JP2005238276A - Electromagnetic-stirring casting apparatus - Google Patents

Electromagnetic-stirring casting apparatus Download PDF

Info

Publication number
JP2005238276A
JP2005238276A JP2004050876A JP2004050876A JP2005238276A JP 2005238276 A JP2005238276 A JP 2005238276A JP 2004050876 A JP2004050876 A JP 2004050876A JP 2004050876 A JP2004050876 A JP 2004050876A JP 2005238276 A JP2005238276 A JP 2005238276A
Authority
JP
Japan
Prior art keywords
mold
molten metal
electromagnetic
pair
long side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004050876A
Other languages
Japanese (ja)
Inventor
Takeshi Yokota
健 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004050876A priority Critical patent/JP2005238276A/en
Publication of JP2005238276A publication Critical patent/JP2005238276A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enlarge electromagnetic force to be given to molten metal 8 under state of holding the input power into an electromagnetic-stirring unit according to a kind of the cast molten metal without machining long sidewall copper plates and/or back plates of the copper plates or without deteriorating the strength of the mold without arranging any slit, and to restrain the input power into the electromagnetic stirring unit 5 under state of holding the electromagnetic force to be given to the molten metal. <P>SOLUTION: In an electromagnetic-stirring casting apparatus for molten metal composed of a mold for continuously casting the molten metal, constituted of a pair of long sidewalls and a pair of short sidewalls facing each other, and a pair of linear motor type electromagnetic-stirring units disposed at the outside of the mold along the long sidewalls near the position in the mold height direction, at which the molten metal in this mold is started to solidify, these pair of linear motor type electromagnetic-stirring apparatuses generate the shifting magnetic fields advanced in mutually reverse direction to the long sidewalls in the mold to circulatively stir the molten metal in the mold, and the distance between the upper end of iron cores in the pair of linear motor type electromagnetic-stirring units and the upper end of the long side walls, is ≥100 mm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、金属の連続鋳造設備、特に鋳型内に注入された溶融金属を移動磁界により旋回攪拌して良質の鋳片を得ることができる電磁攪拌装置に関する。   The present invention relates to a metal continuous casting facility, and more particularly to an electromagnetic stirring device capable of obtaining a high quality cast piece by swirling and stirring molten metal injected into a mold by a moving magnetic field.

金属の連続鋳造設備においては、浸漬ノズルから鋳型内に溶融金属が注入され、鋳型から表面が凝固した鋳片が引き出されて、スラブが鋳造される。スラブ鋳造に際しては、鋳型内の溶融金属に流動を生じさせることで、非金属介在物が鋳片の特に表面付近に捕捉されることを防止する効果と、凝固開始点前後の溶融金属温度を均一化することで凝固を一律に進め、表面割れやシェル破断の防止する効果が得られる。鋳型内の溶融金属に流動を生じる手段としては電磁力が用いられ、溶融金属に電磁力を付与する手段として、鋳型の長辺壁の外側に、一対のリニアモータ式電磁攪拌装置が設置される。
電磁攪拌装置に関しては、鋳造作業に支障を来たさないような流速を、凝固開始点前後の溶融金属に、スラブ鋳型横断面の隅々にまで行きわたるようにあたえることで、ガス気泡核の発生を鋳型短辺部を含め全体にわたって防止し、もってパウダーの巻き込みあるいは溶融金属の湯面におけるパウダーの不均一分布、更にパウダー流れ込みの不均一を防止できることが開示、実用化されている(特許文献1)。
In a continuous casting facility for metal, molten metal is injected into a mold from an immersion nozzle, and a slab whose surface is solidified is drawn out from the mold to cast a slab. During slab casting, the molten metal in the mold is made to flow, thereby preventing non-metallic inclusions from being trapped particularly near the surface of the slab and the temperature of the molten metal before and after the solidification start point is uniform. In this way, solidification is uniformly promoted, and the effect of preventing surface cracks and shell breakage can be obtained. Electromagnetic force is used as means for generating a flow in the molten metal in the mold, and a pair of linear motor electromagnetic stirring devices are installed outside the long side wall of the mold as means for applying electromagnetic force to the molten metal. .
With regard to the electromagnetic stirrer, by providing a flow rate that does not hinder the casting operation to the molten metal before and after the solidification start point so as to reach every corner of the slab mold cross section, It has been disclosed and put into practical use that the generation can be prevented over the entire surface including the short side of the mold, thereby preventing the entrainment of powder or the non-uniform distribution of powder on the molten metal surface, and the non-uniformity of powder flow (Patent Document) 1).

また、浸漬ノズルの鋳型内浸漬噴出孔よりも上部の位置に、鋳型長辺方向の推力が互いに逆向きとなるように、リニアモータ式の電磁力発生装置を鋳型の両長辺に沿って夫々配置し、そのリニアモータのコア(鉄心)の中心を湯面近傍に設けることにより、パウダーキャスティングを可能とすることが開示、実用化されている(特許文献2)。
なお、上記パウダーとは、鋳型と鋳片との潤滑、溶融金属の温度低下防止、再酸化防止、そして溶融金属中の介在物の吸着等を目的として、溶融金属表面に播かれる散布物である。
図1に示すように、特許文献1および特許文献2の記載から明らかなように、溶融金属8に電磁力を与える位置、すなわち、リニアモータ式電磁攪拌装置5の上下方向の設置位置は、湯面18(溶融金属上面)近傍となるため、通常の連続鋳造装置においては、長辺鋳型1の上半分の位置になる。
図2に示すように、リニアモータ式電磁攪拌装置5は、鋳型長辺壁1の外側に、鋳型長辺方向に沿って鉄心6が配置されている。鉄心6には、鋳型長辺壁1に垂直な平面内で複数のコイル7が巻き付けられている。それぞれのコイル7には、図示しない三相交流電源により120度ずつ位相のずれたU、V、W相電流が流されることで、長辺鋳型1の外側に面した鉄心6の櫛歯から、溶融金属8に向けて移動磁場が発生し、その磁場を起因に溶融金属中8に渦電流が流れ、この移動磁場(ベクトル)と渦電流(ベクトル)の相互作用により溶融金属を攪拌する電磁力が、各ベクトルの外積として発生する。
In addition, linear motor type electromagnetic force generators are installed along both long sides of the mold so that the thrust in the mold long side direction is opposite to each other at the position above the immersion nozzle in the mold of the immersion nozzle. It has been disclosed and put into practical use that powder casting is possible by arranging and providing the center of the linear motor core (iron core) near the hot water surface (Patent Document 2).
Note that the powder is a sprayed material to be sown on the surface of the molten metal for the purpose of lubrication of the mold and slab, prevention of temperature drop of the molten metal, prevention of reoxidation, adsorption of inclusions in the molten metal, and the like. .
As shown in FIG. 1, as is clear from the descriptions in Patent Document 1 and Patent Document 2, the position at which the electromagnetic force is applied to the molten metal 8, that is, the vertical installation position of the linear motor electromagnetic stirring device 5 is Since it is in the vicinity of the surface 18 (the upper surface of the molten metal), the upper half of the long side mold 1 is positioned in a normal continuous casting apparatus.
As shown in FIG. 2, in the linear motor electromagnetic stirring device 5, an iron core 6 is arranged outside the long mold side wall 1 along the long mold direction. A plurality of coils 7 are wound around the iron core 6 in a plane perpendicular to the mold long side wall 1. Each coil 7 is supplied with U, V, and W phase currents that are shifted by 120 degrees by a three-phase AC power source (not shown), so that the comb teeth of the iron core 6 facing the outside of the long side mold 1 are A moving magnetic field is generated toward the molten metal 8 and an eddy current flows in the molten metal 8 due to the magnetic field. The electromagnetic force that stirs the molten metal by the interaction of the moving magnetic field (vector) and the eddy current (vector). Occurs as the outer product of each vector.

図1および図2に示すように、電磁攪拌装置5を備えた連続鋳造鋳型の長辺鋳型1は、数10mm厚みの銅板3を内側に、その外側に図示しない冷却水路を備え、銅板変形を抑制するための数10mm厚みのバックプレート4から構成されており、該バックプレート4は電磁攪拌装置5の収納箱を兼ねる構造になっている(特許文献3)。
これら銅板3とバックプレート4は、電気伝導性が比較的良好なため、両金属内に誘導電流がストレートに流れ易く、誘導電流ロスが発生する。このため、鋳型本体における該誘導電流ロスを可及的に少なくせしめ、より一層電磁攪拌の有効性を増大するために、鋳型長辺1を構成する銅板3および/またはバックプレート4内に、銅板3および/またはバックプレート4の厚み方向に少なくとも1つの低電気伝導層を設けることで、該ロスを減らす溶融金属8の連続鋳造鋳型が提案、実施されている(特許文献4)。
特開昭55−64953号公報 特開昭56−41054号公報 特開2002−321040号公報 特開平7−148553号公報
As shown in FIG. 1 and FIG. 2, a long-side mold 1 of a continuous casting mold provided with an electromagnetic stirring device 5 is provided with a copper plate 3 having a thickness of several tens of mm on the inner side and a cooling water channel (not shown) on the outer side, thereby deforming the copper plate. It consists of a back plate 4 having a thickness of several tens of millimeters for suppression, and the back plate 4 has a structure that also serves as a storage box for the electromagnetic stirring device 5 (Patent Document 3).
Since the copper plate 3 and the back plate 4 have relatively good electrical conductivity, the induced current easily flows straight in both metals, and an induced current loss occurs. For this reason, in order to reduce the induced current loss in the mold body as much as possible and further increase the effectiveness of electromagnetic stirring, the copper plate 3 and / or the back plate 4 constituting the mold long side 1 is provided with a copper plate. 3 and / or a continuous casting mold of molten metal 8 is proposed and practiced by reducing at least one low electrical conductive layer in the thickness direction of the back plate 4 to reduce the loss (Patent Document 4).
JP 55-64953 A Japanese Patent Laid-Open No. 56-41054 JP 2002-321040 A JP-A-7-148553

しかしながら、特許文献4の発明を実施するには、銅板3および/またはバックプレート4を加工する必要があるが、実際にはその加工は容易ではない。また、銅板3および/またはバックプレート4内に設ける低電気伝導層がスリット(溝)である場合、銅板3および/またはバックプレート4の強度が低下し、安定的に溶融金属を鋳造することが出来ない可能性があり問題となる。
本発明は、銅板3および/またはバックプレート4を加工することなく、また、スリットを設けずに鋳型の強度を落とすことなく、鋳造する溶融金属の種類によって、電磁攪拌装置5への投入電力を一定に保持したまま、溶融金属8に付与する電磁力を大きくすることや、溶融金属8に付与する電磁力を所要の強さに保持したまま、電磁攪拌装置5に投入する電力を抑制することを可能とする電磁攪拌鋳造装置を提供することを目的とする。
However, in order to implement the invention of Patent Document 4, it is necessary to process the copper plate 3 and / or the back plate 4, but in reality, the processing is not easy. Moreover, when the low electrical conductive layer provided in the copper plate 3 and / or the back plate 4 is a slit (groove), the strength of the copper plate 3 and / or the back plate 4 is reduced, and the molten metal can be cast stably. It may not be possible and will be a problem.
In the present invention, the electric power supplied to the electromagnetic stirrer 5 can be changed depending on the type of molten metal to be cast without processing the copper plate 3 and / or the back plate 4 and without reducing the strength of the mold without providing a slit. The electromagnetic force applied to the molten metal 8 is increased while keeping it constant, or the electric power applied to the electromagnetic stirring device 5 is suppressed while the electromagnetic force applied to the molten metal 8 is maintained at a required strength. An object of the present invention is to provide an electromagnetic stir casting apparatus that enables the above.

上記課題を解決する第一の発明は、
対向する一対の長辺壁と一対の短辺壁とからなる連続鋳造用鋳型と、該鋳型内の溶融金属が凝固開始する鋳型高さ方向の位置近傍で、長辺壁に沿って鋳型外側に設置され、鋳型長辺に対して互いに逆方向に進行する移動磁場を発生させて鋳型内の溶融金属を旋回攪拌する一対のリニアモータ式電磁攪拌装置とで構成される溶融金属の電磁攪拌鋳造装置において、
前記一対のリニアモータ式電磁攪拌装置における鉄心の上端と前記長辺壁の上端との距離が100mm以上であることを特徴とする溶融金属の電磁攪拌鋳造装置である。
さらに、第二の発明は、
対向する一対の長辺壁と一対の短辺壁とからなる連続鋳造用鋳型と、該鋳型内の溶融金属が凝固開始する鋳型高さ方向の位置近傍で、長辺壁に沿って鋳型外側に設置され、鋳型長辺に対して互いに逆方向に進行する移動磁場を発生させて鋳型内の溶融金属を旋回攪拌する一対のリニアモータ式電磁攪拌装置とで構成される溶融金属の電磁攪拌鋳造装置において、
上記一対のリニアモータ式電磁攪拌装置における鋳型高さ方向の設置位置を可変にして、該リニアモータ式電磁攪拌装置における鉄心の上端と前記長辺壁の上端との距離を100mm以上にすることを特徴とする溶融金属の電磁攪拌鋳造装置である。
The first invention for solving the above problems is
A continuous casting mold composed of a pair of opposed long side walls and a pair of short side walls, and a position in the mold height direction where the molten metal in the mold starts to solidify, along the long side wall, outside the mold Molten metal electromagnetic stir casting apparatus comprising a pair of linear motor electromagnetic stirrers that are installed and generate a moving magnetic field that travels in opposite directions relative to the long side of the mold to swirl and stir the molten metal in the mold In
In the pair of linear motor electromagnetic stirring apparatuses, the distance between the upper end of the iron core and the upper end of the long side wall is 100 mm or more.
Furthermore, the second invention
A continuous casting mold composed of a pair of opposed long side walls and a pair of short side walls, and a position in the mold height direction where the molten metal in the mold starts to solidify, along the long side wall, outside the mold Molten metal electromagnetic stir casting apparatus comprising a pair of linear motor electromagnetic stirrers that are installed and generate a moving magnetic field that travels in opposite directions relative to the long side of the mold to swirl and stir the molten metal in the mold In
The installation position in the mold height direction in the pair of linear motor electromagnetic stirrers is variable, and the distance between the upper end of the iron core and the upper end of the long side wall in the linear motor electromagnetic stirrer is 100 mm or more. It is the electromagnetic stirring casting apparatus of the featured molten metal.

本発明により、銅板3および/またはバックプレート4を加工することなく、また、スリットを設けずに鋳型の強度を落とすことなく、鋳造する溶融金属の種類によって、電磁攪拌装置5への投入電力を一定に保持したまま、溶融金属8に付与する電磁力を大きくすることや、溶融金属8に付与する電磁力を所要の強さに保持したまま、電磁攪拌装置5に投入する電力を抑制することを可能となり、エネルギー効率が従来より良い電磁攪拌鋳造装置が可能となる。   According to the present invention, the electric power supplied to the electromagnetic stirrer 5 can be changed depending on the type of molten metal to be cast without processing the copper plate 3 and / or the back plate 4 and without lowering the strength of the mold without providing a slit. The electromagnetic force applied to the molten metal 8 is increased while keeping it constant, or the electric power applied to the electromagnetic stirring device 5 is suppressed while the electromagnetic force applied to the molten metal 8 is maintained at a required strength. Thus, an electromagnetic stir casting apparatus with better energy efficiency than before can be realized.

図2に示したリニアモータ式電磁攪拌装置5は、鋳型内の溶融金属8を攪拌することを目的に、移動磁場を発生させる。発生させた移動磁場は、銅板3およびバックプレート4から成る長辺鋳型1を通過して溶融金属8に到達する。このとき、銅板3およびバックプレート4の内部には移動磁場を抑制しする向きに渦電流が流れるため、溶融金属8に到達する移動磁場は減衰する。
溶融金属8に移動磁場が到達すると、その磁力線を周回するように渦電流が発生する。発生した渦電流(ベクトル)と移動磁場(ベクトル)の相互作用により溶融金属を攪拌する電磁力が、各ベクトルの外積として発生する。このベクトルの外積によって電磁力の大きさと方向が決まるため、移動磁場が減衰すると、電磁力も低下する。銅板を改削等で薄くすると、移動磁場の減衰代が低減するため、電磁力が大きくなることが一般的に知られている。
溶融金属中に発生する電磁力は、上下左右前後の6方向全ての成分を持つが、電磁攪拌装置前面、かつ、鋳型内の溶融金属の攪拌に必要な銅板から15mm程度までの範囲では、図3に示すように溶融金属8に働く電磁力9のほとんどが鋳造幅方向10の成分となる。
The linear motor electromagnetic stirring device 5 shown in FIG. 2 generates a moving magnetic field for the purpose of stirring the molten metal 8 in the mold. The generated moving magnetic field passes through the long side mold 1 composed of the copper plate 3 and the back plate 4 and reaches the molten metal 8. At this time, since the eddy current flows in the direction of suppressing the moving magnetic field inside the copper plate 3 and the back plate 4, the moving magnetic field reaching the molten metal 8 is attenuated.
When the moving magnetic field reaches the molten metal 8, an eddy current is generated so as to go around the magnetic field lines. An electromagnetic force for stirring the molten metal is generated as an outer product of the vectors by the interaction between the generated eddy current (vector) and the moving magnetic field (vector). Since the magnitude and direction of the electromagnetic force is determined by the outer product of the vectors, the electromagnetic force is reduced when the moving magnetic field is attenuated. It is generally known that when the copper plate is thinned by cutting or the like, the attenuation of the moving magnetic field is reduced, so that the electromagnetic force is increased.
The electromagnetic force generated in the molten metal has all six components in the upper, lower, left, and right directions, but in the range from the front of the electromagnetic stirrer to about 15 mm from the copper plate necessary for stirring the molten metal in the mold. 3, most of the electromagnetic force 9 acting on the molten metal 8 is a component in the casting width direction 10.

鋳造幅方向10の電磁力には、移動磁界の移動方向と同じ向き、およびその反対向きの2成分が存在する。この2成分では、移動磁場の移動方向成分の大きさが、その反対方向成分の大きさに勝るため、溶融金属8は結果として移動磁界と同方向に攪拌される。
移動磁場の移動方向成分の電磁力は、鋳造厚方向成分の磁場(ベクトル)と鋳造方向成分の渦電流(ベクトル)の外積であり、図4に示すように、その向きはフレミングの左手の法則に従う。一方、その反対方向の電磁力は、鋳造方向成分の磁場と鋳造厚方向成分の渦電流の外積であり、その向きもまたフレミングの左手の法則に従う。
さて、鋳型壁の形状による電磁力の違いを説明する。電磁力を記号F、磁束密度を記号B、渦電流密度を記号Iと表し、その方向成分として鋳造幅方向をX、鋳造厚方向をY、鋳造方向をZと添え字で表すと、鋳造幅方向の電磁力は式(1)で表される。ただし、鋳造幅方向は移動磁場の移動方向を正とする。
=B×I−B×I ・・・ (1)
The electromagnetic force in the casting width direction 10 has two components in the same direction as the moving direction of the moving magnetic field and in the opposite direction. With these two components, since the magnitude of the moving direction component of the moving magnetic field is greater than the magnitude of the opposite direction component, the molten metal 8 is consequently stirred in the same direction as the moving magnetic field.
The electromagnetic force of the moving direction component of the moving magnetic field is the outer product of the magnetic field (vector) of the casting thickness direction component and the eddy current (vector) of the casting direction component. As shown in FIG. Follow. On the other hand, the electromagnetic force in the opposite direction is the outer product of the magnetic field of the casting direction component and the eddy current of the casting thickness direction component, and its direction also follows Fleming's left-hand rule.
Now, the difference in electromagnetic force depending on the shape of the mold wall will be described. The electromagnetic force is represented by the symbol F, the magnetic flux density by the symbol B, the eddy current density by the symbol I, and the casting width direction is represented by X, the casting thickness direction is represented by Y, and the casting direction is represented by Z and the subscript. The electromagnetic force in the direction is expressed by equation (1). However, in the casting width direction, the moving direction of the moving magnetic field is positive.
F X = B Y × I Z −B Z × I Y (1)

図5に、鋳型に対する電磁攪拌装置の上下位置を変化させたときの渦電流分布を示す。電磁攪拌装置の鉄心位置17を下方へ移す手段により、溶融金属中の鉄心位置17近傍における渦電流が流れやすくなる。
図6に鋳型の高さを変えたときの渦電流分布を示す。銅板長さを上方向に伸ばす手段により、鋳型上部に設置されている電磁攪拌装置の鉄心位置17近傍において、渦電流16が流れやすくなる。
長辺銅板3の厚みは変化しないため、鋳造幅方向(X)10および鋳造方向(Z)12の渦電流密度が大きくなる。この影響で、鋳造厚方向(Y)11の磁場および鋳造方向(Z)12の磁場が減衰し、式(1)の右辺第一項および右辺第二項の値が共に小さくなる。
このとき、式(1)の右辺第一項に比して、右辺第二項の減衰が大きいために、その差として、旋回攪拌に寄与する電磁攪拌装置前面の溶融金属中の鋳造幅方向電磁力Fが大きくなる。
FIG. 5 shows an eddy current distribution when the vertical position of the electromagnetic stirring device relative to the mold is changed. By means for moving the iron core position 17 of the electromagnetic stirring device downward, eddy currents easily flow in the vicinity of the iron core position 17 in the molten metal.
FIG. 6 shows the eddy current distribution when the height of the mold is changed. By means for extending the copper plate length upward, the eddy current 16 easily flows in the vicinity of the iron core position 17 of the electromagnetic stirrer installed in the upper part of the mold.
Since the thickness of the long side copper plate 3 does not change, the eddy current density in the casting width direction (X) 10 and the casting direction (Z) 12 increases. Due to this influence, the magnetic field in the casting thickness direction (Y) 11 and the magnetic field in the casting direction (Z) 12 are attenuated, and the values of the first term on the right side and the second term on the right side of Equation (1) are both reduced.
At this time, since the attenuation of the second term on the right side is larger than that on the first term on the right side of the formula (1), the difference is that the casting width direction electromagnetics in the molten metal in the front surface of the electromagnetic stirring device contributing to the swirling stirring force F X becomes larger.

図7に鋳型内の電磁力を測定した実験系を、鋳型側面から見た概略図を示す。溶融金属が注入されていない長辺鋳型1の上に、架台20を組み、その架台からワイヤー21でもって、真鍮板19を吊るした。真鍮板19は、電磁攪拌装置5の鉄心6の厚みよりも100mm高いものを用い、ワイヤー21の長さでもって、該真鍮板19の高さ中心と鉄心6の厚み中心が同じ高さ22になるように調整した。
図8は上記実験系を鋳型上から見た図である。該真鍮板19は、電磁攪拌装置5の鉄心6の前面、かつ、長辺銅板3から15mm程度の位置になるように、吊り下げる位置を調整した。また、真鍮板19には、鉄心6と同じ横幅を持つものを使用した。
FIG. 7 shows a schematic view of the experimental system in which the electromagnetic force in the mold is measured as seen from the side of the mold. A frame 20 was assembled on the long-side mold 1 into which molten metal was not injected, and a brass plate 19 was suspended from the frame with a wire 21. The brass plate 19 is 100 mm higher than the thickness of the iron core 6 of the electromagnetic stirring device 5, and the height of the brass plate 19 and the thickness center of the iron core 6 are the same height 22 with the length of the wire 21. It adjusted so that it might become.
FIG. 8 is a view of the experimental system as viewed from above the mold. The brass plate 19 was adjusted to be hung so that the front surface of the iron core 6 of the electromagnetic stirrer 5 and the position of about 15 mm from the long side copper plate 3 were. Further, the brass plate 19 having the same width as the iron core 6 was used.

図7および図8に示され位置に配置された真鍮板に対して、電磁攪拌装置5のコイル7に三相交流電流を通電することで、真鍮板19に移動磁場がかかり、その移動磁場により真鍮板内に渦電流が発生する。この移動磁場(ベクトル)と渦電流(ベクトル)の相互作用により、電磁力が発生し、ワイヤー21で吊るされた真鍮板19は、鋳型内に溶融金属がある時と同様に、移動磁場の移動方向と同じ鋳造幅方向10へ移動する。
以上のようにして、真鍮板19が移動する方向と反対側に、図示しないばね秤を用意し、その秤を該真鍮板19に取り付けることで、真鍮板が動く力、すなわち電磁攪拌装置5によって真鍮板に働く電磁力を測定した。
By applying a three-phase alternating current to the coil 7 of the electromagnetic stirrer 5 with respect to the brass plate arranged at the position shown in FIGS. 7 and 8, a moving magnetic field is applied to the brass plate 19. Eddy currents are generated in the brass plate. An electromagnetic force is generated by the interaction between the moving magnetic field (vector) and the eddy current (vector), and the brass plate 19 suspended by the wire 21 moves the moving magnetic field in the same manner as when the molten metal is present in the mold. It moves in the same casting width direction 10 as the direction.
As described above, a spring balance (not shown) is prepared on the side opposite to the direction in which the brass plate 19 moves, and the balance is attached to the brass plate 19, so that the force of moving the brass plate, that is, the electromagnetic stirring device 5. The electromagnetic force acting on the brass plate was measured.

幅2000mm、高さ900mm、厚み250mmの鋳型長辺1を、厚み25mmの長辺銅板3、厚み60mmの長辺バックプレート4で構成した時、長辺銅板の長さや導電率、コイル7に流す電流値等を一定にしたまま、電磁攪拌装置5の鉄心6の上端を、長辺銅板3の上端から80mmと130mmの2つの位置でもって、真鍮板に働く電磁力の測定を行った。
図9に示すように、電磁攪拌装置を銅板上端から50mm離した場合の方が、ばね秤が大きな力で引っ張られるという結果を得ることができ、本発明の効果が確認できた。
また、図10に示すように、長辺銅板3の上端から電磁攪拌装置の鉄心6の上端までの距離を80mmから160mmまで変更した時の真鍮板に働く電磁力を測定した。なお、図10では、横軸に長辺銅板3の上端から電磁攪拌装置の鉄心6の上端までの距離を取り、縦軸は長辺銅板3の上端から電磁攪拌装置の鉄心6の上端までの距離が80mmの時の真鍮板に働く電磁力を基準にした電磁力比でもって示している。
通常、電磁攪拌装置は溶融金属の湯面近傍の高さに設置される。一方、鋳型の長辺銅板上端は、溶融金属が鋳型内から溢れないための高さがあればよく、本実施例のように80mm程度以上であれば良い。図10から分かるように、電磁攪拌装置の鉄心の上端と長辺壁の上端との距離は100mm以上、かつ、長辺銅板の半分の長さ以下であることが望ましい。
一方、鉄鋼等の連続鋳造設備では、鋳型上数百mm以上の位置に溶融金属が入ったタンディッシュ等が設置されており、鋳型長辺の高さの上限はタンディッシュ等の周辺設備により決められる。
When the mold long side 1 having a width of 2000 mm, a height of 900 mm, and a thickness of 250 mm is constituted by a long side copper plate 3 having a thickness of 25 mm and a long side back plate 4 having a thickness of 60 mm, the length and conductivity of the long side copper plate are passed through the coil 7. The electromagnetic force acting on the brass plate was measured with the upper end of the iron core 6 of the electromagnetic stirrer 5 at two positions 80 mm and 130 mm from the upper end of the long side copper plate 3 with the current value and the like kept constant.
As shown in FIG. 9, when the electromagnetic stirrer was separated from the upper end of the copper plate by 50 mm, a result that the spring balance was pulled with a large force could be obtained, and the effect of the present invention could be confirmed.
Further, as shown in FIG. 10, the electromagnetic force acting on the brass plate when the distance from the upper end of the long side copper plate 3 to the upper end of the iron core 6 of the electromagnetic stirrer was changed from 80 mm to 160 mm was measured. In FIG. 10, the horizontal axis represents the distance from the upper end of the long side copper plate 3 to the upper end of the iron core 6 of the electromagnetic stirrer, and the vertical axis represents the distance from the upper end of the long side copper plate 3 to the upper end of the iron core 6 of the electromagnetic stirrer. The electromagnetic force ratio based on the electromagnetic force acting on the brass plate when the distance is 80 mm is shown.
Usually, the electromagnetic stirrer is installed at a height near the molten metal surface. On the other hand, the upper end of the long side copper plate of the mold only needs to have a height that prevents the molten metal from overflowing from the mold, and may be about 80 mm or more as in this embodiment. As can be seen from FIG. 10, the distance between the upper end of the iron core of the electromagnetic stirrer and the upper end of the long side wall is preferably 100 mm or more and less than half the length of the long side copper plate.
On the other hand, in continuous casting equipment such as steel, a tundish with molten metal is installed at a position of several hundred mm or more on the mold, and the upper limit of the mold long side is determined by peripheral equipment such as tundish. It is done.

鋳型と電磁攪拌装置、溶融金属の位置を側面から表した図である。It is the figure which represented the position of the casting_mold | template, an electromagnetic stirring apparatus, and a molten metal from the side surface. 鋳型と電磁攪拌装置、溶融金属の位置を上面から表した図である。It is the figure which represented the position of the casting_mold | template, an electromagnetic stirring apparatus, and a molten metal from the upper surface. 溶融金属の攪拌方向を表す図である。It is a figure showing the stirring direction of a molten metal. フレミングの左手の法則を表す図である。It is a figure showing the left hand rule of Fleming. 鋳型に対して電磁攪拌装置の上下位置を変更した時の渦電流分布を表した図である。It is a figure showing eddy current distribution when the up-and-down position of an electromagnetic stirrer is changed to a mold. 鋳型長さ(銅板長さ)を変更した時の渦電流分布を表した図である。It is a figure showing eddy current distribution when changing mold length (copper board length). 電磁力の測定方法を鋳型側面から表した図である。It is the figure which represented the measuring method of the electromagnetic force from the casting_mold | template side surface. 電磁力の測定方法を鋳型上面から表した図である。It is the figure which represented the measuring method of the electromagnetic force from the casting_mold | template upper surface. 電磁力の測定結果を表した図である。It is a figure showing the measurement result of electromagnetic force. 長辺銅板上端から電磁攪拌装置の鉄心上端までの距離に対する電磁力比を表した図である。It is a figure showing the electromagnetic force ratio with respect to the distance from the upper end of a long side copper plate to the iron core upper end of an electromagnetic stirrer.

符号の説明Explanation of symbols

1 長辺鋳型
2 短辺鋳型
3 長辺銅板
4 長辺バックプレート
5 リニアモータ式電磁攪拌装置
6 鉄心
7 コイル
8 溶融金属
9 溶融金属に働く電磁力
10 鋳造幅方向
11 鋳造厚方向
12 鋳造方向
13 電流の向き
14 磁場の向き
15 電磁力の向き
16 渦電流の流れ
17 電磁攪拌装置の鉄心位置
18 湯面(溶融金属上面、メニスカス)
19 真鍮板
20 真鍮板を吊り下げるための架台
21 真鍮板を吊り下げるワイヤー
22 鉄心と真鍮板の高さ中心
1 Long edge mold
2 Short side mold
3 Long side copper plate
4 Long side back plate
5 Linear motor electromagnetic stirring device
6 Iron core
7 coils
8 Molten metal
9 Electromagnetic force acting on molten metal
10 Casting width direction
11 Casting thickness direction
12 Casting direction
13 Direction of current
14 Direction of magnetic field
15 Direction of electromagnetic force
16 Eddy current flow
17 Iron core position of electromagnetic stirrer
18 Hot water surface (upper surface of molten metal, meniscus)
19 Brass plate
20 Stand for hanging brass plate
21 Wire for hanging brass plate
22 Center of height of iron core and brass plate

Claims (2)

対向する一対の長辺壁と一対の短辺壁とからなる連続鋳造用鋳型と、該鋳型内の溶融金属が凝固開始する鋳型高さ方向の位置近傍で、長辺壁に沿って鋳型外側に設置され、鋳型長辺に対して互いに逆方向に進行する移動磁場を発生させて鋳型内の溶融金属を旋回攪拌する一対のリニアモータ式電磁攪拌装置とで構成される溶融金属の電磁攪拌鋳造装置において、
前記一対のリニアモータ式電磁攪拌装置における鉄心の上端と前記長辺壁の上端との距離が100mm以上であることを特徴とする溶融金属の電磁攪拌鋳造装置。
A continuous casting mold composed of a pair of opposed long side walls and a pair of short side walls, and a position in the mold height direction where the molten metal in the mold starts to solidify, along the long side wall, outside the mold Molten metal electromagnetic stir casting apparatus comprising a pair of linear motor electromagnetic stirrers that are installed and generate a moving magnetic field that travels in opposite directions relative to the long side of the mold to swirl and stir the molten metal in the mold In
The molten metal electromagnetic stirring casting apparatus, wherein the distance between the upper end of the iron core and the upper end of the long side wall in the pair of linear motor electromagnetic stirring apparatuses is 100 mm or more.
対向する一対の長辺壁と一対の短辺壁とからなる連続鋳造用鋳型と、該鋳型内の溶融金属が凝固開始する鋳型高さ方向の位置近傍で、長辺壁に沿って鋳型外側に設置され、鋳型長辺に対して互いに逆方向に進行する移動磁場を発生させて鋳型内の溶融金属を旋回攪拌する一対のリニアモータ式電磁攪拌装置とで構成される溶融金属の電磁攪拌鋳造装置において、
上記一対のリニアモータ式電磁攪拌装置における鋳型高さ方向の設置位置を可変にして、該リニアモータ式電磁攪拌装置における鉄心の上端と前記長辺壁の上端との距離を100mm以上にすることを特徴とする溶融金属の電磁攪拌鋳造装置。
A continuous casting mold composed of a pair of opposed long side walls and a pair of short side walls, and a position in the mold height direction where the molten metal in the mold starts to solidify, along the long side wall, outside the mold Molten metal electromagnetic stir casting apparatus comprising a pair of linear motor electromagnetic stirrers that are installed and generate a moving magnetic field that travels in opposite directions relative to the long side of the mold to swirl and stir the molten metal in the mold In
The installation position in the mold height direction in the pair of linear motor electromagnetic stirrers is variable, and the distance between the upper end of the iron core and the upper end of the long side wall in the linear motor electromagnetic stirrer is 100 mm or more. An electromagnetic stir casting apparatus for molten metal.
JP2004050876A 2004-02-26 2004-02-26 Electromagnetic-stirring casting apparatus Pending JP2005238276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004050876A JP2005238276A (en) 2004-02-26 2004-02-26 Electromagnetic-stirring casting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004050876A JP2005238276A (en) 2004-02-26 2004-02-26 Electromagnetic-stirring casting apparatus

Publications (1)

Publication Number Publication Date
JP2005238276A true JP2005238276A (en) 2005-09-08

Family

ID=35020558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004050876A Pending JP2005238276A (en) 2004-02-26 2004-02-26 Electromagnetic-stirring casting apparatus

Country Status (1)

Country Link
JP (1) JP2005238276A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041203A1 (en) * 2004-10-15 2006-04-20 Nippon Steel Corporation Induction stirring coil
JP2007098398A (en) * 2005-09-30 2007-04-19 Nippon Steel Corp Apparatus for controlling fluidity of molten steel
JP2009535216A (en) * 2006-04-25 2009-10-01 アーベーベー・アーベー Stirrer
JP2011218408A (en) * 2010-04-09 2011-11-04 Nippon Steel Corp Continuous casting method of metal
JP2011218409A (en) * 2010-04-09 2011-11-04 Nippon Steel Corp Continuous casting method of metal
CN114769524A (en) * 2022-05-13 2022-07-22 北京科技大学 A agitating unit for steel ingot production

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041203A1 (en) * 2004-10-15 2006-04-20 Nippon Steel Corporation Induction stirring coil
JP2006110598A (en) * 2004-10-15 2006-04-27 Nippon Steel Corp Electromagnetic stirring coil
JP4519600B2 (en) * 2004-10-15 2010-08-04 新日本製鐵株式会社 Electromagnetic stirring coil
US8047265B2 (en) 2004-10-15 2011-11-01 Nippon Steel Corporation Electromagnetic stirrer coil
JP2007098398A (en) * 2005-09-30 2007-04-19 Nippon Steel Corp Apparatus for controlling fluidity of molten steel
JP4669367B2 (en) * 2005-09-30 2011-04-13 新日本製鐵株式会社 Molten steel flow control device
JP2009535216A (en) * 2006-04-25 2009-10-01 アーベーベー・アーベー Stirrer
JP2011218408A (en) * 2010-04-09 2011-11-04 Nippon Steel Corp Continuous casting method of metal
JP2011218409A (en) * 2010-04-09 2011-11-04 Nippon Steel Corp Continuous casting method of metal
CN114769524A (en) * 2022-05-13 2022-07-22 北京科技大学 A agitating unit for steel ingot production

Similar Documents

Publication Publication Date Title
US7305271B2 (en) Device and a method for continuous casting
JP4824502B2 (en) Metal vertical continuous casting method using electromagnetic field and casting equipment for its implementation
US7975753B2 (en) Method and apparatus for controlling the flow of molten steel in a mould
JPS6188950A (en) Molten-metal electromagnetic agitator
KR100586665B1 (en) Electromagnetic braking device for a smelting metal in a continuous casting installation
US7628196B2 (en) Method and apparatus for continuous casting of metals
KR102354306B1 (en) electronic stirrer
JP4438705B2 (en) Steel continuous casting method
JP2018103198A (en) Continuous casting method
JP4441435B2 (en) Linear moving magnetic field type electromagnetic stirrer
JPH10305353A (en) Continuous molding of steel
JP4591156B2 (en) Steel continuous casting method
JP2005238276A (en) Electromagnetic-stirring casting apparatus
JP4669367B2 (en) Molten steel flow control device
JP2000000648A (en) Method and apparatus for continuously casting steel
JP7273303B2 (en) Continuous casting method and mold equipment
JP7273304B2 (en) Continuous casting method and mold equipment
JP2008173644A (en) Electromagnetic coil for continuous casting mold
JP7436820B2 (en) Continuous casting method
JP3102967B2 (en) Method of braking molten metal in continuous casting mold and electromagnetic stirring device combined with brake
WO1993004801A1 (en) Method and apparatus for the electromagnetic stirring of molten metals in a wheel caster
JP2001219255A (en) Flow control apparatus for molten metal
JP2011031251A (en) Continuous casting method for steel
JPH10193057A (en) Method for continuously casting steel slag

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060907

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071116

A131 Notification of reasons for refusal

Effective date: 20071127

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Effective date: 20090512

Free format text: JAPANESE INTERMEDIATE CODE: A02