞれ上述した第2及び第4の変形例による半導体発光装置が複数のLED5を備える場合の構成を示す断面図である。図7(a)に示すように、第2の変形例に係る半導体発光装置がLED5を複数備える場合には、複数のLED5それぞれの光取出し面5aの投影を含む光出射面78の複数の領域78aそれぞれにおける凹凸形状の平均傾斜角が、領域78以外の領域における凹凸形状の平均傾斜角よりも大きくなるように、蛍光板7eを形成するとよい。   In the embodiment and each modification described above, a configuration including a plurality of LEDs 5 may be used. That is, by mounting a plurality of LEDs 5 on the mounting surface 3a of the case 3, a semiconductor light emitting device with higher brightness can be realized. FIG. 7A and FIG. 7B are cross-sectional views showing configurations when the semiconductor light emitting devices according to the second and fourth modifications described above each include a plurality of LEDs 5. As illustrated in FIG. 7A, when the semiconductor light emitting device according to the second modification includes a plurality of LEDs 5, a plurality of regions of the light emission surface 78 including projections of the light extraction surfaces 5 a of the plurality of LEDs 5. The fluorescent plate 7e may be formed so that the average inclination angle of the uneven shape in each of the 78a is larger than the average inclination angle of the uneven shape in the region other than the region 78.

また、図7(b)に示すように、第4の変形例に係る半導体発光装置がLED5を複数備える場合には、複数のLED5それぞれの光取出し面5aに対向する蛍光板7fの複数の部分77それぞれにおける平均厚さが、他の部分における平均厚さよりも厚くなるように、蛍光板7fを形成するとよい。また、第3の変形例に係る半導体発光装置が複数のLED5を備える場合には、複数のLED5それぞれの光取出し面5aの投影を含む光出射面の複数の領域それぞれにおける光反射膜による被覆率が、他の領域における被覆率よりも大きくなるように、光反射膜を形成することが好ましい。   As shown in FIG. 7B, when the semiconductor light emitting device according to the fourth modification includes a plurality of LEDs 5, a plurality of portions 77 of the fluorescent plate 7f facing the light extraction surface 5a of each of the plurality of LEDs 5. The fluorescent plate 7f may be formed so that the average thickness in each portion is larger than the average thickness in other portions. When the semiconductor light emitting device according to the third modification includes a plurality of LEDs 5, the coverage by the light reflecting film in each of the plurality of regions of the light emitting surface including the projection of the light extraction surface 5a of each of the plurality of LEDs 5 However, it is preferable to form the light reflecting film so as to be larger than the coverage in other regions.

次に、上記実施形態及び各変形例に対応する実施例について説明する。   Next, examples corresponding to the embodiment and each modification will be described.

(第1の実施例)
本実施例では、上記実施形態に係る半導体発光装置1を作成した。まず、LED5として、n型導電性GaN基板に発光層を設けた青色LEDを作成した。すなわち、n型導電性GaN基板の表面を洗浄し、TMG(トリメチルガリウム)ガス、TMI(トリメチルインジウム)ガス、窒素ガス及びドーパントガスをキャリアガスとともに基板表面上に流し、MOCVD法によりGaN系化合物半導体からなる発光層(n型クラッド層、活性層、及びp型クラッド層を含む)を基板表面上に形成した。そして、p型クラッド層上にアノード電極を、n型導電性GaN基板の裏面上にカソード電極を、それぞれEB(Electron Beam)蒸着法により形成した。その後、発光層が形成された基板に対してスクライビング及びブレーキングを行い、2mm角に分割した。
(First embodiment)
In this example, the semiconductor light emitting device 1 according to the above embodiment was created. First, as LED 5, a blue LED in which a light emitting layer was provided on an n-type conductive GaN substrate was prepared. That is, the surface of the n-type conductive GaN substrate is cleaned, TMG (trimethyl gallium) gas, TMI (trimethyl indium) gas, nitrogen gas and dopant gas are flowed on the substrate surface together with the carrier gas, and the GaN compound semiconductor is formed by MOCVD. A light emitting layer (including an n-type cladding layer, an active layer, and a p-type cladding layer) was formed on the substrate surface. Then, an anode electrode was formed on the p-type cladding layer, and a cathode electrode was formed on the back surface of the n-type conductive GaN substrate, respectively, by EB (Electron Beam) evaporation. Thereafter, scribing and braking were performed on the substrate on which the light emitting layer was formed, and the substrate was divided into 2 mm squares.

続いて、ケース3を形成した。ケース3の材料に直径4mmの載置面3a及び斜面3bを形成し、載置面3a及び斜面3bに可視光域で反射係数の高いAgめっきを施した。そして、ケース3に貫通孔を形成し、リード端子11を挿入後、絶縁性部材13により固定した。   Subsequently, Case 3 was formed. A mounting surface 3a and a slope 3b having a diameter of 4 mm were formed on the material of the case 3, and the mounting surface 3a and the slope 3b were subjected to Ag plating having a high reflection coefficient in the visible light region. Then, a through hole was formed in the case 3 and the lead terminal 11 was inserted, and then fixed by the insulating member 13.

続いて、形成したLED5をアノード電極と載置面3aとが対向するように載置面3a上の略中心に載置した。このとき、アノード電極と載置面3aとを、AuSnはんだによって接合した。   Subsequently, the formed LED 5 was placed at substantially the center on the placement surface 3a so that the anode electrode and the placement surface 3a face each other. At this time, the anode electrode and the mounting surface 3a were joined by AuSn solder.

続いて、LED5のカソード電極とケース3のリード端子11とをボンディングワイヤ15により接続した。このとき、LED5に比較的大きな電流を流して第1の光L1の強度を高められるように、ボンディングワイヤ15として直径75μmの金ワイヤを用いた。 Subsequently, the cathode electrode of the LED 5 and the lead terminal 11 of the case 3 were connected by a bonding wire 15. At this time, a gold wire having a diameter of 75 μm was used as the bonding wire 15 so that a relatively large current can be passed through the LED 5 to increase the intensity of the first light L 1 .

続いて、蛍光板7を形成した。すなわち、ハロゲン輸送法によりIが拡散された塊状のZnSSe結晶を形成し、この塊状ZnSSe結晶をZn,Cu雰囲気中で加熱することにより、ZnSSe内部にCuを拡散させた。続いて、この塊状ZnSSe結晶を粗い研磨盤を用いて厚さ0.5mmまで研磨することにより光入射面71及び光出射面72を形成した後、ケース3に収まる形状に切り出した。こうして形成された蛍光板7の光入射面71及び光出射面72の表面粗さは、最大高さRmax=1μmであった。   Subsequently, the fluorescent plate 7 was formed. That is, a bulk ZnSSe crystal in which I was diffused by a halogen transport method was formed, and this bulk ZnSSe crystal was heated in a Zn, Cu atmosphere to diffuse Cu into the ZnSSe. Subsequently, the lump ZnSSe crystal was polished to a thickness of 0.5 mm using a rough polishing disk to form the light incident surface 71 and the light emitting surface 72, and then cut into a shape that fits in the case 3. The surface roughness of the light incident surface 71 and the light emitting surface 72 of the fluorescent plate 7 formed in this way was the maximum height Rmax = 1 μm.

続いて、ケース3の載置面3a及び斜面3bによって形成される窪みに透明樹脂を注入した後、蛍光板7の端面81に導電性フィラーを添加した樹脂接着剤を塗布し、端面81とケース3の斜面3bとを接着固定した。そして、キャスティング法により蛍光板7上にエポキシ樹脂をレンズ状に成型した。こうして、半導体発光装置1を完成させた。   Subsequently, after injecting a transparent resin into a recess formed by the mounting surface 3 a and the inclined surface 3 b of the case 3, a resin adhesive added with a conductive filler is applied to the end surface 81 of the fluorescent plate 7, and the end surface 81 and the case 3 are applied. The slope 3b was bonded and fixed. Then, an epoxy resin was molded into a lens shape on the fluorescent plate 7 by a casting method. Thus, the semiconductor light emitting device 1 was completed.

この半導体発光装置1に駆動電圧を印加したところ、LED5において発生した第1の光L1と蛍光板7において発生した第2の光とが互いに補色し合い、白色光L3を観察することができた。さらに、観察角度を変えて観察したところ、白色光L3は観察角度によらず略一様の色度(白色)を呈していた。 When a driving voltage is applied to the semiconductor light emitting device 1, the first light L 1 generated in the LED 5 and the second light generated in the fluorescent screen 7 complement each other, and the white light L 3 can be observed. It was. Furthermore, when the observation angle was changed, the white light L 3 exhibited substantially uniform chromaticity (white) regardless of the observation angle.

(第2の実施例)
本実施例では、上記第1の変形例に係る半導体発光装置1aを作成した。まず、実施例1と同様にして、LED5及びケース3を作成し、LED5をケース3に実装した。
(Second embodiment)
In this example, the semiconductor light emitting device 1a according to the first modified example was produced. First, in the same manner as in Example 1, the LED 5 and the case 3 were prepared, and the LED 5 was mounted on the case 3.

続いて、蛍光板7aを形成した。すなわち、ハロゲン輸送法によりIが拡散された塊状のZnSSe結晶を形成し、ZnSSe内部にCuを拡散させた。続いて、この塊状ZnSSe結晶を研磨盤を用いて厚さ0.5mmまで鏡面研磨することにより光入射面及び光出射面を形成した。そして、光入射面及び光出射面にレジストを塗布し、露光及びRIE(リアクティブ・イオン・エッチング)を施すことにより、複数の円柱形状からなるフォトニック結晶構造を形成した。このとき、円柱の直径を1μm、高さを1μm、円柱同士のピッチを2μmとした。そして、このZnSSe結晶をケース3に収まる形状に切り出した。   Subsequently, a fluorescent plate 7a was formed. That is, a bulk ZnSSe crystal in which I was diffused by a halogen transport method was formed, and Cu was diffused inside ZnSSe. Subsequently, the lump ZnSSe crystal was mirror-polished to a thickness of 0.5 mm using a polishing disk to form a light incident surface and a light output surface. Then, a resist was applied to the light incident surface and the light emitting surface, and exposure and RIE (reactive ion etching) were performed to form a photonic crystal structure having a plurality of cylindrical shapes. At this time, the diameter of the cylinder was 1 μm, the height was 1 μm, and the pitch between the cylinders was 2 μm. The ZnSSe crystal was cut into a shape that fits in case 3.

続いて、ケース3の載置面3a及び斜面3bによって形成される窪みに透明樹脂を注入した後、蛍光板7aの端面とケース3の斜面3bとを接着固定し、蛍光板7上にエポキシ樹脂をレンズ状に成型した。こうして、半導体発光装置1aを完成させた。   Subsequently, after injecting a transparent resin into the recess formed by the mounting surface 3a and the inclined surface 3b of the case 3, the end surface of the fluorescent plate 7a and the inclined surface 3b of the case 3 are bonded and fixed, and an epoxy resin is placed on the fluorescent plate 7 as a lens. Molded into a shape. Thus, the semiconductor light emitting device 1a was completed.

この半導体発光装置1aに駆動電圧を印加したところ、LED5において発生した第1の光L1と蛍光板7bにおいて発生した第2の光とが互いに補色し合い、白色光L3を観察することができた。さらに、観察角度を変えて観察したところ、白色光L3は観察角度によらず略一様の色度(白色)を呈していた。 When a driving voltage is applied to the semiconductor light emitting device 1a, the first light L 1 generated in the LED 5 and the second light generated in the fluorescent plate 7b complement each other, and the white light L 3 can be observed. It was. Furthermore, when the observation angle was changed, the white light L 3 exhibited substantially uniform chromaticity (white) regardless of the observation angle.

(第3の実施例)
本実施例では、上記第2の変形例に係る半導体発光装置1bを作成した。まず、実施例1と同様にして、LED5及びケース3を作成し、LED5をケース3に実装した。
(Third embodiment)
In this example, the semiconductor light emitting device 1b according to the second modified example was created. First, in the same manner as in Example 1, the LED 5 and the case 3 were prepared, and the LED 5 was mounted on the case 3.

続いて、蛍光板7bを形成した。すなわち、Ce付活YAG粉末(YAlO3:Ce)をプレス成型及び焼結により塊状の蛍光体を作成した。そして、塊状の蛍光体を粗い研磨盤を用いて厚さ0.7mmまで研磨することにより光入射面71及び光出射面74を形成した後、光出射面74の中心付近の表面粗さが比較的粗く、外周付近の表面粗さが比較的細かくなるように光出射面74の外周付近をさらに研磨し、ケース3に収まる形状に切り出した。こうして形成された蛍光板7bの光出射面74の表面粗さは、中心付近で最大高さRmax=約2μm、外周付近で最大高さRmax=約0.5μmであった。 Subsequently, a fluorescent plate 7b was formed. That is, a bulk phosphor was prepared by press molding and sintering Ce-activated YAG powder (YAlO 3 : Ce). Then, after the light emitting surface 71 and the light emitting surface 74 are formed by polishing the massive phosphor to a thickness of 0.7 mm using a rough polishing disk, the surface roughness near the center of the light emitting surface 74 is compared. The outer periphery of the light exit surface 74 was further polished so that the surface roughness near the outer periphery was relatively fine and cut into a shape that fits in the case 3. The surface roughness of the light exit surface 74 of the fluorescent plate 7b formed in this way was a maximum height Rmax = about 2 μm near the center and a maximum height Rmax = about 0.5 μm near the outer periphery.

続いて、ケース3の載置面3a及び斜面3bによって形成される窪みに透明樹脂を注入した後、蛍光板7bの端面に樹脂接着剤を塗布し、端面81とケース3の斜面3bとを接着固定した。このとき、LED5の光取出し面5aと蛍光板7bの光入射面71の中心とが対向するように、蛍光板7をケース3に固定した。そして、キャスティング法により蛍光板7b上にエポキシ樹脂をレンズ状に成型した。こうして、半導体発光装置1bを完成させた。   Subsequently, after injecting a transparent resin into the recess formed by the mounting surface 3a and the inclined surface 3b of the case 3, a resin adhesive is applied to the end surface of the fluorescent screen 7b, and the end surface 81 and the inclined surface 3b of the case 3 are bonded and fixed. did. At this time, the fluorescent plate 7 was fixed to the case 3 so that the light extraction surface 5a of the LED 5 and the center of the light incident surface 71 of the fluorescent plate 7b face each other. Then, an epoxy resin was molded into a lens shape on the fluorescent plate 7b by a casting method. Thus, the semiconductor light emitting device 1b was completed.

この半導体発光装置1bに駆動電圧を印加したところ、LED5において発生した第1の光L1と蛍光板7bにおいて発生した第2の光とが互いに補色し合い、白色光L3を観察することができた。さらに、観察角度を変えて観察したところ、白色光L3は観察角度によらず略一様の色度(白色)を呈しており、また、光強度も観察角度によらず略一定であった。 When a driving voltage is applied to the semiconductor light emitting device 1b, the first light L 1 generated in the LED 5 and the second light generated in the fluorescent plate 7b complement each other, and the white light L 3 can be observed. It was. Furthermore, when the observation angle was changed, the white light L 3 exhibited substantially uniform chromaticity (white) regardless of the observation angle, and the light intensity was substantially constant regardless of the observation angle. .

(第4の実施例)
本実施例では、上記第3の変形例に係る半導体発光装置1cを作成した。まず、実施例1と同様にして、LED5及びケース3を作成し、LED5をケース3に実装した。なお、LED5のカソード電極とリード端子11とを接続する金ワイヤの直径を50μmとした。
(Fourth embodiment)
In this example, a semiconductor light emitting device 1c according to the third modification was produced. First, in the same manner as in Example 1, the LED 5 and the case 3 were prepared, and the LED 5 was mounted on the case 3. In addition, the diameter of the gold wire which connects the cathode electrode of LED5 and the lead terminal 11 was 50 micrometers.

続いて、蛍光板7を形成した。すなわち、ハロゲン輸送法によりIが拡散された塊状のZnSSe結晶を形成し、この塊状ZnSSe結晶をZn,Cu雰囲気中で加熱することにより、ZnSSe内部にCuを拡散させた。続いて、この塊状ZnSSe結晶を粗い研磨盤を用いて厚さ0.4mmまで研磨することにより光入射面71及び光出射面72を形成した後、ケース3に収まる形状に切り出した。こうして形成された蛍光板7の光入射面71及び光出射面72の表面粗さは、最大高さRmax=1.5μmであった。   Subsequently, the fluorescent plate 7 was formed. That is, a bulk ZnSSe crystal in which I was diffused by a halogen transport method was formed, and this bulk ZnSSe crystal was heated in a Zn, Cu atmosphere to diffuse Cu into the ZnSSe. Subsequently, the lump ZnSSe crystal was polished to a thickness of 0.4 mm by using a coarse polishing disk to form the light incident surface 71 and the light emitting surface 72, and then cut into a shape that fits in the case 3. The surface roughness of the light incident surface 71 and the light emitting surface 72 of the fluorescent plate 7 formed in this way was the maximum height Rmax = 1.5 μm.

続いて、蛍光板7の光出射面72上にAgを蒸着することによって、光反射膜21を形成した。このとき、光出射面72の中心付近の光反射膜21による被覆率が比較的大きく、外周付近の光反射膜21による被覆率が比較的小さくなるように、光反射膜21を形成した。そして、ケース3の載置面3a及び斜面3bによって形成される窪みに透明樹脂を注入した後、蛍光板7の端面とケース3の斜面3bとを接着固定し、蛍光板7上にエポキシ樹脂をレンズ状に成型した。なお、このとき、LED5の光取出し面5aと蛍光板7の光入射面71の中心とが対向するように、蛍光板7をケース3に固定した。こうして、半導体発光装置1cを完成させた。   Subsequently, the light reflecting film 21 was formed by vapor-depositing Ag on the light emitting surface 72 of the fluorescent plate 7. At this time, the light reflecting film 21 was formed so that the coverage by the light reflecting film 21 near the center of the light emitting surface 72 was relatively large and the coverage by the light reflecting film 21 near the outer periphery was relatively small. Then, after injecting a transparent resin into the recess formed by the mounting surface 3a and the inclined surface 3b of the case 3, the end surface of the fluorescent plate 7 and the inclined surface 3b of the case 3 are bonded and fixed, and an epoxy resin is formed on the fluorescent plate 7 in a lens shape. Molded into. At this time, the fluorescent plate 7 was fixed to the case 3 so that the light extraction surface 5a of the LED 5 and the center of the light incident surface 71 of the fluorescent plate 7 face each other. Thus, the semiconductor light emitting device 1c was completed.

この半導体発光装置1cに駆動電圧を印加したところ、LED5において発生した第1の光L1と蛍光板7bにおいて発生した第2の光とが互いに補色し合い、白色光L3を観察することができた。さらに、観察角度を変えて観察したところ、白色光L3は観察角度によらず略一様の色度(白色)を呈しており、また、光強度も観察角度によらず略一定であった。 When a driving voltage is applied to the semiconductor light emitting device 1c, the first light L 1 generated in the LED 5 and the second light generated in the fluorescent plate 7b complement each other, and the white light L 3 can be observed. It was. Furthermore, when the observation angle was changed, the white light L 3 exhibited substantially uniform chromaticity (white) regardless of the observation angle, and the light intensity was substantially constant regardless of the observation angle. .

(第5の実施例)
本実施例では、上記第4の変形例に係る半導体発光装置1dを作成した。まず、実施例1と同様にして、LED5及びケース3を作成し、LED5をケース3に実装した。なお、本実施例では、発光層が形成された基板を分割する際に、基板を3mm角に分割した。また、ケース3の載置面3aの直径を5mmとした。また、LED5のカソード電極とリード端子11とを接続する金ワイヤの直径を30μmとした。
(Fifth embodiment)
In this example, the semiconductor light emitting device 1d according to the fourth modification was produced. First, in the same manner as in Example 1, the LED 5 and the case 3 were prepared, and the LED 5 was mounted on the case 3. In this example, when the substrate on which the light emitting layer was formed was divided, the substrate was divided into 3 mm squares. Moreover, the diameter of the mounting surface 3a of the case 3 was 5 mm. Moreover, the diameter of the gold wire which connects the cathode electrode of LED5 and the lead terminal 11 was 30 micrometers.

続いて、蛍光板7dを形成した。すなわち、ZnSSeにCuとIとを混合した粉末状の原料をインプリント技術により焼結成形した。このとき、光入射面71及び光出射面72となる面が粗い凹凸形状を有するように成形した。また、蛍光板7dの中心付近の平均厚さが、外周付近の平均厚さよりも厚くなるように蛍光板7dを成形した。具体的には、蛍光板7dの中心の平均厚さを0.5mmとし、外周の平均厚さを0.3mmとした。   Subsequently, a fluorescent plate 7d was formed. That is, a powdery raw material in which Cu and I were mixed with ZnSSe was sintered by an imprint technique. At this time, the surface to be the light incident surface 71 and the light emitting surface 72 was molded so as to have a rough uneven shape. Further, the fluorescent plate 7d was formed so that the average thickness near the center of the fluorescent plate 7d was larger than the average thickness near the outer periphery. Specifically, the average thickness at the center of the fluorescent plate 7d was 0.5 mm, and the average thickness at the outer periphery was 0.3 mm.

続いて、ケース3の載置面3a及び斜面3bによって形成される窪みに透明樹脂を注入した後、蛍光板7dの端面とケース3の斜面3bとを接着固定し、蛍光板7上にエポキシ樹脂をレンズ状に成型した。なお、このとき、LED5の光取出し面5aと蛍光板7dの光入射面71の中心とが対向するように、蛍光板7dをケース3に固定した。こうして、半導体発光装置1dを完成させた。   Subsequently, after injecting transparent resin into the recess formed by the mounting surface 3a and the inclined surface 3b of the case 3, the end surface of the fluorescent plate 7d and the inclined surface 3b of the case 3 are bonded and fixed, and an epoxy resin is formed on the fluorescent plate 7 with a lens. Molded into a shape. At this time, the fluorescent plate 7d was fixed to the case 3 so that the light extraction surface 5a of the LED 5 and the center of the light incident surface 71 of the fluorescent plate 7d face each other. Thus, the semiconductor light emitting device 1d was completed.

この半導体発光装置1dに駆動電圧を印加したところ、LED5において発生した第1の光L1と蛍光板7bにおいて発生した第2の光とが互いに補色し合い、白色光L3を観察することができた。さらに、観察角度を変えて観察したところ、白色光L3は観察角度によらず略一様の色度(白色)を呈しており、また、光強度も観察角度によらず略一定であった。 When a driving voltage is applied to the semiconductor light emitting device 1d, the first light L 1 generated in the LED 5 and the second light generated in the fluorescent plate 7b complement each other, and the white light L 3 can be observed. It was. Furthermore, when the observation angle was changed, the white light L 3 exhibited substantially uniform chromaticity (white) regardless of the observation angle, and the light intensity was substantially constant regardless of the observation angle. .

(比較例)
ここで、上記各実施例の効果を検証するために、図8に示した構成の白色LEDを作成した。まず、実施例1と同様にして、LED5及びケース3を作成し、LED5をケース3に実装した。
(Comparative example)
Here, in order to verify the effects of the above embodiments, a white LED having the configuration shown in FIG. 8 was created. First, in the same manner as in Example 1, the LED 5 and the case 3 were prepared, and the LED 5 was mounted on the case 3.

続いて、ハロゲン輸送法によりIが拡散された塊状のZnSSe結晶を形成し、ZnSSe内部にCuを拡散させた。続いて、この塊状ZnSSe結晶を研磨盤を用いて鏡面研磨することにより光入射面及び光出射面を形成した後、ケース3に収まる形状に切り出した。その後、第1実施例と同様にして蛍光板をケース3に固定し、白色LEDを完成させた。   Subsequently, a bulk ZnSSe crystal in which I was diffused by a halogen transport method was formed, and Cu was diffused inside the ZnSSe. Subsequently, the bulk ZnSSe crystal was mirror-polished using a polishing disc to form a light incident surface and a light output surface, and then cut into a shape that fits in the case 3. Thereafter, the fluorescent plate was fixed to the case 3 in the same manner as in the first example to complete a white LED.

この白色LEDに駆動電圧を印加したところ、白色光を観察することができた。しかし、観察角度を変えて観察したところ、小さな観察角度では若干青みがかった白色光が観察され、大きな観察角度では黄色っぽい白色光が観察された。   When a driving voltage was applied to the white LED, white light could be observed. However, when the observation angle was changed, white light that was slightly bluish was observed at a small observation angle, and yellowish white light was observed at a large observation angle.

本発明による半導体発光装置は、上記した実施形態、各変形例、及び各実施例に限られるものではなく、他にも様々な変形が可能である。例えば、上記実施形態では蛍光板を単層とし、第1の光を受けて第2の光を発生する構成としているが、蛍光板は、互いに異なる波長の蛍光を発する複数の層によって構成されていてもよい。このとき、蛍光板の層は、板状でもよいし、膜状でもよい。このように互いに異なる複数波長の蛍光を蛍光板が発することによって、半導体発光装置は演色性に優れた光を発光することができる。   The semiconductor light emitting device according to the present invention is not limited to the above-described embodiments, modifications, and examples, and various other modifications are possible. For example, in the above embodiment, the fluorescent plate is configured as a single layer and receives the first light and generates the second light. However, the fluorescent plate may be configured by a plurality of layers that emit fluorescence having different wavelengths. Good. At this time, the fluorescent plate layer may be plate-shaped or film-shaped. As described above, when the fluorescent plate emits fluorescent light having a plurality of wavelengths different from each other, the semiconductor light emitting device can emit light having excellent color rendering properties.

図1は、本発明による半導体発光装置の実施形態の構成を示す側面断面図である。FIG. 1 is a side sectional view showing a configuration of an embodiment of a semiconductor light emitting device according to the present invention. 図2は、蛍光板から出射する白色光に含まれる第1の光及び第2の光の、出射中心軸方向を基準とする観察角度に応じた光強度の変化を示すグラフである。FIG. 2 is a graph showing the change in light intensity according to the observation angle of the first light and the second light included in the white light emitted from the fluorescent plate with reference to the emission central axis direction. 図3(a)は、第1の変形例による半導体発光装置の構成を示す側面断面図である。図3(b)は、蛍光板の光入射面の拡大図である。FIG. 3A is a side sectional view showing the configuration of the semiconductor light emitting device according to the first modification. FIG. 3B is an enlarged view of the light incident surface of the fluorescent plate. 図4(a)は、第2の変形例による半導体発光装置の構成を示す側面断面図である。図4(b)は、光出射面(または光入射面)における凹凸形状の例を示す図である。FIG. 4A is a side sectional view showing the configuration of the semiconductor light emitting device according to the second modification. FIG. 4B is a diagram illustrating an example of the uneven shape on the light emitting surface (or the light incident surface). 図5(a)は、第3の変形例による半導体発光装置の構成を示す側面断面図である。図5(b)及び図5(c)は、蛍光板の光出射面上に設けられた光反射膜の形状の一例を示す拡大平面図である。FIG. 5A is a side sectional view showing a configuration of a semiconductor light emitting device according to a third modification. FIG. 5B and FIG. 5C are enlarged plan views showing an example of the shape of the light reflecting film provided on the light emitting surface of the fluorescent plate. 図6は、第4の変形例による半導体発光装置の構成を示す側面断面図である。FIG. 6 is a side sectional view showing a configuration of a semiconductor light emitting device according to a fourth modification. 図7(a)及び図7(b)は、それぞれ第2及び第4の変形例による半導体発光装置が複数のLEDを備える場合の構成を示す断面図である。FIG. 7A and FIG. 7B are cross-sectional views showing the configuration in the case where the semiconductor light emitting device according to the second and fourth modified examples includes a plurality of LEDs, respectively. 図8は、白色LEDの例を示す断面図である。FIG. 8 is a cross-sectional view showing an example of a white LED. 図9(a)は、図8に示した白色LEDからの白色光に含まれる青色光及び黄色光の、出射中心軸方向を基準とする観察角度に応じた光強度の変化を示すグラフである。図9(b)は、図8に示した白色LEDの観察角度による色合いの違いを示す図である。FIG. 9A is a graph showing a change in light intensity according to an observation angle of blue light and yellow light included in white light from the white LED shown in FIG. . FIG. 9B is a diagram showing a difference in hue depending on the observation angle of the white LED shown in FIG.

符号の説明Explanation of symbols

1,1a〜1d…導体発光装置、3…ケース、3a…載置面、3b…斜面、5a…光取出し面、7,7a〜7f…蛍光板、11…リード端子、13…絶縁性部材、15…ボンディングワイヤ、17…接着剤、19…円柱、21〜23…光反射膜、71,73…光入射面、72,74,75,78…光出射面、81…端面。   DESCRIPTION OF SYMBOLS 1,1a-1d ... Conductor light-emitting device, 3 ... Case, 3a ... Mounting surface, 3b ... Slope, 5a ... Light extraction surface, 7, 7a-7f ... Fluorescent screen, 11 ... Lead terminal, 13 ... Insulating member, 15 DESCRIPTION OF SYMBOLS ... Bonding wire, 17 ... Adhesive, 19 ... Cylinder, 21-23 ... Light reflection film, 71, 73 ... Light incident surface, 72, 74, 75, 78 ... Light emission surface, 81 ... End surface.

Claims (12)

第1の波長範囲の波長成分を含む第1の光を発光し、該第1の光を取り出す光取出し面を有する半導体発光素子と、
前記第1の光を受ける光入射面、及び光出射面を有し、前記第1の光の一部を前記第1の波長範囲よりも長波長である第2の波長範囲の波長成分を含む第2の光に変換し、前記第1及び第2の光を前記光出射面から出射する蛍光部と
を備え、
前記蛍光部の前記光入射面及び前記光出射面のうち少なくとも一方の面が、凹凸形状を有することを特徴とする、半導体発光装置。
A semiconductor light-emitting element having a light extraction surface that emits first light including a wavelength component in the first wavelength range and extracts the first light;
A light incident surface for receiving the first light; and a light exit surface, wherein a part of the first light includes a wavelength component in a second wavelength range that is longer than the first wavelength range. A fluorescent part that converts the light into second light and emits the first and second light from the light exit surface;
The semiconductor light emitting device according to claim 1, wherein at least one of the light incident surface and the light emitting surface of the fluorescent portion has an uneven shape.
前記蛍光部の前記凹凸形状における凸状部の高さまたは凹状部の深さが、40nm以上10μm以下であることを特徴とする、請求項1に記載の半導体発光装置。   2. The semiconductor light emitting device according to claim 1, wherein a height of the convex portion or a depth of the concave portion in the concavo-convex shape of the fluorescent portion is 40 nm or more and 10 μm or less. 前記蛍光部の前記光入射面の面積が、前記半導体発光素子の前記光取出し面の面積よりも大きいことを特徴とする、請求項1または2に記載の半導体発光装置。   3. The semiconductor light emitting device according to claim 1, wherein an area of the light incident surface of the fluorescent portion is larger than an area of the light extraction surface of the semiconductor light emitting element. 前記蛍光部の前記凹凸形状が、複数の柱形状を含むことを特徴とする、請求項1〜3のいずれか一項に記載の半導体発光装置。   The semiconductor light-emitting device according to claim 1, wherein the uneven shape of the fluorescent part includes a plurality of columnar shapes. 前記複数の柱形状の高さが5μm以下であることを特徴とする、請求項4に記載の半導体発光装置。   The semiconductor light emitting device according to claim 4, wherein a height of the plurality of columnar shapes is 5 μm or less. 前記蛍光部の前記光入射面及び前記光出射面のうち少なくとも一方の面における、前記光取出し面の投影を含む領域の前記凹凸形状の平均傾斜角が、当該面の他の領域の前記凹凸形状の平均傾斜角よりも大きいことを特徴とする、請求項1〜5のいずれか一項に記載の半導体発光装置。   The average inclination angle of the concavo-convex shape of the region including the projection of the light extraction surface on at least one of the light incident surface and the light output surface of the fluorescent portion is the concavo-convex shape of the other region of the surface. The semiconductor light-emitting device according to claim 1, wherein the semiconductor light-emitting device is larger than an average inclination angle. 前記蛍光部の前記光入射面及び前記光出射面のうち少なくとも一方の面における、前記光取出し面の投影を含む領域の前記凹凸形状の表面に、該凹凸形状よりも微細な凹凸形状をさらに有することを特徴とする、請求項1〜6のいずれか一項に記載の半導体発光装置。   The surface of the concavo-convex shape of the region including the projection of the light extraction surface on at least one of the light incident surface and the light exit surface of the fluorescent portion further has a concavo-convex shape finer than the concavo-convex shape. The semiconductor light-emitting device according to claim 1, wherein 前記蛍光部の前記光出射面上に、複数の開口が形成された光反射膜をさらに備えることを特徴とする、請求項1〜7のいずれか一項に記載の半導体発光装置。   The semiconductor light emitting device according to claim 1, further comprising a light reflecting film in which a plurality of openings are formed on the light emitting surface of the fluorescent portion. 前記蛍光部の前記光出射面上に、複数の光反射膜をさらに備えることを特徴とする、請求項1〜8のいずれか一項に記載の半導体発光装置。   The semiconductor light emitting device according to claim 1, further comprising a plurality of light reflecting films on the light emitting surface of the fluorescent part. 前記光出射面における前記光取出し面の投影を含む領域の前記光反射膜による被覆率が、前記光出射面における他の領域の前記光反射膜による被覆率よりも大きいことを特徴とする、請求項8または9に記載の半導体発光装置。   The coverage of the region including the projection of the light extraction surface on the light emitting surface with the light reflecting film is larger than the coverage of the other region on the light emitting surface with the light reflecting film. Item 10. The semiconductor light emitting device according to Item 8 or 9. 前記半導体発光素子の前記光取出し面と対向する前記蛍光部の部分の平均厚さが、前記蛍光部の他の部分の平均厚さよりも厚いことを特徴とする、請求項1〜10のいずれか一項に記載の半導体発光装置。   The average thickness of the part of the fluorescent part facing the light extraction surface of the semiconductor light emitting element is thicker than the average thickness of the other part of the fluorescent part. The semiconductor light emitting device according to one item. 前記半導体発光素子を載置する載置面と、前記載置面に対して斜めに形成され、前記載置面を囲むように設けられた斜面とを有する容器をさらに備え、
前記蛍光部の端面が前記光入射面に対して斜めに形成されており、前記容器の前記斜面が前記蛍光部の前記端面を支持していることを特徴とする、請求項1〜11のいずれか一項に記載の半導体発光装置。
A container having a mounting surface on which the semiconductor light emitting element is mounted, and an inclined surface that is formed obliquely with respect to the mounting surface and is provided so as to surround the mounting surface;
The end surface of the fluorescent part is formed obliquely with respect to the light incident surface, and the inclined surface of the container supports the end surface of the fluorescent part. A semiconductor light-emitting device according to claim 1.
JP2004074974A 2004-03-16 2004-03-16 Semiconductor light emitting device Expired - Fee Related JP4020092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004074974A JP4020092B2 (en) 2004-03-16 2004-03-16 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004074974A JP4020092B2 (en) 2004-03-16 2004-03-16 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2005268323A true JP2005268323A (en) 2005-09-29
JP4020092B2 JP4020092B2 (en) 2007-12-12

Family

ID=35092592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004074974A Expired - Fee Related JP4020092B2 (en) 2004-03-16 2004-03-16 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4020092B2 (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237264A (en) * 2005-02-24 2006-09-07 Kyocera Corp Light emitting device and lighting apparatus
JP2006303038A (en) * 2005-04-18 2006-11-02 Kyocera Corp Light emitting device and lighting system
JP2007180203A (en) * 2005-12-27 2007-07-12 Shinko Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2007531317A (en) * 2004-03-31 2007-11-01 クリー インコーポレイテッド Semiconductor light emitting device having light emitting conversion element and packaging method thereof
WO2007148829A1 (en) * 2006-06-22 2007-12-27 Ube Industries, Ltd. Composite for light conversion, light emitting device using the same, and method for controlling color tone
JP2008041706A (en) * 2006-08-01 2008-02-21 Dainippon Printing Co Ltd Light emitting device, and white color conversion sheet
JP2008053590A (en) * 2006-08-28 2008-03-06 Dainippon Printing Co Ltd Light-emitting device and sheet for conversion to white
JP2008153466A (en) * 2006-12-18 2008-07-03 Matsushita Electric Works Ltd Light-emitting device
JP2008159986A (en) * 2006-12-26 2008-07-10 Kyocera Corp Light-emitting device and illuminator
KR100867519B1 (en) * 2006-02-02 2008-11-07 삼성전기주식회사 Light emitting diode module
JP2008277341A (en) * 2007-04-25 2008-11-13 Ube Ind Ltd Light-emitting device employing composite ceramic for optical conversion
WO2009028470A1 (en) * 2007-08-30 2009-03-05 Kyocera Corporation Light-emitting device and method for manufacturing the same
US7503676B2 (en) * 2006-07-26 2009-03-17 Kyocera Corporation Light-emitting device and illuminating apparatus
JP2009512220A (en) * 2005-10-14 2009-03-19 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Photonic structure for efficient light extraction and conversion in multicolor light emitting devices
JP2009524235A (en) * 2006-01-17 2009-06-25 ルシメア カンパニー リミテッド Sheet-like antibody, method for producing the same, and light-emitting device using the same
WO2009119034A1 (en) 2008-03-26 2009-10-01 Panasonic Corporation Semiconductor light-emitting apparatus
JP2009238960A (en) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd Light-emitting device
JP2009267040A (en) * 2008-04-24 2009-11-12 Panasonic Corp Semiconductor light-emitting device
JP2009540614A (en) * 2006-06-14 2009-11-19 スリーエム イノベイティブ プロパティズ カンパニー Adaptive LED device having a re-emitting semiconductor construction
JP2009283887A (en) * 2008-04-24 2009-12-03 Citizen Holdings Co Ltd Led light source and chromaticity adjustment method for the led light source
JP2010510659A (en) * 2006-11-15 2010-04-02 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Light emitting diode with textured phosphor conversion layer
JP2010087324A (en) * 2008-10-01 2010-04-15 Minebea Co Ltd Light emitting device
JP2010514187A (en) * 2006-12-21 2010-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device having tangible wavelength converter
JP2010157637A (en) * 2008-12-27 2010-07-15 Nichia Corp Wavelength conversion sintered compact and light emitting apparatus using the same, and method of manufacturing the wavelength conversion sintered compact
WO2010103840A1 (en) * 2009-03-13 2010-09-16 株式会社小糸製作所 Light-emitting module and lighting unit
WO2010119934A1 (en) * 2009-04-14 2010-10-21 パナソニック株式会社 Light-emitting device, method for adjusting optical properties, and method for manufacturing light-emitting devices
WO2010131402A1 (en) * 2009-05-15 2010-11-18 株式会社小糸製作所 Light-emitting module, method of producing light-emitting module, and lighting fixture unit
JP2011014587A (en) * 2009-06-30 2011-01-20 Nichia Corp Light emitting device
WO2011010237A1 (en) * 2009-07-22 2011-01-27 Philips Lumileds Lighting Company, Llc Reduced color over angle variation leds
WO2011026005A2 (en) * 2009-08-31 2011-03-03 3M Innovative Properties Company Projection and display system
JP2011233942A (en) * 2011-08-26 2011-11-17 Fine Rubber Kenkyusho:Kk Light-emitting device and manufacturing method thereof
JP2012009719A (en) * 2010-06-28 2012-01-12 Kyocera Corp Light emitting device and lighting system
JP2012039031A (en) * 2010-08-11 2012-02-23 Nitto Denko Corp Light emitting device
JP2012064989A (en) * 2010-02-12 2012-03-29 Lg Innotek Co Ltd Light emitting device, method of manufacturing light emitting device, and light emitting device package
JP2012068465A (en) * 2010-09-24 2012-04-05 Casio Comput Co Ltd Light source unit and projector
WO2012044571A1 (en) * 2010-09-27 2012-04-05 Osram Sylvania Inc. Led wavelength-converting plate with microlenses in multiple layers
JP2012516026A (en) * 2008-09-02 2012-07-12 ブリッジラックス インコーポレイテッド Phosphor conversion LED
JP2012138589A (en) * 2012-02-09 2012-07-19 Ube Ind Ltd Light-emitting device using ceramic composite for optical conversion
US8242684B2 (en) 2010-09-27 2012-08-14 Osram Sylvania Inc. LED wavelength-converting plate with microlenses
JP5083205B2 (en) * 2006-03-10 2012-11-28 日亜化学工業株式会社 Light emitting device
US8330182B2 (en) 2009-04-20 2012-12-11 Nichia Corporation Light emitting device
JP2013227362A (en) * 2012-04-24 2013-11-07 Citizen Electronics Co Ltd Phosphor sheet and semiconductor light-emitting device with phosphor sheet
JP2013545279A (en) * 2010-10-04 2013-12-19 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Silicone foil manufacturing method, silicone foil, and optoelectronic semiconductor component provided with silicone foil
CN103474555A (en) * 2013-09-10 2013-12-25 厦门市信达光电科技有限公司 LED lamp bead
KR101440770B1 (en) * 2013-11-01 2014-09-17 주식회사 아모센스 Light emitting device package
JPWO2014199975A1 (en) * 2013-06-12 2017-02-23 日本碍子株式会社 Window material for ultraviolet light emitting element and method for manufacturing the same
CN106574764A (en) * 2014-08-07 2017-04-19 Lg 伊诺特有限公司 Phosphor plate, and illumination device containing same
US9929320B2 (en) 2014-12-18 2018-03-27 Samsung Electronics Co., Ltd. Wavelength conversion film and light emitting device package including the same
CN108886078A (en) * 2016-04-01 2018-11-23 欧司朗光电半导体有限公司 For partly converting the converter and luminescent device of primary radiation
US10454010B1 (en) 2006-12-11 2019-10-22 The Regents Of The University Of California Transparent light emitting diodes
JP2020113640A (en) * 2019-01-11 2020-07-27 日亜化学工業株式会社 Manufacturing method of light-emitting device and light-emitting device
KR20210109125A (en) * 2020-02-27 2021-09-06 주식회사 쉘파스페이스 Wavelength conversion film and lighting apparatus using the same
JP2022075717A (en) * 2019-01-11 2022-05-18 日亜化学工業株式会社 Light-emitting device
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102347432B (en) * 2010-07-30 2014-05-28 海洋王照明科技股份有限公司 Light-emitting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156528A (en) * 1998-11-19 2000-06-06 Sharp Corp Luminous element
JP2001217467A (en) * 2000-02-02 2001-08-10 Ind Technol Res Inst Highly efficient white light-emitting diode
JP2002185046A (en) * 2000-12-19 2002-06-28 Sharp Corp Chip-part type led and its manufacturing method
JP2002319708A (en) * 2001-04-23 2002-10-31 Matsushita Electric Works Ltd Led chip and led device
JP2003046124A (en) * 2001-07-26 2003-02-14 Matsushita Electric Works Ltd Light-emitting element and manufacturing method therefor
JP2004186488A (en) * 2002-12-04 2004-07-02 Nichia Chem Ind Ltd Light emitting device, manufacturing method thereof, and chromaticity adjusting method thereof
JP2005191197A (en) * 2003-12-25 2005-07-14 Kyocera Corp Light emitting device
JP2005210042A (en) * 2003-09-11 2005-08-04 Kyocera Corp Light emitting apparatus and illumination apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156528A (en) * 1998-11-19 2000-06-06 Sharp Corp Luminous element
JP2001217467A (en) * 2000-02-02 2001-08-10 Ind Technol Res Inst Highly efficient white light-emitting diode
JP2002185046A (en) * 2000-12-19 2002-06-28 Sharp Corp Chip-part type led and its manufacturing method
JP2002319708A (en) * 2001-04-23 2002-10-31 Matsushita Electric Works Ltd Led chip and led device
JP2003046124A (en) * 2001-07-26 2003-02-14 Matsushita Electric Works Ltd Light-emitting element and manufacturing method therefor
JP2004186488A (en) * 2002-12-04 2004-07-02 Nichia Chem Ind Ltd Light emitting device, manufacturing method thereof, and chromaticity adjusting method thereof
JP2005210042A (en) * 2003-09-11 2005-08-04 Kyocera Corp Light emitting apparatus and illumination apparatus
JP2005191197A (en) * 2003-12-25 2005-07-14 Kyocera Corp Light emitting device

Cited By (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531317A (en) * 2004-03-31 2007-11-01 クリー インコーポレイテッド Semiconductor light emitting device having light emitting conversion element and packaging method thereof
US9859464B2 (en) 2004-07-06 2018-01-02 The Regents Of The University Of California Lighting emitting diode with light extracted from front and back sides of a lead frame
US9240529B2 (en) 2004-07-06 2016-01-19 The Regents Of The University Of California Textured phosphor conversion layer light emitting diode
JP2006237264A (en) * 2005-02-24 2006-09-07 Kyocera Corp Light emitting device and lighting apparatus
JP2006303038A (en) * 2005-04-18 2006-11-02 Kyocera Corp Light emitting device and lighting system
JP4688553B2 (en) * 2005-04-18 2011-05-25 京セラ株式会社 Light emitting device and lighting device
US8227825B2 (en) 2005-10-14 2012-07-24 The Regents Of The University Of California Photonic structures for efficient light extraction and conversion in multi-color light emitting devices
JP2009512220A (en) * 2005-10-14 2009-03-19 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Photonic structure for efficient light extraction and conversion in multicolor light emitting devices
JP2007180203A (en) * 2005-12-27 2007-07-12 Shinko Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2009524235A (en) * 2006-01-17 2009-06-25 ルシメア カンパニー リミテッド Sheet-like antibody, method for producing the same, and light-emitting device using the same
KR100867519B1 (en) * 2006-02-02 2008-11-07 삼성전기주식회사 Light emitting diode module
US8872203B2 (en) 2006-03-10 2014-10-28 Nichia Corporation Light-emitting device
JP5083205B2 (en) * 2006-03-10 2012-11-28 日亜化学工業株式会社 Light emitting device
JP2009540614A (en) * 2006-06-14 2009-11-19 スリーエム イノベイティブ プロパティズ カンパニー Adaptive LED device having a re-emitting semiconductor construction
JP5083211B2 (en) * 2006-06-22 2012-11-28 宇部興産株式会社 Composite for light conversion, light emitting device using the same, and color tone control method
WO2007148829A1 (en) * 2006-06-22 2007-12-27 Ube Industries, Ltd. Composite for light conversion, light emitting device using the same, and method for controlling color tone
US7503676B2 (en) * 2006-07-26 2009-03-17 Kyocera Corporation Light-emitting device and illuminating apparatus
JP2012114462A (en) * 2006-07-26 2012-06-14 Kyocera Corp Light-emitting device, and lighting device
JP2008041706A (en) * 2006-08-01 2008-02-21 Dainippon Printing Co Ltd Light emitting device, and white color conversion sheet
JP2008053590A (en) * 2006-08-28 2008-03-06 Dainippon Printing Co Ltd Light-emitting device and sheet for conversion to white
JP2010510659A (en) * 2006-11-15 2010-04-02 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Light emitting diode with textured phosphor conversion layer
US8860051B2 (en) 2006-11-15 2014-10-14 The Regents Of The University Of California Textured phosphor conversion layer light emitting diode
JP2014187397A (en) * 2006-11-15 2014-10-02 Regents Of The Univ Of California Light emitting diode with textured phosphor conversion layer
US10454010B1 (en) 2006-12-11 2019-10-22 The Regents Of The University Of California Transparent light emitting diodes
US10658557B1 (en) 2006-12-11 2020-05-19 The Regents Of The University Of California Transparent light emitting device with light emitting diodes
US10644213B1 (en) 2006-12-11 2020-05-05 The Regents Of The University Of California Filament LED light bulb
US10593854B1 (en) 2006-12-11 2020-03-17 The Regents Of The University Of California Transparent light emitting device with light emitting diodes
JP2008153466A (en) * 2006-12-18 2008-07-03 Matsushita Electric Works Ltd Light-emitting device
JP2010514187A (en) * 2006-12-21 2010-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device having tangible wavelength converter
JP2008159986A (en) * 2006-12-26 2008-07-10 Kyocera Corp Light-emitting device and illuminator
JP2008277341A (en) * 2007-04-25 2008-11-13 Ube Ind Ltd Light-emitting device employing composite ceramic for optical conversion
WO2009028470A1 (en) * 2007-08-30 2009-03-05 Kyocera Corporation Light-emitting device and method for manufacturing the same
JP2009238960A (en) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd Light-emitting device
JP2011515848A (en) * 2008-03-26 2011-05-19 パナソニック株式会社 Semiconductor light emitting device
WO2009119034A1 (en) 2008-03-26 2009-10-01 Panasonic Corporation Semiconductor light-emitting apparatus
US8337032B2 (en) 2008-03-26 2012-12-25 Panasonic Corporation Semiconductor light-emitting apparatus
CN101960619B (en) * 2008-03-26 2013-06-26 松下电器产业株式会社 Semiconductor light-emitting apparatus
JP2009267040A (en) * 2008-04-24 2009-11-12 Panasonic Corp Semiconductor light-emitting device
JP2009283887A (en) * 2008-04-24 2009-12-03 Citizen Holdings Co Ltd Led light source and chromaticity adjustment method for the led light source
JP2014212329A (en) * 2008-09-02 2014-11-13 ブリッジラックス インコーポレイテッド Phosphor-converted led
JP2016167626A (en) * 2008-09-02 2016-09-15 ブリッジラックス インコーポレイテッド Phosphor conversion led
JP2012516026A (en) * 2008-09-02 2012-07-12 ブリッジラックス インコーポレイテッド Phosphor conversion LED
JP2010087324A (en) * 2008-10-01 2010-04-15 Minebea Co Ltd Light emitting device
JP2010157637A (en) * 2008-12-27 2010-07-15 Nichia Corp Wavelength conversion sintered compact and light emitting apparatus using the same, and method of manufacturing the wavelength conversion sintered compact
WO2010103840A1 (en) * 2009-03-13 2010-09-16 株式会社小糸製作所 Light-emitting module and lighting unit
US20120008306A1 (en) * 2009-03-13 2012-01-12 Koito Manufacturing Co., Ltd. Light emitting module and lamp unit
JPWO2010103840A1 (en) * 2009-03-13 2012-09-13 株式会社小糸製作所 Light emitting module and lamp unit
JPWO2010119934A1 (en) * 2009-04-14 2012-10-22 パナソニック株式会社 Light emitting device, light characteristic adjusting method, and light emitting device manufacturing method
US8648372B2 (en) 2009-04-14 2014-02-11 Panasonic Corporation Light-emitting device, method for adjusting optical properties, and method for manufacturing light-emitting devices
WO2010119934A1 (en) * 2009-04-14 2010-10-21 パナソニック株式会社 Light-emitting device, method for adjusting optical properties, and method for manufacturing light-emitting devices
TWI497760B (en) * 2009-04-14 2015-08-21 Panasonic Corp A light-emitting device, an optical characteristic adjusting method, and a light-emitting device manufacturing method
US8330182B2 (en) 2009-04-20 2012-12-11 Nichia Corporation Light emitting device
US8921882B2 (en) 2009-04-20 2014-12-30 Nichia Corporation Light emitting device including light reflecting resin and translucent material
US8525218B2 (en) 2009-04-20 2013-09-03 Nichia Corporation Light emitting device
CN102428582A (en) * 2009-05-15 2012-04-25 株式会社小糸制作所 Light emitting module, method of producing light-emitting module, and lighting fixture unit
JP5487204B2 (en) * 2009-05-15 2014-05-07 株式会社小糸製作所 Light emitting module, method for manufacturing light emitting module, and lamp unit
WO2010131402A1 (en) * 2009-05-15 2010-11-18 株式会社小糸製作所 Light-emitting module, method of producing light-emitting module, and lighting fixture unit
JP2011014587A (en) * 2009-06-30 2011-01-20 Nichia Corp Light emitting device
US8803171B2 (en) 2009-07-22 2014-08-12 Koninklijke Philips N.V. Reduced color over angle variation LEDs
CN102473818A (en) * 2009-07-22 2012-05-23 飞利浦拉米尔德斯照明设备有限责任公司 Reduced color over angle variation LED
WO2011010237A1 (en) * 2009-07-22 2011-01-27 Philips Lumileds Lighting Company, Llc Reduced color over angle variation leds
TWI624084B (en) * 2009-07-22 2018-05-11 飛利浦露明光學公司 Reduced color over angle variation leds
WO2011026005A3 (en) * 2009-08-31 2011-05-12 3M Innovative Properties Company Projection and display system
CN102597869A (en) * 2009-08-31 2012-07-18 3M创新有限公司 Projection and display system
WO2011026005A2 (en) * 2009-08-31 2011-03-03 3M Innovative Properties Company Projection and display system
JP2012104849A (en) * 2010-02-12 2012-05-31 Lg Innotek Co Ltd Light emitting device, method of manufacturing the same, and light emitting device package
US8710535B2 (en) 2010-02-12 2014-04-29 Lg Innotek Co., Ltd. Light emitting device and light emitting device package
JP2012064989A (en) * 2010-02-12 2012-03-29 Lg Innotek Co Ltd Light emitting device, method of manufacturing light emitting device, and light emitting device package
US8421110B2 (en) 2010-02-12 2013-04-16 Lg Innotek Co., Ltd. Light emitting device and light emitting device package
JP2012064988A (en) * 2010-02-12 2012-03-29 Lg Innotek Co Ltd Light emitting device, method of manufacturing light emitting device, and light emitting device package
JP2012009719A (en) * 2010-06-28 2012-01-12 Kyocera Corp Light emitting device and lighting system
JP2012039031A (en) * 2010-08-11 2012-02-23 Nitto Denko Corp Light emitting device
US8746896B2 (en) 2010-09-24 2014-06-10 Casio Computer Co., Ltd. Light source unit and projector
TWI471507B (en) * 2010-09-24 2015-02-01 Casio Computer Co Ltd Light source unit and projector
JP2012068465A (en) * 2010-09-24 2012-04-05 Casio Comput Co Ltd Light source unit and projector
WO2012044571A1 (en) * 2010-09-27 2012-04-05 Osram Sylvania Inc. Led wavelength-converting plate with microlenses in multiple layers
US8334646B2 (en) 2010-09-27 2012-12-18 Osram Sylvania Inc. LED wavelength-coverting plate with microlenses in multiple layers
US8242684B2 (en) 2010-09-27 2012-08-14 Osram Sylvania Inc. LED wavelength-converting plate with microlenses
JP2013545279A (en) * 2010-10-04 2013-12-19 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Silicone foil manufacturing method, silicone foil, and optoelectronic semiconductor component provided with silicone foil
JP2011233942A (en) * 2011-08-26 2011-11-17 Fine Rubber Kenkyusho:Kk Light-emitting device and manufacturing method thereof
JP2012138589A (en) * 2012-02-09 2012-07-19 Ube Ind Ltd Light-emitting device using ceramic composite for optical conversion
JP2013227362A (en) * 2012-04-24 2013-11-07 Citizen Electronics Co Ltd Phosphor sheet and semiconductor light-emitting device with phosphor sheet
JPWO2014199975A1 (en) * 2013-06-12 2017-02-23 日本碍子株式会社 Window material for ultraviolet light emitting element and method for manufacturing the same
CN103474555A (en) * 2013-09-10 2013-12-25 厦门市信达光电科技有限公司 LED lamp bead
KR101440770B1 (en) * 2013-11-01 2014-09-17 주식회사 아모센스 Light emitting device package
EP3179160A4 (en) * 2014-08-07 2018-03-14 LG Innotek Co., Ltd. Phosphor plate, and illumination device containing same
US10451245B2 (en) 2014-08-07 2019-10-22 Lg Innotek Co., Ltd. Phosphor plate and lighting device including the same
CN106574764A (en) * 2014-08-07 2017-04-19 Lg 伊诺特有限公司 Phosphor plate, and illumination device containing same
CN106574764B (en) * 2014-08-07 2019-11-05 Lg 伊诺特有限公司 Phosphor plate and lighting device comprising the phosphor plate
US9929320B2 (en) 2014-12-18 2018-03-27 Samsung Electronics Co., Ltd. Wavelength conversion film and light emitting device package including the same
CN108886078B (en) * 2016-04-01 2021-11-12 欧司朗光电半导体有限公司 Converter for partially converting primary radiation and light-emitting device
CN108886078A (en) * 2016-04-01 2018-11-23 欧司朗光电半导体有限公司 For partly converting the converter and luminescent device of primary radiation
JP2019511742A (en) * 2016-04-01 2019-04-25 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Converter and light emitting device for converting part of primary radiation
JP2020113640A (en) * 2019-01-11 2020-07-27 日亜化学工業株式会社 Manufacturing method of light-emitting device and light-emitting device
JP7037070B2 (en) 2019-01-11 2022-03-16 日亜化学工業株式会社 Manufacturing method of light emitting device
JP2022075717A (en) * 2019-01-11 2022-05-18 日亜化学工業株式会社 Light-emitting device
JP7260828B2 (en) 2019-01-11 2023-04-19 日亜化学工業株式会社 light emitting device
KR20210109125A (en) * 2020-02-27 2021-09-06 주식회사 쉘파스페이스 Wavelength conversion film and lighting apparatus using the same
KR102389956B1 (en) * 2020-02-27 2022-04-25 주식회사 쉘파스페이스 Wavelength conversion film and lighting apparatus using the same
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11796163B2 (en) 2020-05-12 2023-10-24 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device

Also Published As

Publication number Publication date
JP4020092B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
JP4020092B2 (en) Semiconductor light emitting device
US10074786B2 (en) LED with scattering features in substrate
JP6595055B2 (en) Optical resonator including light emitting device and wavelength conversion material
JP5526232B2 (en) Light emitting diode with molded reflective sidewall coating
US8003998B2 (en) Light-emitting diode arrangement
KR20100028047A (en) Optical designs for high-efficacy white-light emitting diodes
JP2006100787A (en) Light emitting device and light emitting element
CN108963056B (en) Light emitting device
US11081626B2 (en) Light emitting diode packages
US20140167092A1 (en) Optoelectronic assembly and method for producing an optoelectronic assembly
JP2005109289A (en) Light-emitting device
US11552229B2 (en) Spacer layer arrangements for light-emitting diodes
US9112089B2 (en) Semiconductor chip, display comprising a plurality of semiconductor chips and methods for the production thereof
JP5034342B2 (en) Light emitting device
US11367810B2 (en) Light-altering particle arrangements for light-emitting devices
JP2008166311A (en) Semiconductor light-emitting element and semiconductor light-emitting device
JP7082666B2 (en) Luminescent semiconductor device
JP2021507527A (en) Method of manufacturing conversion element and conversion element
US20230317686A1 (en) Light-emitting diode packages with directional emission intensity and color uniformity
US20230260972A1 (en) Arrangements of multiple-chip light-emitting diode packages
US20230387356A1 (en) Light-emitting diode packages with lead frame structures for flip-chip mounting of light-emitting diode chips
US20230120890A1 (en) Integration of secondary optics into chip covers for improved optical emission of high intensity light-emitting diodes
US20230261154A1 (en) Light-emitting diode packages with selectively placed light-altering materials and related methods
US20230246144A1 (en) Arrangements of light-altering coatings in light-emitting diode packages
US20220254962A1 (en) Optical arrangements in cover structures for light emitting diode packages and related methods

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4020092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees