JP2005127729A - Reliability testing device and reliability test method - Google Patents

Reliability testing device and reliability test method Download PDF

Info

Publication number
JP2005127729A
JP2005127729A JP2003360438A JP2003360438A JP2005127729A JP 2005127729 A JP2005127729 A JP 2005127729A JP 2003360438 A JP2003360438 A JP 2003360438A JP 2003360438 A JP2003360438 A JP 2003360438A JP 2005127729 A JP2005127729 A JP 2005127729A
Authority
JP
Japan
Prior art keywords
test
under test
reliability
temperature
reliability test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003360438A
Other languages
Japanese (ja)
Inventor
Yoku Ryu
翊 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003360438A priority Critical patent/JP2005127729A/en
Publication of JP2005127729A publication Critical patent/JP2005127729A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reliability testing device and a reliability test method capable of performing a reliability test in a comparatively short time at low cost, and having a small error of an estimated value based on the test result. <P>SOLUTION: This device has ten fixing parts 2 where test elements are fixed, having terminals to be connected to the test elements, and connection parts 3 for connecting the fixing parts 2 to a cassette 1, on the temperature-adjustable cassette 1 provided with a heating element. Heating resistors are arranged increasingly successively from zero to the number of nine respectively on the ten fixing parts 2. Driving powers having mutually the same value are supplied to each test element from a control part, and the cassette 1 is controlled at a prescribed temperature. Temperatures at the test time of the test elements fixed to the fixing parts 2 are raised successively corresponding to the number of the resistors on the fixing parts 2. Since tests in a plurality of temperature conditions are performed simultaneously, a required time for the reliability test is shortened compared with hitherto. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば電気素子や光学素子等の信頼性試験装置および信頼性試験方法に関し、特に、半導体パワートランジスター等の電気素子やレーザ等の光学素子のような通電されて高温となる素子の信頼性試験装置および信頼性試験装置に関する。   The present invention relates to a reliability test apparatus and a reliability test method for, for example, an electric element and an optical element, and more particularly to reliability of an element that is energized and has a high temperature, such as an electric element such as a semiconductor power transistor and an optical element such as a laser. The present invention relates to a reliability test apparatus and a reliability test apparatus.

近年、半導体素子の分野では、素子の高密度化や集積化が進められており、特に、移動体通信機器等の小型化や軽量化に従い、このような機器に搭載される半導体素子の微細化は進む一方である。半導体素子の電気的な特性や光学的な特性を向上するため、また、半導体素子の平均寿命(MTTF:mean time to failure)を伸ばすためには、半導体素子の発熱量自体を抑えると共に、発生した熱を効率良く素子から逃がすことが大切である。このような半導体素子の熱に関する特性については、製造された素子の熱抵抗の評価や、高温加速試験による平均寿命の評価などにおいて、パッケージ実装された状態での評価が必要になる。   In recent years, in the field of semiconductor elements, higher density and integration of elements have been promoted, and in particular, miniaturization of semiconductor elements mounted on such equipment in accordance with miniaturization and weight reduction of mobile communication equipment and the like. Is moving forward. In order to improve the electrical characteristics and optical characteristics of the semiconductor element, and to increase the mean life to failure (MTTF) of the semiconductor element, the amount of heat generated by the semiconductor element itself was suppressed and generated. It is important to efficiently release heat from the element. Such characteristics relating to heat of the semiconductor element require evaluation in a packaged state in evaluation of thermal resistance of the manufactured element, evaluation of average life by a high temperature acceleration test, and the like.

一般に、パッケージ実装された半導体素子の平均寿命hは、素子の活性化エネルギーEおよびジャンクション温度Tjと、下記の式(1)で表わされるような関係を有する。   In general, the average life h of a packaged semiconductor element has a relationship represented by the following equation (1) with the activation energy E and the junction temperature Tj of the element.

h=Aexp(E/kTj)・・・(1)
ここにおいて、Aは試験電流密度などに関する定数であり、kはボルツマン定数である。
h = Aexp (E / kTj) (1)
Here, A is a constant related to the test current density and the like, and k is a Boltzmann constant.

上記ジャンクション温度Tjは、下記の式(2)により求められる。   The junction temperature Tj is obtained by the following equation (2).

Tj=T+Rth・P・・・(2)
ここにおいて、Rthは熱抵抗値であり、Pは素子通電時の電力である。
Tj = T + Rth · P (2)
Here, Rth is the thermal resistance value, and P is the power when the element is energized.

上記式(2)に示されるように、ジャンクション温度Tjは、試験を行う環境温度Tと、素子の発熱による温度上昇分Rth・Pとの和である。   As shown in the above equation (2), the junction temperature Tj is the sum of the environmental temperature T at which the test is performed and the temperature rise Rth · P due to heat generation of the element.

従来の信頼性試験方法では、複数の素子を同一の環境温度Tの下で通電して、同一のジャンクション温度Tjの下で試験を行う。そして、試験開始時から、各素子の電気的又は光学的な特性が劣化した時点までの経過時間が、上記素子のジャンクション温度Tjにおける寿命となる。上記複数の素子の各々の寿命を加算平均した値が、上記ジャンクション温度Tjにおける平均寿命である。従来の信頼性試験方法では、室温よりも十分に高いジャンクション温度Tjを複数種類設定し、この複数のジャンクション温度Tj毎に試験を行った場合の複数の素子の平均寿命を求めることにより、室温での素子の平均寿命を推定している。   In the conventional reliability test method, a plurality of elements are energized under the same environmental temperature T, and the test is performed under the same junction temperature Tj. The elapsed time from the start of the test to the time when the electrical or optical characteristics of each element deteriorates is the lifetime at the junction temperature Tj of the element. A value obtained by adding and averaging the lifetimes of the plurality of elements is the average lifetime at the junction temperature Tj. In the conventional reliability test method, a plurality of types of junction temperatures Tj that are sufficiently higher than room temperature are set, and the average lifetime of a plurality of elements when testing is performed for each of the plurality of junction temperatures Tj. The average lifetime of the element is estimated.

図3Aは、従来の信頼性試験方法に用いられる信頼性試験装置を示す概略平面図であり、図3Bは、図3AのB−B’線における概略断面図である。この信頼性試験装置は、発熱体が設けられたカセット11と、このカセット11の上面に設けられ、被試験素子が固定されると共に上記被試験素子に電力を供給する10個の固定部12と、この固定部12をカセット11に接続する接続部13とを有する。上記カセット11の発熱体は、このカセット11の背面に設けられた接続端子14を介して接続される図示しない制御部により、所定の温度をなすように制御される。これにより、上記カセット11全体が所定の温度にされることにより、上記被試験素子の環境温度が制御される。また、上記接続端子14に接続された図示しない制御部から、上記接続部13および固定部12を介して、上記被試験素子に、所定の駆動電力が供給される。   FIG. 3A is a schematic plan view showing a reliability test apparatus used in a conventional reliability test method, and FIG. 3B is a schematic cross-sectional view taken along line B-B ′ of FIG. 3A. This reliability test apparatus includes a cassette 11 provided with a heating element, and ten fixing portions 12 provided on the upper surface of the cassette 11 for fixing the device under test and supplying power to the device under test. And a connecting portion 13 for connecting the fixing portion 12 to the cassette 11. The heating element of the cassette 11 is controlled to have a predetermined temperature by a control unit (not shown) connected via a connection terminal 14 provided on the back surface of the cassette 11. Thus, the ambient temperature of the device under test is controlled by bringing the entire cassette 11 to a predetermined temperature. A predetermined drive power is supplied to the device under test from the control unit (not shown) connected to the connection terminal 14 via the connection unit 13 and the fixing unit 12.

図4は、従来の信頼性試験方法により、素子の室温での平均寿命を求めた例を具体的に説明する図である。図4に示す座標の横軸は、絶対温度T(K:ケルビン)の逆数1/Tであり、縦軸は平均寿命MTTF(時間)の対数である。信頼性試験は、熱抵抗Rthが約50℃/Wである30個のGaAs(ガリウム砒素)HBT(heterojunction bipolar transistor:ヘテロ接合バイポーラトランジスタ)電力増幅素子を用いて行った。この30個のHBT電力増幅素子を、10個のHBT電力増幅素子からなる3つのグループに分け、各グループの環境温度を80℃,120℃および160℃に設定して、上記信頼性試験装置により3回の試験を行う。上記HBT電力増幅素子への通電条件が、電圧Vが3.3Vであり、電流Iが0.6Aであって、電力P=IVが約2W(ワット)である場合、各素子は、熱抵抗Rthに電力Pを掛け合わせて求められる値の熱を生じる。上記信頼性試験装置のカセット11の固定部12は、熱抵抗が互いに略等しいので、この複数の固定部12に夫々配置された全てのHBT電力増幅素子に、上記発生した熱と略等しい100℃の温度上昇が生じる。したがって、環境温度が互いに異なる3回の試験において、ジャンクション温度Tjは、453K(180℃)、493K(220℃)、533K(260℃)になる。図4の横軸において、t11(T=260℃),t12(T=220℃)およびt13(T=180℃)が、各ジャンクション温度に応じた点である。これらの3つのジャンクション温度Tjにおいて、各10個の素子の平均寿命は、500時間(h11),1200時間(h12),2500時間(h13)となった。図4の座標において、上記各ジャンクション温度に対する平均寿命で定められる3点を結ぶ直線L11の傾きから、活性化エネルギーが約1.4eVであることが導かれる。この活性化エネルギーにより、室温での平均寿命MTTFが約10万時間と推定される。   FIG. 4 is a diagram for specifically explaining an example in which the average lifetime of the element at room temperature is obtained by a conventional reliability test method. The horizontal axis of the coordinates shown in FIG. 4 is the reciprocal 1 / T of the absolute temperature T (K: Kelvin), and the vertical axis is the logarithm of the average life MTTF (time). The reliability test was performed using 30 GaAs (gallium arsenide) HBT (heterojunction bipolar transistor) power amplification elements having a thermal resistance Rth of about 50 ° C./W. The 30 HBT power amplifying elements are divided into three groups of 10 HBT power amplifying elements, and the environmental temperature of each group is set to 80 ° C., 120 ° C. and 160 ° C. Three tests are performed. When the energization condition to the HBT power amplifying element is that the voltage V is 3.3 V, the current I is 0.6 A, and the power P = IV is about 2 W (Watt), each element has a thermal resistance Heat of the value obtained by multiplying Rth by power P is generated. Since the fixed portions 12 of the cassette 11 of the reliability test apparatus have substantially the same thermal resistance, all the HBT power amplifying elements respectively disposed in the plurality of fixed portions 12 have a temperature of 100 ° C. which is substantially equal to the generated heat. Temperature rise occurs. Therefore, the junction temperature Tj is 453 K (180 ° C.), 493 K (220 ° C.), and 533 K (260 ° C.) in three tests with different environmental temperatures. In the horizontal axis of FIG. 4, t11 (T = 260 ° C.), t12 (T = 220 ° C.), and t13 (T = 180 ° C.) are points according to each junction temperature. At these three junction temperatures Tj, the average life of each of the ten elements was 500 hours (h11), 1200 hours (h12), and 2500 hours (h13). In the coordinates of FIG. 4, the activation energy is about 1.4 eV from the slope of the straight line L11 connecting the three points determined by the average lifetime for each junction temperature. With this activation energy, the average lifetime MTTF at room temperature is estimated to be about 100,000 hours.

しかしながら、上記従来の信頼性試験方法は、1台の信頼性試験装置で試験を行なう場合、上記環境温度を複数個設定し、各環境温度で素子が全て劣化するまで試験を行う必要がある。図4に示した信頼性試験では、1台の信頼性試験装置により、3種類の環境温度に応じた3回の試験を行うので、全ての試験にかかる時間は、少なくとも、各回の平均寿命である500時間(h11)と、1200時間(h12)と、2500時間(h13)とを足し合わせた4200時間以上となる。つまり、信頼性試験に半年以上の時間が必要となる。この信頼性試験に必要な時間は、上記被試験素子の特性のバラツキが大きい場合、各試験条件の設定や、昇温および降温にかかる時間等が長くなるので、さらに長い時間となる。つまり、上記従来の信頼性試験は、比較的長時間が必要であるという問題がある。   However, in the conventional reliability test method, when a test is performed with one reliability test apparatus, it is necessary to set a plurality of the environmental temperatures and perform the test until all the elements deteriorate at each environmental temperature. In the reliability test shown in FIG. 4, since one test is performed three times in accordance with three types of environmental temperatures, the time required for all tests is at least the average life of each test. A certain 500 hours (h11), 1200 hours (h12), and 2500 hours (h13) are added to 4200 hours or more. In other words, more than half a year is required for the reliability test. The time required for this reliability test is longer when the variation of the characteristics of the device under test is large, because the time required for setting each test condition, temperature increase and decrease, etc. becomes longer. That is, the conventional reliability test has a problem that a relatively long time is required.

そこで、3台の信頼性試験装置を使って各環境温度の試験を同時に行うと、全信頼性試験に必要な時間は、試験時間が最長となる環境温度での試験であって、ジャンクション温度Tjが180℃の場合の平均寿命である2500時間程度に短縮できる。しかしながら、信頼性試験装置が3台必要となるので、信頼性試験のコストが増大するという問題がある。   Therefore, when tests of each environmental temperature are performed simultaneously using three reliability test apparatuses, the time required for the entire reliability test is the test at the environmental temperature at which the test time is the longest, and the junction temperature Tj Can be shortened to about 2500 hours, which is the average life when 180 ° C. However, since three reliability test apparatuses are required, there is a problem that the cost of the reliability test increases.

また、上記従来の信頼性試験方法は、室温の平均寿命に関する推定値の誤差が大きいという問題がある。すなわち、図4において、3つの平均寿命を示す点を結ぶ直線L11の傾きから室温の平均寿命hrを推定し、この直線L11の傾きは、上記平均寿命の値によって比較的大きく変化する。例えば、ジャンクション温度Tjが260℃のグループのうちの寿命が最も短い素子と、ジャンクション温度Tjが180℃のグループのうちの寿命が最も長い素子とを除いて平均寿命を算出し、この平均寿命を示す点を結んだ場合、破線で示す直線L12が得られる。この直線L12により求められる室温Trでの平均寿命hr’は、ログスケールにおいて、上記直線L11により求められる平均寿命hrよりも、比較的大きい差をなして小さい値となる。このように、従来の信頼性試験方法は、室温の平均寿命に関する推定値の誤差が比較的大きいという問題がある。
特開昭61−128541号公報
In addition, the conventional reliability test method has a problem that an error in an estimated value related to the average life at room temperature is large. That is, in FIG. 4, the average lifetime hr at room temperature is estimated from the slope of the straight line L11 connecting the three points indicating the average lifetime, and the slope of the straight line L11 varies relatively depending on the value of the average lifetime. For example, the average lifetime is calculated by excluding the element having the shortest lifetime in the group having the junction temperature Tj of 260 ° C. and the element having the longest lifetime in the group having the junction temperature Tj of 180 ° C., and calculating the average lifetime. When connecting the indicated points, a straight line L12 indicated by a broken line is obtained. The average life hr ′ at room temperature Tr determined by the straight line L12 is a small value with a relatively large difference from the average life hr determined by the straight line L11 on the log scale. Thus, the conventional reliability test method has a problem that the error of the estimated value regarding the average life at room temperature is relatively large.
JP 61-128541 A

そこで、本発明の課題は、信頼性試験を比較的短時間で低コストに行うことができ、また、試験結果に基づく推定値の誤差が少ない信頼性試験装置および信頼性試験方法を提供することにある。   Therefore, an object of the present invention is to provide a reliability test apparatus and a reliability test method that can perform a reliability test in a relatively short time and at a low cost, and that has a small error in an estimated value based on a test result. It is in.

上記課題を解決するため、本発明の半導体素子の信頼性試験装置は、
温度が調節可能な台座と、
上記台座に設けられ、被試験素子が固定される複数の固定部と、
上記固定部に各々設けられ、熱抵抗が互いに異なる複数の熱伝達体と、
上記被試験素子に駆動電力を供給する電力供給手段と
を備えたことを特徴としている。
In order to solve the above problems, a semiconductor device reliability test apparatus of the present invention includes:
A pedestal with adjustable temperature,
A plurality of fixing portions provided on the pedestal to which the device under test is fixed;
A plurality of heat transfer bodies each provided in the fixed portion and having different thermal resistance;
And a power supply means for supplying driving power to the device under test.

上記構成によれば、上記複数の固定部に被試験素子が固定され、この被試験素子に上記電力供給手段から駆動電力が供給されると共に、上記台座が所定の温度に調節されて、上記被試験素子の信頼性試験が行われる。上記被試験素子は、上記駆動電力が供給されて熱を生じる。上記固定部に設けられた複数の熱抵抗体は、熱抵抗が互いに異なるので、上記複数の被試験素子が達する温度は互いに異なる。したがって、上記複数の被試験素子を、異なる温度の下で同時に試験を行うことができるので、従来のように環境温度を変えて複数回試験を行う必要が無い。その結果、上記被試験素子の信頼性試験を比較的短時間で行うことができる。   According to the above configuration, the device under test is fixed to the plurality of fixing portions, the driving power is supplied to the device under test from the power supply means, and the pedestal is adjusted to a predetermined temperature, so that the device under test is A reliability test of the test element is performed. The device under test is supplied with the driving power and generates heat. Since the plurality of thermal resistors provided in the fixed portion have different thermal resistances, the temperatures reached by the plurality of devices under test are different from each other. Therefore, since the plurality of elements under test can be tested simultaneously under different temperatures, it is not necessary to perform the test a plurality of times at different environmental temperatures as in the prior art. As a result, the reliability test of the device under test can be performed in a relatively short time.

また、1つの信頼性試験装置により、複数の温度条件の信頼性試験を同時に行うことができるので、複数の信頼性試験装置を用いる必要が無くて、信頼性試験を低コストで行うことができる。   In addition, since one reliability test apparatus can perform a reliability test under a plurality of temperature conditions at the same time, it is not necessary to use a plurality of reliability test apparatuses, and the reliability test can be performed at a low cost. .

なお、熱抵抗とは、1W(ワット)の熱が物に加えられたときに、この物に生じる温度の上昇量である。   The thermal resistance is the amount of temperature rise that occurs in a product when 1 W (watt) of heat is applied to the product.

また、本発明の半導体素子の信頼性試験装置は、
互いに異なる温度に調節可能な複数の温度調節領域を有する台座と、
上記台座の複数の温度調節領域に各々設けられ、被試験素子が固定される固定部と、
上記被試験素子に駆動電力を供給する電力供給手段と
を備えることを特徴とする。
In addition, the semiconductor device reliability test apparatus according to the present invention includes:
A pedestal having a plurality of temperature control regions that can be adjusted to different temperatures;
A fixed portion provided in each of the plurality of temperature control regions of the pedestal, to which the device under test is fixed;
And power supply means for supplying drive power to the device under test.

上記構成によれば、上記複数の被試験素子が、上記複数の固定部に各々固定され、上記電力供給手段から駆動電力が供給されると共に、上記複数の固定部が設けられた複数の温度調節領域が互いに異なる温度に調節されて、上記被試験素子の信頼性試験が行われる。上記複数の被試験素子は、上記駆動電力が供給されて発熱する一方、上記複数の温度調節領域が互いに異なる温度に調節されるので、上記複数の被試験素子は互いに異なる温度となる。したがって、複数の上記被試験素子を、異なる到達温度の下で同時に試験を行うことができるので、従来のように環境温度を変えて複数回試験を行う必要が無い。その結果、上記被試験素子の信頼性試験を比較的短時間で行うことができる。   According to the above configuration, the plurality of elements to be tested are respectively fixed to the plurality of fixing portions, and driving power is supplied from the power supply means, and a plurality of temperature adjustments provided with the plurality of fixing portions. The region is adjusted to a different temperature, and the reliability of the device under test is tested. The plurality of devices under test generate heat when supplied with the driving power, and the temperature control regions are adjusted to different temperatures, so that the plurality of devices under test have different temperatures. Therefore, since the plurality of elements under test can be simultaneously tested under different ultimate temperatures, it is not necessary to perform the test a plurality of times by changing the environmental temperature as in the prior art. As a result, the reliability test of the device under test can be performed in a relatively short time.

また、1つの信頼性試験装置により、複数の温度条件の信頼性試験を同時に行うことができるので、複数の信頼性試験装置を用いる必要が無くて、信頼性試験を低コストで行うことができる。   In addition, since one reliability test apparatus can perform a reliability test under a plurality of temperature conditions at the same time, it is not necessary to use a plurality of reliability test apparatuses, and the reliability test can be performed at a low cost. .

一実施形態の半導体素子の信頼性試験装置は、
上記被試験素子の温度を測定する温度測定手段と、
上記温度測定手段が測定した上記被試験素子の温度と、上記電力供給手段が上記被試験素子に供給する駆動電力とに基づいて、上記固定部に配置された状態の上記被試験素子の熱抵抗を検出する熱抵抗検出手段と
を備える。
The reliability testing apparatus for a semiconductor device of one embodiment is as follows:
Temperature measuring means for measuring the temperature of the device under test;
Based on the temperature of the device under test measured by the temperature measuring means and the driving power supplied to the device under test by the power supply means, the thermal resistance of the device under test in the state of being arranged in the fixed portion And a thermal resistance detecting means for detecting.

上記実施形態によれば、上記温度測定手段によって、上記被試験素子の駆動時の温度が検出される。上記被試験素子の温度と、この被試験素子に供給される駆動電力とに基づいて、上記熱抵抗検出手段によって、上記固定部に配置された状態の被試験素子の熱抵抗が検出される。例えば、上記固定部等の熱抵抗をあらかじめ測定しておくことにより、上記固定部に配置された状態の被試験素子の熱抵抗から、上記被試験素子のみの熱抵抗が算出される。これにより、上記複数の被試験素子の間の熱抵抗のバラツキが算出できる。この熱抵抗のバラツキに基づいて、この試験によって得られた寿命の補正を行うことにより、上記被試験素子の室温における寿命を少ない誤差で求めることができる。   According to the embodiment, the temperature when the device under test is driven is detected by the temperature measuring means. Based on the temperature of the device under test and the drive power supplied to the device under test, the thermal resistance of the device under test in the state of being arranged in the fixed portion is detected by the thermal resistance detecting means. For example, by measuring the thermal resistance of the fixed part or the like in advance, the thermal resistance of only the element under test is calculated from the thermal resistance of the element under test placed in the fixed part. Thereby, variation in thermal resistance among the plurality of elements under test can be calculated. By correcting the lifetime obtained by this test based on this variation in thermal resistance, the lifetime of the device under test at room temperature can be obtained with a small error.

本発明の半導体素子の信頼性試験方法は、
複数の被試験素子に互いに同一の駆動電力を供給すると共に、上記複数の被試験素子を、互いに異なる温度の下で同時に駆動させることを特徴としている。
The reliability test method of the semiconductor element of the present invention is:
The same drive power is supplied to a plurality of devices under test, and the devices under test are simultaneously driven under different temperatures.

上記構成によれば、上記複数の被試験素子は、互いに同一の駆動電力が供給されると共に、互いに異なる温度の下で、同時に駆動される。したがって、異なる温度条件の信頼性試験を同時に行なうことができるので、従来におけるように同一の温度条件の信頼性試験を複数回行うよりも、短時間で信頼性試験を行うことができる。   According to the above configuration, the plurality of elements to be tested are simultaneously driven at different temperatures while being supplied with the same driving power. Therefore, since the reliability test under different temperature conditions can be performed at the same time, the reliability test can be performed in a shorter time than in the conventional case where the reliability test under the same temperature condition is performed a plurality of times.

一実施形態の半導体素子の信頼性試験方法は、
上記複数の被試験素子に、熱抵抗が互いに異なる熱抵抗体を接続することにより、上記複数の被試験素子の温度を互いに異ならせる。
A reliability test method for a semiconductor device according to an embodiment is as follows:
By connecting thermal resistors having different thermal resistances to the plurality of devices under test, the temperatures of the devices under test are made different from each other.

上記実施形態によれば、上記被試験素子の温度条件を容易に異ならせることができる。   According to the embodiment, the temperature condition of the device under test can be easily varied.

一実施形態の半導体素子の信頼性試験方法は、
上記複数の被試験素子が配置される環境の温度を互いに異ならせることにより、上記複数の被試験素子の温度を互いに異ならせる。
A reliability test method for a semiconductor device according to an embodiment is as follows:
The temperatures of the plurality of devices under test are made different from each other by making the temperatures of the environments where the devices under test are arranged different from each other.

上記実施形態によれば、上記被試験素子の温度条件を容易に異ならせることができる。   According to the embodiment, the temperature condition of the device under test can be easily varied.

ここにおいて、環境とは、被試験素子に直接的または間接的に接し、この被試験素子に熱を伝達するものであって、気体、固体又は液体のいずれをもいう。   Here, the environment refers to any of a gas, a solid, and a liquid that is in direct or indirect contact with the device under test and transfers heat to the device under test.

以上のように、本発明の半導体素子の信頼性試験装置は、温度が調節可能な台座と、上記台座に設けられ、被試験素子が固定される複数の固定部と、上記固定部に各々設けられ、熱抵抗が互いに異なる複数の熱抵抗体と、上記被試験素子に駆動電力を供給する電力供給手段とを備えたので、上記複数の被試験素子が各々達する温度を互いに異ならせることができ、これにより、複数の被試験素子を異なる温度条件の下で同時に試験を行うことができる。したがって、上記被試験素子の信頼性試験を比較的短時間で行うことができる。また、複数の信頼性試験装置を同時に用いる必要が無いので、信頼性試験を低コストで行うことができる。   As described above, the semiconductor element reliability test apparatus according to the present invention includes a pedestal with adjustable temperature, a plurality of fixing portions provided on the pedestal to which the element under test is fixed, and each of the fixing portions. And a plurality of thermal resistors having different thermal resistances and power supply means for supplying driving power to the device under test, the temperatures reached by the plurality of devices under test can be made different from each other. Thereby, a plurality of devices under test can be tested simultaneously under different temperature conditions. Therefore, the reliability test of the device under test can be performed in a relatively short time. In addition, since it is not necessary to use a plurality of reliability test apparatuses at the same time, the reliability test can be performed at a low cost.

また、本発明の半導体素子の信頼性試験装置は、互いに異なる温度に調節可能な複数の温度調節領域を有する台座と、上記台座の複数の温度調節領域に各々設けられ、被試験素子が固定される固定部と、上記被試験素子に駆動電力を供給する電力供給手段とを備えるので、上記複数の被試験素子を、異なる温度条件の下で同時に試験を行うことができるので、信頼性試験を比較的短時間で行うことができる。また、複数の信頼性試験装置を同時に用いる必要が無いので、信頼性試験を低コストで行うことができる。   The semiconductor element reliability testing apparatus of the present invention is provided with a pedestal having a plurality of temperature control regions that can be adjusted to different temperatures, and a plurality of temperature control regions of the pedestal, and the device under test is fixed. A plurality of devices under test can be simultaneously tested under different temperature conditions, so that a reliability test can be performed. This can be done in a relatively short time. In addition, since it is not necessary to use a plurality of reliability test apparatuses at the same time, the reliability test can be performed at a low cost.

また、本発明の半導体素子の信頼性試験方法は、複数の被試験素子を、互いに同一の駆動電力を供給する一方、各被試験素子が達する温度を互いに異ならせて同時に駆動させるので、異なる温度条件の下で同時に試験を行なうことができて、従来よりも短時間で信頼性試験を行うことができる。   In the semiconductor element reliability testing method of the present invention, a plurality of devices under test are driven at the same time by supplying the same drive power to each other while different temperatures reached by each device under test are different. The test can be performed simultaneously under the conditions, and the reliability test can be performed in a shorter time than conventional.

以下、本発明を図示の実施の形態により詳細に説明する。
(第1実施形態)
図1Aは、本発明の第1実施形態の半導体素子の信頼性試験装置を示す概略平面図である。図1Bは、図1AのA−A’線における概略断面図である。
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
(First embodiment)
FIG. 1A is a schematic plan view showing a semiconductor device reliability test apparatus according to a first embodiment of the present invention. 1B is a schematic cross-sectional view taken along line AA ′ of FIG. 1A.

本実施形態の信頼性試験装置を用いて、熱抵抗Rthが50℃/WであるGaAsHBT電力増幅素子の信頼性試験を行ない、この試験結果より、室温における上記HBT電力増幅素子の平均寿命MTTFを求める。   Using the reliability test apparatus of the present embodiment, a reliability test of a GaAs HBT power amplifying element having a thermal resistance Rth of 50 ° C./W was performed. From this test result, the average life MTTF of the HBT power amplifying element at room temperature was calculated. Ask.

上記信頼性試験装置は、発熱体が設けられた台座としてのカセット1と、このカセット1の上面に設けられ、被試験素子が固定されると共に上記被試験素子に接続される端子を有する10個の固定部2と、この固定部2をカセット1に接続する接続部3とを有する。上記カセット1の発熱体は、このカセット1の背面に設けられた接続端子4を介して接続される図示しない制御部により、所定の温度をなすように制御される。これにより、上記カセット1全体の温度を制御して、上記被試験素子の環境温度を制御するようになっている。また、上記接続端子4に接続された図示しない制御部により、上記接続部3および固定部2を介して、上記複数の被試験素子に、互いに略同一の駆動電力を供給するようになっている。   The reliability test apparatus includes a cassette 1 as a pedestal provided with a heating element, and 10 pieces provided on the upper surface of the cassette 1 and having a terminal to which the element under test is fixed and connected to the element under test. And a connecting portion 3 for connecting the fixing portion 2 to the cassette 1. The heating element of the cassette 1 is controlled to have a predetermined temperature by a control unit (not shown) connected via a connection terminal 4 provided on the back surface of the cassette 1. Thereby, the temperature of the entire cassette 1 is controlled to control the environmental temperature of the device under test. A control unit (not shown) connected to the connection terminal 4 supplies substantially the same drive power to the plurality of devices under test via the connection unit 3 and the fixing unit 2. .

上記固定部2には、熱抵抗が予め判明している熱抵抗体を配置している。上記熱抵抗体としては、導電粘着層の銀ペーストを付着した耐熱性フィルムを用いており、この抵抗体は5℃/Wの熱抵抗を有する。この抵抗体を、各固定部2に枚数を変えて配置する。これにより、上記固定部2に固定される被試験素子からカセット1に伝達される熱量が変わり、上記被試験素子の温度を固定部2毎に変えることが可能になる。具体的には、第1の固定部2には熱抵抗体を配置せず、第2の固定部2から第10の固定部2まで、順次、2枚から9枚の抵抗体を夫々配置している。   The fixing portion 2 is provided with a thermal resistor whose thermal resistance is known in advance. As the thermal resistor, a heat resistant film to which a silver paste of a conductive adhesive layer is attached is used, and this resistor has a thermal resistance of 5 ° C./W. This resistor is arranged in each fixed part 2 in a different number. As a result, the amount of heat transferred from the element under test fixed to the fixing part 2 to the cassette 1 changes, and the temperature of the element under test can be changed for each fixing part 2. Specifically, a thermal resistor is not disposed in the first fixing portion 2, and two to nine resistors are sequentially disposed from the second fixing portion 2 to the tenth fixing portion 2. ing.

上記固定部2に夫々固定された10個の被試験素子を、カセット温度(環境温度)が80℃、駆動電圧が3.3Vおよび駆動電流が0.6Aの条件で通電すると、各被試験素子が互いに異なるジャンクション温度Tjに達する。このジャンクション温度Tjは、上記固定部2に設けられた熱抵抗の枚数に応じた温度となる。すなわち、熱抵抗体を配置していない第1の固定部2に固定された第1の被試験素子は、ジャンクション温度Tjが180℃であり、熱抵抗体を9枚配置した第10の固定部2に固定された第10の被試験素子は、ジャンクション温度Tjが270℃になる。上記第1の被試験素子から第10の被試験素子までの各被試験素子の温度は、上記180℃から270℃までの間で線形的に増大する値となる。   When the ten devices under test fixed to the fixing portion 2 are energized under the conditions of a cassette temperature (environment temperature) of 80 ° C., a drive voltage of 3.3 V, and a drive current of 0.6 A, each device under test Reach different junction temperatures Tj. The junction temperature Tj is a temperature corresponding to the number of thermal resistances provided in the fixed portion 2. That is, the first device under test fixed to the first fixing portion 2 where no thermal resistor is arranged has a junction temperature Tj of 180 ° C., and the tenth fixing portion where nine thermal resistors are arranged. The tenth device under test fixed to 2 has a junction temperature Tj of 270 ° C. The temperature of each device under test from the first device under test to the tenth device under test is a value that increases linearly between the above 180 ° C. and 270 ° C.

上記温度条件の下で信頼性試験を行った結果、ジャンクション温度が180℃(横軸におけるt10に相当)の被試験素子の寿命が最も長く、約2500時間(h10)であった。一方、ジャンクション温度が260℃(横軸におけるt1に相当)の被試験素子の寿命が最も短く、約500時間(h1)であった。   As a result of performing a reliability test under the above temperature conditions, the life of the device under test having a junction temperature of 180 ° C. (corresponding to t10 on the horizontal axis) was the longest, about 2500 hours (h10). On the other hand, the life of the device under test having a junction temperature of 260 ° C. (corresponding to t1 on the horizontal axis) was the shortest, about 500 hours (h1).

上記第1から第10の被試験素子の寿命の値に基づいて、図2に示す座標において最小二乗法により直線L1を引いて、この直線L1の傾きで表される活性化エネルギーと、室温での平均寿命hrを求めた。従来は、1台の信頼性試験装置を用いた場合は3回以上の試験が必要であったのに比べ、本実施形態の信頼性試験装置によれば、1回の試験で全ての信頼性試験が完了する。したがって、信頼性試験に要する時間が半分以下に短縮できた。また、使用する被試験素子の数を従来の3分の1に削減できた。具体的には、1回の信頼性試験のみにより、約2500時間の試験時間で、被試験素子の活性化エネルギーを求めることができる。従来は、各温度条件での試験の所要時間であるh11,h12およびh13を足し合わせた約4500時間が必要であった。   Based on the lifetime values of the first to tenth devices under test, a straight line L1 is drawn by the least square method at the coordinates shown in FIG. 2, and the activation energy represented by the slope of the straight line L1 and the room temperature. The average life hr was determined. Conventionally, when one reliability test apparatus is used, three or more tests are required. According to the reliability test apparatus of the present embodiment, all the reliability is achieved in one test. The test is complete. Therefore, the time required for the reliability test could be reduced to less than half. In addition, the number of devices under test used could be reduced to one-third that of the prior art. Specifically, the activation energy of the device under test can be obtained in a test time of about 2500 hours by only one reliability test. Conventionally, it took about 4500 hours to add h11, h12 and h13, which are required time for the test under each temperature condition.

また、本実施形態では、室温での被試験素子の平均寿命hrを、従来よりも高精度に求めることができる。従来、図4の座標に示されるように、各ジャンクション温度における実験結果にバラツキがある場合、実験結果の最大値および最小値を除外しない場合の直線L11と、最大値および最小値を除外した場合の直線L12とで、室温Trにおける推定値hrおよびhr’が大幅に異なっていた。つまり、実験結果の選択による推定値の任意性があった。これに対して、本実施形態によれば、10個の実験結果のうちの2つに比較的大きな誤差が含まれている場合であっても、上記2つの結果を除外した8個の実験結果に基づいて最小二乗法で得られる直線は、10個の実験結果に基づくものと大幅に異なることはない。つまり、実験結果の選択による推定値の任意性が少ない。したがって、従来よりも短時間に、被試験素子の活性化エネルギーを比較的高精度に求めることができて、室温における被試験素子の平均寿命の推定が可能になる。   In the present embodiment, the average life hr of the device under test at room temperature can be determined with higher accuracy than in the past. Conventionally, as shown in the coordinates of FIG. 4, when there are variations in the experimental results at each junction temperature, the straight line L11 when the maximum and minimum values of the experimental results are not excluded, and the maximum and minimum values are excluded The estimated values hr and hr ′ at room temperature Tr were significantly different from the straight line L12. In other words, there was an arbitrary estimation value by selecting the experimental result. On the other hand, according to this embodiment, even when a relatively large error is included in two of the ten experimental results, the eight experimental results excluding the two results are included. The straight line obtained by the least squares method based on is not significantly different from that based on 10 experimental results. That is, there is little arbitraryness of the estimated value by selection of an experimental result. Therefore, the activation energy of the device under test can be obtained with relatively high accuracy in a shorter time than before, and the average life of the device under test at room temperature can be estimated.

(第2実施形態)
本発明の第2実施形態の信頼性試験装置は、台座としてのカセット11が、各固定部2に応じた複数の温度調節領域を有し、この複数の温度調節領域が互いに異なる温度に調節可能である一方、上記固定部2には熱抵抗体を配置しない点が、第1実施形態と異なる。
(Second Embodiment)
In the reliability testing apparatus according to the second embodiment of the present invention, the cassette 11 as a pedestal has a plurality of temperature adjustment regions corresponding to the respective fixed portions 2, and the plurality of temperature adjustment regions can be adjusted to different temperatures. On the other hand, the point which does not arrange | position a thermal resistor in the said fixing | fixed part 2 differs from 1st Embodiment.

本実施形態の信頼性試験装置は、台座としてのカセットが10個の温度調節領域を有し、この10個の温度調節領域に、固定部が1個ずつ設けられている。上記固定部には、熱抵抗体が配置されておらず、互いに同じ熱抵抗を有する。   In the reliability test apparatus of the present embodiment, the cassette as a pedestal has ten temperature control regions, and one fixing portion is provided in each of the ten temperature control regions. The fixed portion is not provided with a thermal resistor and has the same thermal resistance.

上記カセットの温度調節領域は、カセットの一端における第1の領域が約80℃となるように制御され、他端側の領域になるにつれて順次高い温度に制御されて、他端の第10の領域が約160℃となるように制御される。つまり、第1の領域から第10の領域まで、各領域の温度がリニアに増大するように温度制御している。この温度調節領域の温度制御は、接続端子を介して接続される制御部により行われる。   The temperature control region of the cassette is controlled so that the first region at one end of the cassette is about 80 ° C., and the temperature is gradually increased as the region is at the other end, and the tenth region at the other end. Is controlled to be about 160 ° C. That is, temperature control is performed so that the temperature of each region increases linearly from the first region to the tenth region. The temperature control in this temperature control region is performed by a control unit connected via a connection terminal.

本実施形態の信頼性試験装置は、上記10個の固定部に固定された10個の被試験素子に、電圧が3.3Vで電流が0.6Aの通電条件の電力が供給される一方、上記カセットの温度調節領域が、第1の領域から第10の領域に向かって温度が上昇するように温度制御される。これにより、上記10個の被試験素子は、上記温度調節領域に応じて制御される環境温度の下、いずれもRth・Pで求められる値の熱を生成する。その結果、上記10個の被試験素子のジャンクション温度Tjは、第1の被試験素子が180℃となり、順次線形的に高くなり、第10の被試験素子で270℃に達する。この温度条件の下で試験を1回行った結果、ジャンクション温度Tjが180℃の被試験素子が最も長寿命の約2500時間となった。この実験結果から得られた10個の被試験素子の寿命の値について、図2と同様の座標において最小二乗法で直線を引き、この直線の傾きから活性化エネルギーを求めて、室温での平均寿命MTTFが得られた。本実施形態の信頼性試験装置によれば、1回の試験により室温での平均寿命が得られるので、温度条件が異なる3回以上の試験が必要な従来の信頼性試験装置に比べて、試験に必要な時間を大幅に削減できる。また、信頼性試験に必要な被試験素子の数を従来の3分の1にできる。   In the reliability test apparatus according to the present embodiment, the 10 elements to be tested fixed to the 10 fixed portions are supplied with power under a current condition of 3.3 V and 0.6 A current. The temperature control region of the cassette is temperature controlled so that the temperature rises from the first region toward the tenth region. As a result, the ten devices under test generate heat having a value determined by Rth · P under the environmental temperature controlled in accordance with the temperature control region. As a result, the junction temperature Tj of the ten devices under test becomes 180 ° C. for the first device under test, and then increases linearly, reaching 270 ° C. for the tenth device under test. As a result of performing the test once under this temperature condition, the device under test having a junction temperature Tj of 180 ° C. has the longest life of about 2500 hours. With respect to the lifetime values of the ten devices under test obtained from this experimental result, a straight line is drawn by the least square method at the same coordinates as in FIG. 2, and the activation energy is obtained from the slope of this straight line, and the average at room temperature is obtained. A lifetime MTTF was obtained. According to the reliability test apparatus of the present embodiment, an average life at room temperature can be obtained by one test, so that the test is performed in comparison with a conventional reliability test apparatus that requires three or more tests with different temperature conditions. The time required for this can be greatly reduced. In addition, the number of devices under test required for the reliability test can be reduced to one third of the conventional one.

上記実施形態において、カセット1,11に10個の固定部2,12を設けて、10個の被試験素子の試験を行ったが、固定部2,12の設置個数は10個以外の何個でもよく、10個以外の被試験素子について同時に試験を行ってもよい。この場合、上記固定部12の個数に応じて、上記カセット11の温度調節領域の個数を変えて、所定のジャンクション温度が得られるように、各温度調節領域の温度を制御してもよい。   In the above embodiment, ten fixed portions 2 and 12 are provided in the cassettes 1 and 11, and ten devices under test were tested. However, the number of fixed portions 2 and 12 installed is any number other than ten. Alternatively, the test may be performed on the elements under test other than ten at the same time. In this case, the temperature of each temperature control region may be controlled so that a predetermined junction temperature can be obtained by changing the number of temperature control regions of the cassette 11 according to the number of the fixing parts 12.

第1実施形態の半導体素子の信頼性試験装置を示す概略平面図である。1 is a schematic plan view illustrating a semiconductor device reliability test apparatus according to a first embodiment. FIG. 図1AのA−A’線における概略断面図である。It is a schematic sectional drawing in the A-A 'line of FIG. 1A. 信頼性試験の結果から室温の平均寿命を求める様子を示した図である。It is the figure which showed a mode that the average lifetime of room temperature was calculated | required from the result of a reliability test. 従来の信頼性試験装置を示す概略平面図である。It is a schematic plan view which shows the conventional reliability test apparatus. 図3AのB−B’線における概略断面図である。It is a schematic sectional drawing in the B-B 'line of FIG. 3A. 従来の信頼性試験の結果から室温の平均寿命を求める様子を示した図である。It is the figure which showed a mode that the average lifetime of room temperature was calculated | required from the result of the conventional reliability test.

符号の説明Explanation of symbols

1 カセット
2 固定部
3 接続部
4 接続端子
1 cassette 2 fixed part 3 connection part 4 connection terminal

Claims (6)

温度が調節可能な台座と、
上記台座に設けられ、被試験素子が固定される複数の固定部と、
上記固定部に各々設けられ、熱抵抗が互いに異なる複数の熱抵抗体と、
上記被試験素子に駆動電力を供給する電力供給手段と
を備えたことを特徴とする半導体素子の信頼性試験装置。
A pedestal with adjustable temperature,
A plurality of fixing portions provided on the pedestal to which the device under test is fixed;
A plurality of thermal resistors each provided in the fixed portion and having different thermal resistances;
A semiconductor device reliability testing apparatus comprising: power supply means for supplying driving power to the device under test.
互いに異なる温度に調節可能な複数の温度調節領域を有する台座と、
上記台座の複数の温度調節領域に各々設けられ、被試験素子が固定される固定部と、
上記被試験素子に駆動電力を供給する電力供給手段と
を備えることを特徴とする半導体素子の信頼性試験装置。
A pedestal having a plurality of temperature control regions that can be adjusted to different temperatures;
A fixed portion provided in each of the plurality of temperature control regions of the pedestal, to which the device under test is fixed;
A semiconductor element reliability test apparatus comprising: a power supply means for supplying driving power to the element under test.
請求項1又は2に記載の半導体素子の信頼性試験装置において、
上記被試験素子の温度を測定する温度測定手段と、
上記温度測定手段が測定した上記被試験素子の温度と、上記電力供給手段が上記被試験素子に供給する駆動電力とに基づいて、上記固定部に配置された状態の上記被試験素子の熱抵抗を検出する熱抵抗検出手段と
を備えることを特徴とする半導体素子の信頼性試験装置。
In the reliability testing apparatus for semiconductor elements according to claim 1 or 2,
Temperature measuring means for measuring the temperature of the device under test;
Based on the temperature of the device under test measured by the temperature measuring means and the driving power supplied to the device under test by the power supply means, the thermal resistance of the device under test in the state of being arranged in the fixed portion A semiconductor device reliability test apparatus comprising: a thermal resistance detection means for detecting a thermal resistance.
複数の被試験素子に互いに同一の駆動電力を供給すると共に、上記複数の被試験素子を互いに異なる温度の下で同時に駆動させることを特徴とする半導体素子の信頼性試験方法。   A reliability test method for a semiconductor device, wherein the same drive power is supplied to a plurality of devices under test and the devices under test are simultaneously driven at different temperatures. 請求項4に記載の半導体素子の信頼性試験方法において、
上記複数の被試験素子に、熱抵抗が互いに異なる熱抵抗体を接続することにより、上記複数の被試験素子の温度を互いに異ならせることを特徴とする半導体素子の信頼性試験方法。
The reliability test method for a semiconductor device according to claim 4,
A method of testing a reliability of a semiconductor device, wherein the plurality of devices under test are connected to a plurality of devices under test by connecting thermal resistors having different thermal resistances.
請求項4に記載の半導体素子の信頼性試験方法において、
上記複数の被試験素子が配置される環境の温度を互いに異ならせることにより、上記複数の被試験素子の温度を互いに異ならせることを特徴とする半導体素子の信頼性試験方法。
The reliability test method for a semiconductor device according to claim 4,
A reliability test method for a semiconductor device, wherein the temperatures of the plurality of devices under test are made different from each other by making the temperatures of the environments where the devices under test are arranged different from each other.
JP2003360438A 2003-10-21 2003-10-21 Reliability testing device and reliability test method Pending JP2005127729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003360438A JP2005127729A (en) 2003-10-21 2003-10-21 Reliability testing device and reliability test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003360438A JP2005127729A (en) 2003-10-21 2003-10-21 Reliability testing device and reliability test method

Publications (1)

Publication Number Publication Date
JP2005127729A true JP2005127729A (en) 2005-05-19

Family

ID=34640748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003360438A Pending JP2005127729A (en) 2003-10-21 2003-10-21 Reliability testing device and reliability test method

Country Status (1)

Country Link
JP (1) JP2005127729A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016116009A (en) * 2014-12-12 2016-06-23 三菱電機株式会社 Image display device
CN111124004A (en) * 2019-12-11 2020-05-08 苏州通富超威半导体有限公司 Test board, test frame, temperature difference control system and method for high-acceleration stress test
CN116626574A (en) * 2023-07-19 2023-08-22 深圳市华测半导体设备有限公司 Reliability test method, system and storage medium of signal tester
CN117434415A (en) * 2023-12-20 2024-01-23 富芯微电子有限公司 Semiconductor device thermal resistance measuring equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016116009A (en) * 2014-12-12 2016-06-23 三菱電機株式会社 Image display device
CN111124004A (en) * 2019-12-11 2020-05-08 苏州通富超威半导体有限公司 Test board, test frame, temperature difference control system and method for high-acceleration stress test
CN111124004B (en) * 2019-12-11 2021-11-23 苏州通富超威半导体有限公司 Test board, test frame, temperature difference control system and method for high-acceleration stress test
CN116626574A (en) * 2023-07-19 2023-08-22 深圳市华测半导体设备有限公司 Reliability test method, system and storage medium of signal tester
CN116626574B (en) * 2023-07-19 2023-09-19 深圳市华测半导体设备有限公司 Reliability test method, system and storage medium of signal tester
CN117434415A (en) * 2023-12-20 2024-01-23 富芯微电子有限公司 Semiconductor device thermal resistance measuring equipment
CN117434415B (en) * 2023-12-20 2024-04-12 富芯微电子有限公司 Semiconductor device thermal resistance measuring equipment

Similar Documents

Publication Publication Date Title
US5844208A (en) Temperature control system for an electronic device in which device temperature is estimated from heater temperature and heat sink temperature
US8384395B2 (en) Circuit for controlling temperature and enabling testing of a semiconductor chip
US5864176A (en) Electro-mechnical subassembly having a greatly reduced thermal resistance between two mating faces by including a film of liquid, that evaporates without leaving any residue, between the faces
JP4122009B2 (en) Electromechanical subassembly and method for thermally coupling an electronic device to a heat exchange member
US7187002B2 (en) Wafer collective reliability evaluation device and wafer collective reliability evaluation method
JPWO2005017543A1 (en) Temperature control apparatus and temperature control method
CN103828031A (en) A system and method for monitoring temperatures of and controlling multiplexed heater array
CN108432341B (en) Integrated heater and sensor system
CN112525385A (en) Thermal resistance measuring instrument calibration system
JP2005127729A (en) Reliability testing device and reliability test method
KR101541390B1 (en) Performance evaluation device of thin-film thermoelectric material and method thereof
JP3769220B2 (en) Power module repeated durability test method and test apparatus
US7085667B2 (en) System and method of heating up a semiconductor device in a standard test environment
US9568537B1 (en) Apparatus and method for measuring and controlling the internal temperature of a semiconductor device
JP2004138602A (en) Testing method and testing device for electronic component
JP2005347612A (en) Wafer tray, wafer burn-in unit, wafer-level burn-in apparatus using same unit, and temperature controlling method of semiconductor wafer
JP2009109314A (en) Semiconductor device and its inspecting method
CN111880583B (en) Method for determining and controlling junction temperature of device under test
JP2007322205A (en) Reliability testing device
JP2024066989A (en) Semiconductor device inspection method, semiconductor device and probe card
JP2006138711A (en) High temperature inspection method of semiconductor device
US20240142497A1 (en) Method of inspecting semiconductor device, semiconductor device, and probe card
JPS63274883A (en) Semiconductor measuring instrument
JP2001284693A (en) Semiconductor laser element as well as apparatus and method for measuring the same
JP2022092972A (en) Heating device and LED control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701