JP2005221288A - Measuring method of processed face property by projection method and its device - Google Patents

Measuring method of processed face property by projection method and its device Download PDF

Info

Publication number
JP2005221288A
JP2005221288A JP2004027618A JP2004027618A JP2005221288A JP 2005221288 A JP2005221288 A JP 2005221288A JP 2004027618 A JP2004027618 A JP 2004027618A JP 2004027618 A JP2004027618 A JP 2004027618A JP 2005221288 A JP2005221288 A JP 2005221288A
Authority
JP
Japan
Prior art keywords
measured
processing
projection
processed
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004027618A
Other languages
Japanese (ja)
Inventor
Chiaki Tanaka
千秋 田中
Jakub Michal Sandak
ヤクブ ミハル サンダック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004027618A priority Critical patent/JP2005221288A/en
Publication of JP2005221288A publication Critical patent/JP2005221288A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for detecting the surface state of a processed face during feed processing performed by a processing means of a processing machine, by a projection method wherein a measuring sensor is out of contact with the processed face. <P>SOLUTION: This measuring method of a processed face property by the projection method is characterized by providing a shielding body 3 for forming a processed surface 2 shadow based on light source 1 irradiation in order to detect the surface state of a processed measuring object, detecting by an imaging means 4 the projection state such as the length 9 and the height 10 of the shadow 8 formed by the shielding body 3, and operating the processed surface state of the measuring object surface 2 by an operation processing device 5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、測定対象とする木材、金属、プラスティックを始めとする諸材料の表面に影を造影し、その造影した影の長さ、深さ、高さ、幅等を投影法により測定して被測定物の加工表面状態を検出する技術に関する。 The present invention contrasts shadows on the surface of various materials such as wood, metal, and plastic to be measured, and measures the length, depth, height, width, etc. of the contrasted shadows by a projection method. The present invention relates to a technique for detecting a processed surface state of an object to be measured.

上記技術としては、例えば、特許文献1に示すように、測定センサーである触針を加工面に接触させ、触針を支持するアームの上下動を電気信号に変換して被測定物の加工表面状態を測定する方法が一般的であった。また、特許文献2に示されるように、測定センサーであるレーザー光を加工面に照射し、レーザー光の照射状況から加工面の状態を非接触で測定する方法が提案されている。
特開平06−258003(特許第2853794号公報) 特開平08−320222号公報
As the above technique, for example, as shown in Patent Document 1, a stylus that is a measurement sensor is brought into contact with a processing surface, and the vertical movement of an arm that supports the stylus is converted into an electric signal to process the surface of the object to be measured. The method of measuring the state was common. Further, as shown in Patent Document 2, a method has been proposed in which a laser beam, which is a measurement sensor, is irradiated onto a processing surface, and the state of the processing surface is measured in a non-contact manner from the irradiation state of the laser light.
Japanese Patent Laid-Open No. 06-258003 (Japanese Patent No. 2853794) Japanese Patent Laid-Open No. 08-320222

特許文献1に示すように、上記原理の測定法では、触針の曲率半径により測定の範囲が規制されるだけでなく、触針が加工面に接触するため、木材のように軟質な材料の場合、その加工面を触針で傷付ける場合がある。その上触針は低速でしか移動することができず、加工機械の加工手段で送り加工中に測定することが、実用上困難な場合があった。
特許文献2のようなレーザー光による測定は、非接触測定であるため被測定面を傷付けることはないが、金属、プラスティックのような均質材料に対しては、照射面でレーザー光が拡散することがなく、精密に測定することができるものの、木材のような多孔質材料に対してはレーザー光が照射面で拡散し、測定の中心部が不鮮明となるため、測定精度が低下する恐れがあった。
As shown in Patent Document 1, in the measurement method based on the above principle, not only the measurement range is restricted by the radius of curvature of the stylus, but also because the stylus contacts the processing surface, a soft material such as wood is used. In some cases, the processed surface may be damaged with a stylus. In addition, the stylus can only move at a low speed, and it may be practically difficult to measure during feed processing by the processing means of the processing machine.
The measurement with laser light as in Patent Document 2 is non-contact measurement, so the surface to be measured is not damaged, but for homogeneous materials such as metal and plastic, the laser light diffuses on the irradiation surface. However, for porous materials such as wood, the laser beam diffuses on the irradiated surface and the center of the measurement becomes unclear, which may reduce the measurement accuracy. It was.

本発明が前述の状況に鑑み、解決しようとするところは、加工機械の加工手段で送り加工中はもとより、送り加工中以外においても加工面の表面状態を、測定センサーを加工面に接触させない投影法により検出する手段が要望される点にあり、ここに解決課題がある。 In view of the above-described situation, the present invention intends to solve the problem that the surface state of the processed surface is not brought into contact with the processing surface while the processing means of the processing machine is not performing the feed processing but also during the feed processing. A means for detecting by the method is desired, and there is a problem to be solved here.

本発明は、前述の課題解決のために、第一に、加工された被測定物の表面状態を検出するのに、光源照射に基づき加工表面に影を造影する造影手段を設け、該造影手段により形成される影の長さ、高さ、深さ等の投影状態を検出し、該投影状態の検出結果に基づき被測定物の加工表面状態を演算することを特徴とする投影法による測定方法により、加工面性状を、センサーを加工面に接触させることなく測定できる。 In order to solve the above-mentioned problem, the present invention firstly provides a contrast means for contrasting a shadow on a processed surface based on light source irradiation to detect the surface state of the processed object to be measured. A projection method, comprising: detecting a projection state such as a length, height, depth, etc. of a shadow formed by the step, and calculating a processed surface state of an object to be measured based on the detection result of the projection state Thus, the processed surface properties can be measured without bringing the sensor into contact with the processed surface.

従って、上述の投影法による加工面性状の測定方法により、各種材料の加工面表面状態を傷付けることなく精度良く測定できる。 Therefore, it is possible to accurately measure the machined surface state of various materials without damaging the machined surface properties of the various materials by the method for measuring the machined surface properties by the projection method described above.

第二に、被測定物の加工表面より一定間隙をおいて遮蔽体を設け、その後方に、遮蔽体の影を造影する光源を設けることにより、被測定物表面上に所望の影を造影することができて測定を可能にできる。 Second, a shield is provided with a certain gap from the processed surface of the object to be measured, and a light source for contrasting the shadow of the shield is provided behind the object to image a desired shadow on the surface of the object to be measured. Can be measured.

第三に、造影手段により形成される影の長さ、高さ、深さ等の投影状態を撮像手段で検出し、該撮像手段の検出結果に基づき被測定物の加工表面状態を演算することにより、加工面表面状態を非接触で検出することができる。 Third, the projection state such as the length, height, and depth of the shadow formed by the contrast means is detected by the imaging means, and the processed surface state of the object to be measured is calculated based on the detection result of the imaging means. Thus, the surface state of the processed surface can be detected in a non-contact manner.

第四に、被測定物と撮像手段の間に集光レンズを介在させることにより、造影手段により形成される影の長さ、高さ、深さ等の投影状態を拡大することができ、被測定物の加工表面状態をより精密に演算して精度良く測定することができる。 Fourth, by interposing a condenser lens between the object to be measured and the imaging means, the projection state such as the length, height, depth, etc. of the shadow formed by the contrast means can be enlarged. The processed surface state of the measurement object can be calculated more accurately and measured accurately.

第五に、被測定物を加工機械の加工手段で送り加工してなるものにおいて、該被測定物の加工表面を加工手段の加工工程下手側において露出させるように構成し、該露出した加工表面を連続的に検出するのに、光源照射に基づき加工表面に影を造影する造影手段を設け、該造影手段により形成される影の長さ、高さ、深さ等の投影状態を検出し、該投影状態の検出結果に基づき被測定物の加工表面状態を演算することを特徴とする投影法による加工面性状の測定装置を設置することにより、生産工場等において次々と加工される被測定物の加工面性状を傷付けることなく生産工程の中で効率良く測定することができる。 Fifth, in the case where the object to be measured is fed by the processing means of the processing machine, the processing surface of the object to be measured is configured to be exposed on the lower process side of the processing means, and the exposed processing surface In order to detect continuously, a contrast means for contrasting the shadow on the processing surface based on light source irradiation is provided, and the projection state such as the length, height, and depth of the shadow formed by the contrast means is detected, An object to be processed one after another in a production factory or the like by installing a measuring device for measuring the surface of the object to be processed by the projection method, which calculates the processed surface state of the object to be measured based on the detection result of the projection state Can be measured efficiently in the production process without damaging the machined surface properties.

請求項1の発明によれば、加工された被測定物の表面状態を検出する手段は投影法である。従って、特許文献1に示すような触針を用いる場合と異なり、特許文献2に示すレーザー光の場合と同様にセンサーを加工面に接触させることなく測定することができる。しかし、レーザー光の場合と異なり、被測定物上に生じた影線は、木材のような不均質で多孔質材料に対してでも鮮明であるため、精密な測定が遂行できる。 According to the invention of claim 1, the means for detecting the surface state of the processed object to be measured is a projection method. Therefore, unlike the case of using a stylus as shown in Patent Document 1, it is possible to perform measurement without bringing the sensor into contact with the processing surface as in the case of the laser light shown in Patent Document 2. However, unlike the case of laser light, the shadow lines generated on the object to be measured are inhomogeneous such as wood and are clear even for porous materials, so that precise measurement can be performed.

しかも、非接触測定であるため、被測定物表面を傷付けることはない。従って、木材や紙等を始めとする表面が軟質で不均質な材料の加工面性状を傷付けることなく測定できる。 And since it is a non-contact measurement, the to-be-measured object surface is not damaged. Therefore, it is possible to measure without damaging the processed surface properties of materials such as wood and paper whose surfaces are soft and inhomogeneous.

請求項2の発明によれば、被測定物の加工表面より一定間隙をおいて遮蔽体を設け、その後方に遮蔽体の影を造影する光源を設けることにより被測定物の加工表面上に所望の影を造影することができる。また、被測定物の加工表面上に影を造影するための光源を被測定物表面に対して自由な角度で設けるようにした場合には更に利便性が増して、被測定物や加工機械等の状況等に対応可能となり測定環境の影響を受けることは少ない。 According to the second aspect of the present invention, the shield is provided with a certain gap from the processed surface of the object to be measured, and the light source for contrasting the shadow of the shield is provided behind the desired object on the processed surface of the object to be measured. The shadow can be imaged. Further, when a light source for contrasting the shadow on the processing surface of the object to be measured is provided at a free angle with respect to the surface of the object to be measured, the convenience is further increased, and the object to be measured, the processing machine, etc. It is possible to respond to the situation, etc., and is less affected by the measurement environment.

請求項3の発明によれば、造影手段により形成される影の長さ、高さ、深さ等の投影状態を撮像手段で検出し、該撮像手段の検出結果に基づき被測定物の加工表面状態を演算することができる。撮像手段は、光源の性質等により、アナログ、ディジタル形式、白黒、カラー等の手段を使用することができる。演算処理により、被測定物の長さ、幅方向について、該加工面性状を三次元表示することができ、加工面性状を評価する上で有利である。 According to the invention of claim 3, the projection state such as the length, height, and depth of the shadow formed by the contrast means is detected by the image pickup means, and the processed surface of the object to be measured based on the detection result of the image pickup means The state can be calculated. The imaging means can use means such as analog, digital format, black and white, and color depending on the nature of the light source. By the arithmetic processing, the machined surface properties can be displayed in three dimensions in the length and width directions of the object to be measured, which is advantageous in evaluating the machined surface properties.

請求項4の発明によれば、 加工表面と撮像手段の間に集光レンズを介在させることにより、造影手段により形成される影の長さ、高さ、深さ等の投影状態を拡大することができ、被測定物の加工表面状態をより精密に演算することができ、精巧な加工表面状態に対しても精度良く測定対応できる。 According to the invention of claim 4, the projection state such as the length, height, depth, etc. of the shadow formed by the contrast means is enlarged by interposing a condenser lens between the processing surface and the imaging means. Therefore, the machining surface state of the object to be measured can be calculated more precisely, and measurement can be performed with high accuracy even for an elaborate machining surface state.

請求項5の発明によれば、被測定物を加工機械の加工手段で送り加工してなるものにおいて、該被測定物の加工表面を加工手段の加工工程下手側において露出させるように構成し、該露出した加工表面を連続的に検出するのに、光源照射に基づき加工表面に影を造影する造影手段を設け、該造影手段により形成される影の長さ、高さ、深さ等の投影状態を検出し、該投影状態の検出結果に基づき被測定物の加工表面状態を演算することを特徴とする投影法による加工面性状の測定装置を設置することにより、加工面性状を被測定物の長さ、幅方向について測定することができる。従って、生産現場で加工手段を停止することなく連続的に加工面性状を検出評価することができ、生産性向上に有利である。 According to the invention of claim 5, the object to be measured is fed by the processing means of the processing machine, and the processing surface of the object to be measured is exposed on the lower side of the processing step of the processing means, In order to continuously detect the exposed processed surface, a contrast means for contrasting the shadow on the processed surface based on light source irradiation is provided, and projection of the length, height, depth, etc. of the shadow formed by the contrast means is provided. The machined surface property is measured by installing a measurement device for the machined surface property by the projection method, which detects the state and calculates the machined surface state of the object to be measured based on the detection result of the projection state. Can be measured in the length and width directions. Accordingly, it is possible to continuously detect and evaluate the processed surface properties without stopping the processing means at the production site, which is advantageous for improving the productivity.

以下、本発明の実施形態を添付した図面に基づいて詳細に説明する。
図1に、投影法による加工面性状の測定機器の概要を示している。この測定機器は、被測定物表面(2)上に影(8)を造影する造影手段(1)、加工表面より一定間隙をおいて造影手段(1)と被測定物表面(2)の間に設けた遮蔽体(3)、被測定物表面上の投影状態を検出するための撮像手段(4)と、条件によって被測定物表面(2)と撮像手段(4)の間に設けることができる集光レンズ(6)、撮像手段(4)による検出結果を演算処理する処理装置(5)により構成されている。
前記造影手段(1)としては、白色光ランプ等の各種光源、また、撮像手段(4)としては、ディジタルカメラ、ビデオ等があり、演算処理装置(5)は各種演算処理ソフトを保有し、演算処理が遂行される。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows an outline of a measuring device for processing surface properties by the projection method. This measuring device includes a contrast means (1) for contrasting a shadow (8) on a surface (2) to be measured, and a space between the contrast means (1) and the surface (2) to be measured with a certain gap from the processing surface. A shield (3) provided on the imaging device, an imaging means (4) for detecting a projection state on the surface of the object to be measured, and provided between the surface of the object to be measured (2) and the imaging means (4) depending on conditions. And a condensing lens (6) that can be processed, and a processing device (5) that performs arithmetic processing on the detection result of the imaging means (4).
The contrast means (1) includes various light sources such as a white light lamp, and the imaging means (4) includes a digital camera, a video, etc. The arithmetic processing unit (5) has various arithmetic processing software, Arithmetic processing is performed.

前記造影手段(1)により光線(7)を照射するのに、照射された光線(7)と被測定物表面(2)間に、ある角度(α)を持たせて照射し、被測定物表面(2)より一定間隙をおいて造影手段(1)と被測定物表面(2)の間に設けた遮蔽体(3)の影(8)を被測定物表面(2)に投影する。被測定物に形成された影(8)の長さ(9)、高さ(10)等の投影状態を撮像手段(4)により検出した後、演算処理装置(5)で影の長さ、高さ、深さ等を演算する。
平行光線(7)と被測定物表面(2)が作る角度(α)が大きいと、測定できる高さ範囲が大きくなり、角度(α)が小さいと、測定できる高さ範囲が小さくなるが、演算処理精度が向上するので測定精度が良好となる。
In order to irradiate the light beam (7) by the contrast means (1), the object to be measured is irradiated with an angle (α) between the irradiated light beam (7) and the surface of the object to be measured (2). The shadow (8) of the shield (3) provided between the contrast means (1) and the surface of the object to be measured (2) is projected on the surface of the object to be measured (2) with a certain gap from the surface (2). After the projection state such as the length (9) and height (10) of the shadow (8) formed on the object to be measured is detected by the imaging means (4), the length of the shadow is calculated by the arithmetic processing unit (5). Calculate height, depth, etc.
If the angle (α) formed by the parallel light beam (7) and the surface of the object to be measured (2) is large, the height range that can be measured increases. If the angle (α) is small, the height range that can be measured decreases. Since the processing accuracy is improved, the measurement accuracy is improved.

図2は、本発明の造影手段により、木材のような不均質で多孔質な材料の加工表面(2)に形成された加工面性状を撮像手段(4)により検出した状態の投影曲線を示しており、図3は特許文献2に示すようなレーザー光線を前記同様に木材のような不均質で多孔質な材料の加工面(2)に照射することにより得られた加工面性状を撮像手段により検出した曲線を示すものである。
図2と図3を比較することにより、前記造影手段(1)により、被測定物表面(2)に形成された加工面性状を示す図2の投影曲線は、レーザー光線を被測定物表面に照射することにより得られる加工面性状を示す図3の曲線より精巧であることは、明白である。
従って、本発明による測定方法は、従来のレーザー光線を利用する測定法より精密であり測定対象の材料如何に係わらずその表面の凹凸状態(表面粗さ)を精度良く測定できる。
FIG. 2 shows a projection curve in a state in which the processed surface property formed on the processed surface (2) of a heterogeneous porous material such as wood is detected by the imaging means (4) by the imaging means of the present invention. FIG. 3 shows a processed surface property obtained by irradiating a processed surface (2) of a non-homogeneous porous material such as wood with a laser beam as shown in Patent Document 2, as described above. The detected curve is shown.
By comparing FIG. 2 and FIG. 3, the projection curve of FIG. 2 showing the processed surface properties formed on the surface of the object to be measured (2) by the contrast means (1) irradiates the surface of the object to be measured. It is clear that the processing surface properties obtained by doing so are more elaborate than the curve of FIG.
Therefore, the measurement method according to the present invention is more precise than the conventional measurement method using a laser beam, and can accurately measure the surface roughness (surface roughness) regardless of the material to be measured.

図4に、被測定物表面(2)に形成された影の長さ、高さ等の投影状態を撮像手段(4)により検出し、演算処理装置(5)の演算処理ソフトで影の長さ、高さ等を演算した結果を示す。この曲線は、被測定物の一断面の加工面性状を、長さ(9)、高さ(10)について示した二次元的な結果である In FIG. 4, the projection state such as the length and height of the shadow formed on the surface of the object to be measured (2) is detected by the imaging means (4), and the shadow length is calculated by the processing software of the processing unit (5). The result of calculating the height and the like is shown. This curve is a two-dimensional result showing the processed surface properties of one section of the object to be measured with respect to the length (9) and the height (10).

上記は説明の便宜上、被測定物表面(2)の加工面性状を部分的に測定した状態で説明したが、加工面性状を被測定物表面(2)の全面に対して計測して表示するためには、被測定物、又は、遮蔽体・撮像手段等の投影測定手段を被測定物の幅方向に目的の距離だけ移動し、上記と同じように照射・投影・撮像・演算処理を行う。この操作を多数回行うことにより、被測定物の全表面について影(8)の長さ(9)、高さ(10)等を演算処理する。図5は、以上の操作の後、影を利用して測定した深さ長さ(9)、高さ(10)等の加工面性状を加工全表面に対して図示した結果である。被測定物表面の性状を三次元的に表示している。本測定における演算処理ソフトは、被測定物全表面について長さ、高さ等の性状・形状を演算・表記できるものである。 For convenience of explanation, the above description has been made in a state in which the processed surface property of the surface to be measured (2) is partially measured. However, the processed surface property is measured and displayed on the entire surface of the surface to be measured (2). For this purpose, the measurement object or the projection measurement means such as the shield / imaging means is moved by a target distance in the width direction of the measurement object, and irradiation / projection / imaging / calculation processing is performed in the same manner as described above. . By performing this operation many times, the length (9), height (10), etc. of the shadow (8) are calculated for the entire surface of the object to be measured. FIG. 5 shows the result of illustrating the processing surface properties such as the depth length (9) and the height (10) measured by using the shadow after the above operation with respect to the entire processing surface. The property of the surface of the object to be measured is displayed three-dimensionally. The calculation processing software in this measurement is capable of calculating / notifying properties / shapes such as length and height for the entire surface of the object to be measured.

図6、7、8に、本特許請求の範囲で示す測定位置と、該測定結果を示す。図6は、請求項5の一例を示しており、木材の表面削り用の加工工具(12)を装備する加工機械の加工工程下手側に配設した、ロータリーエンコーダー(14)を介して駆動するコンベアー(13)の上方に、光源(1)、遮蔽体(3)、撮像手段(4)をそれぞれのポジションに位置させ、撮像手段(4)を図示省略の演算処理装置(5)に接続し、必要に応じて集光レンズ(6)を位置させる。この構成により加工工具(12)で表面を削り加工された被測定物表面(2)は加工機械の加工工程下手側に移送され、コンベアー(13)に搬送されながら、コンベアー(13)と遮蔽体(3)との通過空間に至ると、光源(1)からの照射を受けて被測定物表面(2)に影(8)が投影され、その影を撮像手段(4)で検出して演算処理装置(5)で演算処理することにより、被測定物表面(2)を非接触で連続的に精度良く測定することが可能となる。
図7は、木材加工表面に生じた大きなうねり(10)を三次元表示している。同図より被測定物表面(2)に形成された加工面性状を容易に理解でき、加工条件修正や製品選別の判断材料となる。図8では、木材加工表面の切削痕(11)及び組織粗さ(12)を表示し、本測定方法により微細な粗さの測定も可能である。
6, 7 and 8 show the measurement positions shown in the claims and the measurement results. FIG. 6 shows an example of claim 5, which is driven via a rotary encoder (14) disposed on the lower side of the processing step of a processing machine equipped with a processing tool (12) for cutting the surface of wood. Above the conveyor (13), the light source (1), the shield (3), and the imaging means (4) are positioned at their respective positions, and the imaging means (4) is connected to an arithmetic processing unit (5) (not shown). If necessary, the condenser lens (6) is positioned. With this configuration, the workpiece surface (2) whose surface has been machined with the machining tool (12) is transferred to the lower side of the machining process of the processing machine and conveyed to the conveyor (13), while the conveyor (13) and the shielding body. When reaching the passage space with (3), the shadow (8) is projected on the surface of the object to be measured (2) upon receiving the irradiation from the light source (1), and the shadow is detected by the imaging means (4) and calculated. By performing arithmetic processing with the processing device (5), the surface (2) of the object to be measured can be measured continuously and accurately without contact.
FIG. 7 shows a three-dimensional representation of the large undulations (10) generated on the wood processing surface. From this figure, it is possible to easily understand the processed surface properties formed on the surface of the object to be measured (2), and it becomes a judgment material for correcting processing conditions and selecting products. In FIG. 8, the cutting marks (11) and the texture roughness (12) on the wood processing surface are displayed, and the fine roughness can be measured by this measuring method.

従って、本発明で説明する測定方法は、木材、金属、プラスティックを始めとする諸材料の表面状態を該長さ、高さ、幅等について精密に表示できる。又、該測定速度は、演算処理プログラム、演算機器の処理速度の影響を受けるが、加工機械の加工手段で送り加工中に、本測定法で加工面全面の加工性状を表示できる。加工機械は、表面削り機、切断機、表面加工機、旋盤、研磨機等、応用できるものであり、本発明記載の技術思想の範囲内にて利用可能性を有するものである。 Therefore, the measuring method described in the present invention can accurately display the surface state of various materials such as wood, metal and plastic in terms of the length, height, width and the like. Further, the measurement speed is affected by the processing speed of the arithmetic processing program and the arithmetic equipment, but the processing properties of the entire processing surface can be displayed by this measuring method during the feed processing by the processing means of the processing machine. The processing machine can be applied to a surface shaving machine, a cutting machine, a surface processing machine, a lathe, a polishing machine, etc., and has applicability within the scope of the technical idea described in the present invention.

本発明の実施形態を示して測定を可能にする測定装置の概略斜視図である。1 is a schematic perspective view of a measurement apparatus that enables measurement by showing an embodiment of the present invention. 造影手段により、加工表面に形成された加工面性状を示す投影曲線である。It is a projection curve which shows the processing surface property formed in the processing surface by the imaging means. レーザー光線を加工面に照射することにより得られた加工面性状を示す曲線である。It is a curve which shows the processed surface property obtained by irradiating a processed surface with a laser beam. 加工表面に形成された加工面性状を示す投影曲線を演算処理後得られた加工面曲線である。It is the processed surface curve obtained after calculating the projection curve which shows the processed surface property formed in the processed surface. 加工面性状の三次元的表示である。It is a three-dimensional display of machined surface properties. 測定位置の例示であり、装置の概略側面図である。It is an illustration of a measurement position and is a schematic side view of the apparatus. 木材加工表面に生じた大きなうねりの三次元表示である。It is a three-dimensional display of large undulations generated on the wood processing surface. 木材加工表面の組織粗さと、切削痕を表示している。The texture of the wood processing surface and the cutting marks are displayed.

符号の説明Explanation of symbols

(1)光源
(2)被測定物表面
(3)遮蔽体
(4)撮像手段
(5)演算処理装置
(6)集光レンズ
(7)平行光線
(8)影
(9)長さ
(10)高さ
(11)幅
(12)木材の表面削り加工工具
(13)コンベアー
(14)ロータリエンコーダー
(15)うねり
(16)組織粗さ
(17)切削痕

(1) Light source (2) Surface of object to be measured (3) Shield (4) Imaging means (5) Arithmetic processing device (6) Condensing lens (7) Parallel rays (8) Shadow (9) Length (10) Height (11) Width (12) Wood surface cutting tool (13) Conveyor (14) Rotary encoder (15) Waviness (16) Texture roughness (17) Cutting trace

Claims (5)

加工された被測定物の表面状態を検出するのに、光源照射に基づき加工表面に影を造影する造影手段を設け、該造影手段により形成される影の長さ、高さ、深さ等の投影状態を検出し、該投影状態の検出結果に基づき被測定物の加工表面状態を演算することを特徴とする投影法による加工面性状の測定方法。 In order to detect the surface state of the processed object to be measured, a contrast means for contrasting the shadow on the processed surface based on light source irradiation is provided, and the length, height, depth, etc. of the shadow formed by the contrast means A method of measuring a machined surface property by a projection method, wherein a projection state is detected, and a processed surface state of an object to be measured is calculated based on a detection result of the projection state. 被測定物の加工表面より一定間隙をおいて遮蔽体を設け、その後方に遮蔽体の影を造影する光源を設けたことを特徴とする請求項1記載の投影法による加工面性状の測定方法。   2. The method of measuring a processed surface property by a projection method according to claim 1, wherein a shield is provided with a certain gap from the processing surface of the object to be measured, and a light source for contrasting the shadow of the shield is provided behind the shield. . 造影手段により形成される影の長さ、高さ、深さ等の投影状態を撮像手段で検出し、該撮像手段の検出結果に基づき被測定物の加工表面状態を演算することを特徴とする請求項1若しくは請求項2記載の投影法による加工面性状の測定方法。   A projection state such as the length, height, and depth of a shadow formed by the contrast unit is detected by the imaging unit, and a processed surface state of the object to be measured is calculated based on a detection result of the imaging unit. A method for measuring a surface finish by the projection method according to claim 1. 加工表面と撮像手段の間に集光レンズを介在させたことを特徴とする請求項3記載の投影法による加工面性状の測定方法。   4. A method for measuring a processed surface property by a projection method according to claim 3, wherein a condenser lens is interposed between the processed surface and the imaging means. 被測定物を加工機械の加工手段で送り加工してなるものにおいて、該被測定物の加工表面を加工手段の加工工程下手側において露出させるように構成し、該露出した加工表面を連続的に検出するのに、光源照射に基づき加工表面に影を造影する造影手段を設け、該造影手段により形成される影の長さ、高さ、深さ等の投影状態を検出し、該投影状態の検出結果に基づき被測定物の加工表面状態を演算することを特徴とする投影法による加工面性状の測定装置。

In the case where the object to be measured is fed by the processing means of the processing machine, the processing surface of the object to be measured is configured to be exposed on the lower side of the processing step of the processing means, and the exposed processing surface is continuously For the detection, a contrast means for contrasting the shadow on the processing surface based on the light source irradiation is provided, and the projection state such as the length, height, and depth of the shadow formed by the contrast means is detected, and the projection state An apparatus for measuring a machined surface property by a projection method, wherein a machined surface state of an object to be measured is calculated based on a detection result.

JP2004027618A 2004-02-04 2004-02-04 Measuring method of processed face property by projection method and its device Pending JP2005221288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004027618A JP2005221288A (en) 2004-02-04 2004-02-04 Measuring method of processed face property by projection method and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004027618A JP2005221288A (en) 2004-02-04 2004-02-04 Measuring method of processed face property by projection method and its device

Publications (1)

Publication Number Publication Date
JP2005221288A true JP2005221288A (en) 2005-08-18

Family

ID=34997050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004027618A Pending JP2005221288A (en) 2004-02-04 2004-02-04 Measuring method of processed face property by projection method and its device

Country Status (1)

Country Link
JP (1) JP2005221288A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028956A1 (en) 2007-08-31 2009-03-05 Tordivel Solar As Method and device for inspection of object surfaces
US20140354984A1 (en) * 2013-05-30 2014-12-04 Seagate Technology Llc Surface features by azimuthal angle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028956A1 (en) 2007-08-31 2009-03-05 Tordivel Solar As Method and device for inspection of object surfaces
US20140354984A1 (en) * 2013-05-30 2014-12-04 Seagate Technology Llc Surface features by azimuthal angle
US9513215B2 (en) * 2013-05-30 2016-12-06 Seagate Technology Llc Surface features by azimuthal angle

Similar Documents

Publication Publication Date Title
JP2010534406A5 (en)
JP5438475B2 (en) Gap step measurement device, gap step measurement method, and program thereof
CN107869957B (en) Imaging system-based cylindrical section size measuring device and method
US10746541B2 (en) Inspection device for conveyor belt
CN110560892A (en) pipe identification method and device based on laser pipe cutting equipment
JP2010060556A (en) System and method for measuring curved member
US20060007449A1 (en) Method for measuring a contour of a workpiece by scanning
JP4412180B2 (en) Laser ultrasonic inspection method and laser ultrasonic inspection device
JP2786070B2 (en) Inspection method and apparatus for transparent plate
JP2004114203A (en) Apparatus for measuring profile of workpiece and profile measuring system using the same
JP5535095B2 (en) Work size measuring device
JP2005221288A (en) Measuring method of processed face property by projection method and its device
JP7196849B2 (en) Spectacle frame shape measuring device and spectacle frame shape measuring program
JPH0484707A (en) Three-dimensional size measuring apparatus
JP2624557B2 (en) Angle measuring device for bending machine
JP2005014026A (en) Weld zone inspection method, and welding support system
JP2016024067A (en) Measurement method and measurement device
JP7385768B2 (en) Method and device for determining the actual state of the support bar of a base material support, as well as a machine tool having a device of this kind
JP2016138761A (en) Three-dimensional measurement method by optical cutting method and three-dimensional measuring instrument
KR101284852B1 (en) Apparatus for inspecting weld toe grinding and methord thereof
KR101833055B1 (en) 3-dimensional measuring system
JP2021056053A (en) Eyeglass frame shape measurement device, and lens processing device
JP2007333442A (en) Shape measurement method
TW201416166A (en) Method of inspecting workpiece for processing machine and device thereof
US11022430B2 (en) Eyeglass frame shape measurement device and storage medium