JP2005098186A - Operation area control device of internal combustion engine - Google Patents

Operation area control device of internal combustion engine Download PDF

Info

Publication number
JP2005098186A
JP2005098186A JP2003331885A JP2003331885A JP2005098186A JP 2005098186 A JP2005098186 A JP 2005098186A JP 2003331885 A JP2003331885 A JP 2003331885A JP 2003331885 A JP2003331885 A JP 2003331885A JP 2005098186 A JP2005098186 A JP 2005098186A
Authority
JP
Japan
Prior art keywords
limit value
compression ignition
ignition operation
atmospheric pressure
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003331885A
Other languages
Japanese (ja)
Other versions
JP4166135B2 (en
Inventor
Akira Kato
彰 加藤
Toru Kitamura
徹 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003331885A priority Critical patent/JP4166135B2/en
Publication of JP2005098186A publication Critical patent/JP2005098186A/en
Application granted granted Critical
Publication of JP4166135B2 publication Critical patent/JP4166135B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation area control device of an internal combustion engine, capable of improving fuel consumption, and capable of reducing a generation quantity of NOx, by expanding a compression ignition operation area, so as to vary the compression ignition operation area in response to atmospheric pressure. <P>SOLUTION: This internal combustion engine can perform both spark ignition operation and compression ignition operation, and has an atmospheric pressure detecting means 29 for detecting the atmospheric pressure, an operation state detecting means for detecting an operation state provided for determining the compression ignition operation area, a limit value deriving means for deriving a compression ignition operation limit value of the operation state corresponding to the atmospheric pressure detected by the atmospheric pressure detecting means 29, an operation area determining means for determining whether or not to be in the compression ignition operation area, by comparing the compression ignition operation limit value derived by the limit value deriving means with the operation state detected by the operation state detecting means, and an operation area setting mean for setting the internal combustion engine in compression ignition operation, when the operation area determining means determines to be in the compression ignition operation area. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、火花点火運転と圧縮着火運転がともに可能な内燃機関において、運転領域を制御する装置に関する。   The present invention relates to an apparatus for controlling an operation region in an internal combustion engine capable of both a spark ignition operation and a compression ignition operation.

内燃機関に供給される混合気を圧縮着火(圧縮自着火)により燃焼させる圧縮着火運転によれば、圧縮比が高いため燃費が良く、空燃比がリーンな状態でも比較的安定した燃焼を実現し、しかも燃焼温度が比較的低いので、NOxの発生量を低減することができる。   According to the compression ignition operation in which the air-fuel mixture supplied to the internal combustion engine is combusted by compression ignition (compression self-ignition), a high compression ratio results in good fuel efficiency and realizes relatively stable combustion even when the air-fuel ratio is lean. Moreover, since the combustion temperature is relatively low, the amount of NOx generated can be reduced.

圧縮着火を起こさせるためには、燃焼室内のガス温度を所定温度以上に高める必要があり、そのため排気熱を利用する内部EGRが一般的に採用されている。
内部EGRは、排気弁を排気行程の途中で早く閉弁し、吸気弁を吸気行程の途中で遅く開弁する所謂マイナスオーバラップ制御により実現している
In order to cause compression ignition, it is necessary to raise the gas temperature in the combustion chamber to a predetermined temperature or higher, and therefore, internal EGR using exhaust heat is generally employed.
The internal EGR is realized by so-called minus overlap control that closes the exhaust valve early in the middle of the exhaust stroke and opens the intake valve late in the middle of the intake stroke.

すなわち排気弁の早めの閉弁と吸気弁の遅めの開弁により吸気上死点付近で燃焼室内に燃焼ガスの一部を閉じ込め、残留ガス(内部EGRガス)として次のサイクルの吸気と混合させてガス温度を上昇させて圧縮自着火を起こさせる。   That is, by closing the exhaust valve earlier and opening the intake valve later, a part of the combustion gas is confined in the combustion chamber near the intake top dead center, and mixed with the intake of the next cycle as residual gas (internal EGR gas). The gas temperature is raised to cause compression autoignition.

このマイナスオーバラップのバルブタイミイグ制御により残留ガス量を調整することで、燃料の圧縮前温度を調整して断熱圧縮により最適タイミングで自着火するように制御することが一般的に行われている。(例えば、特許文献1参照)。
特開平10−266878号公報
By adjusting the residual gas amount by this negative overlap valve timing control, it is generally controlled to adjust the pre-compression temperature of the fuel so that self-ignition is performed at an optimal timing by adiabatic compression. . (For example, refer to Patent Document 1).
JP-A-10-266878

かかるマイナスオーバラップのバルブタイミイグ制御による残留ガス量の調整によっても自着火できないような運転状態のときは、火花点火運転をすることなり、そのため圧縮着火運転が可能な運転状態の限界値を予め定めておき、この一定の限界値内に運転状態がある場合にのみ圧縮着火運転を行っていた。   In such an operating state where self-ignition is not possible even by adjusting the residual gas amount by such negative overlap valve timing control, spark ignition operation is performed, and therefore the limit value of the operating state in which compression ignition operation is possible is set in advance. The compression ignition operation is performed only when the operation state is within the certain limit value.

ところで、燃焼室からのEGRガスの流出は、燃焼室内の圧力と大気圧(または排気圧)との差圧によるものであるから、燃焼室内に残るEGRガス量は、大気圧の影響を受け、よって自着火時期も大気圧の影響の下にある。   By the way, since the outflow of EGR gas from the combustion chamber is due to the differential pressure between the pressure in the combustion chamber and the atmospheric pressure (or exhaust pressure), the amount of EGR gas remaining in the combustion chamber is affected by the atmospheric pressure, Therefore, the self-ignition time is also under the influence of atmospheric pressure.

したがって、前記のように定めた運転状態の限界値では、車両搭載の内燃機関のように高地走行するときに大気圧が低くなると、適性タイミングで着火しないか、ときに失火の可能性がある。   Therefore, at the limit value of the operating state determined as described above, if the atmospheric pressure becomes low when traveling at a high altitude like an internal combustion engine mounted on a vehicle, there is a possibility that ignition does not occur at an appropriate timing or sometimes misfire occurs.

そこで大気圧が低い場合にも失火せずに圧縮着火運転が可能な運転状態の限界値を定めるとなると、圧縮着火運転領域が狭くなる限界値に設定することになり、燃費が悪化することになる。   Therefore, if the limit value of the operation state in which the compression ignition operation can be performed without misfiring even when the atmospheric pressure is low, the compression ignition operation region is set to a limit value that narrows, and the fuel consumption deteriorates. Become.

本発明は、かかる点に鑑みなされたもので、その目的とする処は、大気圧に応じて圧縮着火運転領域を変動するようにし圧縮着火運転領域を拡大して燃費の向上およびNOxの発生量の低減を図ることができる内燃機関の運転領域制御装置を供する点にある。   The present invention has been made in view of the above points, and the object of the present invention is to improve the fuel consumption and the amount of NOx generated by expanding the compression ignition operation region by changing the compression ignition operation region according to the atmospheric pressure. It is in the point which provides the operation area | region control apparatus of the internal combustion engine which can aim at reduction of this.

上記目的を達成するために、本請求項1記載の発明は、火花点火運転と圧縮着火運転がともに可能な内燃機関において、大気圧を検出する大気圧検出手段と、圧縮着火運転領域の判定に供される運転状態を検出する運転状態検出手段と、前記大気圧検出手段が検出した大気圧に対応する前記運転状態の圧縮着火運転限界値を導出する限界値導出手段と、前記限界値導出手段が導出した圧縮着火運転限界値と前記運転状態検出手段が検出した運転状態とを比較して圧縮着火運転領域内にあるか否かを判定する運転領域判定手段と、前記運転領域判定手段が圧縮着火運転領域内にあると判定したとき圧縮着火運転に内燃機関を設定する運転領域設定手段とを備えた内燃機関の運転領域制御装置とした。   In order to achieve the above object, the invention described in claim 1 is an internal combustion engine capable of both a spark ignition operation and a compression ignition operation, and an atmospheric pressure detection means for detecting atmospheric pressure, and a compression ignition operation region determination. An operating state detecting means for detecting an operating state provided; a limit value deriving means for deriving a compression ignition operation limit value of the operating state corresponding to the atmospheric pressure detected by the atmospheric pressure detecting means; and the limit value deriving means. Is compared with the operation limit detected by the operation state detection means and the operation state determination means for determining whether or not it is within the compression ignition operation region, and the operation region determination means performs compression. An operation region control device for an internal combustion engine is provided that includes an operation region setting means for setting the internal combustion engine for compression ignition operation when it is determined that it is within the ignition operation region.

限界値導出手段が大気圧に対応する前記運転状態の圧縮着火運転限界値を導出し、この圧縮着火運転限界値と運転状態とを比較して圧縮着火運転領域内にあるか否かを判定するので、大気圧に応じて圧縮着火運転領域を変動し、大気圧が最も低い場合を考慮して圧縮着火運転領域を狭くするような圧縮着火運転限界値に設定することがなく、圧縮着火運転領域を拡大して燃費の向上およびNOxの発生量の低減を図ることができる。   The limit value deriving means derives the compression ignition operation limit value in the operation state corresponding to the atmospheric pressure, and compares the compression ignition operation limit value with the operation state to determine whether or not it is within the compression ignition operation region. Therefore, the compression ignition operation region varies depending on the atmospheric pressure, and the compression ignition operation region is not set to a compression ignition operation limit value that narrows the compression ignition operation region in consideration of the lowest atmospheric pressure. The fuel consumption can be improved and the amount of NOx generated can be reduced.

請求項2記載の発明は、請求項1記載の内燃機関の運転領域制御装置において、前記限界値導出手段は、燃機関の機関回転数に対応する圧縮着火運転の通常要求トルク限界値を記憶する通常要求トルク限界値記憶手段と、気圧に対応する通常要求トルク限界値補正係数を記憶する補正係数記憶手段とを備え、前記通常要求トルク限界値記憶手段から検索された通常要求トルク限界値を前記補正係数記憶手段から検索された要求トルク限界値補正係数により補正した補正要求トルク限界値を導出し、前記運転状態検出手段は、内燃機関の機関回転数とアクセルペダルの踏込み量に基づき要求トルクを検出し、前記運転領域判定手段は、前記限界値導出手段が導出した補正要求トルク限界値と前記運転状態検出手段が検出した要求トルクとを比較して圧縮着火運転領域内にあるか否かを判定することを特徴とする。   According to a second aspect of the present invention, in the operation region control apparatus for an internal combustion engine according to the first aspect, the limit value deriving means stores a normally required torque limit value of the compression ignition operation corresponding to the engine speed of the fuel engine. A normal request torque limit value storage means; and a correction coefficient storage means for storing a normal request torque limit value correction coefficient corresponding to the atmospheric pressure, and the normal request torque limit value retrieved from the normal request torque limit value storage means A corrected required torque limit value corrected by the required torque limit value correction coefficient retrieved from the correction coefficient storage means is derived, and the operating state detecting means calculates the required torque based on the engine speed of the internal combustion engine and the depression amount of the accelerator pedal. And the operation region determination means compares the corrected required torque limit value derived by the limit value deriving means with the required torque detected by the operation state detection means. And judging whether the compression ignition operating region Te.

大気圧が地上の平均大気圧にある通常時における機関回転数に対応する圧縮着火運転の通常要求トルク限界値を大気圧に対応する通常要求トルク限界値補正係数により補正した補正要求トルク限界値を用い、同補正要求トルク限界値と要求トルクとを比較して圧縮着火運転領域内にあるか否かを判定するので、圧縮着火運転領域を拡大して燃費の向上およびNOxの発生量の低減を図ることができる。   The corrected required torque limit value obtained by correcting the normal required torque limit value of the compression ignition operation corresponding to the engine speed at the normal time when the atmospheric pressure is the average atmospheric pressure on the ground is corrected by the normal required torque limit value correction coefficient corresponding to the atmospheric pressure. The correction required torque limit value is compared with the required torque to determine whether or not it is within the compression ignition operation region. Therefore, the compression ignition operation region is expanded to improve fuel consumption and reduce the amount of NOx generated. Can be planned.

請求項3記載の発明は、請求項1記載の内燃機関の運転領域制御装置において、前記限界値導出手段は、大気圧に対応する圧縮着火運転の吸気温限界値を記憶する吸気温限界値記憶手段を備え、前記運転領域判定手段は、前記限界値導出手段により前記吸気温限界値記憶手段から検索された吸気温限界値と吸気温とを比較して圧縮着火運転領域内にあるか否かを判定することを特徴とする。   According to a third aspect of the present invention, in the operation region control apparatus for an internal combustion engine according to the first aspect, the limit value deriving means stores an intake air temperature limit value memory for storing an intake air temperature limit value of the compression ignition operation corresponding to the atmospheric pressure. Whether the operating region determination unit is within the compression ignition operating region by comparing the intake air temperature limit value retrieved from the intake air temperature limit value storage unit by the limit value deriving unit with the intake air temperature. It is characterized by determining.

圧縮着火運転の吸気温限界値を一定値とすることなく、大気圧に応じて圧縮着火運転が可能な限界値が検索できるので、圧縮着火運転領域を拡大しつつ安定した圧縮着火を確保できる適切な領域とすることができ、燃費の向上およびNOxの発生量の低減を図ることができる。   Since the limit value that allows compression ignition operation can be searched according to atmospheric pressure without making the intake air temperature limit value of compression ignition operation constant, it is appropriate to ensure stable compression ignition while expanding the compression ignition operation area Therefore, the fuel consumption can be improved and the amount of NOx generated can be reduced.

以下本発明に係る一実施の形態について図1ないし図4に基づき説明する。
本実施の形態に係る内燃機関1は、火花点火(SI:Spark Ignition)燃焼方式による運転(火花点火運転)と、圧縮着火(HCCI:Homogeneous Charge Compression Ignition)燃焼方式による運転(圧縮着火運転)の燃焼方式の異なる運転がともに可能である車両搭載の4ストロークサイクルの多気筒内燃機関(単気筒でもよい)である。
Hereinafter, an embodiment according to the present invention will be described with reference to FIGS.
The internal combustion engine 1 according to the present embodiment includes an operation by a spark ignition (SI) combustion method (spark ignition operation) and an operation by a compression ignition (HCCI) method (compression ignition operation). This is a four-stroke cycle multi-cylinder internal combustion engine (may be a single cylinder) mounted on a vehicle that can be operated with different combustion methods.

図1は、該内燃機関1の概略構成図であり、シリンダ2内をピストン3が往復動し、シリンダ2内を閉塞するシリンダヘッドとピストン3との間に燃焼室4が構成されている。   FIG. 1 is a schematic configuration diagram of the internal combustion engine 1, in which a piston 3 reciprocates in a cylinder 2, and a combustion chamber 4 is formed between a cylinder head that closes the cylinder 2 and the piston 3.

燃焼室4からポートを介して吸気通路5と排気通路6が延出しており、吸気ポートの燃焼室4に臨む開口には吸気弁7、排気ポートの燃焼室4に臨む開口には排気弁8が配設されており、燃焼室4への吸気を制御する吸気弁7と燃焼室4からの排気を制御する排気弁8はともに電磁バルブである。   An intake passage 5 and an exhaust passage 6 extend from the combustion chamber 4 through the ports. An intake valve 7 is provided at the opening of the intake port facing the combustion chamber 4, and an exhaust valve 8 is provided at the opening of the exhaust port facing the combustion chamber 4. The intake valve 7 that controls intake to the combustion chamber 4 and the exhaust valve 8 that controls exhaust from the combustion chamber 4 are both electromagnetic valves.

その他に燃焼室4には点火プラグ9が取り付けられるとともに、直接燃焼室4内に燃料を噴射する燃料噴射弁10が取り付けられている。   In addition, an ignition plug 9 is attached to the combustion chamber 4 and a fuel injection valve 10 for injecting fuel directly into the combustion chamber 4 is attached.

点火プラグ9は、火花点火運転時に駆動され放電により燃焼室4内の混合気に点火する。
燃料噴射弁10は図示されない燃料供給ポンプに接続されて制御されたタイミングで制御された時間燃料を燃焼室4内に噴射する。
The spark plug 9 is driven during the spark ignition operation and ignites the air-fuel mixture in the combustion chamber 4 by discharge.
The fuel injection valve 10 is connected to a fuel supply pump (not shown) and injects fuel into the combustion chamber 4 for a controlled time at a controlled timing.

吸気通路5には吸気流量を調節するスロットル弁11が介装されており、スロットル弁11はアクチュエータ(図示せず)により駆動され、運転状態に応じてスロットル弁開度が制御される。   The intake passage 5 is provided with a throttle valve 11 for adjusting the intake flow rate. The throttle valve 11 is driven by an actuator (not shown), and the throttle valve opening is controlled according to the operating state.

排気通路6には排気浄化装置12が介装され、排気浄化装置12にはNOx吸着触媒(LNC)が用いられている。   An exhaust purification device 12 is interposed in the exhaust passage 6, and a NOx adsorption catalyst (LNC) is used for the exhaust purification device 12.

概ね以上のような構造の内燃機関1の運転状態を検出する各種センサが各所に設けられている。
内燃機関1のクランク軸の回転数(機関回転数)Neを検出する回転数センサ21、内燃機関1の冷却水の温度(機関水温)Twを検出する水温センサ22が、内燃機関1本体に設けられている。
Various sensors for detecting the operating state of the internal combustion engine 1 having the above-described structure are provided at various locations.
A rotation speed sensor 21 for detecting the rotation speed of the crankshaft (engine speed) Ne of the internal combustion engine 1 and a water temperature sensor 22 for detecting the temperature of the cooling water (engine water temperature) Tw of the internal combustion engine 1 are provided in the body of the internal combustion engine 1. It has been.

吸気通路5には、スロットル弁11にスロットル弁開度Thを検出するスロットルセンサ23が設けられるとともに、スロットル弁11の下流側に吸気通路5内の吸気負圧Pbを検出する吸気圧センサ24および吸気通路5内の吸気温度Taを検出する吸気温センサ25が設けられている。   The intake passage 5 is provided with a throttle sensor 23 for detecting the throttle valve opening degree Th in the throttle valve 11, and an intake pressure sensor 24 for detecting the intake negative pressure Pb in the intake passage 5 on the downstream side of the throttle valve 11 and An intake air temperature sensor 25 for detecting the intake air temperature Ta in the intake passage 5 is provided.

排気通路6には、排気浄化装置12の上流側に排気温度Teを検出する排気温センサ27が配設されている。
その他大気圧Paを検出する大気圧センサ28およびアクセルペダルの踏込み量Apを検出するアクセルセンサ29が設けられている。
An exhaust temperature sensor 27 that detects the exhaust temperature Te is disposed in the exhaust passage 6 on the upstream side of the exhaust purification device 12.
In addition, an atmospheric pressure sensor 28 for detecting the atmospheric pressure Pa and an accelerator sensor 29 for detecting the depression amount Ap of the accelerator pedal are provided.

以上の回転数センサ21,水温センサ22,スロットルセンサ23,吸気圧センサ24,吸気温センサ25,大気圧センサ28,アクセルセンサ29等の各種センサからの検出信号は、電子制御ユニットECU30に入力され、コンピュータにより処理されて、運転領域の判定、判定された運転領域での吸気弁7,排気弁8,点火プラグ9,燃料噴射弁10,スロットル弁11等の駆動制御に供される。   Detection signals from various sensors such as the rotational speed sensor 21, the water temperature sensor 22, the throttle sensor 23, the intake pressure sensor 24, the intake air temperature sensor 25, the atmospheric pressure sensor 28, and the accelerator sensor 29 are input to the electronic control unit ECU 30. Then, it is processed by the computer to determine the operation region and to provide drive control for the intake valve 7, exhaust valve 8, spark plug 9, fuel injection valve 10, throttle valve 11 and the like in the determined operation region.

点火プラグ9を放電させる火花点火運転と点火プラグ9を放電させず圧縮着火させる圧縮着火運転の運転領域を判定する制御手順を、図2のフローチャートに示し以下説明する。   A control procedure for determining the operation region of the spark ignition operation for discharging the spark plug 9 and the compression ignition operation for performing the compression ignition without discharging the spark plug 9 is shown in the flowchart of FIG. 2 and will be described below.

まずステップ1で、始動時および始動直後であるか否かを判別し、始動後暖機がある程度完了するまでは、ステップ13に飛びステップ14に進んで点火プラグ9を放電させる火花点火運転がなされる。
暖機がある程度完了すると、ステップ2に進む。
First, in step 1, it is determined whether or not it is at the start and immediately after the start. Until the warm-up is completed to some extent after the start, the process jumps to step 13 and proceeds to step 14 to perform a spark ignition operation for discharging the spark plug 9. The
When the warm-up is completed to some extent, the process proceeds to Step 2.

ステップ2では吸気温センサ25が検出した吸気温Ta,回転数センサ21が検出した機関回転数Ne,大気圧センサ28が検出した大気圧Pa,アクセルセンサ29が検出したアクセルペダルの踏込み量Apを読み込む。   In step 2, the intake air temperature Ta detected by the intake air temperature sensor 25, the engine rotational speed Ne detected by the rotational speed sensor 21, the atmospheric pressure Pa detected by the atmospheric pressure sensor 28, and the depression amount Ap of the accelerator pedal detected by the accelerator sensor 29 are calculated. Read.

次のステップ3では、大気圧Paと圧縮着火運転の吸気温下限値TaLの関係を予め実験により最適に定め、メモリに記憶されたPa−TaLテーブルを検索して前記ステップ2で読み込んだ大気圧Paに対応する吸気温下限値TaLを抽出する。   In the next step 3, the relationship between the atmospheric pressure Pa and the intake air temperature lower limit value TaL of the compression ignition operation is optimally determined in advance by experiment, the Pa-TaL table stored in the memory is searched, and the atmospheric pressure read in step 2 is read. An intake air temperature lower limit TaL corresponding to Pa is extracted.

Pa−TaLテーブルの例をグラフ化して図3に示す。
図3に示すように、地上における通常の平均気圧760mmHgより気圧が低くなる、すなわちより高地を走行するほど、圧縮着火運転の吸気温下限値TaLは高い値が採用されることになる。
An example of the Pa-TaL table is graphed and shown in FIG.
As shown in FIG. 3, as the atmospheric pressure becomes lower than the normal average atmospheric pressure of 760 mmHg on the ground, that is, the higher the altitude, the higher the intake air temperature lower limit TaL of the compression ignition operation is adopted.

そして次のステップ4では、前記ステップ2で読み込んだ吸気温Taが、吸気温下限値TaL以上でかつ吸気温上限値TaH以下であるか否かを判別する。
なお吸気温上限値TaHは大気圧に関係なく予め定めた一定値である。
In the next step 4, it is determined whether or not the intake air temperature Ta read in step 2 is not less than the intake air temperature lower limit value TaL and not more than the intake air temperature upper limit value TaH.
The intake air temperature upper limit TaH is a predetermined constant value regardless of the atmospheric pressure.

吸気温Taが吸気温下限値TaLと吸気温上限値TaHの間の範囲内にあれば(TaL≦Ta≦TaH)、ステップ5に進み、この範囲内になければステップ13,14に飛んで、火花点火運転とする。   If the intake air temperature Ta is within the range between the intake air temperature lower limit value TaL and the intake air temperature upper limit value TaH (TaL ≦ Ta ≦ TaH), the process proceeds to step 5; otherwise, the process jumps to steps 13 and 14; Let the spark ignition operation.

走行地が高地になる程、大気圧が低くなり吸気温下限値TaLは大きくなるので、吸気温下限値TaLと吸気温上限値TaHの範囲は狭くなるように制御され、初めからこの範囲を狭くしておく必要はなく、大気圧に応じて狭くしている。   Since the atmospheric pressure decreases and the intake air temperature lower limit TaL increases as the travel location becomes higher, the range between the intake air temperature lower limit TaL and the intake air temperature upper limit TaH is controlled to be narrow, and this range is narrowed from the beginning. It is not necessary to keep it, it is narrowed according to the atmospheric pressure.

TaL≦Ta≦TaHであってステップ5に進むと、大気圧Paと圧縮着火運転の機関回転数下限値NeLの関係および大気圧Paと圧縮着火運転の機関回転数上限値NeHの関係を予め実験により最適に定め、メモリに記憶されたPa−NeLテーブルおよびPa−NeHテーブルを検索して前記ステップ2で読み込んだ大気圧Paに対応する機関回転数下限値NeLおよび機関回転数上限値NeHを抽出する。 When TaL ≦ Ta ≦ TaH and proceeding to step 5, the relationship between the atmospheric pressure Pa and the engine speed lower limit NeL for the compression ignition operation and the relationship between the atmospheric pressure Pa and the engine speed upper limit NeH for the compression ignition operation are tested in advance. The engine speed lower limit NeL and the engine speed upper limit NeH corresponding to the atmospheric pressure Pa read in step 2 are extracted by searching the Pa-NeL table and the Pa-NeH table stored in the memory. To do.

Pa−NeLテーブルおよびPa−NeHテーブルの例をグラフ化して図4に示す。
図4に示すように、地上における通常の平均大気圧760mmHgより気圧が低くなるほど、圧縮着火運転の機関回転数下限値NeLは徐々に大きな値が抽出されることになり、機関回転数上限値NeHは徐々に小さな値が抽出されることになる。
An example of a Pa-NeL table and a Pa-NeH table is graphed and shown in FIG.
As shown in FIG. 4, as the atmospheric pressure becomes lower than the normal average atmospheric pressure of 760 mmHg on the ground, the engine rotation speed lower limit value NeL of the compression ignition operation is gradually extracted, and the engine rotation speed upper limit value NeH. Will gradually extract small values.

そして次のステップ6では、前記ステップ2で読み込んだ機関回転数Neが、機関回転数下限値NeL以上でかつ機関回転数上限値NeH以下であるか否かを判別し、機関回転数下限値NeLと機関回転数上限値NeHの間の範囲内にあれば(NeL≦Ne≦NeH)、ステップ7に進み、この範囲内になければステップ13,14に飛んで、火花点火運転とする。   In the next step 6, it is determined whether or not the engine speed Ne read in step 2 is not less than the engine speed lower limit value NeL and not more than the engine speed upper limit value NeH, and the engine speed lower limit value NeL. If it is within the range between the engine speed upper limit value NeH (Ne ≦ Ne ≦ NeH), the routine proceeds to step 7, and if it is not within this range, the routine jumps to steps 13 and 14 to set the spark ignition operation.

走行地が高地になる程、大気圧が低くなり機関回転数下限値NeLと機関回転数上限値NeHの間の範囲は狭くなるように制御され、初めからこの範囲を狭くしておく必要はなく、大気圧に応じて狭くしている。   The higher the travel location, the lower the atmospheric pressure, and the range between the engine speed lower limit value NeL and the engine speed upper limit value NeH is controlled to be narrow, and it is not necessary to narrow this range from the beginning. , Narrowed according to atmospheric pressure.

以上のように圧縮着火運転の吸気温下限値TaLおよび機関回転数下限値NeLと機関回転数上限値NeHを一定値とすることなく、大気圧に応じて圧縮着火運転が可能な限界値が抽出されて用いられるので、圧縮着火運転領域を拡大しつつ安定した圧縮着火を確保できる適切な領域とすることができる。   As described above, the intake ignition temperature lower limit value TaL, the engine speed lower limit value NeL, and the engine speed upper limit value NeH of the compression ignition operation are set to constant values, and limit values that enable the compression ignition operation according to the atmospheric pressure are extracted. Accordingly, the compression ignition operation region can be expanded and an appropriate region in which stable compression ignition can be ensured can be obtained.

NeL≦Ne≦NeHであってステップ7に進むと、ステップ2で読み込んだアクセルペダルの踏込み量Apおよび機関回転数Neから要求トルクPMを算出する。
そして次のステップ8で機関回転数Neと圧縮着火運転の通常要求トルク下限値PMLの関係および機関回転数Neと圧縮着火運転の通常要求トルク上限値PMHの関係を予め実験により最適に定め、メモリに記憶されたNe−PMLテーブルおよびNe−PMHテーブルを検索して前記ステップ2で読み込んだ機関回転数Neに対応する通常要求トルク下限値PMLおよび通常要求トルク上限値PMHを抽出する。
When NeL ≦ Ne ≦ NeH and the routine proceeds to step 7, the required torque PM is calculated from the accelerator pedal depression amount Ap and the engine speed Ne read in step 2.
In the next step 8, the relationship between the engine speed Ne and the normal required torque lower limit value PML for the compression ignition operation and the relationship between the engine speed Ne and the normal required torque upper limit value PMH for the compression ignition operation are optimally determined in advance by experiments. And the normal required torque lower limit value PML and the normal required torque upper limit value PMH corresponding to the engine speed Ne read in step 2 are extracted.

ここで抽出された通常要求トルク下限値PMLおよび通常要求トルク上限値PMHは地上における通常の平均大気圧が760mmHgのときのものであり、Ne−PMLテーブルおよびNe−PMHテーブルの例をグラフ化して図5に示す。   The normal required torque lower limit value PML and the normal required torque upper limit value PMH extracted here are those when the normal average atmospheric pressure on the ground is 760 mmHg, and an example of the Ne-PML table and the Ne-PMH table is graphed. As shown in FIG.

図5に示すように、通常要求トルク上限値PMHは、機関回転数Neが高くなると大きな減少率で小さくなり、通常要求トルク上限値PMHは、機関回転数Neが高くなると極めて小さい減少率で小さくなる。   As shown in FIG. 5, the normal required torque upper limit value PMH decreases with a large decrease rate as the engine speed Ne increases, and the normal required torque upper limit value PMH decreases with an extremely small decrease rate as the engine speed Ne increases. Become.

次のステップ9では、大気圧Paと要求トルク下限補正係数KPMLの関係および大気圧Paと要求トルク上限補正係数KPMHの関係を予め実験により最適に定め、メモリに記憶されたPa−KPMLテーブルおよびPa−KPMHテーブルを検索して前記ステップ2で読み込んだ大気圧Paに対応する要求トルク下限補正係数KPMLおよび要求トルク上限補正係数KPMHを抽出する。   In the next step 9, the relationship between the atmospheric pressure Pa and the required torque lower limit correction coefficient KPML and the relationship between the atmospheric pressure Pa and the required torque upper limit correction coefficient KPMH are optimally determined in advance by experiments, and the Pa-KPML table and Pa stored in the memory are stored. -Search the KPMH table and extract the required torque lower limit correction coefficient KPML and the required torque upper limit correction coefficient KPMH corresponding to the atmospheric pressure Pa read in step 2 above.

Pa−KPMLテーブルおよびPa−KPMHテーブルの例をグラフ化して図6に示す。
図6に示すように、要求トルク下限補正係数KPMLと要求トルク上限補正係数KPMHは、いずれも平均大気圧760mmHgで「1」であり、平均大気圧760mmHgより低くなるほど、要求トルク下限補正係数KPMLは徐々に大きな値を示し、要求トルク上限補正係数KPMHは徐々に小さい値を示す。
An example of the Pa-KPML table and the Pa-KPMH table is graphed and shown in FIG.
As shown in FIG. 6, the required torque lower limit correction coefficient KPML and the required torque upper limit correction coefficient KPMH are both “1” at the average atmospheric pressure of 760 mmHg, and the required torque lower limit correction coefficient KPML decreases as the average atmospheric pressure decreases to 760 mmHg. The required torque upper limit correction coefficient KPMH gradually shows a small value.

通常要求トルク下限値PMLに要求トルク下限補正係数KPML(>1)を乗算して大気圧を考慮した補正要求トルク下限値PML・KPMLに補正すると、該補正要求トルク下限値PML・KPMLは、図5に示す通常要求トルク下限値PML(<1)より大きな値を示す。   When the normal required torque lower limit value PML is multiplied by the required torque lower limit correction coefficient KPML (> 1) and corrected to the corrected required torque lower limit value PML / KPML considering the atmospheric pressure, the corrected required torque lower limit value PML / KPML is A value larger than the normal required torque lower limit value PML (<1) shown in FIG.

また通常要求トルク上限値PMHに要求トルク上限補正係数KPMHを乗算して大気圧を考慮した補正要求トルク上限値PMH・KPMHに補正すると、該補正要求トルク上限値PMH・KPMHは、図5に示す通常要求トルク上限値PMHより小さい値を示す。   Further, when the normal required torque upper limit value PMH is multiplied by the required torque upper limit correction coefficient KPMH to be corrected to the corrected required torque upper limit value PMH / KPMH considering the atmospheric pressure, the corrected required torque upper limit values PMH / KPMH are shown in FIG. A value smaller than the normal required torque upper limit value PMH is shown.

次のステップ10で、通常要求トルク下限値PMLおよび通常要求トルク上限値PMHを、それぞれ要求トルク下限補正係数KPMLおよび要求トルク上限補正係数KPMHで補正した補正要求トルク下限値PML・KPMLと補正要求トルク上限値PMH・KPMHの間の範囲内に、前記ステップ7で算出した要求トルクPMがあるか否かを判別し、範囲内にあればステップ11に進み、範囲外であればステップ13,14に飛んで、火花点火運転とする。   In the next step 10, the corrected required torque lower limit value PML / KPML and the corrected required torque obtained by correcting the normal required torque lower limit value PML and the normal required torque upper limit value PMH with the required torque lower limit correction coefficient KPML and the required torque upper limit correction coefficient KPMH, respectively. It is determined whether or not the required torque PM calculated in step 7 is within the range between the upper limit values PMH and KPMH. If it is within the range, the process proceeds to step 11; Fly to spark-ignition operation.

PML・KPML≦PM≦PMH・KPMHであってステップ11に進むと、後記するタイマーがタイムアップ(t=0)か否かを判別し、t=0ならばステップ12に進んで圧着着火運転を継続し、タイムアップするまではステップ11からステップ14に飛ぶ。   When PML · KPML ≦ PM ≦ PMH · KPMH and the process proceeds to step 11, it is determined whether or not the timer described later is timed up (t = 0). If t = 0, the process proceeds to step 12 to perform the pressure ignition operation. Continue and jump from step 11 to step 14 until time is up.

ステップ10で要求トルクPMが補正要求トルク下限値PML・KPMLと補正要求トルク上限値PMH・KPMHの間の範囲にないと判別され、ステップ13に進むと、タイマーをセットしスタートさせ、次のステップ14で火花点火運転とする。
このタイマーは、タイマー時間tに所定時間Tがセットされスタートすると時間の経過とともにタイマー時間tが小さくなるダウンタイマーである。
In step 10, it is determined that the required torque PM is not in the range between the corrected required torque lower limit value PML · KPML and the corrected required torque upper limit value PMH · KPMH. When the process proceeds to step 13, the timer is set and started. 14 is spark ignition operation.
This timer is a down timer in which a predetermined time T is set as the timer time t and the timer time t decreases as time elapses when the timer T starts.

火花点火運転中はタイマーは逐次セットされ、PML・KPML≦PM≦PMH・KPMHが満足されて、ステップ10からステップ11に進んでも、タイマーがタイムアップするまではステップ11からステップ14に進んで火花点火運転が継続され、タイムアップしたところでステップ11からステップ12に進んで圧縮着火運転とする。   During the spark ignition operation, the timer is sequentially set and PML · KPML ≦ PM ≦ PMH · KPMH is satisfied, and even if the process proceeds from step 10 to step 11, the process proceeds from step 11 to step 14 until the timer expires. The ignition operation is continued, and when the time is up, the routine proceeds from step 11 to step 12 to set the compression ignition operation.

すなわち火花点火運転から圧縮着火運転に移行するときは所定時間Tの経過後の完全に安定した運転状態で移行することで、失火などを起こすことなく圧縮着火運転を円滑に始めることができる。   That is, when shifting from the spark ignition operation to the compression ignition operation, the compression ignition operation can be smoothly started without causing misfire or the like by shifting in a completely stable operation state after the elapse of the predetermined time T.

補正要求トルク下限値PML・KPMLと補正要求トルク上限値PMH・KPMHの間の範囲が、すなわち圧縮着火運転領域に相当し、この圧縮着火運転領域内に要求トルクPMがあれば圧縮着火運転が実行される。   The range between the corrected required torque lower limit value PML / KPML and the corrected required torque upper limit value PMH / KPMH corresponds to the compression ignition operation region, and if the required torque PM exists in this compression ignition operation region, the compression ignition operation is executed. Is done.

大気圧が低くなるほど、補正要求トルク下限値PML・KPMLは大きくなり、補正要求トルク上限値PMH・KPMHは小さくなるので、その間の範囲すなわち圧縮着火運転領域は狭くなる。   As the atmospheric pressure decreases, the corrected required torque lower limit value PML / KPML increases and the corrected required torque upper limit value PMH / KPMH decreases, so the range between them, that is, the compression ignition operation region becomes narrower.

気圧の低い高地での走行を可能とするため、当初より狭い圧縮着火運転領域に固定しておくよりも、本実施の形態のように大気圧に応じて圧縮着火運転領域を変動させることにより圧縮着火運転領域を拡大することができ、燃費の向上およびNOxの発生量の低減を図ることができる。   In order to enable traveling at a high altitude with low atmospheric pressure, compression is performed by changing the compression ignition operation region according to the atmospheric pressure as in this embodiment, rather than fixing to a compression ignition operation region that is narrower than the original. The ignition operation region can be expanded, and fuel consumption can be improved and the amount of NOx generated can be reduced.

以上のように、本運転領域判定制御は、始動時・始動直後でなく(ステップ1)、吸気温Taが吸気温下限値TaLと吸気温上限値TaHの間の範囲内にあり(ステップ4)、機関回転数Neが機関回転数下限値NeLと機関回転数上限値NeHの間の範囲内にあり(ステップ6)、要求トルクPMが補正要求トルク下限値PML・KPMLと補正要求トルク上限値PMH・KPMHの間の範囲内にある(ステップ10)場合にのみ圧縮着火運転が実行され、それ以外は火花点火運転が実行される。   As described above, the actual operation region determination control is not performed at the time of starting or immediately after starting (step 1), but the intake air temperature Ta is within the range between the intake air temperature lower limit value TaL and the intake air temperature upper limit value TaH (step 4). The engine speed Ne is within the range between the engine speed lower limit value NeL and the engine speed upper limit value NeH (step 6), and the required torque PM is the correction request torque lower limit value PML · KPML and the correction request torque upper limit value PMH. The compression ignition operation is executed only when it is within the range between KPMH (step 10), and the spark ignition operation is executed otherwise.

ステップ4における吸気温下限値TaL、ステップ6における機関回転数下限値NeLと機関回転数上限値NeH、ステップ10における補正要求トルク下限値PML・KPMLと補正要求トルク上限値PMH・KPMHは、いずれも大気圧に応じて圧縮着火運転が可能な限界値が抽出されて用いられるので、圧縮着火運転領域を拡大し、燃費の向上およびNOxの発生量の低減を図ることができる。   The intake air temperature lower limit value TaL in step 4, the engine speed lower limit value NeL and the engine speed upper limit value NeH in step 6, and the correction request torque lower limit value PML / KPML and the correction request torque upper limit value PMH / KPMH in step 10 are all. Since a limit value capable of compression ignition operation is extracted and used according to the atmospheric pressure, the compression ignition operation region can be expanded, and fuel consumption can be improved and NOx generation amount can be reduced.

本発明は、火花点火運転と圧縮着火運転がともに可能な内燃機関に適用可能である。   The present invention is applicable to an internal combustion engine capable of both a spark ignition operation and a compression ignition operation.

本発明の一実施の形態に係る内燃機関の概略構成図である。1 is a schematic configuration diagram of an internal combustion engine according to an embodiment of the present invention. 運転領域判定制御の手順を示すフローチャートである。It is a flowchart which shows the procedure of driving | running | working area | region determination control. 大気圧Paと圧縮着火運転の吸気温下限値TaLの関係であるPa−TaLテーブルをグラフ化した図である。It is the figure which plotted the Pa-TaL table which is the relationship between atmospheric pressure Pa and the intake air temperature lower limit TaL of compression ignition operation. 大気圧Paと圧縮着火運転の機関回転数下限値NeLの関係および大気圧Paと圧縮着火運転の機関回転数上限値NeHの関係であるPa−NeLテーブルおよびPa−NeHテーブルPa−TaLテーブルをグラフ化した図である。Graph showing Pa-NeL table and Pa-NeH table Pa-TaL table showing the relationship between atmospheric pressure Pa and engine rotation speed lower limit value NeL for compression ignition operation and the relationship between atmospheric pressure Pa and engine rotation speed upper limit value NeH for compression ignition operation FIG. 機関回転数Neと圧縮着火運転の通常要求トルク下限値PMLの関係および機関回転数Neと圧縮着火運転の通常要求トルク上限値PMHの関係であるNe−PMLテーブルおよびNe−PMHテーブルの例をグラフ化した図である。Example of Ne-PML table and Ne-PMH table showing relationship between engine speed Ne and normal required torque lower limit value PML for compression ignition operation and relationship between engine speed Ne and normal request torque upper limit value PMH for compression ignition operation FIG. 大気圧Paと要求トルク下限補正係数KPMLの関係および大気圧Paと要求トルク上限補正係数KPMHの関係であるPa−KPMLテーブルおよびPa−KPMHテーブルの例をグラフ化した図である。It is the figure which made the graph of the example of the Pa-KPML table and Pa-KPMH table which are the relationship between atmospheric pressure Pa and request torque lower limit correction coefficient KPML, and the relationship between atmospheric pressure Pa and request torque upper limit correction coefficient KPMH.

符号の説明Explanation of symbols

1…内燃機関、2…シリンダ、3…ピストン、4…燃焼室、5…吸気通路、6…排気通路、7…吸気弁、8…排気弁、9…点火プラグ、10…燃料噴射弁、11…スロットル弁、12…排気浄化装置、
21…回転数センサ、22…水温センサ、23…スロットルセンサ、24…吸気圧センサ、25…吸気温センサ、27…排気温センサ、28…大気圧センサ、29…アクセルセンサ、
30…ECU。

DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 2 ... Cylinder, 3 ... Piston, 4 ... Combustion chamber, 5 ... Intake passage, 6 ... Exhaust passage, 7 ... Intake valve, 8 ... Exhaust valve, 9 ... Spark plug, 10 ... Fuel injection valve, 11 ... Throttle valve, 12 ... Exhaust gas purification device,
21 ... Rotational speed sensor, 22 ... Water temperature sensor, 23 ... Throttle sensor, 24 ... Intake pressure sensor, 25 ... Intake temperature sensor, 27 ... Exhaust temperature sensor, 28 ... Atmospheric pressure sensor, 29 ... Accelerator sensor,
30 ... ECU.

Claims (3)

火花点火運転と圧縮着火運転がともに可能な内燃機関において、
大気圧を検出する大気圧検出手段と、
圧縮着火運転領域の判定に供される運転状態を検出する運転状態検出手段と、
前記大気圧検出手段が検出した大気圧に対応する前記運転状態の圧縮着火運転限界値を導出する限界値導出手段と、
前記限界値導出手段が導出した圧縮着火運転限界値と前記運転状態検出手段が検出した運転状態とを比較して圧縮着火運転領域内にあるか否かを判定する運転領域判定手段と、
前記運転領域判定手段が圧縮着火運転領域内にあると判定したとき圧縮着火運転に内燃機関を設定する運転領域設定手段と、
を備えたことを特徴とする内燃機関の運転領域制御装置。
In an internal combustion engine capable of both spark ignition operation and compression ignition operation,
Atmospheric pressure detection means for detecting atmospheric pressure;
An operation state detection means for detecting an operation state provided for determination of the compression ignition operation region;
Limit value deriving means for deriving the compression ignition operation limit value of the operating state corresponding to the atmospheric pressure detected by the atmospheric pressure detecting means;
An operation region determination means for comparing the compression ignition operation limit value derived by the limit value deriving means with the operation state detected by the operation state detection means to determine whether or not it is within the compression ignition operation region;
An operation region setting means for setting the internal combustion engine to the compression ignition operation when the operation region determination means determines that the operation region determination means is within the compression ignition operation region;
An operating region control device for an internal combustion engine, comprising:
前記限界値導出手段は、
内燃機関の機関回転数に対応する圧縮着火運転の通常要求トルク限界値を記憶する通常要求トルク限界値記憶手段と、
大気圧に対応する通常要求トルク限界値補正係数を記憶する補正係数記憶手段とを備え、
前記通常要求トルク限界値記憶手段から検索された通常要求トルク限界値を前記補正係数記憶手段から検索された要求トルク限界値補正係数により補正した補正要求トルク限界値を導出し、
前記運転状態検出手段は、内燃機関の機関回転数とアクセルペダルの踏込み量に基づき要求トルクを検出し、
前記運転領域判定手段は、前記限界値導出手段が導出した補正要求トルク限界値と前記運転状態検出手段が検出した要求トルクとを比較して圧縮着火運転領域内にあるか否かを判定することを特徴とする請求項1記載の内燃機関の運転領域制御装置。
The limit value deriving means includes
A normal required torque limit value storage means for storing a normal required torque limit value of the compression ignition operation corresponding to the engine speed of the internal combustion engine;
Correction coefficient storage means for storing a normal required torque limit value correction coefficient corresponding to the atmospheric pressure,
Deriving a corrected demand torque limit value obtained by correcting the normal demand torque limit value retrieved from the normal demand torque limit value storage means with the demand torque limit value correction coefficient retrieved from the correction coefficient storage means,
The operating state detection means detects the required torque based on the engine speed of the internal combustion engine and the amount of depression of the accelerator pedal,
The operation area determination means compares the correction required torque limit value derived by the limit value deriving means with the request torque detected by the operation state detection means to determine whether or not the engine is within the compression ignition operation area. The operating region control device for an internal combustion engine according to claim 1.
前記限界値導出手段は、
大気圧に対応する圧縮着火運転の吸気温限界値を記憶する吸気温限界値記憶手段を備え、
前記運転領域判定手段は、前記限界値導出手段により前記吸気温限界値記憶手段から検索された吸気温限界値と吸気温とを比較して圧縮着火運転領域内にあるか否かを判定することを特徴とする請求項1記載の内燃機関の運転領域制御装置。


The limit value deriving means includes
Intake temperature limit value storage means for storing the intake temperature limit value of the compression ignition operation corresponding to the atmospheric pressure,
The operation area determination means compares the intake air temperature limit value retrieved from the intake air temperature limit value storage means by the limit value deriving means with the intake air temperature to determine whether or not the vehicle is within the compression ignition operation area. The operating region control device for an internal combustion engine according to claim 1.


JP2003331885A 2003-09-24 2003-09-24 Operating region control device for internal combustion engine Expired - Fee Related JP4166135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003331885A JP4166135B2 (en) 2003-09-24 2003-09-24 Operating region control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003331885A JP4166135B2 (en) 2003-09-24 2003-09-24 Operating region control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005098186A true JP2005098186A (en) 2005-04-14
JP4166135B2 JP4166135B2 (en) 2008-10-15

Family

ID=34460408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003331885A Expired - Fee Related JP4166135B2 (en) 2003-09-24 2003-09-24 Operating region control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4166135B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1728994A1 (en) * 2005-05-31 2006-12-06 Hitachi, Ltd. Engine control unit
JP2009008076A (en) * 2007-06-26 2009-01-15 General Electric Co <Ge> System and method for heat recovery steam generator hot purging
JP2009127428A (en) * 2007-11-20 2009-06-11 Toyota Motor Corp Control device for internal combustion engine
US8352161B2 (en) 2007-11-13 2013-01-08 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
EP2431593A4 (en) * 2009-05-12 2018-03-07 Hitachi Automotive Systems, Ltd. Control device for compressed self-ignition type internal combustion engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192846A (en) * 1998-12-25 2000-07-11 Nissan Motor Co Ltd Combustion controller for internal combustion engine
JP2000265873A (en) * 1999-03-12 2000-09-26 Nissan Motor Co Ltd Combustion control device for internal combustion engine
JP2002129991A (en) * 2000-10-19 2002-05-09 Nissan Motor Co Ltd Valve timing control device for internal combustion engine
JP2002180864A (en) * 2000-12-08 2002-06-26 Nissan Motor Co Ltd Compression self-ignition type internal combustion engine with supercharger
JP2002276404A (en) * 2001-03-14 2002-09-25 Nissan Motor Co Ltd Compression ignition type internal combustion engine
JP2002310014A (en) * 2001-04-17 2002-10-23 Nissan Motor Co Ltd Ozone supply device
JP2003083137A (en) * 2002-09-05 2003-03-19 Mitsubishi Motors Corp Control device for internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192846A (en) * 1998-12-25 2000-07-11 Nissan Motor Co Ltd Combustion controller for internal combustion engine
JP2000265873A (en) * 1999-03-12 2000-09-26 Nissan Motor Co Ltd Combustion control device for internal combustion engine
JP2002129991A (en) * 2000-10-19 2002-05-09 Nissan Motor Co Ltd Valve timing control device for internal combustion engine
JP2002180864A (en) * 2000-12-08 2002-06-26 Nissan Motor Co Ltd Compression self-ignition type internal combustion engine with supercharger
JP2002276404A (en) * 2001-03-14 2002-09-25 Nissan Motor Co Ltd Compression ignition type internal combustion engine
JP2002310014A (en) * 2001-04-17 2002-10-23 Nissan Motor Co Ltd Ozone supply device
JP2003083137A (en) * 2002-09-05 2003-03-19 Mitsubishi Motors Corp Control device for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1728994A1 (en) * 2005-05-31 2006-12-06 Hitachi, Ltd. Engine control unit
US7333885B2 (en) 2005-05-31 2008-02-19 Hitachi, Ltd. Engine control unit
JP2009008076A (en) * 2007-06-26 2009-01-15 General Electric Co <Ge> System and method for heat recovery steam generator hot purging
US8352161B2 (en) 2007-11-13 2013-01-08 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP2009127428A (en) * 2007-11-20 2009-06-11 Toyota Motor Corp Control device for internal combustion engine
EP2431593A4 (en) * 2009-05-12 2018-03-07 Hitachi Automotive Systems, Ltd. Control device for compressed self-ignition type internal combustion engine

Also Published As

Publication number Publication date
JP4166135B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
US7841316B2 (en) Controller for direct injection engine
US7325535B2 (en) Engine controller
JP3233039B2 (en) Control device for in-cylinder injection spark ignition internal combustion engine
KR100310094B1 (en) The control system of cylnder injection type internal combustion enging with pryo-ignition method
US8224555B2 (en) Control apparatus of spark ignition internal combustion engine
US7331333B2 (en) Direct fuel injection/spark ignition engine control device
US7831377B2 (en) Ignition timing control system and method for internal combustion engine and engine control unit
JP3799898B2 (en) In-cylinder injection engine control device
US20040250803A1 (en) Control system for compression ignition internal combustion engine
JP2009041539A (en) Control device for gasoline engine
JP5029517B2 (en) Control device for internal combustion engine
JP4166135B2 (en) Operating region control device for internal combustion engine
US7000586B2 (en) Control device for compression ignition operation of internal combustion engine
JP4265475B2 (en) Control device for premixed compression ignition internal combustion engine
JP2004257331A (en) Engine capable of compression self-ignition operation
JP5925099B2 (en) Control device for internal combustion engine
JP2004190539A (en) Overhead-valve multi-cylinder engine capable of two cycle operation
JP2004316545A (en) Control device by cylinder for compression ignition type internal combustion engine
JP2008008223A (en) Exhaust gas temperature suppressing device for internal combustion engine
JP2007077842A (en) Control device for internal combustion engine
JP4407442B2 (en) Fuel pressure control device for in-cylinder injection engine
JP2005098187A (en) Control device of internal combustion engine
JP4464901B2 (en) Control device for compression ignition internal combustion engine
JP2006329035A (en) Control device of internal combustion engine
JP4200937B2 (en) Engine starter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080729

R150 Certificate of patent or registration of utility model

Ref document number: 4166135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140808

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees