JP2005221335A - Distance operation method of range sensor - Google Patents

Distance operation method of range sensor Download PDF

Info

Publication number
JP2005221335A
JP2005221335A JP2004028378A JP2004028378A JP2005221335A JP 2005221335 A JP2005221335 A JP 2005221335A JP 2004028378 A JP2004028378 A JP 2004028378A JP 2004028378 A JP2004028378 A JP 2004028378A JP 2005221335 A JP2005221335 A JP 2005221335A
Authority
JP
Japan
Prior art keywords
light
distance
distance calculation
range sensor
response delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004028378A
Other languages
Japanese (ja)
Other versions
JP4279168B2 (en
Inventor
Toshihiro Mori
利宏 森
Hirohiko Kawada
浩彦 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuyo Automatic Co Ltd
Original Assignee
Hokuyo Automatic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuyo Automatic Co Ltd filed Critical Hokuyo Automatic Co Ltd
Priority to JP2004028378A priority Critical patent/JP4279168B2/en
Publication of JP2005221335A publication Critical patent/JP2005221335A/en
Application granted granted Critical
Publication of JP4279168B2 publication Critical patent/JP4279168B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent wrong operation of distance operation caused by reflected light from a reflecting object having a high reflectance out of a detectable area, when operating the distance to a reflecting object in a detection area or in the detectable area by modulating by two kinds of frequencies. <P>SOLUTION: Light is modulated alternately by two different kinds of frequencies in each one scanning or in each one step, and emission in one step is suspended as long as a prescribed time zone T to the degree of five wavelengths of modulated light, and a response delay t of the reflected light is detected from time deviation from an emission suspension time of the reflected light. It is determined whether a distance operated value calculated at the same one step time is in a proper range or not based on the detection signal, and when determined that the value is in the proper range, the distance operated value is determined and outputted, and when determined that the value is not in the proper range, the maximum distance of the detection area is outputted. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、レーザ光やLED光などの光と、この光を回転ミラーでスキャニングして反射物より帰ってくる反射光との位相差から反射物までの距離を演算するAM変調方式のレンジセンサの距離演算方法に関する。   The present invention provides an AM modulation type range sensor that calculates the distance to a reflector from the phase difference between the light such as laser light and LED light and the reflected light returned from the reflector by scanning the light with a rotating mirror. This relates to a distance calculation method.

工場等の床上を無軌道に走行する無人搬送車(AGV)や回転式掃除ロボットなどに搭載されるスキャナ型レンジセンサ(距離計測センサ)の光波距離計測法は、光を反射物に向けて投射してから帰ってくるまでの遅延時間を計測して反射物までの距離を求めるTOF方式(例えば、特許文献1参照)と、反射物に投射した光と反射物からの反射光との位相差から反射物までの距離を演算するAM変調方式(例えば、特許文献2参照)が一般的である。AM変調方式のレンジセンサの基本構造例と計測法を、図4及び図5に基づき説明する。   The light wave distance measurement method of a scanner type range sensor (distance measurement sensor) mounted on an automated guided vehicle (AGV) or a rotary cleaning robot that runs on a floor in a factory or the like projects light toward a reflector. From the phase difference between the light projected on the reflector and the reflected light from the reflector. An AM modulation method (for example, see Patent Document 2) that calculates a distance to a reflector is common. A basic structure example and measurement method of an AM modulation type range sensor will be described with reference to FIGS.

図4のレンジセンサ11は、投光光学系1と受光光学系2をモータ3で高速回転させて投光光学系1からレーザ光やLED光の光A1を図示しない回転ミラーを使って水平方向に360度スキャニングし、周辺の二次元エリアにある反射物10からの反射光A2を受光光学系2で受光して受光回路4に出力し、距離演算回路5で演算して距離Lを算出する。投光光学系1の投光回路6で光A1を所定の周波数で変調し、この光A1と反射光A2の位相との差から距離Lを算出する。特定の周波数(通常、40MHz以上)で変調された光が反射物10に当たって反射して帰ってきた場合、図5に示すように光の速度と距離により位相差φを持つ。この位相差φの値は光の速度と距離Lに依存するため、位相差φを検出することで距離Lが演算される。周波数変調された光A1を回転ミラーにより水平方向に360度スキャニングすることにより二次元エリアの距離演算ができる。また、光A1を360度スキャニングしつつ上下方向角度を連続的に増減させることにより、三次元エリアの距離演算も可能である。   The range sensor 11 shown in FIG. 4 rotates the light projecting optical system 1 and the light receiving optical system 2 at a high speed with a motor 3 to horizontally output laser light or LED light A1 from the light projecting optical system 1 using a rotating mirror (not shown). 360 degrees, and the reflected light A2 from the reflector 10 in the surrounding two-dimensional area is received by the light receiving optical system 2 and output to the light receiving circuit 4, and the distance calculating circuit 5 calculates the distance L. . The light projection circuit 6 of the light projection optical system 1 modulates the light A1 at a predetermined frequency, and calculates the distance L from the difference between the phase of the light A1 and the reflected light A2. When light modulated at a specific frequency (usually 40 MHz or more) hits the reflector 10 and returns, as shown in FIG. 5, it has a phase difference φ depending on the speed and distance of the light. Since the value of the phase difference φ depends on the speed of light and the distance L, the distance L is calculated by detecting the phase difference φ. The distance of the two-dimensional area can be calculated by scanning the frequency-modulated light A1 by 360 degrees in the horizontal direction using a rotating mirror. In addition, the distance of the three-dimensional area can be calculated by continuously increasing or decreasing the vertical angle while scanning the light A1 by 360 degrees.

このようなAM変調方式のレンジセンサは、変調周波数の1波長の距離を誤って0mと判断することがある。例えば、50MHzの周波数で変調を加えた場合、光の1波長は約3mであり、レンジセンサが距離演算する検出エリアの最大検出距離が1.5mとすると、このレンジセンサでは動作の安定性を保証するために検出距離1.5mの2倍の3mにある反射物の距離も演算できるように光量余裕度を持たせている。しかし、このレンジセンサの場合、3m近傍にステンレス板などの高反射率のものがあると、反射光のレベルが高いために高レベルの反射光を受光して0mと距離演算し、3m近傍の反射物が極近くにあると判断することがある。このような誤動作を防ぐため、光を複数の周波数で変調して、各周波数の光で演算された距離が一致したときのみ距離演算値が適正であると判断することが行われている。   Such an AM modulation type range sensor may erroneously determine that the distance of one wavelength of the modulation frequency is 0 m. For example, when modulation is performed at a frequency of 50 MHz, if one wavelength of light is about 3 m and the maximum detection distance of the detection area where the range sensor calculates the distance is 1.5 m, the operation of this range sensor is stable. In order to guarantee, a light amount margin is provided so that the distance of the reflecting object at 3 m which is twice the detection distance of 1.5 m can be calculated. However, in the case of this range sensor, if there is a high reflectivity such as a stainless steel plate in the vicinity of 3 m, the level of the reflected light is high. It may be determined that the reflector is very close. In order to prevent such a malfunction, light is modulated with a plurality of frequencies, and it is determined that the distance calculation value is appropriate only when the distances calculated with the light of each frequency match.

変調周波数の種類が多いほど誤動作する確率が下がるが、その反面、複数の周波数での距離演算値の一致を取る必要があって演算時間が長くなり、応答速度が遅くなる。クレーンの位置決めやシートの巻取り厚を測定するレーザー距離計のように光をスキャニングしない場合は応答速度に余裕があり、3種類以上の周波数で光を変調して距離演算しても問題とならないが、スキャナ型のレンジセンサでは1スキャン毎に周波数を変えるため、スキャン単位で応答速度が遅くなる。特に、ロボットなどの床上を移動する可動機器に使用されるレンジセンサにおいては、計測する度に各周波数での距離演算値が変わり、結果として精度が悪くなることから、変調周波数は2種類までが限度である。   As the number of modulation frequencies increases, the probability of malfunctioning decreases, but on the other hand, it is necessary to match the distance calculation values at a plurality of frequencies, so that the calculation time becomes longer and the response speed becomes slower. If you do not scan light like a laser rangefinder that measures the positioning of the crane and the winding thickness of the sheet, there is a margin in response speed, and even if you calculate the distance by modulating the light with three or more frequencies, there is no problem. However, since the frequency is changed for each scan in the scanner type range sensor, the response speed becomes slow in units of scans. In particular, in a range sensor used for a mobile device such as a robot that moves on the floor, the distance calculation value at each frequency changes each time measurement is performed, resulting in poor accuracy. It is a limit.

2種類の周波数で変調するスキャン型レンジセンサは、例えば図6に示すように所定の半径の検出エリアE1とその約2倍の半径の検出可能エリアE2を持ち、2種類の周波数で変調した光を360度スキャニングする。1スキャン時での1ステップ角θは、例えば0.5°、1スキャン時間は25msであり、1ステップ毎に光A1が発光されて投射され、1ステップ毎に距離演算が行われる。この場合、1スキャン毎に周波数を変え、連続する2スキャン時の同じステップでの演算距離が一致したと判断されるときに平均値の距離演算値データを出力する。そのため、一致演算のための1回目と2回目の計2回のスキャンと、反射物とスキャンのタイミングずれ分の1スキャンを加えて、1ステップで計測に要する応答時間は3スキャンであり、1スキャン時間25msの2Dレンジセンサの応答時間は75msである。
特開平09−229637号公報 特開平06−230111号公報
For example, as shown in FIG. 6, a scan type range sensor that modulates at two types of frequencies has a detection area E1 having a predetermined radius and a detectable area E2 having a radius that is approximately twice that of the detection area E1. Is scanned 360 degrees. One step angle θ in one scan is 0.5 °, for example, and one scan time is 25 ms. Light A1 is emitted and projected every step, and distance calculation is performed every step. In this case, the frequency is changed for each scan, and the average distance calculation value data is output when it is determined that the calculation distances in the same step in two consecutive scans coincide. Therefore, the first and second scans for coincidence calculation and one scan corresponding to the timing difference between the reflector and the scan are added, and the response time required for measurement in one step is 3 scans. The response time of a 2D range sensor with a scan time of 25 ms is 75 ms.
JP 09-229637 A Japanese Patent Laid-Open No. 06-230111

[0002]段に記載したTOF方式の距離計は、AM変調方式のような距離を間違うことはないが、AM変調方式と同じような10mm程度の距離精度を実現するには3.3psの時間分解能を有する計算をしなければならない。この場合、フォトダイオードや増幅器の周波数帯域が数GHz以上必要で、非常に高価な部品を使わなくてはならず、しかも、設計が非常に困難となる。その点、2種類の周波数で光を変調するAM変調方式のレンジセンサは高価な部品を使用しなくて済み実用的であるが、次の現実的な問題がある。   The TOF type distance meter described in the [0002] stage does not make a mistake in the distance as in the AM modulation method, but it takes 3.3 ps to achieve a distance accuracy of about 10 mm as in the AM modulation method. Calculations with resolution must be made. In this case, the frequency band of the photodiode or amplifier is required to be several GHz or more, very expensive parts must be used, and the design becomes very difficult. In that respect, an AM modulation type range sensor that modulates light at two types of frequencies does not require expensive parts and is practical, but has the following practical problems.

例えば、50MHzと43MHzの2種類の周波数で光を変調する場合、両周波数で変調された両光の波長の整数倍で、両光の波長がほぼ一致する最小公倍数のところで両光による距離演算値の差が小さくなり、誤動作することがある。図7に示すように、43MHzで変調した光の6波長分と50MHzで変調した光の7波長分が、両光の波長の最小公倍数のところとなり、ここでの波長分の差αは1MH位相差で約7度となる。また、最小公倍数のところまでの距離は約21mである。検出エリアの最大距離が1.5mのレンジセンサにあっては、21mの距離は反射光の帰ってこない検出エリア外の遠距離なのが通常であるが、21m近傍の距離に回帰反射板やステンレス板などの高反射率の反射物がある場合、反射光が高レベルとなって帰ってくる。このような距離21m近傍の反射物が平面の場合、2周波数の位相差約7度の差は検出可能であるが、例えば図8に示すように、ステンレス板などの反射率のよい反射物10aで反射した直接反射光Kaと、同じく反射率のよい壁などの反射物10bで反射した間接反射光Kbの合成波が帰ってくると、2周波数の位相差演算が大きく狂うことがある。この場合、21m先の反射物が0m近傍にあると判断し、距離を誤認識することになる。   For example, when modulating light at two frequencies of 50 MHz and 43 MHz, the distance calculation value by both lights at an integral multiple of the wavelengths of both lights modulated at both frequencies and at the least common multiple at which the wavelengths of both lights substantially coincide. The difference between the two becomes smaller and malfunctions may occur. As shown in FIG. 7, 6 wavelengths of light modulated at 43 MHz and 7 wavelengths of light modulated at 50 MHz are the least common multiple of the wavelengths of the two lights, and the difference α for the wavelength here is about 1 MHz. The phase difference is about 7 degrees. The distance to the least common multiple is about 21 m. In a range sensor with a maximum detection area distance of 1.5 m, the distance of 21 m is usually a long distance outside the detection area where the reflected light does not return. If there is a highly reflective reflector such as a plate, the reflected light will return to a high level. When such a reflector near the distance of 21 m is a plane, a difference of about 7 degrees in phase difference between two frequencies can be detected. For example, as shown in FIG. 8, a reflector 10a having a good reflectance such as a stainless steel plate. When the combined wave of the directly reflected light Ka reflected by the light and the indirect reflected light Kb reflected by the reflecting object 10b such as a wall having a good reflectivity returns, the phase difference calculation of the two frequencies may be greatly out of order. In this case, it is determined that the reflecting object 21 m ahead is in the vicinity of 0 m, and the distance is erroneously recognized.

上述のような2周波数に伴う誤動作発生を抑制する手段として、2周波数の差を10倍以上と極端に大きく設定することが考えられる。このようにすれば誤動作する距離が実用上に問題ない距離まで延びる。しかし、10倍以上の周波数差の信号を増幅する広帯域のアンプ設計が困難になり、特に周波数帯域が広くなるほどノイズ成分が増え、感度を高く設定することが困難になり、有効な検出距離が短くなると共に検出精度が悪くなる。   As a means for suppressing the occurrence of malfunctions associated with the two frequencies as described above, it is conceivable to set the difference between the two frequencies to an extremely large value of 10 times or more. In this way, the malfunctioning distance is extended to a distance that does not cause a problem in practice. However, it is difficult to design a wide-band amplifier that amplifies a signal having a frequency difference of 10 times or more. In particular, the wider the frequency band, the more noise components increase, making it difficult to set the sensitivity high, and the effective detection distance is short. And the detection accuracy deteriorates.

本発明の目的とするところは、2種類の周波数で変調して検出エリア内の反射物までの距離演算を行う際の検出エリア外の高反射率反射物からの光による誤動作発生を低減させて、信頼度を向上させたAM変調方式のレンジセンサを提供することにある。   The object of the present invention is to reduce the occurrence of malfunction due to light from a highly reflective reflector outside the detection area when calculating the distance to the reflector in the detection area by modulating at two different frequencies. Another object of the present invention is to provide an AM modulation type range sensor with improved reliability.

本発明は上記目的を達成するため、周波数変調した光を1ステップ毎発光してスキャニングし、被投射体からの反射光との位相差から被投射体までの距離を計測するレンジセンサにおいて、光を1スキャン毎に、又は、1ステップ毎に異なる2種類の周波数で交互に変調すると共に、1ステップでの発光を距離演算に影響を与えない所定の時間帯だけ停止して、発光停止時間帯と反射光の発光停止時間帯の時間ずれから反射光の応答遅れを検出し、この検出信号に基づいて同じ1ステップ時に算出した距離演算値が適正範囲にあるかを判断することを特徴とする。   In order to achieve the above object, the present invention provides a range sensor that emits frequency-modulated light for each step and scans it, and measures the distance to the projection object from the phase difference with the reflected light from the projection object. Is alternately modulated at two different frequencies for each scan or for each step, and light emission in one step is stopped for a predetermined time period that does not affect the distance calculation, and the light emission stop time period The response delay of the reflected light is detected from the time difference between the emission stop time zone of the reflected light and the reflected light, and it is determined whether the distance calculation value calculated at the same one step is within an appropriate range based on this detection signal. .

ここで、レンジセンサは2種類の周波数で変調した光を距離演算に使用したスキャン型のAM変調方式レンジセンサで、1スキャン毎に2種類の変調周波数を交互に変える、或いは、1スキャン内の1ステップ毎に2種類の変調周波数を交互に変える。前者の場合は、1スキャン時における全ステップの1ステップ毎に同じ1種類の周波数で変調された光が発光され、反射光との位相差から距離演算が行われて、次に1スキャンに移行する際に変調周波数が別の1種類に変えられる。後者の場合は、1スキャン時における1ステップ毎に2種類の変調周波数が交互に変えられ、それぞれの1ステップ毎に周波数変調された光が発光され、反射光との位相差から距離演算が行われる。いずれにおいても、1ステップで発光して投射される光の発光を所定の時間帯で一時停止させ、この投射光における発光停止の時間帯と反射物から帰ってきた反射光における発光停止の時間帯の時間ずれで、光信号の応答遅れを検出し、光信号応答遅れが光の何波長分であるかを算出する。このような1ステップでの発光停止の時間帯設定は、1ステップの最初に設けるか、最後又は中間に設けるなど任意である。また、発光停止時間は光振動の立上がりと立下りを考慮して、変調光の5波長程度の時間が適当である。   Here, the range sensor is a scan-type AM modulation type range sensor that uses light modulated with two types of frequencies for distance calculation, or alternately changes two types of modulation frequencies for each scan, or within one scan. Two kinds of modulation frequencies are alternately changed for each step. In the former case, light modulated at the same type of frequency is emitted for each step of all steps in one scan, distance calculation is performed from the phase difference with the reflected light, and then the process proceeds to one scan. In this case, the modulation frequency is changed to another type. In the latter case, two types of modulation frequencies are alternately changed for each step in one scan, and the frequency-modulated light is emitted for each step, and the distance calculation is performed from the phase difference with the reflected light. Is called. In any case, the emission of the light emitted and projected in one step is temporarily stopped in a predetermined time zone, and the emission stop time zone in the projection light and the emission stop time zone in the reflected light returned from the reflector The response delay of the optical signal is detected with the time lag, and the number of wavelengths of the optical signal response delay is calculated. Such a time zone setting for stopping light emission in one step is arbitrary, such as providing at the beginning of one step, or at the end or in the middle. The light emission stop time is appropriately about 5 wavelengths of the modulated light in consideration of the rise and fall of light vibration.

例えば、光の1/2波長に相当する最大距離の検出エリアと1波長に相当する検出可能エリアを有するレンジセンサにおいては、1ステップ時の光信号応答遅れ(時間)が光の1波長より小さければ、反射物が検出エリアか検出エリアの2倍の検出可能エリアに存在して、このときの1ステップの距離演算値が適正な範囲にあると判断できる。また、光信号応答遅れ光の1波長より大きければ、反射物が検出可能エリアのさらに外にあって、そのときの1ステップの距離演算値が間違う可能性の高い不適正なものと判断できる。このように適正・不適正を判断することで、検出可能エリア外の高反射率の反射物からの反射光で距離演算を誤ることがなくなり、レンジセンサの信頼性と性能を向上させることができる。   For example, in a range sensor having a detection area with a maximum distance corresponding to ½ wavelength of light and a detectable area corresponding to one wavelength, the optical signal response delay (time) at one step should be smaller than one wavelength of light. For example, it is possible to determine that the reflecting object exists in the detection area or in the detectable area twice as large as the detection area, and that the one-step distance calculation value at this time is within an appropriate range. Further, if it is larger than one wavelength of the optical signal response delayed light, it can be determined that the reflecting object is further outside the detectable area, and the one-step distance calculation value at that time is highly likely to be incorrect. By determining appropriateness / inappropriateness in this way, it is possible to improve the reliability and performance of the range sensor without erroneously calculating the distance with reflected light from a highly reflective object outside the detectable area. .

本発明においては、2種類の周波数で変調された光による同じ距離演算方向での1ステップ時の距離演算値の差が所定の基準値以下で、それぞれの光信号の応答遅れが距離演算を間違う可能性がないと予め設定された距離での所定の最大応答遅れ以下のときのみ、距離演算値が適正範囲にあると判断して出力することができる。   In the present invention, the difference in the distance calculation value at one step in the same distance calculation direction due to the light modulated with two kinds of frequencies is less than a predetermined reference value, and the response delay of each optical signal is wrong in the distance calculation. If there is no possibility, it can be determined that the distance calculation value is within the appropriate range and output only when it is less than or equal to a predetermined maximum response delay at a preset distance.

ここで、1ステップ時の距離演算値の差が所定の基準値以下の基準値とは、2種類の周波数で変調された光による1ステップ時の距離演算値が一致、又は、ほぼ一致して適正範囲にあると判断できる閾値である。また、距離演算を間違う可能性がないと予め設定された距離とは、検出可能エリアの距離に相当し、検出可能エリアの最大距離が光の1波長に相当するとした場合に、光信号の応答遅れが光の1波長に相当する最大応答遅れ以下のときに、反射物が検出可能エリア内にあって演算距離を間違う可能性がなくて、距離演算値が適正範囲にあると判断する。このように距離演算値の差の基準値と光信号応答遅れの検出信号に基づいて距離演算値の適正を判断することで、誤判断が無くなり、尚一層に信頼性が良くなる。   Here, the reference value in which the difference in the distance calculation value at one step is equal to or less than a predetermined reference value is the same or almost the same as the distance calculation value at one step by light modulated with two types of frequencies. It is a threshold value that can be determined to be within the appropriate range. If the distance calculation is not likely to be wrong, the preset distance corresponds to the distance of the detectable area, and the response of the optical signal when the maximum distance of the detectable area corresponds to one wavelength of light. When the delay is less than or equal to the maximum response delay corresponding to one wavelength of light, it is determined that the calculated distance is within the appropriate range because there is no possibility that the reflecting object is in the detectable area and the calculation distance is incorrect. Thus, by determining the appropriateness of the distance calculation value based on the reference value of the difference between the distance calculation values and the detection signal of the optical signal response delay, erroneous determination is eliminated, and the reliability is further improved.

また、本発明は、2種類の周波数で変調された光による同じ距離演算方向での1ステップ時の距離演算値の差が所定の基準値より大きく、及び、それぞれの光信号の応答遅れが距離演算を間違う可能性がないと予め設定された距離での所定の最大応答遅れより大きくなるときに、レンジセンサ検出エリアの最大距離を出力することができる。   Further, according to the present invention, the difference between the distance calculation values at one step in the same distance calculation direction due to the light modulated with two kinds of frequencies is larger than a predetermined reference value, and the response delay of each optical signal is the distance. If there is no possibility of mistaken calculation, the maximum distance of the range sensor detection area can be output when the predetermined maximum response delay at a preset distance becomes larger.

この2種類の光による1ステップ時の距離演算値の差が基準値より大きくなるのは検出可能エリア外の距離演算のときであり、光信号応答遅れが所定の最大応答遅れより大きくなるのも検出可能エリア外の距離演算のときで、いずれも距離演算を間違い易いときであり、ここでは一義的に検出エリアの最大距離を出力する。このようにすることで、間違った距離演算値を出力することが無くなり、さらに信頼性が良くなる。   The difference in the distance calculation value at one step due to these two types of light is larger than the reference value when calculating the distance outside the detectable area, and the optical signal response delay is larger than the predetermined maximum response delay. When calculating the distance outside the detectable area, the distance calculation is easy to make a mistake. Here, the maximum distance of the detection area is uniquely output. By doing so, an incorrect distance calculation value is not output, and the reliability is further improved.

また、本発明の場合、1ステップ時の発光停止時間帯では距離演算動作をせず、この発光停止時間帯で検出される光信号を距離演算と応答遅れ時間の演算を誤らせる干渉光と認識して処理することができる。   In the case of the present invention, the distance calculation operation is not performed in the light emission stop time zone at the time of one step, and the optical signal detected in this light emission stop time zone is recognized as interference light that misleads the distance calculation and the response delay time calculation. Can be processed.

1ステップ時の距離演算は当然ながら発光の時間帯で行われ、発光停止時間帯では積極的に距離演算動作をしないようにする。このようにすることで、1ステップの発光停止時間帯に外来光が干渉光として入射し、この干渉光が距離演算に使用する光と似た周波数である場合に、干渉光で距離演算をする誤動作が回避できる。また、発光停止時間帯の光信号を干渉光と認識して処理することで、干渉光で光信号応答遅れの演算を間違う虞が無くなり、さらに、干渉光と認識することで干渉光に伴うトラブル発生を低減させる処理が可能となる。   The distance calculation at one step is naturally performed in the light emission time zone, and the distance calculation operation is not actively performed in the light emission stop time zone. In this way, when the extraneous light is incident as interference light in the one-step emission stop time zone, and the interference light has a frequency similar to the light used for the distance calculation, the distance calculation is performed with the interference light. Malfunctions can be avoided. In addition, by recognizing and processing the optical signal in the emission stop time zone as interference light, there is no risk of erroneous calculation of the optical signal response delay due to the interference light. It is possible to perform processing to reduce the occurrence.

本発明によれば、レンジセンサの検出エリアの約2倍の検出可能エリアの外の近傍又は遠方に高反射率の反射物が存在して、この反射物から反射光が高い光レベルで帰ってきても、反射光の応答遅れの演算値に基づき反射物までの距離演算値が適正でないと判断することで、誤った距離演算値を出力する誤動作が回避できて、高価な回路部品を使用することなくレンジセンサの信頼性を上げ、高性能化を図ることができる。   According to the present invention, there is a highly reflective reflector in the vicinity or far away from the detectable area that is approximately twice the detection area of the range sensor, and the reflected light returns from this reflector at a high light level. However, by determining that the distance calculation value to the reflecting object is not appropriate based on the calculation value of the response delay of the reflected light, it is possible to avoid a malfunction that outputs an incorrect distance calculation value and use expensive circuit components. Without increasing the reliability of the range sensor, the performance can be improved.

以下、本発明の実施の形態を図1〜図3を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1及び図2は、光を2種類の周波数で1スキャン毎に交互に変調して360度スキャニングするAM変調方式のレンジセンサを説明するもので、図1は光の投光波形と受光波形を示し、図2は1スキャン毎に光を2種類の周波数で交互に変調していることを示している。   1 and 2 illustrate an AM modulation type range sensor that alternately modulates light at two different frequencies for each scan and scans 360 degrees. FIG. 1 shows a light projection waveform and a light reception waveform. FIG. 2 shows that light is alternately modulated at two different frequencies for each scan.

図1の投光波形は投射光A1であり、受光波形は投射光A1が反射物で反射して帰ってきた反射光A2である。投射光A1が360度スキャニングする1スキャンの間に720ステップあり、1ステップ毎に変調光が発光して投射される。1スキャン毎に交互に変わる変調周波数は、例えば50MHzと43MHzであり、1スキャン時の回転ミラーの回転速度は2400rpm、1スキャン時間は25ms、1ステップの距離演算時間の最大は34.7μsである。   The light projection waveform in FIG. 1 is the projection light A1, and the light reception waveform is the reflected light A2 that is returned when the projection light A1 is reflected by the reflector. There are 720 steps during one scan in which the projection light A1 is scanned 360 degrees, and the modulated light is emitted and projected at every step. The modulation frequency that alternates every scan is, for example, 50 MHz and 43 MHz. The rotation speed of the rotating mirror at one scan is 2400 rpm, the scan time is 25 ms, and the maximum distance calculation time for one step is 34.7 μs. .

ここで、本発明においては、1ステップの光の発光(発振)時間帯の中に一時的に発光停止させる発光停止時間帯Tを設ける。発光停止時間帯Tは、1ステップの距離演算に影響を与えない所定の短時間にしてある。例えば、変調周波数が50MHzの場合、変調光の波長は20ns、1演算ステップに使用される信号数は1735個(波長)であり、この場合に5波長分の時間帯で発光停止時間帯Tを設定し、発光停止時間帯以外の発光時間帯の1735−5=1730個の光信号のみで1ステップでの距離演算を行う。この距離演算は計測点数が多いほど距離精度がよく、1730個の計測点数は良好な距離精度を得るに十分である。また、変調周波数が43MHzの場合、変調光の波長は23.3ns、1演算ステップの信号数は1485個(波長)であり、この場合も5波長分の時間帯で発光停止時間帯Tを設定し、発光停止時間帯以外の発光時間帯の1485−5=1480個の光信号のみで1ステップの距離演算を行う。この場合の1480個の計測点数も、良好な距離精度を得るに十分である。   Here, in the present invention, a light emission stop time period T for temporarily stopping light emission is provided in the light emission (oscillation) time period of one step. The light emission stop time zone T is set to a predetermined short time that does not affect the one-step distance calculation. For example, when the modulation frequency is 50 MHz, the wavelength of the modulated light is 20 ns, and the number of signals used in one calculation step is 1735 (wavelength). In this case, the emission stop time zone T is set in the time zone of 5 wavelengths. The distance is calculated in one step using only 1735-5 = 1730 light signals in the light emission time period other than the light emission stop time period. In this distance calculation, the greater the number of measurement points, the better the distance accuracy, and 1730 measurement points are sufficient to obtain good distance accuracy. Further, when the modulation frequency is 43 MHz, the wavelength of the modulated light is 23.3 ns, and the number of signals in one calculation step is 1485 (wavelength). In this case as well, the light emission stop time zone T is set in the time zone of 5 wavelengths. Then, one-step distance calculation is performed using only 1485-5 = 1480 optical signals in the light emission time periods other than the light emission stop time period. The number of 1480 measurement points in this case is sufficient to obtain good distance accuracy.

なお、発光停止時間帯Tは、変調光の1波長分に設定することが理論上に考えられる。しかし、反射光を受光して演算する受光回路の周波数特性にもよるが、1波長の発光停止(消灯)では波形が無いのか振動波形なのかの判断がつかず、特に光信号のレベルが低いときの区別が困難となることから、発光停止時間帯Tは5波長程度が実際的である。5波長の発光停止時間帯Tは、変調周波数が50MHzの場合で約100nsであり、1ステップの演算応答時間34.7μsに比べて無視できる範囲であり、距離演算精度に影響を及ぼさない。このことは変調周波数が43MHzにおいても同様である。   It is theoretically possible to set the emission stop time zone T to one wavelength of the modulated light. However, depending on the frequency characteristics of the light receiving circuit that receives and calculates the reflected light, it is impossible to determine whether there is no waveform or vibration waveform when light emission is stopped (turned off) at one wavelength, and the level of the optical signal is particularly low. Since it is difficult to distinguish the time, the light emission stop time zone T is practically about 5 wavelengths. The emission stop time zone T of 5 wavelengths is about 100 ns when the modulation frequency is 50 MHz, and is negligible compared to the computation response time of 34.7 μs in one step, and does not affect the distance computation accuracy. This is the same when the modulation frequency is 43 MHz.

また、1スキャン時の発光停止時間帯以外で行う距離演算は、投射光A1と反射光A2の位相差を求める計測法で行う。この計測法は、ミキサ(掛け算器)を使って位相差信号をDCレベルに変換して求める方法と、光信号を直接AD変換し、デジタルの数値解析演算(フーリエ級数演算)で求める方法が有効である。   Further, the distance calculation performed outside the emission stop time zone during one scan is performed by a measurement method for obtaining the phase difference between the projection light A1 and the reflected light A2. For this measurement method, a method of obtaining a phase difference signal by converting it into a DC level using a mixer (multiplier) and a method of obtaining a digital numerical analysis operation (Fourier series operation) by directly AD-converting an optical signal are effective. It is.

本発明の場合、1ステップ毎に上記距離演算を行うと共に、図1の投光波形の投射光A1が発光(自発光)停止してから、反射光A2の受光波形が消えるまでの時間t、又は、自発光開始から受光波形検出までの時間tを計測して、この時間tが光信号の何波長遅れに相当するかを検出する。この光信号応答遅れ(時間t)は、反射物までの距離に比例することから、この応答遅れが何波長あるかを求めることで、反射物がレンジセンサの検出エリア、検出可能エリアに存在するかどうかが判断でき、検出可能エリア外の距離演算を間違い易いエリアでの距離演算値であるかどうかが判断できる。このような判断を加えた本発明方法による距離演算動作を、次に説明する。   In the case of the present invention, the distance calculation is performed for each step, and the time t from when the projection light A1 of the light projection waveform in FIG. 1 stops emitting light (self-emission) until the light reception waveform of the reflected light A2 disappears, Alternatively, the time t from the start of self-emission to the detection of the received light waveform is measured, and the wavelength delay of the optical signal corresponding to the time t is detected. Since this optical signal response delay (time t) is proportional to the distance to the reflecting object, the reflecting object exists in the detection area and the detectable area of the range sensor by determining how many wavelengths this response delay is. It is possible to determine whether or not the distance calculation value is an area in which the distance calculation outside the detectable area is likely to be mistaken. The distance calculation operation according to the method of the present invention with such a determination will be described next.

1スキャンの1ステップ毎に距離演算をして距離演算値を記憶する。この記憶させた距離演算値と、2スキャン目の同じステップにおける距離演算値とを比較し、両距離演算値の差が所定の基準値(両値が一致、ほぼ一致すると判断できる閾値)以下の場合に、両距離演算値の平均値を距離演算値として出力する。3スキャン目も同様に2スキャン目の距離演算値と比較して距離を求める。この演算方法による応答遅れは2スキャン分の50ms、出力応答は25msである。   Distance calculation is performed for each step of one scan, and the distance calculation value is stored. The stored distance calculation value is compared with the distance calculation value in the same step of the second scan, and the difference between both distance calculation values is less than or equal to a predetermined reference value (threshold value that can be determined that both values match or substantially match). In this case, the average value of both distance calculation values is output as the distance calculation value. Similarly, the distance for the third scan is obtained by comparing with the distance calculation value for the second scan. The response delay by this calculation method is 50 ms for two scans, and the output response is 25 ms.

変調周波数が50MHzと43MHzの場合、変調光の波長は50MHzで2.96m、43MHzで3.44mになる。ここで、レンジセンサの検出エリアの距離が1.5mの場合は、検出エリアの2倍の3mの検出可能エリア内では両周波数による距離演算値の差が基準値以下であり、検出可能エリア外では両周波数による距離演算値の差が基準値を超えて大きくなる。また、両周波数の波長の整数倍の距離に高反射率の反射物があると、両周波数による距離演算値の差が基準値より小さくなることがある。   When the modulation frequencies are 50 MHz and 43 MHz, the wavelength of the modulated light is 2.96 m at 50 MHz and 3.44 m at 43 MHz. Here, when the distance of the detection area of the range sensor is 1.5 m, the difference between the distance calculation values by both frequencies is less than the reference value in the 3 m detectable area that is twice the detection area, and is outside the detectable area. Then, the difference of the distance calculation value by both frequencies becomes large exceeding a reference value. In addition, when there is a reflector having a high reflectance at a distance that is an integral multiple of the wavelength of both frequencies, the difference between the distance calculation values for both frequencies may be smaller than the reference value.

各ステップで距離演算をし、光信号の応答遅れを検出して、光信号の応答遅れが変調光の1波長に相当する最大応答遅れ以下であれば、反射物が検出エリアか検出可能エリアのいずれかあって演算距離を間違う可能性がなく、距離演算値が適正範囲にあると判断する。このような判断が1スキャン毎に50MHzと43MHzの各変調周波数で行われる。その結果、距離演算を間違う可能性のある検出エリア外での距離演算値の算出と出力を回避することができ、このように回避することで検出エリア外の高反射率の反射物や、両周波数の波長の整数倍の距離にある高反射率の反射物を0mと誤判断することが無くなり、距離演算の信頼性が良くなる。   The distance is calculated in each step, the response delay of the optical signal is detected, and if the response delay of the optical signal is less than or equal to the maximum response delay corresponding to one wavelength of the modulated light, the reflected object is either in the detection area or in the detectable area. There is no possibility that the calculation distance is wrong, and it is determined that the distance calculation value is within an appropriate range. Such a determination is made at each modulation frequency of 50 MHz and 43 MHz for each scan. As a result, it is possible to avoid the calculation and output of the distance calculation value outside the detection area that may cause the distance calculation to be incorrect. A reflective object having a high reflectance at a distance that is an integral multiple of the wavelength of the frequency is not erroneously determined to be 0 m, and the reliability of the distance calculation is improved.

また、各変調周波数による各ステップでの光信号応答遅れが、各変調周波数の波長の1波長より大きい場合は、高反射率の反射物が検出可能エリア外にあって距離演算を間違う可能性が高いと判断し、このときは検出エリアの最大距離を各ステップでの最終距離演算値(1.5m)として出力する。このようにしても間違いとはならず、また、距離演算をしない点を作らないこととなり、360度全方向の距離演算を実現する。   Also, if the optical signal response delay in each step due to each modulation frequency is larger than one of the wavelengths of each modulation frequency, there is a possibility that the reflective object with high reflectivity is outside the detectable area and the distance calculation is wrong. In this case, the maximum distance of the detection area is output as a final distance calculation value (1.5 m) in each step. Even if it does in this way, it will not become a mistake and the point which does not perform distance calculation will not be made, but the distance calculation of 360 degree | times will be implement | achieved.

また、各変調周波数による各ステップの発光停止時間帯Tでは、当然ながら距離演算できる光信号が無くて距離演算動作ができないが、始めから発光停止時間帯Tでは距離演算動作をしないようにソフトを組む。このようにすることで、1ステップの発光停止時間帯Tに他のレンジセンサなどからの外来光が入射し、この外来光が距離演算に使用する変調光と似た周波数で相互に干渉を起す干渉光である場合に、干渉光で距離演算をする誤動作が回避できる。かつ、発光停止時間帯Tに入射する光信号を干渉光としてソフト的に認識することで、光信号応答遅れの演算が容易となり、この演算を間違う虞が無くなる。   In addition, in the light emission stop time zone T of each step at each modulation frequency, there is of course no optical signal that can calculate the distance and the distance calculation operation cannot be performed. Assemble. In this way, extraneous light from another range sensor or the like enters in the one-step emission stop time period T, and the extraneous light causes mutual interference at a frequency similar to the modulated light used for distance calculation. In the case of the interference light, it is possible to avoid a malfunction of calculating the distance using the interference light. In addition, by optically recognizing an optical signal incident in the light emission stop time zone T as interference light, the calculation of the optical signal response delay is facilitated, and there is no possibility that the calculation is mistaken.

以上の実施形態は、2種類の変調周波数を1スキャン毎に交互に切換えるレンジセンサである。図3は、2種類の変調周波数を1ステップ毎に交互に切換えるレンジセンサを説明するものである。このレンジセンサの場合、1ステップで50MHzで変調すると、次の1ステップのときは43MHzで変調し、このような50MHzと43MHzの変調を交互に繰り返すようにしている。そして、全ての各ステップで図1の場合と同様に発光停止時間帯Tを設けて距離演算動作をさせる。   The above embodiment is a range sensor that alternately switches two types of modulation frequencies for each scan. FIG. 3 illustrates a range sensor that alternately switches two types of modulation frequencies for each step. In the case of this range sensor, if modulation is performed at 50 MHz in one step, modulation is performed at 43 MHz in the next one step, and such 50 MHz and 43 MHz modulation is alternately repeated. Then, in all the steps, the light emission stop time zone T is provided as in the case of FIG. 1, and the distance calculation operation is performed.

このような1ステップ毎に2種類の変調周波数を交互に切換えるレンジセンサは、1スキャン毎に切換えるレンジセンサに比べて応答性が格段に速くなり、瞬時の適正な距離演算能力に優れることから、レンジセンサ全体が高速回転して移動する用途に有効である。   Such a range sensor that alternately switches between two types of modulation frequency for each step is much faster in response than a range sensor that switches for each scan, and has an excellent instantaneous distance calculation capability. This is effective for applications where the entire range sensor rotates at high speed.

本発明方法を説明するための投射光の投光波形と反射光の受光波形の波形図である。It is a wave form diagram of the light projection waveform of the projection light, and the light reception waveform of reflected light for demonstrating the method of this invention. 第1の実施の形態を説明するための距離演算動作パターン図である。It is a distance calculation operation | movement pattern figure for demonstrating 1st Embodiment. 第2の実施の形態を説明するための投射光スキャン図である。It is a projection light scan figure for demonstrating 2nd Embodiment. 一般的なレンジセンサの要部のブロック図である。It is a block diagram of the principal part of a general range sensor. AM変調方式レンジセンサの距離演算法を説明するための波形図である。It is a wave form diagram for demonstrating the distance calculation method of AM modulation system range sensor. レンジセンサの検出エリアE1と検出可能エリアE2を示す平面図である。It is a top view which shows the detection area E1 and the detectable area E2 of a range sensor. 2種類の周波数で変調した変調光の波形図である。It is a wave form diagram of modulated light modulated with two kinds of frequencies. レンジセンサが距離演算を間違い易い状況を説明するための概略的な図である。It is a schematic diagram for demonstrating the situation where a range sensor is easy to make a mistake in distance calculation.

符号の説明Explanation of symbols

1 投光回路
2 投光光学系
3 受光光学系
4 受光回路
5 距離演算回路
10 反射物
A1 投射光
A2 反射光
T 発光停止時間
t 光の応答遅れ(時間)
DESCRIPTION OF SYMBOLS 1 Light projection circuit 2 Light projection optical system 3 Light reception optical system 4 Light reception circuit 5 Distance calculation circuit 10 Reflection object A1 Projection light A2 Reflection light T Light emission stop time t Light response delay (time)

Claims (4)

周波数変調した光を1ステップ毎発光してスキャニングし、被投射体からの反射光との位相差から被投射体までの距離を計測するレンジセンサにおいて、
光を1スキャン毎に、又は、1ステップ毎に異なる2種類の周波数で交互に変調すると共に、1ステップでの発光を距離演算に影響を与えない所定の時間帯だけ停止して、この発光停止時間帯と反射光の発光停止時間帯の時間ずれから反射光の応答遅れを検出し、この検出信号に基づいて同じ1ステップで算出した距離演算値が適正範囲にあるかを判断することを特徴とするレンジセンサの距離演算方法。
In a range sensor that emits and scans frequency-modulated light step by step, and measures the distance to the projection object from the phase difference from the reflected light from the projection object.
The light is alternately modulated at two different frequencies for each scan or for each step, and the light emission in one step is stopped for a predetermined time period that does not affect the distance calculation, and the light emission is stopped. A response delay of the reflected light is detected from a time difference between the time zone and the emission stop time zone of the reflected light, and it is determined whether the distance calculation value calculated in the same one step is within an appropriate range based on the detection signal. The range sensor distance calculation method.
2種類の周波数で変調された光による同じ距離演算方向での1ステップ時の距離演算値の差が所定の基準値以下で、それぞれの光信号の応答遅れが距離演算を間違う可能性がないと予め設定された距離での所定の最大応答遅れ以下のときのみ、距離演算値が適正範囲にあると判断して出力することを特徴とする請求項1記載のレンジセンサの距離演算方法。   The difference between the distance calculation values at one step in the same distance calculation direction due to the light modulated at two kinds of frequencies is less than a predetermined reference value, and there is no possibility that the response delay of each optical signal is wrong in the distance calculation. 2. The distance calculation method for a range sensor according to claim 1, wherein the distance calculation value is determined to be within an appropriate range and output only when the delay time is equal to or less than a predetermined maximum response delay at a preset distance. 2種類の周波数で変調された光による同じ距離演算方向での1ステップ時の距離演算値の差が所定の基準値より大きく、及び、それぞれの光信号の応答遅れが距離演算を間違う可能性がないと予め設定された距離での所定の最大応答遅れより大きくなるときに、レンジセンサ検出エリアの最大距離を出力することを特徴とする請求項1又は2記載のレンジセンサの距離演算方法。   There is a possibility that the difference in the distance calculation value at one step in the same distance calculation direction due to the light modulated at two kinds of frequencies is larger than a predetermined reference value, and the response delay of each optical signal may cause the distance calculation to be wrong. 3. The range sensor distance calculation method according to claim 1, wherein the maximum distance of the range sensor detection area is output when a predetermined maximum response delay at a preset distance is exceeded. 1ステップ時の発光停止時間帯では距離演算動作をせず、この発光停止時間帯で検出される光信号を距離演算と光信号応答遅れの演算を誤らせる干渉光と認識して処理することを特徴とする請求項1〜3のいずれか1記載のレンジセンサの距離演算方法。   The distance calculation operation is not performed in the light emission stop time zone at the time of one step, and the optical signal detected in this light emission stop time zone is recognized and processed as interference light that misleads the distance calculation and the optical signal response delay calculation. The distance calculation method of the range sensor according to claim 1.
JP2004028378A 2004-02-04 2004-02-04 Range sensor distance calculation method Expired - Lifetime JP4279168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004028378A JP4279168B2 (en) 2004-02-04 2004-02-04 Range sensor distance calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004028378A JP4279168B2 (en) 2004-02-04 2004-02-04 Range sensor distance calculation method

Publications (2)

Publication Number Publication Date
JP2005221335A true JP2005221335A (en) 2005-08-18
JP4279168B2 JP4279168B2 (en) 2009-06-17

Family

ID=34997093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004028378A Expired - Lifetime JP4279168B2 (en) 2004-02-04 2004-02-04 Range sensor distance calculation method

Country Status (1)

Country Link
JP (1) JP4279168B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241259A (en) * 2007-03-23 2008-10-09 Fujifilm Corp Distance measuring device and distance measuring method
JP2010014502A (en) * 2008-07-02 2010-01-21 Murata Mach Ltd Optical range finder
GB2505960A (en) * 2012-09-18 2014-03-19 Guidance Ip Ltd Determining the distance of reflectors to an automated guided vehicle
JP2018529955A (en) * 2015-09-28 2018-10-11 バラジャ ピーティーワイ リミテッドBaraja Pty Ltd Spatial profiling system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096778A (en) * 1996-09-24 1998-04-14 Kubota Corp Distance measuring device
JP2000121726A (en) * 1998-10-16 2000-04-28 Denso Corp Distance measuring apparatus
JP2000206244A (en) * 1999-01-20 2000-07-28 Kubota Corp Distance-measuring apparatus
JP2000214260A (en) * 1999-01-20 2000-08-04 Kubota Corp Distance measuring device
JP2002538418A (en) * 1999-02-22 2002-11-12 ビジダイン インク Laser displacement measuring device
JP2003090881A (en) * 2001-09-19 2003-03-28 Nec Toshiba Space System Kk Laser range finding device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096778A (en) * 1996-09-24 1998-04-14 Kubota Corp Distance measuring device
JP2000121726A (en) * 1998-10-16 2000-04-28 Denso Corp Distance measuring apparatus
JP2000206244A (en) * 1999-01-20 2000-07-28 Kubota Corp Distance-measuring apparatus
JP2000214260A (en) * 1999-01-20 2000-08-04 Kubota Corp Distance measuring device
JP2002538418A (en) * 1999-02-22 2002-11-12 ビジダイン インク Laser displacement measuring device
JP2003090881A (en) * 2001-09-19 2003-03-28 Nec Toshiba Space System Kk Laser range finding device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241259A (en) * 2007-03-23 2008-10-09 Fujifilm Corp Distance measuring device and distance measuring method
JP2010014502A (en) * 2008-07-02 2010-01-21 Murata Mach Ltd Optical range finder
GB2505960A (en) * 2012-09-18 2014-03-19 Guidance Ip Ltd Determining the distance of reflectors to an automated guided vehicle
GB2505960B (en) * 2012-09-18 2015-01-07 Guidance Ip Ltd Determining the position of an automated guided vehicle
JP2018529955A (en) * 2015-09-28 2018-10-11 バラジャ ピーティーワイ リミテッドBaraja Pty Ltd Spatial profiling system and method

Also Published As

Publication number Publication date
JP4279168B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
US9207074B2 (en) Distance measurement apparatus, and distance measurement method
JP4894360B2 (en) Radar equipment
JP5428804B2 (en) Object detection system
JP2012185029A (en) Radar system
JP5716719B2 (en) Optical radar device
JP2008267920A (en) Laser range finding device and laser range finding method
JP5540217B2 (en) Laser scan sensor
US5724123A (en) Distance measuring equipment for detecting a scanning direction
JP2008232887A (en) Object sensing apparatus and irradiation axis adjustment method
JP2011232155A (en) Object recognition device and program
US7167008B2 (en) Microwave sensor for object detection based on reflected microwaves
JP2010071725A (en) Laser radar and boundary monitoring method by the same
JP2002090454A (en) Obstacle detection sensor for automated guided vehicle
JP4279168B2 (en) Range sensor distance calculation method
JP6186863B2 (en) Ranging device and program
JP7062739B2 (en) Distance measurement type photoelectric sensor and target detection method
JP2014071028A (en) Laser radar device
JP2005221333A (en) Range sensor and mutual interference suppression method of range sensor
JP6598517B2 (en) Reverse running vehicle detection system using light waves
KR102359132B1 (en) Lidar scanner
GB2505960A (en) Determining the distance of reflectors to an automated guided vehicle
US20240094392A1 (en) Optical sensing system, optical sensing device, and optical sensing method
JP2765291B2 (en) Laser radar device
JP2020148633A (en) Object detector
KR20170140005A (en) An Object Identification Device using Laser Scanner with Ghost Object Identification Function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090305

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4279168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term