JP2004316545A - Control device by cylinder for compression ignition type internal combustion engine - Google Patents

Control device by cylinder for compression ignition type internal combustion engine Download PDF

Info

Publication number
JP2004316545A
JP2004316545A JP2003111400A JP2003111400A JP2004316545A JP 2004316545 A JP2004316545 A JP 2004316545A JP 2003111400 A JP2003111400 A JP 2003111400A JP 2003111400 A JP2003111400 A JP 2003111400A JP 2004316545 A JP2004316545 A JP 2004316545A
Authority
JP
Japan
Prior art keywords
cylinder
internal combustion
compression ignition
valve
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003111400A
Other languages
Japanese (ja)
Inventor
Toshihiro Yamaki
利宏 八巻
Shohei Okazaki
尚平 岡崎
Katsura Okubo
桂 大久保
Akira Kato
彰 加藤
Tomio Kimura
富雄 木村
Toru Kitamura
徹 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003111400A priority Critical patent/JP2004316545A/en
Publication of JP2004316545A publication Critical patent/JP2004316545A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • F02D35/026Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures using an estimation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for stably controlling a combustion state of each cylinder in a compression ignition type internal combustion engine. <P>SOLUTION: In the internal combustion engine having a plurality of cylinders that can be operated in a compression ignition combustion method, a control device equipped with a means for detecting an exhaust gas temperature of each of the cylinders and an operation parameter setting means for setting an operation parameter of each of the cylinders so as to make cylinder inside temperatures of all the cylinders uniform based on the exhaust gas temperatures is provided. Since the operation parameters are set according to cylinders based on the exhaust gas temperature of each of the cylinders, the cylinder inside temperatures can be made uniform regardless of the dispersion of heat radiation characteristics and combustion characteristics, and stable compression ignition combustion can be performed in each of the cylinders. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、圧縮着火式内燃機関において筒内温度を気筒毎に制御する制御装置に関する。
【0002】
【従来の技術】
従来より、火花点火を用いずに、予混合気を圧縮することによって自着火を起こさせる圧縮着火燃焼を行う内燃機関が知られている。このような圧縮着火式内燃機関は圧縮比が高いため燃料効率が良く、また均質リーン燃焼であるため燃焼温度が低くNOx等の有害物質の発生を比較的抑制することができる。しかしその反面、例えば低負荷側では失火しやすく高負荷側ではノッキングを起こしやすい等、着火条件が厳しいため、運転状態に応じて運転パラメータを高精度に制御する必要がある。なかでも、燃焼は筒内温度(筒内圧力)に大きく依存しているので、より安定した燃焼のためには、EGR量や燃料噴射時期を正確に制御する必要がある。例えば、特許文献1では、排気温度センサにより検出した排気温度に応じてバルブタイミング(マイナスオーバーラップによるEGR量)及び該バルブタイミングに応じた燃料噴射時期の算出を行っている。
【0003】
【特許文献1】
特開2001−323828号公報
【0004】
【発明が解決しようとする課題】
しかし、上記従来技術においては複数気筒に対する制御については開示されていない。すなわち、すべての気筒にて筒内温度を同様にしようとする場合には、冷却性能や吸排気ポート形状の違いなどにより、制御量を同一にしても同じ筒内温度が得られるとは限らない。従って、筒内温度が不適切な気筒においては、安定した圧縮着火燃焼ができず、最悪の場合には失火にいたり、ドライバビリティの悪化やエミッション性能の悪化の原因となる。
【0005】
従って、圧縮着火式内燃機関において、各気筒の燃焼状態を安定に制御する手法が必要とされている。
【0006】
【課題を解決するための手段】
本発明の一形態(請求項1)は、圧縮着火燃焼方式で運転可能な複数の気筒を有する内燃機関の制御装置であって、各気筒毎の排気温度を検出する手段と、前記排気温度に基づいて、全ての気筒の筒内温度が一定になるように各気筒毎に運転パラメータを設定する運転パラメータ設定手段と、を備える圧縮着火式内燃機関の制御装置である。
【0007】
この形態によると、各気筒毎の排気温度に基づいて運転パラメータを気筒別に設定するので、気筒間の放熱特性や燃焼特性のばらつきにかかわらず筒内温度を一定にでき、各気筒とも安定した圧縮着火燃焼を行うことができる。
【0008】
本発明の別の形態(請求項2)では、内燃機関の運転状態に基づいて各気筒毎に目標排気温度を設定する手段を備え、前記運転パラメータ設定手段は、前記目標排気温度と前記検出された排気温度との差分から各気筒毎に学習値を算出し、該学習値に基づいて前記運転パラメータを設定するよう構成されている。
【0009】
本発明のさらに別の形態(請求項3)では、運転パラメータは各気筒毎に設けられた吸気弁及び排気弁の開閉タイミングであり、設定された運転パラメータに応じて吸気弁及び排気弁の開閉タイミングを変更する可変バルブタイミング手段をさらに備える。この形態では、各気筒毎にバルブタイミングを変更することにより筒内温度に与える影響の大きい内部EGRを個別に制御する。
【0010】
本発明のさらに別の形態(請求項4)では、運転パラメータは各気筒毎に設けられた燃料噴射弁の燃料噴射時期であり、設定された運転パラメータに応じて燃料噴射弁の燃料噴射時期を変更する燃料噴射時期変更手段をさらに備える。
【0011】
なお、運転状態の検出には、アクセルペダルの開度を検出する方式または内燃機関の要求トルクを算出する方式の何れかを使用することができる。
【0012】
【発明の実施の形態】
以下、図面を参照して本発明の好ましい実施形態について説明する。
【0013】
図1は本発明の一実施形態である内燃機関の概略構成図である。内燃機関(以下「エンジン」という)1は、予混合圧縮着火(Homogeneous Charge Compression Ignition)燃焼(以下「HCCI燃焼」という)と火花点火(Spark Ignition)燃焼(以下「SI燃焼」という)の2つの燃焼方式で運転可能な直列4気筒タイプのエンジン(図1には、一気筒のみを示す)である。 エンジン1は、ピストン1a及びシリンダ1bを備えており、ピストンとシリンダヘッドの間には燃焼室1cが形成されている。燃焼室1cには点火プラグ18が取り付けられている。点火プラグ18は、SI燃焼の実行時に、電子制御装置(以下「ECU」という。ECUの構成については後述する)5からの駆動信号により放電される。
【0014】
エンジン1の各気筒には吸気弁17と排気弁19とが設けられており、それぞれ吸気管2から燃焼室1cへの吸気、または燃焼室1cから排気管14への排気を制御する。吸気弁17と排気弁19は好適には電磁バルブであり、ECU5からの信号に応じて駆動される。ECU5は、各種センサにより検出されたエンジン回転数、吸気温、エンジン水温などに応じて吸気弁17と排気弁19の開閉タイミングを変化させて、運転条件に応じた最適なバルブタイミングを実現する。吸気弁17と排気弁19の制御により、内部排出ガス還流(EGR)量を調節して燃焼温度を調節するとともに、排気中に含まれるNOx濃度を低下させることができる。
【0015】
吸気管2の途中には吸気管内を流れる空気の流量を調節する吸気絞り弁(DBW:Drive By Wire)3が設けられ、開度θTHを制御するためのアクチュエータ(図示せず)に連結されている。アクチュエータはECU5に電気的に接続されており、ECU5からの信号によって吸気絞り弁開度θTH、すなわち吸気量を変化させる。吸気絞り弁3は、エンジン1がSI燃焼を実行するときにはアクセルペダルの開度に応じた開度にされ、HCCI燃焼を実行するときには略全開に設定される。
【0016】
吸気管2の吸気絞り弁3より下流側には、吸気圧センサ8及び吸気温センサ9が取り付けられており、それぞれ吸気官内の圧力PB及び温度TAを検出して、その信号をECU5に送る。
【0017】
さらに、アクセルペダルの踏込み量を検出するアクセル開度センサ21も設けられており、アクセルペダル開度ACCを検出してその信号をECU5に送る。
【0018】
また、吸気管2には、各気筒毎に燃料噴射弁6が設けられている。燃料噴射弁6は燃料供給ポンプ(図示せず)に接続されている。エンジン1への燃料供給量は、ECU5からの駆動信号により燃料噴射弁6の燃料噴射時間TOUTを制御することによって決定される。
【0019】
エンジンのクランクシャフト(図示せず)にはクランク角センサが取り付けられている。クランク角センサは、クランクシャフトの回転に伴い、パルス信号であるTDC信号を出力する。TDC信号は、各シリンダにおけるピストンの吸気行程開始時の上死点位置付近の所定タイミングで発生するパルス信号であり、クランクシャフトが180°回転する毎に1パルスが出力される。またエンジンには回転数センサ13も取り付けられており、エンジン回転数NEを検出してその信号をECU5に送る。
【0020】
排気管14には各気筒毎の排気温度を検出する温度センサ20が設けられており、検出した温度を信号に変換してECU5に送る。
【0021】
排気管14を通過した排気は、排気浄化装置15に流入する。排気浄化装置10にはNOx吸着触媒(LNC)等が備えられる。排気浄化装置15の上流側には、排気の広範囲の空燃比に渡ってそれに比例したレベルの出力を生成する空燃比センサ(以下、「LAFセンサ」という)16が設けられる。このセンサの出力は、ECU5に送られる。
【0022】
ECU5は、各種制御プログラムを実行するCPU5a、実行時に必要なプログラムおよびデータを一時記憶して演算作業領域を提供するRAMやプログラムおよびデータを格納するROMからなるメモリ5b、各種センサからの入力信号を処理する入力インターフェース5c、及び各部に制御信号を送る出力インターフェース5dなどからなるマイクロコンピュータで構成されている。
【0023】
ECU5は、各センサの入力に基づいて要求トルクPMECMDを算出する。要求トルクPMECMDは、アクセルペダルストロークと車速により目標駆動力を演算し、これに、シフト位置やギヤ比、トルクコンバータ効率などを考慮して算出される。これについては、特開平10−196424号公報などに記載されている。
【0024】
続いてECU5は、要求トルクに対応した基本燃料噴射量を算出し、さらに燃料を噴射する時期を決定する。またECU5は、各センサの入力に基づいて、エンジン1の運転状態を判別し、ROMに記憶された制御プログラム等に従って、点火プラグ18の点火時期や吸気絞り弁3の開度θTH等を演算する。ECU5は、演算結果に応じた駆動信号を出力インタフェース5dを介して出力し、吸気絞り弁3、燃料噴射弁6、点火プラグ18、吸気弁17及び排気弁19等を制御する。これによって、エンジン1の燃焼方式をHCCI燃焼とSI燃焼の間で切り替えることができる。
【0025】
運転状態は、ECU5内のROMに格納されたマップを参照して、エンジン1の回転数NE及び要求トルクPMECMDを用いて、エンジン1がHCCI燃焼を行うべき運転領域(以下、「HCCI運転領域」という)にあるか、または、SI燃焼を行うべき運転領域(以下、「SI運転領域」という)にあるかによって判別される。このマップの例を図2に示す。基本的には、エンジン回転数NEが高く、エンジン負荷が高い領域をHCCI運転領域とし、低温始動時や低負荷運転時及び高負荷運転時をSI運転領域としている。
【0026】
圧縮着火燃焼を実施できる気筒内温度の範囲は限られているため、圧縮着火燃焼を安定して行うには精密な温度制御が必要である。しかし、エンジン1の各気筒毎に燃焼ポートやバルブの形状が異なる等の理由により放熱特性や燃焼特性が異なるので、全ての気筒で同様の制御を行ったとしても同一の温度にはならない。従って、各気筒の温度をそれぞれ制御してやることが必要となる。本発明では、以下のようにして、各気筒毎の温度制御を実現している。
【0027】
〔実施例1〕
この実施例では、計測した排気温度に基づいてバルブタイミングを気筒毎に調整することで各気筒の気筒内温度を所望の値に制御する。以下、図3のフローチャートを参照して実施例1を説明する。
【0028】
まず、クランク信号TDCから各気筒が運転サイクルのどのステージにあるかを判別し、どの気筒のバルブタイミングを調整するかを決定する(S31)。続いて、アクセルペダル開度ACCから図4のテーブルを検索して、エンジン1に要求されているトルクPMECMDを求める(S32)。さらに、要求トルクPMECMDから図5に示すテーブルを検索して、目標排気温度TEXCMDを求める(S33)。また、目標排気温度TEXCMDを用いて図6及び図7に示すテーブルを検索して、排気弁の基本進角量VTCMDEXと、吸気弁の基本遅角量VTCMDINを求める(S34)。
【0029】
基本進角量VTCMDEXと基本遅角量VTCMDINについて、図8を参照して説明する。図8は、クランク角度とバルブリフト量の関係を示す図である。図示するように、排気弁の開時期と吸気弁の閉時期はともに固定されている。排気弁の基本進角量VTCMDEXは、閉時期のTDCからの遅角量を表し、吸気弁の基本遅角量VTCMDINは、開時期のTDCからの進角量を表している。これらを変更することで、内部EGR量を制御することができる。代替として、排気弁または吸気弁のどちらか一方のみのタイミングを変更しても良い。
【0030】
次に、S31で判別された制御対象の気筒の排気温度TEX(i)を排気温度センサ20により検出する(S35)。代替として、エンジン1の現在の運転状態から排気温度を推定しても良い。そして、排気温度TEX(i)とS33で求めた目標排気温度TEXCMDとの偏差TEXD(i)を算出する(S36)。
【0031】
【数1】

Figure 2004316545
【0032】
制御対象の気筒についてのバルブタイミングの学習量VTSTUDY(i)を次式により算出する(S37)。
【0033】
【数2】
Figure 2004316545
ここで、k及びcは予め実験またはシミュレーションにより決定される定数であり、iは気筒番号である(本実施例では、i=1〜4)。
【0034】
次サイクルの排気弁及び吸気弁のバルブタイミング出力値VTEX(i)、VTIN(i)を、次式により算出する(S38)。
【0035】
【数3】
Figure 2004316545
つまり、検出された実際の排気温度TEX(i)が目標排気温度TEXCMDより小さい場合は、排気弁の閉時期をより早く、吸気弁の開時期をより遅くし、内部EGR量が多くなるように制御し、一方、検出された実際の排気温度TEX(i)が目標排気温度TEXCMDより大きい場合は、排気弁の閉時期をより遅く、吸気弁の開時期をより早くし、内部EGR量が少なくなるように制御する。これによって、筒内温度に与える影響の大きい内部EGR量が各気筒毎に個別に制御されるので、気筒毎の特性のばらつきにかかわらず筒内温度が一定になる。
【0036】
〔実施例2〕
この実施例では、計測した排気温度に基づいて燃料噴射時期を気筒毎に調整することで各気筒の気筒内温度を所望の値に制御する。以下、図9のフローチャートを参照して実施例2を説明する。
【0037】
S41〜S43は、実施例1と同様である。S44で、目標排気温度TEXCMDから図10に示すテーブルを検索して、燃料噴射弁6の基本噴射時期INJCMDを求める。
【0038】
そして、制御対象の気筒の排気温度TEX(i)を排気温度センサ20により検出するか、またはエンジン1の現在の運転状態から推定する(S45)。そして、排気温度TEX(i)と目標排気温度TEXCMDとの偏差TEXD(i)を算出する(S46)。
【0039】
【数4】
Figure 2004316545
【0040】
制御対象の気筒についての燃料噴射時期の学習量INJSTUDY(i)を次式により算出する(S47)。
【0041】
【数5】
Figure 2004316545
ここで、k及びcは予め実験またはシミュレーションにより決定される定数であり、iは気筒番号である(本実施例では、i=1〜4)。
【0042】
次サイクルの燃料噴射時期θINJ(i)を、次式により算出する(S48)。
【0043】
【数6】
Figure 2004316545
つまり、検出された実際の排気温度TEX(i)が目標排気温度TEXCMDより小さい場合は、燃料噴射時期がより遅くなるように制御し、一方、検出された実際の排気温度TEX(i)が目標排気温度TEXCMDより小さい場合は、燃料噴射時期がより早くなるように制御する。これによって、筒内温度に与える影響の大きい燃料噴射時期が各気筒毎に個別に制御されるので、気筒毎の特性のばらつきにかかわらず筒内温度が一定になる。
【0044】
以上実施例1及び2について別々に説明したが、バルブタイミングの制御と燃料噴射制御を同時に行うこともできる。
【0045】
本発明のいくつかの実施形態について述べたが、本発明はこれに限定されるものではない。例えば、上述の実施形態では直列4気筒エンジンについて説明したが、気筒数の異なるエンジンにも本発明を適用できる。また、本発明は、クランク軸を鉛直方向とした船外機などのような船舶推進機用エンジンの制御にも適用できる。
【0046】
【発明の効果】
本発明によれば、バルブタイミングまたは燃料噴射時期を各気筒毎に個別に制御するので、気筒毎の放熱特性や燃焼特性のばらつきにかかわらず全気筒の筒内温度を一定にでき、各気筒とも安定した圧縮着火燃焼を行うことができる。
【図面の簡単な説明】
【図1】本発明の内燃機関の概略構成図である。
【図2】圧縮着火燃焼と火花点火燃焼の運転領域を示す図である。
【図3】バルブタイミングを変更して各気筒毎の温度制御を実施する一実施例のフローチャートである。
【図4】アクセルペダル開度と要求トルクの関係を示すテーブルである。
【図5】要求トルクと目標排気温度の関係を示すテーブルである。
【図6】目標排気温度と排気弁の進角の関係を示すテーブルである。
【図7】目標排気温度と吸気弁の遅角の関係を示すテーブルである。
【図8】吸気弁と排気弁のバルブタイミングを説明する図である。
【図9】燃料噴射時期を変更して各気筒毎の温度制御を実施する一実施例のフローチャートである。
【図10】目標排気温度と燃料噴射時期の関係を示すテーブルである。
【符号の説明】
1 内燃機関(エンジン)
2 吸気管
3 吸気絞り弁
5 電子制御装置(ECU)
6 燃料噴射弁
17 吸気弁
18 点火プラグ
19 排気弁
21 アクセルペダル[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control device for controlling in-cylinder temperature of a compression ignition type internal combustion engine for each cylinder.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there has been known an internal combustion engine that performs compression ignition combustion that causes self-ignition by compressing a premixed gas without using spark ignition. Such a compression ignition type internal combustion engine has a high compression ratio and therefore has a good fuel efficiency, and has homogeneous combustion so that the combustion temperature is low and the generation of harmful substances such as NOx can be relatively suppressed. However, on the other hand, ignition conditions are severe, for example, misfire easily occurs on a low load side and knocking easily occurs on a high load side. Therefore, it is necessary to control operation parameters with high accuracy according to the operation state. In particular, combustion greatly depends on the in-cylinder temperature (in-cylinder pressure), and therefore, for more stable combustion, it is necessary to accurately control the EGR amount and the fuel injection timing. For example, in Patent Literature 1, a valve timing (an EGR amount due to minus overlap) is calculated according to an exhaust gas temperature detected by an exhaust gas temperature sensor, and a fuel injection timing is calculated according to the valve timing.
[0003]
[Patent Document 1]
JP 2001-323828 A
[Problems to be solved by the invention]
However, the above prior art does not disclose control for a plurality of cylinders. In other words, when trying to make the in-cylinder temperature the same in all cylinders, the same in-cylinder temperature is not always obtained even if the control amount is made the same due to differences in cooling performance, intake and exhaust port shapes, and the like. . Therefore, in a cylinder having an in-cylinder temperature that is inappropriate, stable compression ignition combustion cannot be performed, and in the worst case, misfire may occur, drivability may deteriorate, and emission performance may deteriorate.
[0005]
Accordingly, there is a need for a technique for stably controlling the combustion state of each cylinder in a compression ignition type internal combustion engine.
[0006]
[Means for Solving the Problems]
One aspect (claim 1) of the present invention is a control device for an internal combustion engine having a plurality of cylinders operable by a compression ignition combustion system, wherein a means for detecting an exhaust gas temperature for each cylinder; Operating parameter setting means for setting operating parameters for each of the cylinders based on the operating parameters, so that the in-cylinder temperatures of all the cylinders are constant.
[0007]
According to this embodiment, the operating parameters are set for each cylinder based on the exhaust temperature of each cylinder, so that the in-cylinder temperature can be kept constant irrespective of the variation in the heat radiation characteristics and the combustion characteristics between the cylinders. Ignition combustion can be performed.
[0008]
According to another aspect of the present invention (claim 2), there is provided means for setting a target exhaust temperature for each cylinder based on an operation state of the internal combustion engine, and the operating parameter setting means is configured to detect the target exhaust temperature and the detected exhaust gas temperature. A learning value is calculated for each cylinder from the difference from the exhaust gas temperature, and the operating parameters are set based on the learning value.
[0009]
In still another mode of the present invention (claim 3), the operation parameter is an opening / closing timing of an intake valve and an exhaust valve provided for each cylinder, and the opening / closing of the intake valve and the exhaust valve is performed according to the set operation parameter. The apparatus further includes variable valve timing means for changing the timing. In this embodiment, the internal EGR having a large effect on the in-cylinder temperature is individually controlled by changing the valve timing for each cylinder.
[0010]
In still another embodiment of the present invention (claim 4), the operation parameter is a fuel injection timing of a fuel injection valve provided for each cylinder, and the fuel injection timing of the fuel injection valve is set according to the set operation parameter. The apparatus further includes a fuel injection timing changing means for changing.
[0011]
For detecting the operating state, either a method of detecting the degree of opening of the accelerator pedal or a method of calculating the required torque of the internal combustion engine can be used.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0013]
FIG. 1 is a schematic configuration diagram of an internal combustion engine according to one embodiment of the present invention. The internal combustion engine (hereinafter, referred to as “engine”) 1 includes two types of homogeneous charge compression ignition (hereinafter, referred to as “HCCI combustion”) and spark ignition (hereinafter, referred to as “SI combustion”). This is an in-line four-cylinder engine that can be operated by a combustion system (only one cylinder is shown in FIG. 1). The engine 1 includes a piston 1a and a cylinder 1b, and a combustion chamber 1c is formed between the piston and the cylinder head. An ignition plug 18 is attached to the combustion chamber 1c. The ignition plug 18 is discharged by a drive signal from an electronic control unit (hereinafter referred to as “ECU”; the configuration of the ECU will be described later) 5 when performing SI combustion.
[0014]
Each cylinder of the engine 1 is provided with an intake valve 17 and an exhaust valve 19 for controlling intake from the intake pipe 2 to the combustion chamber 1c or exhaust from the combustion chamber 1c to the exhaust pipe 14, respectively. The intake valve 17 and the exhaust valve 19 are preferably electromagnetic valves, and are driven according to a signal from the ECU 5. The ECU 5 changes the opening / closing timing of the intake valve 17 and the exhaust valve 19 in accordance with the engine speed, intake air temperature, engine water temperature, and the like detected by various sensors, and realizes optimal valve timing in accordance with the operating conditions. By controlling the intake valve 17 and the exhaust valve 19, the internal exhaust gas recirculation (EGR) amount can be adjusted to adjust the combustion temperature, and the NOx concentration contained in the exhaust gas can be reduced.
[0015]
An intake throttle valve (DBW: Drive By Wire) 3 for adjusting the flow rate of air flowing in the intake pipe 2 is provided in the middle of the intake pipe 2, and is connected to an actuator (not shown) for controlling the opening degree θTH. I have. The actuator is electrically connected to the ECU 5, and changes the intake throttle valve opening θTH, that is, the intake air amount, according to a signal from the ECU 5. The intake throttle valve 3 is set to an opening corresponding to the opening of the accelerator pedal when the engine 1 executes SI combustion, and is set to be almost fully opened when executing HCCI combustion.
[0016]
An intake pressure sensor 8 and an intake temperature sensor 9 are attached to the intake pipe 2 downstream of the intake throttle valve 3. The intake pressure sensor 8 and the intake temperature sensor 9 detect a pressure PB and a temperature TA in the intake manifold, respectively, and send signals to the ECU 5. .
[0017]
Further, an accelerator opening sensor 21 for detecting an amount of depression of an accelerator pedal is also provided, and detects an accelerator pedal opening ACC and sends a signal to the ECU 5.
[0018]
The intake pipe 2 is provided with a fuel injection valve 6 for each cylinder. The fuel injection valve 6 is connected to a fuel supply pump (not shown). The fuel supply amount to the engine 1 is determined by controlling the fuel injection time TOUT of the fuel injection valve 6 based on a drive signal from the ECU 5.
[0019]
A crank angle sensor is mounted on a crankshaft (not shown) of the engine. The crank angle sensor outputs a TDC signal, which is a pulse signal, as the crankshaft rotates. The TDC signal is a pulse signal generated at a predetermined timing near the top dead center position at the start of the intake stroke of the piston in each cylinder, and one pulse is output every time the crankshaft rotates 180 °. The engine is also provided with a rotation speed sensor 13 which detects the engine rotation speed NE and sends a signal to the ECU 5.
[0020]
The exhaust pipe 14 is provided with a temperature sensor 20 for detecting the exhaust temperature of each cylinder, and converts the detected temperature into a signal and sends it to the ECU 5.
[0021]
The exhaust gas that has passed through the exhaust pipe 14 flows into the exhaust gas purification device 15. The exhaust purification device 10 includes a NOx adsorption catalyst (LNC) and the like. An air-fuel ratio sensor (hereinafter, referred to as a “LAF sensor”) 16 that generates an output of a level proportional to the air-fuel ratio over a wide range of exhaust gas is provided upstream of the exhaust gas purification device 15. The output of this sensor is sent to the ECU 5.
[0022]
The ECU 5 includes a CPU 5a for executing various control programs, a RAM 5b for temporarily storing programs and data necessary for execution and providing a calculation work area and a ROM 5b for storing programs and data, and input signals from various sensors. The microcomputer is composed of an input interface 5c for processing, an output interface 5d for sending a control signal to each unit, and the like.
[0023]
The ECU 5 calculates the required torque PMECMD based on the input of each sensor. The required torque PMECMD is calculated by calculating a target driving force based on the accelerator pedal stroke and the vehicle speed, and taking into account the shift position, the gear ratio, the torque converter efficiency, and the like. This is described in JP-A-10-196424 and the like.
[0024]
Subsequently, the ECU 5 calculates a basic fuel injection amount corresponding to the required torque, and further determines a timing for injecting fuel. The ECU 5 determines the operating state of the engine 1 based on the input of each sensor, and calculates the ignition timing of the ignition plug 18 and the opening degree θTH of the intake throttle valve 3 according to a control program or the like stored in the ROM. . The ECU 5 outputs a drive signal according to the calculation result via the output interface 5d, and controls the intake throttle valve 3, the fuel injection valve 6, the spark plug 18, the intake valve 17, the exhaust valve 19, and the like. Thereby, the combustion mode of the engine 1 can be switched between HCCI combustion and SI combustion.
[0025]
The operating state refers to a map stored in a ROM in the ECU 5 and uses a rotational speed NE and a required torque PMECMD of the engine 1 to determine an operating region in which the engine 1 should perform HCCI combustion (hereinafter, referred to as an “HCCI operating region”). ) Or in an operation region where SI combustion is to be performed (hereinafter, referred to as “SI operation region”). FIG. 2 shows an example of this map. Basically, the region where the engine speed NE is high and the engine load is high is the HCCI operation region, and the low temperature start, low load operation and high load operation are the SI operation region.
[0026]
Since the range of the in-cylinder temperature at which compression ignition combustion can be performed is limited, precise temperature control is required to stably perform compression ignition combustion. However, since the heat radiation characteristics and the combustion characteristics are different because the shapes of the combustion ports and valves are different for each cylinder of the engine 1, even if the same control is performed in all the cylinders, the temperature does not become the same. Therefore, it is necessary to control the temperature of each cylinder. In the present invention, temperature control for each cylinder is realized as follows.
[0027]
[Example 1]
In this embodiment, the cylinder timing of each cylinder is controlled to a desired value by adjusting the valve timing for each cylinder based on the measured exhaust gas temperature. The first embodiment will be described below with reference to the flowchart of FIG.
[0028]
First, it is determined from the crank signal TDC which stage of the operating cycle each cylinder is in, and which cylinder valve timing is to be adjusted is determined (S31). Subsequently, the table of FIG. 4 is searched from the accelerator pedal opening ACC to determine the torque PMECMD required for the engine 1 (S32). Further, the target exhaust temperature TEXCMD is obtained by searching the table shown in FIG. 5 from the required torque PMECMD (S33). Also, the tables shown in FIGS. 6 and 7 are searched using the target exhaust temperature TEXCMD to obtain the basic advance amount VTCMDEX of the exhaust valve and the basic retard amount VTCMDIN of the intake valve (S34).
[0029]
The basic advance amount VTCMDEX and the basic retard amount VTCMDIN will be described with reference to FIG. FIG. 8 is a diagram showing the relationship between the crank angle and the valve lift. As shown in the figure, the opening timing of the exhaust valve and the closing timing of the intake valve are both fixed. The basic advance amount VTCMDEX of the exhaust valve represents the retard amount from TDC at the closing timing, and the basic retard amount VTCMDIN of the intake valve represents the advance amount from TDC at the opening timing. By changing these, the internal EGR amount can be controlled. Alternatively, the timing of only one of the exhaust valve and the intake valve may be changed.
[0030]
Next, the exhaust temperature TEX (i) of the cylinder to be controlled determined in S31 is detected by the exhaust temperature sensor 20 (S35). Alternatively, the exhaust temperature may be estimated from the current operating state of the engine 1. Then, a deviation TEXD (i) between the exhaust gas temperature TEX (i) and the target exhaust gas temperature TEXCMD obtained in S33 is calculated (S36).
[0031]
(Equation 1)
Figure 2004316545
[0032]
The learning amount VTSTUDY (i) of the valve timing for the cylinder to be controlled is calculated by the following equation (S37).
[0033]
(Equation 2)
Figure 2004316545
Here, k and c are constants determined in advance by experiments or simulations, and i is a cylinder number (in this embodiment, i = 1 to 4).
[0034]
The valve timing output values VTEX (i) and VTIN (i) of the exhaust valve and the intake valve in the next cycle are calculated by the following equation (S38).
[0035]
[Equation 3]
Figure 2004316545
That is, when the detected actual exhaust gas temperature TEX (i) is lower than the target exhaust gas temperature TEXCMD, the closing timing of the exhaust valve is earlier, the opening timing of the intake valve is later, and the internal EGR amount is increased. On the other hand, if the detected actual exhaust gas temperature TEX (i) is higher than the target exhaust gas temperature TEXCMD, the closing timing of the exhaust valve is later, the opening timing of the intake valve is earlier, and the internal EGR amount is smaller. Control. As a result, the internal EGR amount having a large effect on the in-cylinder temperature is individually controlled for each cylinder, so that the in-cylinder temperature becomes constant irrespective of variations in characteristics among the cylinders.
[0036]
[Example 2]
In the present embodiment, the in-cylinder temperature of each cylinder is controlled to a desired value by adjusting the fuel injection timing for each cylinder based on the measured exhaust gas temperature. The second embodiment will be described below with reference to the flowchart of FIG.
[0037]
S41 to S43 are the same as in the first embodiment. In S44, the table shown in FIG. 10 is retrieved from the target exhaust temperature TEXCMD to obtain the basic injection timing INJCMD of the fuel injection valve 6.
[0038]
Then, the exhaust temperature TEX (i) of the cylinder to be controlled is detected by the exhaust temperature sensor 20 or estimated from the current operating state of the engine 1 (S45). Then, a deviation TEXD (i) between the exhaust temperature TEX (i) and the target exhaust temperature TEXCMD is calculated (S46).
[0039]
(Equation 4)
Figure 2004316545
[0040]
The learning amount INJSTUDY (i) of the fuel injection timing for the cylinder to be controlled is calculated by the following equation (S47).
[0041]
(Equation 5)
Figure 2004316545
Here, k and c are constants determined in advance by experiments or simulations, and i is a cylinder number (in this embodiment, i = 1 to 4).
[0042]
The fuel injection timing θINJ (i) of the next cycle is calculated by the following equation (S48).
[0043]
(Equation 6)
Figure 2004316545
That is, when the detected actual exhaust gas temperature TEX (i) is lower than the target exhaust gas temperature TEXCMD, the fuel injection timing is controlled so as to be later, while the detected actual exhaust gas temperature TEX (i) is lower than the target exhaust gas temperature TEX (i). If the exhaust temperature is lower than TEXCMD, control is performed so that the fuel injection timing is earlier. As a result, the fuel injection timing that has a large effect on the in-cylinder temperature is individually controlled for each cylinder, so that the in-cylinder temperature is constant irrespective of variations in the characteristics of each cylinder.
[0044]
Although the embodiments 1 and 2 have been described separately, the control of the valve timing and the control of the fuel injection can be performed simultaneously.
[0045]
Although some embodiments of the present invention have been described, the present invention is not limited thereto. For example, in the above embodiment, an in-line four-cylinder engine has been described, but the present invention can also be applied to engines having different numbers of cylinders. Further, the present invention can also be applied to control of a boat propulsion engine such as an outboard motor having a vertical crankshaft.
[0046]
【The invention's effect】
According to the present invention, since the valve timing or the fuel injection timing is individually controlled for each cylinder, the in-cylinder temperature of all the cylinders can be kept constant regardless of the variation of the heat radiation characteristics and the combustion characteristics of each cylinder. Stable compression ignition combustion can be performed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an internal combustion engine of the present invention.
FIG. 2 is a diagram showing operating regions of compression ignition combustion and spark ignition combustion.
FIG. 3 is a flowchart of an embodiment in which valve timing is changed to perform temperature control for each cylinder.
FIG. 4 is a table showing a relationship between an accelerator pedal opening and a required torque.
FIG. 5 is a table showing a relationship between a required torque and a target exhaust temperature.
FIG. 6 is a table showing a relationship between a target exhaust temperature and an advance angle of an exhaust valve.
FIG. 7 is a table showing a relationship between a target exhaust gas temperature and a retard of an intake valve.
FIG. 8 is a diagram illustrating valve timings of an intake valve and an exhaust valve.
FIG. 9 is a flowchart of an embodiment in which the fuel injection timing is changed to perform temperature control for each cylinder.
FIG. 10 is a table showing a relationship between a target exhaust gas temperature and a fuel injection timing.
[Explanation of symbols]
1 internal combustion engine (engine)
2 intake pipe 3 intake throttle valve 5 electronic control unit (ECU)
6 Fuel injection valve 17 Intake valve 18 Spark plug 19 Exhaust valve 21 Accelerator pedal

Claims (4)

圧縮着火燃焼方式で運転可能な複数の気筒を有する内燃機関の制御装置であって、
各気筒毎の排気温度を検出する手段と、
前記排気温度に基づいて、全ての気筒の筒内温度が一定になるように各気筒毎に運転パラメータを設定する運転パラメータ設定手段と、
を備える圧縮着火式内燃機関の制御装置。
A control device for an internal combustion engine having a plurality of cylinders operable in a compression ignition combustion system,
Means for detecting the exhaust temperature of each cylinder;
Operating parameter setting means for setting operating parameters for each cylinder based on the exhaust gas temperature so that the in-cylinder temperatures of all cylinders are constant;
A control device for a compression ignition type internal combustion engine, comprising:
前記内燃機関の運転状態に基づいて各気筒毎に目標排気温度を設定する手段を備え、
前記運転パラメータ設定手段は、前記目標排気温度と前記検出された排気温度との差分から各気筒毎に学習値を算出し、該学習値に基づいて前記運転パラメータを設定するよう構成されている、請求項1に記載の圧縮着火式内燃機関の制御装置。
Means for setting a target exhaust temperature for each cylinder based on the operating state of the internal combustion engine,
The operating parameter setting means is configured to calculate a learning value for each cylinder from a difference between the target exhaust temperature and the detected exhaust temperature, and set the operating parameter based on the learning value. A control device for a compression ignition type internal combustion engine according to claim 1.
前記運転パラメータは、各気筒毎に設けられた吸気弁及び排気弁の開閉タイミングであり、
設定された運転パラメータに応じて、前記吸気弁及び排気弁の開閉タイミングを変更する可変バルブタイミング手段をさらに備える、請求項1または2に記載の圧縮着火式内燃機関の制御装置。
The operating parameter is an opening / closing timing of an intake valve and an exhaust valve provided for each cylinder,
The control device for a compression ignition type internal combustion engine according to claim 1 or 2, further comprising a variable valve timing means for changing an opening / closing timing of the intake valve and the exhaust valve according to the set operation parameter.
前記運転パラメータは、各気筒毎に設けられた燃料噴射弁の燃料噴射時期であり、
設定された運転パラメータに応じて、前記燃料噴射弁の燃料噴射時期を変更する燃料噴射時期変更手段をさらに備える、請求項1または2に記載の圧縮着火式内燃機関の制御装置。
The operating parameter is a fuel injection timing of a fuel injection valve provided for each cylinder,
The control device for a compression ignition type internal combustion engine according to claim 1 or 2, further comprising a fuel injection timing changing unit that changes a fuel injection timing of the fuel injection valve according to the set operation parameter.
JP2003111400A 2003-04-16 2003-04-16 Control device by cylinder for compression ignition type internal combustion engine Pending JP2004316545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003111400A JP2004316545A (en) 2003-04-16 2003-04-16 Control device by cylinder for compression ignition type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003111400A JP2004316545A (en) 2003-04-16 2003-04-16 Control device by cylinder for compression ignition type internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004316545A true JP2004316545A (en) 2004-11-11

Family

ID=33471966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111400A Pending JP2004316545A (en) 2003-04-16 2003-04-16 Control device by cylinder for compression ignition type internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004316545A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046518A1 (en) * 2005-10-19 2007-04-26 Isuzu Motors Limited Exhaust gas purifier for diesel engine
JP2007297949A (en) * 2006-04-28 2007-11-15 Toyota Motor Corp Control device for internal combustion engine
JP2008101513A (en) * 2006-10-18 2008-05-01 Toyota Motor Corp Control device of internal combustion engine
JP2008533369A (en) * 2005-03-17 2008-08-21 ダイムラー・アクチェンゲゼルシャフト Internal combustion engine operating method and internal combustion engine related thereto
JP2008208803A (en) * 2007-02-27 2008-09-11 Mitsubishi Heavy Ind Ltd Multi-cylinder engine with exhaust gas temperature control device and its operation control method
CN103857893A (en) * 2011-11-01 2014-06-11 日产自动车株式会社 Internal-combustion engine control device and control method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533369A (en) * 2005-03-17 2008-08-21 ダイムラー・アクチェンゲゼルシャフト Internal combustion engine operating method and internal combustion engine related thereto
JP4701288B2 (en) * 2005-03-17 2011-06-15 ダイムラー・アクチェンゲゼルシャフト Internal combustion engine operating method and internal combustion engine related thereto
WO2007046518A1 (en) * 2005-10-19 2007-04-26 Isuzu Motors Limited Exhaust gas purifier for diesel engine
JP2007113434A (en) * 2005-10-19 2007-05-10 Isuzu Motors Ltd Exhaust gas purification device of diesel engine
JP2007297949A (en) * 2006-04-28 2007-11-15 Toyota Motor Corp Control device for internal combustion engine
JP4591403B2 (en) * 2006-04-28 2010-12-01 トヨタ自動車株式会社 Control device for internal combustion engine
JP2008101513A (en) * 2006-10-18 2008-05-01 Toyota Motor Corp Control device of internal combustion engine
JP2008208803A (en) * 2007-02-27 2008-09-11 Mitsubishi Heavy Ind Ltd Multi-cylinder engine with exhaust gas temperature control device and its operation control method
JP4616851B2 (en) * 2007-02-27 2011-01-19 三菱重工業株式会社 Multi-cylinder engine with exhaust temperature control device and operation control method thereof
CN103857893A (en) * 2011-11-01 2014-06-11 日产自动车株式会社 Internal-combustion engine control device and control method

Similar Documents

Publication Publication Date Title
JP4159918B2 (en) Fuel cut control device for compression ignition type internal combustion engine
JP4893553B2 (en) Control device for internal combustion engine
KR100310094B1 (en) The control system of cylnder injection type internal combustion enging with pryo-ignition method
JP2009068388A (en) Control device for internal combustion engine
US7082898B2 (en) Internal combustion engine of compression ignition type
JP4054711B2 (en) Variable valve engine
JP4339878B2 (en) Control device for compression ignition internal combustion engine
JP4551292B2 (en) Control device for compression ignition internal combustion engine
JP2009062862A (en) Fuel injection control device of internal combustion engine
JP2008163815A (en) Fuel injection control device for internal combustion engine
JP2004316545A (en) Control device by cylinder for compression ignition type internal combustion engine
WO2009107378A1 (en) Controller for internal-combustion engine
JP2007040219A (en) Control device of internal combustion engine
JP4518251B2 (en) Control device for internal combustion engine
JP4660462B2 (en) Control device for internal combustion engine
JP3903832B2 (en) Control method for internal combustion engine
JP4166135B2 (en) Operating region control device for internal combustion engine
JP2009180098A (en) Fuel controller of engine
JP4602383B2 (en) Control device for variable valve internal combustion engine
JP4500232B2 (en) Control device for compression ignition internal combustion engine
JP2004293471A (en) Air intake throttle valve control device for internal combustion engine having switchable combustion system
JP2007040235A (en) Controller for compression ignition internal combustion engine
WO2019058728A1 (en) Internal combustion engine control device and internal combustion engine control method
JP2009127485A (en) Internal combustion engine
JP4833822B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051202

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080319

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A02 Decision of refusal

Effective date: 20080909

Free format text: JAPANESE INTERMEDIATE CODE: A02