JP2005121614A - Deformation characteristic measuring apparatus for object - Google Patents

Deformation characteristic measuring apparatus for object Download PDF

Info

Publication number
JP2005121614A
JP2005121614A JP2003359905A JP2003359905A JP2005121614A JP 2005121614 A JP2005121614 A JP 2005121614A JP 2003359905 A JP2003359905 A JP 2003359905A JP 2003359905 A JP2003359905 A JP 2003359905A JP 2005121614 A JP2005121614 A JP 2005121614A
Authority
JP
Japan
Prior art keywords
air
measured
air nozzle
laser displacement
displacement meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003359905A
Other languages
Japanese (ja)
Other versions
JP4315372B2 (en
Inventor
Makoto Kaneko
真 金子
Tomohiro Kawahara
知洋 川原
Yukio Hosaka
幸男 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Satake Corp
Original Assignee
Satake Engineering Co Ltd
Satake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd, Satake Corp filed Critical Satake Engineering Co Ltd
Priority to JP2003359905A priority Critical patent/JP4315372B2/en
Publication of JP2005121614A publication Critical patent/JP2005121614A/en
Application granted granted Critical
Publication of JP4315372B2 publication Critical patent/JP4315372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deformation characteristic measuring apparatus for an object, capable of eliminating errors in the measurement of displacement quantities as much as possible, while scaling down the apparatus as a whole. <P>SOLUTION: A path introducing air to the air nozzle 10 for making the optical axis of a laser displacement meter 11 for irradiating the point of action that jet wind from an air nozzle 10 acts upon an object to be measured, coincide with the point, and a path-guiding laser light source of the laser displacement meter 11 are set in common; a pneumatic unit 12, integrally supporting the laser displacement meter 11 and a pressure control valve 13, is provided; and the air nozzle unit 10 is mounted to the pneumatic unit 12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、物体の変形特性測定装置に関する。   The present invention relates to an apparatus for measuring deformation characteristics of an object.

物体に加振力を作用させ、物体の機械インピーダンスを測定することは公知である。例えば、物体の粘性、弾性又は質量の測定には、振幅のある周期的な加振力(入力)を物体上に作用させ、その作用点あるいは同じ物体上の他の一点で、加振力によって生ずる加速度,速度,変位の周期的な応答(出力)を測定すれば、加振力と加速度,速度,変位などとの間の伝達特性が求められ、物体の変形特性を知ることができる。この物体の機械インピーダンスを測定する技術は、弾性と粘性(塑性)とを兼ね備えた粘弾性体の力学的挙動を構造論的に解明すること及び製品の性能向上に役立てるうえで重要になる。例えば、工業材料であれば、プラスチック、繊維、ゴム、パルプ、油脂、接着剤、セラミック、薬品などが対象となり、その他、果実、食肉、魚介類など生鮮食品の分野や、麺類など加工食品の分野や、胃壁などの生体内腔部等又は皮膚や筋肉などの生体表面部等の医療の分野も対象となる。   It is known to apply an excitation force to an object and measure the mechanical impedance of the object. For example, to measure the viscosity, elasticity, or mass of an object, a periodic vibration force (input) with amplitude is applied to the object, and at the point of action or another point on the same object, By measuring the periodic response (output) of the generated acceleration, speed, and displacement, transfer characteristics between the excitation force and acceleration, speed, displacement, etc. can be obtained, and the deformation characteristics of the object can be known. This technique for measuring the mechanical impedance of an object is important for elucidating the mechanical behavior of a viscoelastic body having both elasticity and viscosity (plasticity) in terms of structure and for improving product performance. For example, for industrial materials, plastics, fibers, rubber, pulp, fats and oils, adhesives, ceramics, medicines, etc. are targeted. In addition, the field of fresh foods such as fruits, meat, and seafood, and the field of processed foods such as noodles In addition, medical fields such as a living body lumen such as a stomach wall or a living body surface such as skin or muscle are also targeted.

従来、本発明者は上記のような物体の機械インピーダンスを測定する装置を特願2002−329145により提案している。このものは、被測定物に加圧空気を連続的又はパルス状に噴射して非接触で加振する空気ノズルと、前記加圧空気の振幅,振動周波数又はデューティー比を変化させるための圧力制御弁と、被測定物に与えた加振力によって生じる加速度,速度,変位のうち、少なくともいずれか1つを測定する振動測定センサーとを備え、さらに、前記空気ノズルからの加振力と当該被測定物からの加速度,速度,変位の少なくともいずれか1つとの間の伝達特性から、物体の変形特性を演算する演算・表示装置を備えたものである。   Conventionally, the inventor has proposed a device for measuring the mechanical impedance of an object as described above in Japanese Patent Application No. 2002-329145. This consists of an air nozzle that injects pressurized air continuously or in pulses to the object to be measured and non-contactly vibrates, and pressure control for changing the amplitude, vibration frequency, or duty ratio of the pressurized air. A valve and a vibration measurement sensor for measuring at least one of acceleration, velocity, and displacement generated by the excitation force applied to the object to be measured, and further, the excitation force from the air nozzle and the object to be measured are measured. An arithmetic / display device is provided that calculates the deformation characteristics of an object from the transmission characteristics between at least one of acceleration, velocity, and displacement from the measurement object.

これにより、被測定物に加圧空気を連続的又はパルス状に噴射して非接触で加振するので、被測定物となる物体の形状によらず圧力を均一に付与することが可能で、いかなる形状の被測定物であっても変形特性を測定することができる。また、加振力が圧縮性のある加圧空気であるから被測定物からの衝撃を緩和し、被測定物に対して非接触であるから衛生的に、かつ、傷つけることなく変形特性を測定するという作用・効果がある。   Thereby, since pressurized air is jetted continuously or in a pulse shape to the object to be measured, it is possible to uniformly apply pressure regardless of the shape of the object to be measured, Deformation characteristics can be measured for any object to be measured. In addition, since the excitation force is compressed air with compressibility, the impact from the object to be measured is mitigated, and since it is non-contact with the object to be measured, the deformation characteristics are measured hygienically and without being damaged. There is an action and effect to do.

また、前記振動測定センサーは、被測定物に照射されたレーザー光の反射面の位置が被測定物の振動によって変化する現象を、その反射光の光軸が変化する現象として位置検出素子でとらえるもの、つまり、レーザー変位計を使用するものであるから、被測定物表面の反射率の影響を受けにくく、かつ、非接触で高精度に振動状態を把握するという作用・効果がある。   Further, the vibration measuring sensor captures a phenomenon in which the position of the reflection surface of the laser light irradiated to the object to be measured changes due to the vibration of the object to be measured by the position detection element as a phenomenon in which the optical axis of the reflected light changes. In other words, since a laser displacement meter is used, there is an effect that the vibration state is hardly affected by the reflectance of the surface of the object to be measured and the vibration state is grasped with high accuracy without contact.

しかしながら、上記従来の装置にあっては(図12参照)、被測定物に加圧空気を噴射する空気ノズル100とレーザー変位計110とを別体で設けているので、測定装置全体が大きくなるという問題があった。また、空気ノズル100から被測定物105Aに対して加圧空気100Aを連続的又はパルス状に噴射すると、被測定物105A(破線)が非接触で押圧されて、符号105(実線)の状態になる。そして、被測定物が符号105Aの状態と符号105の状態を繰り返すことで加振され、変形特性が測定されることになる。このとき、空気ノズル100とレーザー変位計110とが別体で設けられているので、噴風前に空気ノズル100の作用点F1にレーザー変位計の焦点を合わせていても、噴風後は空気ノズル100の作用点F2とレーザー変位計の焦点F3がずれてしまい、変位量の測定誤差が大きくなるという問題があった。この変位量の測定誤差は被測定物が柔らかい材質であった場合に顕著に表れる。   However, in the above conventional apparatus (see FIG. 12), the air nozzle 100 for injecting pressurized air to the object to be measured and the laser displacement meter 110 are provided separately, so that the entire measuring apparatus becomes large. There was a problem. Further, when the pressurized air 100A is jetted from the air nozzle 100 to the object to be measured 105A continuously or in a pulsed manner, the object to be measured 105A (broken line) is pressed in a non-contact state and is in the state of reference numeral 105 (solid line). Become. The object to be measured is vibrated by repeating the state of reference numeral 105A and the state of reference numeral 105, and the deformation characteristics are measured. At this time, since the air nozzle 100 and the laser displacement meter 110 are provided separately, even if the focal point of the laser displacement meter is focused on the action point F1 of the air nozzle 100 before the blast, the air after the blast is air. There is a problem that the operating point F2 of the nozzle 100 and the focal point F3 of the laser displacement meter are shifted, and the measurement error of the displacement amount becomes large. This measurement error of the displacement amount is noticeable when the object to be measured is a soft material.

本発明は、上記問題点にかんがみ、装置全体を縮小するとともに、変位量の測定誤差を極力なくすことができる物体の変形特性測定装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an apparatus for measuring deformation characteristics of an object, which can reduce the entire apparatus and can minimize a measurement error of a displacement amount.

上記課題を解決するため本発明は、被測定物に加圧空気を連続的又はパルス状に噴射して非接触で加振する空気ノズルと、前記加圧空気の振幅,振動周波数又はデューティ比を変化させるための圧力制御弁と、被測定物に与えた加振力によって生じる変位を測定するレーザー変位計とを備え、さらに、前記空気ノズルからの加振力と当該被測定物からの変位との間の伝達特性から、物体の変形特性を演算する演算・表示装置を備えた物体の変形特性測定装置であって、前記空気ノズルからの噴風が被測定物に作用する作用点と、この作用点に照射するレーザー変位計の光軸とを一致させるべく、前記空気ノズルに空気を誘導する経路と、前記レーザー変位計のレーザー光源を誘導する経路とを共通化するとともに、該レーザー変位計及び前記圧力制御弁を一体的に支持する空圧ユニットを設け、該空圧ユニットに前記空気ノズルを取り付ける、という技術的手段を講じた。   In order to solve the above-described problems, the present invention provides an air nozzle that injects pressurized air continuously or in a pulsed manner on an object to be measured and vibrates in a non-contact manner, and an amplitude, vibration frequency, or duty ratio of the pressurized air. A pressure control valve for changing, and a laser displacement meter for measuring a displacement caused by an excitation force applied to the object to be measured, and further, an excitation force from the air nozzle and a displacement from the object to be measured. An object deformation characteristic measuring device comprising a calculation / display device for calculating the deformation characteristic of an object from the transfer characteristic between the operating point where the blast from the air nozzle acts on the object to be measured, and A path for guiding air to the air nozzle and a path for guiding the laser light source of the laser displacement meter are made common to match the optical axis of the laser displacement meter that irradiates the working point, and the laser displacement meter And said Provided pneumatic unit supporting integrally the force control valve, attaching said air nozzle to the air pressure unit, took technical means of.

また、前記空気ノズルは、前記空圧ユニットへの取り付けを脱着可能とするとよい。   The air nozzle may be detachable from the pneumatic unit.

さらに、前記空圧ユニット下部には、前記空気ノズルを囲繞するカバー体を備えるとよい。   Furthermore, it is preferable to provide a cover body surrounding the air nozzle at the lower part of the pneumatic unit.

本発明によれば、空気ノズルからの噴風が被測定物に作用する作用点と、この作用点に照射するレーザー変位計の光軸とを一致させるべく、前記空気ノズルに空気を誘導する経路と、前記レーザー変位計のレーザー光源を誘導する経路とを共通化するとともに、該レーザー変位計及び前記圧力制御弁を一体的に支持する空圧ユニットを設け、該空圧ユニットに前記空気ノズルを取り付けたものであるから、空圧ユニットの空気を誘導する経路を介して空気ノズルから被測定物に噴風され、この噴風と同時にレーザー変位計のレーザー光源が同一の経路を介して空気ノズルから被測定物に照射される。つまり、空気ノズルから被測定物に作用する噴風の作用点と、この作用点に照射するレーザー変位計のレーザー光源の焦点が一致して変位量の測定誤差を極力なくすことが可能となる。また、空圧ユニットにレーザー変位計及び圧力制御弁が一体で支持されているので装置全体を縮小することが可能となる。   According to the present invention, the path for guiding air to the air nozzle so that the action point at which the blast from the air nozzle acts on the object to be measured coincides with the optical axis of the laser displacement meter applied to the action point. And a path for guiding the laser light source of the laser displacement meter, and a pneumatic unit that integrally supports the laser displacement meter and the pressure control valve are provided, and the air nozzle is provided in the pneumatic unit. Since it is attached, air is blown to the object to be measured from the air nozzle through the air guide path of the pneumatic unit, and at the same time, the laser light source of the laser displacement meter passes through the same path to the air nozzle. To the object to be measured. That is, it is possible to minimize the measurement error of the displacement by matching the action point of the blast that acts on the object to be measured from the air nozzle and the focal point of the laser light source of the laser displacement meter that irradiates the action point. Moreover, since the laser displacement meter and the pressure control valve are integrally supported by the pneumatic unit, the entire apparatus can be reduced.

また、前記空気ノズルは、前記空圧ユニットへの取り付けを脱着可能としているから、被測定物に応じて最適な空気ノズルを選択することができる。   Further, since the air nozzle can be attached to and detached from the pneumatic unit, an optimum air nozzle can be selected according to the object to be measured.

さらに、前記空圧ユニット下部には、前記空気ノズルを囲繞するカバー体を備えているから、外部の雰囲気の影響を抑えて噴風空気の広がりや乱流を防止することができる。   In addition, since the lower part of the pneumatic unit is provided with a cover body that surrounds the air nozzle, the influence of the external atmosphere can be suppressed to prevent the blast air from spreading and turbulent flow.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。図1は物体の変形特性を測定する装置の機器構成を示す概略図である。図1において、符号1は被測定物となる粘弾性体であり、テーブル2上の試料台3にステンレス製の皿状容器4を載置し、該皿状容器4の上面に5mm厚のスポンジ状の膜5を張設したものである。該粘弾性体1はスポンジ状膜内部に空気6が充満した空気枕形状であり、柔軟性が保持されている。   The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a device configuration of an apparatus for measuring deformation characteristics of an object. In FIG. 1, reference numeral 1 denotes a viscoelastic body to be measured. A stainless dish 4 is placed on a sample table 3 on a table 2, and a 5 mm thick sponge is placed on the upper surface of the dish 4. The film 5 is stretched. The viscoelastic body 1 has an air pillow shape in which air 6 is filled in a sponge-like film, and the flexibility is maintained.

粘弾性体1の側部には、脚部7及び腕部8からなる組み立て式の鉄製スタンド9が立設してあり、腕部8先端には、粘弾性体1に向けて加圧空気を噴射するノズル10とレーザー変位計11とが一体で支持されている。レーザー変位計11の底面にはレーザー光源を発光する発光部11aと、該発光部11aからレーザー光源を被測定物に照射し、その反射光を受光する受光部11bが設けられている。そして、ノズル10から噴射する噴風が被測定物に作用する作用点と、この作用点に照射するレーザー変位計11の光軸とを一致させるために、ノズル10とレーザー変位計11との間に後述する空圧ユニット12を設けている。ノズル10と粘弾性体1との距離は、粘弾性体1になるべく空気圧がかかる距離に設定すればよく、例えば、ノズル10先端と粘弾性体1表面との距離を5mmに設定して配置される。   On the side of the viscoelastic body 1, an assembly type iron stand 9 composed of a leg portion 7 and an arm portion 8 is erected, and pressurized air is directed toward the viscoelastic body 1 at the tip of the arm portion 8. A nozzle 10 for injection and a laser displacement meter 11 are integrally supported. The bottom surface of the laser displacement meter 11 is provided with a light emitting unit 11a that emits a laser light source, and a light receiving unit 11b that irradiates the object to be measured with the laser light source from the light emitting unit 11a and receives the reflected light. And in order to make the action point where the blast blown from the nozzle 10 acts on the object to be measured coincide with the optical axis of the laser displacement meter 11 that irradiates this action point, between the nozzle 10 and the laser displacement meter 11. An air pressure unit 12 to be described later is provided. The distance between the nozzle 10 and the viscoelastic body 1 may be set to a distance to which air pressure is applied as much as possible. For example, the distance between the tip of the nozzle 10 and the surface of the viscoelastic body 1 is set to 5 mm. The

空圧ユニット12には、空気を送る装置が接続されている。すなわち、空圧ユニット12には、メインバルブとなる電磁弁13とジョイント14とを接続し、該ジョイント14からはエアーホース15を介してエアーの圧力を制御するためのエアーレギュレータ16(圧力調整弁又は減圧弁)とエアー源となるエアーコンプレッサー17を接続している。そして、エアーレギュレータ16は、エアーが出口側に流れないで圧力が高まってきたときには、入ってくるエアーを大気に開放して逃がす動作(リリーフ)を行い、エアーの圧力の制御が行われる。   A device for sending air is connected to the pneumatic unit 12. That is, a solenoid valve 13 serving as a main valve and a joint 14 are connected to the pneumatic unit 12, and an air regulator 16 (pressure adjusting valve) for controlling the air pressure from the joint 14 via an air hose 15. Or a pressure reducing valve) and an air compressor 17 serving as an air source. Then, when the pressure increases without air flowing to the outlet side, the air regulator 16 performs an operation (relief) of releasing the incoming air to the atmosphere to release the air, thereby controlling the air pressure.

また、メインバルブとなる電磁弁13は、コンプレッサー17からのエアーが加圧されて保持されており、エアーの噴出を可能とすべく、パーソナルコンピュータ18からケーブル19を介して電磁弁13を開閉駆動させ、加圧空気が噴射されることになる。電磁弁13からは、空圧ユニット12の空気流路を介してノズル10に連絡している。また、レーザー変位計11は、被測定物の作用点の変位を測定すべく、ケーブル20を介してパーソナルコンピュータ18に接続する。   The electromagnetic valve 13 serving as the main valve is pressurized and held with air from the compressor 17, and the electromagnetic valve 13 is driven to open and close via a cable 19 from the personal computer 18 so that the air can be ejected. And pressurized air is injected. The electromagnetic valve 13 communicates with the nozzle 10 via the air flow path of the pneumatic unit 12. The laser displacement meter 11 is connected to the personal computer 18 via the cable 20 in order to measure the displacement of the working point of the object to be measured.

図2は図1に示したレーザー変位計11の測定原理を示す概略図である。すなわち、レーザー変位計11は、レーザー光源21から発光部11aを介して出射したビーム光Kを、空圧ユニット12及びノズル10を通して膜5の表面に照射し、膜5の表面で反射した光の出射方向を受光部11bを介して位置検出素子22で検出する。膜5の表面が変位すると、表面によるビーム光Kの反射方向が変化し、位置検出素子22上の受光位置が変化するので、変位センサー主回路23によりこの受光位置変化を検出することにより膜5の変位を測定することができる。   FIG. 2 is a schematic diagram showing the measurement principle of the laser displacement meter 11 shown in FIG. In other words, the laser displacement meter 11 irradiates the surface of the film 5 with the beam light K emitted from the laser light source 21 through the light emitting unit 11 a through the pneumatic unit 12 and the nozzle 10, and reflects the light reflected on the surface of the film 5. The position detection element 22 detects the emission direction via the light receiving unit 11b. When the surface of the film 5 is displaced, the reflection direction of the beam light K by the surface is changed, and the light receiving position on the position detecting element 22 is changed. Therefore, the displacement sensor main circuit 23 detects this change in the light receiving position to detect the film 5. Can be measured.

前記レーザー変位計11と前記ノズル10との間は空圧ユニット12が設けられている。該空圧ユニット12は、レーザー光源21から出射するビーム光Kの焦点を、被測定物に作用する噴風の作用点と一致させる役目を果たす。すなわち、図3乃至図5を参照して説明すると、空圧ユニット12には、ジョイント14をねじ込むための雌ねじ付空気供給路24を水平方向に穿設し、該雌ねじ付空気供給路24の終端に電磁弁13へ空気を送るための電磁弁供給路25を上方向に接続する。   A pneumatic unit 12 is provided between the laser displacement meter 11 and the nozzle 10. The pneumatic unit 12 serves to make the focal point of the beam light K emitted from the laser light source 21 coincide with the point of action of the blast acting on the object to be measured. That is, with reference to FIGS. 3 to 5, the pneumatic unit 12 is provided with a female-threaded air supply path 24 for screwing the joint 14 in the horizontal direction, and the end of the female-threaded air supply path 24. An electromagnetic valve supply path 25 for sending air to the electromagnetic valve 13 is connected upward.

電磁弁13の内部構成は図6のように、空気入口ポート30及び空気出口ポート31をそれぞれ接続した空気シリンダ35と、該空気シリンダ35内を摺動する弁体32と、空気入口ポート30のシリンダ入口側36を開閉する弁座33と、弁体32を常時押圧するスプリング34と、前記シリンダ入口側36の弁座33を開放するためのソレノイド装置37と、前記空気シリンダ35のスプリング側35Aの圧力と空気入口ポート30の圧力を同一にするための背圧ポート38と、を備えている。これにより、ソレノイド装置37に電圧が印加されない場合は、スプリング34及び背圧ポート38により弁体32が押圧されて弁座33がシリンダ入口側36に当接して空気は漏れないが、ソレノイド装置37に電圧が印加されるとソレノイド装置37に励磁され、弁体32がソレノイド方向に移動し(図6の一点鎖線)、シリンダ入口側36が開放されることにより、空気入口ポート30から空気シリンダ35、シリンダ出口側40を経て空気出口ポート31に加圧空気が噴射されることになる(図6の一点鎖線の矢印)。   As shown in FIG. 6, the internal configuration of the solenoid valve 13 includes an air cylinder 35 to which an air inlet port 30 and an air outlet port 31 are connected, a valve body 32 that slides in the air cylinder 35, and an air inlet port 30. A valve seat 33 that opens and closes the cylinder inlet side 36, a spring 34 that constantly presses the valve element 32, a solenoid device 37 that opens the valve seat 33 on the cylinder inlet side 36, and a spring side 35A of the air cylinder 35 And a back pressure port 38 for making the pressure of the air inlet port 30 the same. As a result, when no voltage is applied to the solenoid device 37, the valve element 32 is pressed by the spring 34 and the back pressure port 38 so that the valve seat 33 contacts the cylinder inlet side 36 and air does not leak, but the solenoid device 37 When a voltage is applied to the solenoid valve 37, the solenoid device 37 is excited, the valve body 32 moves in the solenoid direction (the chain line in FIG. 6), and the cylinder inlet side 36 is opened, whereby the air cylinder 35 is opened from the air inlet port 30. Then, the pressurized air is injected into the air outlet port 31 through the cylinder outlet side 40 (the arrow of the one-dot chain line in FIG. 6).

再び、図3乃至図5を参照して空圧ユニット12を説明すると、空圧ユニット12には、電磁弁13から噴風を誘導するための電磁弁排出路26を下方向に穿設し(図3、図4)、該電磁弁排出路26の終端に水平中継路27を接続するとともに、該水平中継路27からノズル10に空気を誘導する垂直中継路28を接続する。該垂直中継路28上端には、レーザー変位計11の発光部11aを臨ませて、レーザー光源21を垂直中継路28内に誘導するように配置する。つまり、空圧ユニット12に穿設した垂直中継路28の上方側を凹状に切削加工して、レーザー変位計を取り付ける変位計取付面41を設ける。そして、レーザー変位計11の発光部11aを垂直中継路28に臨ませるとともに、レーザー変位計11の上から固定ホルダー42を被せ、空圧ユニット12に固定ねじ43,43を螺着して固定する。なお、レーザー光源21を垂直中継路28内に誘導するために、空圧ユニット12にイモねじ用の調整用孔44,44を穿設し(図3、図5)、イモねじの締め付け調節により空圧ユニット12とレーザ変位計11との微妙な位置調整が可能となる。符号45,45は電磁弁13を空圧ユニットに取り付けるための固定ねじである。   The pneumatic unit 12 will be described with reference to FIGS. 3 to 5 again. The pneumatic unit 12 is provided with a solenoid valve discharge passage 26 for inducing a jet from the solenoid valve 13 downward ( 3 and 4), a horizontal relay path 27 is connected to the end of the solenoid valve discharge path 26, and a vertical relay path 28 that guides air from the horizontal relay path 27 to the nozzle 10. At the upper end of the vertical relay path 28, the light emitting part 11 a of the laser displacement meter 11 is faced, and the laser light source 21 is arranged to be guided into the vertical relay path 28. That is, the upper side of the vertical relay path 28 drilled in the pneumatic unit 12 is cut into a concave shape, and the displacement meter mounting surface 41 for mounting the laser displacement meter is provided. Then, the light emitting portion 11a of the laser displacement meter 11 is made to face the vertical relay path 28, and the fixing holder 42 is put on the laser displacement meter 11, and fixing screws 43, 43 are screwed to the pneumatic unit 12 to be fixed. . In order to guide the laser light source 21 into the vertical relay path 28, the pneumatic unit 12 is provided with adjustment holes 44, 44 for the female screw (FIGS. 3 and 5), and by adjusting the fastening of the female screw. Subtle position adjustment between the pneumatic unit 12 and the laser displacement meter 11 becomes possible. Reference numerals 45 and 45 are fixing screws for attaching the electromagnetic valve 13 to the pneumatic unit.

垂直中継路28下端には、噴風用のノズル10が設けられる。該ノズル10は、空圧ユニット12への取り付けを脱着可能とすべくねじ加工するとともに、先端ノズル長を13mm程度に形成して、噴風空気の広がりや乱流が起こらないようにするとよい。また、ノズル10は内径が1mmのもの、2mmのもの及び3mmのものを被測定物に応じて適宜選択して使用するとよく、レーザー光源21のスポット径は直径が30μmであるので、レーザー光源21がノズル10の内径のほぼ中心を通り、変位が計測できるようにするとよい。なお、外部の雰囲気によって噴風空気の広がりや乱流が起こらないよう、空圧ユニットの下部にノズル10を囲繞するアクリル製のカバー体39を設けてもよい(図4参照)。   A nozzle 10 for blast is provided at the lower end of the vertical relay path 28. The nozzle 10 is preferably threaded so that it can be attached to and detached from the pneumatic unit 12, and the tip nozzle length is formed to be about 13 mm so as to prevent the blast air from spreading and turbulent flow. The nozzle 10 may have an inner diameter of 1 mm, 2 mm, or 3 mm as appropriate depending on the object to be measured. The laser light source 21 has a spot diameter of 30 μm. May pass through the approximate center of the inner diameter of the nozzle 10 so that the displacement can be measured. An acrylic cover body 39 surrounding the nozzle 10 may be provided below the pneumatic unit so that the blast air does not spread or turbulent flow due to the external atmosphere (see FIG. 4).

次に上記構成における作用を説明する。コンプレッサー17を起動して空気を加圧するとともに、エアーレギュレータ16によって所定の圧力に調節すると、エアーホース15、ジョイント14及び空圧ユニット12に加圧空気が充満する状態になる。   Next, the operation of the above configuration will be described. When the compressor 17 is activated to pressurize the air and adjusted to a predetermined pressure by the air regulator 16, the air hose 15, the joint 14, and the pneumatic unit 12 are filled with pressurized air.

空圧ユニット12内では、雌ねじ付空気供給路24及び電磁弁供給路25に加圧空気が充満しており、この状態で電磁弁13を開閉駆動させると、パルス状の空気がノズル10から噴射される。このときの、被測定物の窪み(凹部)の変位をレーザー変位計にて測定するのである。パルス状に加圧空気を噴射させるためには、電磁弁13を連続的にオン・オフ制御すればよく、タイマーなどを変更すればパルスの周期を変更することが可能である。また、加圧空気の圧力を変更させるため、振幅を変えることも可能である。さらには、デューティー比も任意に変更することができる。   In the pneumatic unit 12, the air supply path 24 with a female thread and the solenoid valve supply path 25 are filled with pressurized air. When the solenoid valve 13 is driven to open and close in this state, pulsed air is injected from the nozzle 10. Is done. At this time, the displacement of the depression (concave portion) of the object to be measured is measured with a laser displacement meter. In order to inject pressurized air in a pulse shape, the solenoid valve 13 may be continuously turned on / off, and the period of the pulse can be changed by changing a timer or the like. In addition, the amplitude can be changed to change the pressure of the pressurized air. Furthermore, the duty ratio can be arbitrarily changed.

電磁弁13を開閉駆動させる際は、パーソナルコンピュータ18からの指令によりソレノイド装置37に電圧が印加される。ソレノイド装置37に電圧が印加されると励磁により弁体32がソレノイド方向に移動し、シリンダ入口側36が開放されることにより、空気入口ポート30から空気シリンダ35を経て空気出口ポート31に加圧空気が噴射される。   When the electromagnetic valve 13 is driven to open and close, a voltage is applied to the solenoid device 37 according to a command from the personal computer 18. When a voltage is applied to the solenoid device 37, the valve element 32 moves in the solenoid direction by excitation, and the cylinder inlet side 36 is opened, so that the air outlet port 31 is pressurized from the air inlet port 30 through the air cylinder 35. Air is injected.

空気出口ポート31からの噴風は再び空圧ユニット12流入する。すなわち、空圧ユニット12の電磁弁排出路26、水平中継路27及び垂直中継路28を介してノズル10から被測定物に噴風される。この噴風と同時にレーザー変位計11のレーザー光源21が垂直中継路28内に誘導され、ノズル10から被測定物に照射される。つまり、ノズル10から被測定物に作用する噴風の作用点と、この作用点に照射するレーザー変位計11のレーザー光源21の焦点が一致して変位量の測定誤差を極力なくすことが可能となる。   The blast from the air outlet port 31 flows into the pneumatic unit 12 again. That is, the object to be measured is jetted from the nozzle 10 through the electromagnetic valve discharge path 26, the horizontal relay path 27, and the vertical relay path 28 of the pneumatic unit 12. Simultaneously with this blast, the laser light source 21 of the laser displacement meter 11 is guided into the vertical relay path 28 and is irradiated from the nozzle 10 onto the object to be measured. That is, the point of action of the blast that acts on the object to be measured from the nozzle 10 and the focal point of the laser light source 21 of the laser displacement meter 11 that irradiates the point of action coincide with each other, and it is possible to minimize the measurement error of the displacement. Become.

従来の空気ノズル100とレーザー変位計110とを別体で設けた測定装置(図12)と、本発明の空圧ユニット12を介して空気ノズル10とレーザー変位計11とを一体化した測定装置(図3乃至図5)とを比較した。供試材料としては、5mm厚のスポンジ状の膜をステンレス製の皿状容器の上面に張設したものに、空気ノズルから噴風をステップ状に印加し(図7参照)、レーザー変位計により変位を測定した。10パターンの空気圧を印加して従来装置と本発明とを比較すると(図8参照)、約1mmの測定誤差があることが分かった。これにより、本発明の測定装置を利用すれば、全体構成を縮小することが可能になり、また、ノズル10から被測定物に作用する噴風の作用点と、この作用点に照射するレーザー変位計11のレーザー光源21の焦点が一致して変位量の測定誤差を極力なくすことが可能となった。   A conventional measuring device (FIG. 12) in which the air nozzle 100 and the laser displacement meter 110 are provided separately, and a measuring device in which the air nozzle 10 and the laser displacement meter 11 are integrated via the pneumatic unit 12 of the present invention. (FIGS. 3 to 5). As a test material, a 5 mm thick sponge-like film was stretched on the upper surface of a stainless steel dish-like container, and a blast was applied stepwise from an air nozzle (see FIG. 7). Displacement was measured. When 10 patterns of air pressure were applied and the conventional apparatus was compared with the present invention (see FIG. 8), it was found that there was a measurement error of about 1 mm. As a result, if the measuring apparatus of the present invention is used, the overall configuration can be reduced, the action point of the blast acting on the object to be measured from the nozzle 10, and the laser displacement applied to the action point. The focus of the laser light source 21 of the total 11 coincided, and it became possible to eliminate the measurement error of the displacement amount as much as possible.

供試材料として、こんにゃく、ミニトマト、キウイを用い、本発明の測定装置を利用してインピーダンス計測を行った。各供試材料に対し空気ノズル10から空気圧0.2(MPa)、時間200(msec)の噴風を印加し、変位応答を計測した。パーソナルコンピュータ18により供試材料を図9のモデルと仮定して質量m、粘性率c、弾性率kを算出した。図10及び図11はこんにゃく、ミニトマト、キウイの各々についてインピーダンス計測を行った結果であり、硬さを推定して被測定物が何であるか特定することが可能となる。   As a test material, konjac, cherry tomato, and kiwi were used, and impedance measurement was performed using the measuring apparatus of the present invention. Displacement response was measured by applying a jet of air pressure 0.2 (MPa) and time 200 (msec) from the air nozzle 10 to each test material. The mass m, the viscosity c, and the elastic modulus k were calculated by the personal computer 18 assuming that the test material was the model shown in FIG. 10 and 11 show the results of impedance measurement for each of konjac, cherry tomato, and kiwi, and it is possible to identify what the object to be measured is by estimating the hardness.

本発明は、工業材料であれば、プラスチック、繊維、ゴム、パルプ、油脂、接着剤、セラミック、薬品などの硬さの測定、生鮮食品であれば、果実、食肉、魚介類などの硬さの測定、加工食品であれば、麺類、加工米飯、レトルト食品などの硬さの測定、医療分野であれば、胃壁などの生体内腔部等又は皮膚や筋肉などの生体表面部等の硬さ測定に適用できる。   The present invention measures the hardness of plastics, fibers, rubber, pulp, fats and oils, adhesives, ceramics, chemicals, etc. if it is an industrial material, and if it is a fresh food, the hardness of fruits, meat, seafood, etc. In the case of measurement and processed foods, the hardness of noodles, processed cooked rice, retort foods, etc., and in the medical field, the hardness of living body cavities such as the stomach wall or the body surface such as skin and muscle Applicable to.

本発明の測定装置の機器構成を示す概略図である。It is the schematic which shows the apparatus structure of the measuring apparatus of this invention. 図1に示したレーザー変位計の測定原理を示す概略図である。It is the schematic which shows the measurement principle of the laser displacement meter shown in FIG. 測定装置の拡大正面図である。It is an enlarged front view of a measuring device. 図3の矢視A方向から見た測定装置の側面図である。It is a side view of the measuring device seen from the arrow A direction of FIG. 図3の矢視B方向から見た測定装置の平面図である。It is a top view of the measuring device seen from the arrow B direction of FIG. 電磁弁の内部構成を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the internal structure of a solenoid valve. 実施例1に使用する噴風の計測変位データである。It is the measurement displacement data of the blast used for Example 1. FIG. 10パターンの空気圧を印加して従来装置と本発明とを比較した図である。It is the figure which applied the air pressure of 10 patterns and compared the conventional apparatus and this invention. インピーダンス測定のモデルである。It is a model for impedance measurement. こんにゃく、ミニトマト、キウイの各々についてインピーダンス計測を行った結果である。It is the result of having performed impedance measurement about each of konjac, cherry tomato, and kiwi. 質量m、粘性率c、弾性率kを比較した結果である。It is the result of having compared mass m, viscosity c, and elastic modulus k. 従来の測定装置を示す概略図である。It is the schematic which shows the conventional measuring apparatus.

符号の説明Explanation of symbols

1 粘弾性体
2 テーブル
3 試料台
4 皿状容器
5 膜
6 空気
7 脚部
8 腕部
9 鉄製スタンド
10 ノズル
11 レーザー変位計
11a 発光部
11b 受光部
12 空圧ユニット
13 電磁弁
14 ジョイント
15 エアーホース
16 エアーレギュレータ
17 エアーコンプレッサー
18 パーソナルコンピュータ
19 ケーブル
20 ケーブル
21 レーザー光源
22 位置検出素子
23 変位センサ主回路
24 雌ねじ付空気供給路
25 電磁弁供給路
26 電磁弁排出路
27 水平中継路
28 垂直中継路
30 空気入口ポート
31 空気出口ポート
32 弁体
33 弁座
34 スプリング
35 空気シリンダ
36 シリンダ入口側
37 ソレノイド装置
38 背圧ポート
39 カバー体
40 シリンダ出口側
41 変位計取付面
42 固定ホルダー
43 固定ねじ
44 調整用孔
45 固定ねじ
DESCRIPTION OF SYMBOLS 1 Viscoelastic body 2 Table 3 Sample stand 4 Dish container 5 Film 6 Air 7 Leg part 8 Arm part 9 Iron stand 10 Nozzle 11 Laser displacement meter 11a Light emission part 11b Light reception part 12 Pneumatic unit 13 Electromagnetic valve 14 Joint 15 Air hose 16 Air regulator 17 Air compressor 18 Personal computer 19 Cable 20 Cable 21 Laser light source 22 Position detection element 23 Displacement sensor main circuit 24 Female supply air supply path 25 Solenoid valve supply path 26 Solenoid valve discharge path 27 Horizontal relay path 28 Vertical relay path 30 Air inlet port 31 Air outlet port 32 Valve body 33 Valve seat 34 Spring 35 Air cylinder 36 Cylinder inlet side 37 Solenoid device 38 Back pressure port 39 Cover body 40 Cylinder outlet side 41 Displacement gauge mounting surface 42 Fixing holder 43 Fixing screw 44 For adjustment Hole 45 solid Constant screw

Claims (3)

被測定物に加圧空気を連続的又はパルス状に噴射して非接触で加振する空気ノズルと、前記加圧空気の振幅,振動周波数又はデューティ比を変化させるための圧力制御弁と、被測定物に与えた加振力によって生じる変位を測定するレーザー変位計とを備え、さらに、前記空気ノズルからの加振力と当該被測定物からの変位との間の伝達特性から、物体の変形特性を演算する演算・表示装置を備えた物体の変形特性測定装置であって、
前記空気ノズルからの噴風が被測定物に作用する作用点と、この作用点に照射するレーザー変位計の光軸とを一致させるべく、前記空気ノズルに空気を誘導する経路と、前記レーザー変位計のレーザー光源を誘導する経路とを共通化するとともに、該レーザー変位計及び前記圧力制御弁を一体的に支持する空圧ユニットを設け、該空圧ユニットに前記空気ノズルを取り付けたことを特徴とする物体の変形特性測定装置。
An air nozzle for continuously or pulsedly injecting pressurized air to the object to be measured and oscillating in a non-contact manner; a pressure control valve for changing the amplitude, vibration frequency or duty ratio of the pressurized air; A laser displacement meter that measures the displacement caused by the excitation force applied to the object to be measured, and further, from the transfer characteristic between the excitation force from the air nozzle and the displacement from the object to be measured, the deformation of the object An apparatus for measuring deformation characteristics of an object having a calculation / display device for calculating characteristics,
A path for guiding air to the air nozzle and the laser displacement so that the action point at which the blast from the air nozzle acts on the object to be measured and the optical axis of the laser displacement meter irradiated to the action point A common path for guiding the laser light source of the meter, a pneumatic unit that integrally supports the laser displacement meter and the pressure control valve is provided, and the air nozzle is attached to the pneumatic unit. An apparatus for measuring deformation characteristics of an object.
前記空気ノズルは、前記空圧ユニットへの取り付けを脱着可能としてなる請求項1記載の物体の変形特性測定装置。   The apparatus for measuring deformation characteristics of an object according to claim 1, wherein the air nozzle is attachable to and detachable from the pneumatic unit. 前記空圧ユニット下部には、前記空気ノズルを囲繞するカバー体を備えてなる請求項1又は2記載の物体の変形特性測定装置。
The apparatus for measuring deformation characteristics of an object according to claim 1 or 2, further comprising a cover body surrounding the air nozzle at a lower portion of the pneumatic unit.
JP2003359905A 2003-10-20 2003-10-20 Device for measuring deformation characteristics of objects Expired - Fee Related JP4315372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003359905A JP4315372B2 (en) 2003-10-20 2003-10-20 Device for measuring deformation characteristics of objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003359905A JP4315372B2 (en) 2003-10-20 2003-10-20 Device for measuring deformation characteristics of objects

Publications (2)

Publication Number Publication Date
JP2005121614A true JP2005121614A (en) 2005-05-12
JP4315372B2 JP4315372B2 (en) 2009-08-19

Family

ID=34615972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003359905A Expired - Fee Related JP4315372B2 (en) 2003-10-20 2003-10-20 Device for measuring deformation characteristics of objects

Country Status (1)

Country Link
JP (1) JP4315372B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069702A (en) * 2009-09-25 2011-04-07 Keihin Corp Creep quantity measurement apparatus
JP2012154819A (en) * 2011-01-26 2012-08-16 National Univ Corp Shizuoka Univ Handy type hardness measuring apparatus
KR101430808B1 (en) 2012-07-04 2014-08-18 (주)엘지하우시스 Defect detection apparatus for vacuum insulation panel
CN107655746A (en) * 2017-11-02 2018-02-02 山东交通学院 A kind of dynamic characteristic test apparatus of spiral case inner chamber pressure-bearing
CN108956377A (en) * 2018-05-08 2018-12-07 中国农业大学 A kind of food rheological behavior detecting method
CN108956376A (en) * 2018-05-08 2018-12-07 中国农业大学 A kind of food rheological behavior detection system
US20210107155A1 (en) * 2019-10-15 2021-04-15 Pixart Imaging Inc. Object determining system and auto clean machine using the object determining system
US20230063766A1 (en) * 2021-09-02 2023-03-02 China Agricultural University Air pressure-machine vision based system and method for measuring rheological property of viscoelastic material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069702A (en) * 2009-09-25 2011-04-07 Keihin Corp Creep quantity measurement apparatus
JP2012154819A (en) * 2011-01-26 2012-08-16 National Univ Corp Shizuoka Univ Handy type hardness measuring apparatus
KR101430808B1 (en) 2012-07-04 2014-08-18 (주)엘지하우시스 Defect detection apparatus for vacuum insulation panel
CN107655746A (en) * 2017-11-02 2018-02-02 山东交通学院 A kind of dynamic characteristic test apparatus of spiral case inner chamber pressure-bearing
CN108956377A (en) * 2018-05-08 2018-12-07 中国农业大学 A kind of food rheological behavior detecting method
CN108956376A (en) * 2018-05-08 2018-12-07 中国农业大学 A kind of food rheological behavior detection system
US20210107155A1 (en) * 2019-10-15 2021-04-15 Pixart Imaging Inc. Object determining system and auto clean machine using the object determining system
US11548157B2 (en) * 2019-10-15 2023-01-10 Pixart Imaging Inc. Object determining system and auto clean machine using the object determining system
US11826917B2 (en) 2019-10-15 2023-11-28 Pixart Imaging Inc. Object determining system and auto clean machine using the object determining system
US20230063766A1 (en) * 2021-09-02 2023-03-02 China Agricultural University Air pressure-machine vision based system and method for measuring rheological property of viscoelastic material
US11644400B2 (en) * 2021-09-02 2023-05-09 China Agricultural University Air pressure-machine vision based system and method for measuring rheological property of viscoelastic material

Also Published As

Publication number Publication date
JP4315372B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
US11690592B2 (en) Device and method for measuring the viscoelastic properties of a viscoelastic medium
JP4315372B2 (en) Device for measuring deformation characteristics of objects
AU2013285625B2 (en) System and method for determining a property of an object, and a valve
JP5478129B2 (en) Non-contact ultrasonic tonometer
SE9900369D0 (en) Ultrasonic nebuliser
JP3706360B2 (en) Tooth mobility measurement device, operation method of the device, and nozzle used in the device
JP2004069668A (en) Method and instrument for measuring deformation characteristic of object
US20230057737A1 (en) Ultrasound Coupling Shoe
CA3041917C (en) Method and device for examining a sample
JP2018161217A (en) Ophthalmologic apparatus
EP1574198B1 (en) Instrument for the medical treatment of biological tissues by shock-wave therapy
US11980497B2 (en) Device and method for measuring the viscoelastic properties of a viscoelastic medium
JP2017205710A (en) Coating agent residual quantity checking device, coating applicator and coating agent residual quantity checking method
JP2003294598A (en) Method and system for measuring resilient characteristic
KR102258518B1 (en) Probe Cover mounted on probe of ultrasonic inspection device and ultrasonic inspection device having the same probe cover
TW201725014A (en) Liquid jetting device and liquid jetting method
KR100457867B1 (en) Friction Tester for The Measurement of Organs and Artifact
RU2021116825A (en) REACTOR FOR IMPLEMENTING CHEMICAL REACTION AND METHOD FOR CONTROL OF CHEMICAL REACTION
CN112204382A (en) Agglutination state monitoring sensor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees