JP2005091160A - Device for monitoring optical path - Google Patents

Device for monitoring optical path Download PDF

Info

Publication number
JP2005091160A
JP2005091160A JP2003324946A JP2003324946A JP2005091160A JP 2005091160 A JP2005091160 A JP 2005091160A JP 2003324946 A JP2003324946 A JP 2003324946A JP 2003324946 A JP2003324946 A JP 2003324946A JP 2005091160 A JP2005091160 A JP 2005091160A
Authority
JP
Japan
Prior art keywords
optical
light
wavelength
optical line
demultiplexing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003324946A
Other languages
Japanese (ja)
Other versions
JP4015091B2 (en
Inventor
Tsuneaki Saito
恒聡 斎藤
Kazutaka Nara
一孝 奈良
Masahito Morimoto
政仁 森本
Chikashi Izumida
史 泉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Furukawa Electric Co Ltd
Priority to JP2003324946A priority Critical patent/JP4015091B2/en
Publication of JP2005091160A publication Critical patent/JP2005091160A/en
Application granted granted Critical
Publication of JP4015091B2 publication Critical patent/JP4015091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To construct, with a good yield, an optical path monitoring system capable of monitoring an optical path exactly by simple constitution. <P>SOLUTION: Communication lights having wavelengths of λa, λb input from a light input part 4 through a main optical path connected to a communication light light source and a monitoring light light source are transmitted through the first light wavelength photomultiplexing and demultiplexing filter 5 to be branched and output by a light branch coupler 6. Monitoring lights λc<SB>1</SB>-λc<SB>8</SB>having wavelengths different each other input from the light input part 4 are reflected by the first light wavelength photomultiplexing and demultiplexing filter 5, and are photodemultiplexed by an array waveguide diffraction grating type wavelength photomultiplexing and demultiplexing instrument 8. The monitoring light in every photodemultiplexed wavelength is guided to an output part of the communication lights branched and output by the light branch coupler 6 to be photomultiplexed by the second light wavelength photomultiplexing and demultiplexing filter 7. The communication lights photomultiplexed by the second light wavelength photomultiplexing and demultiplexing filter, and the monitoring light in the every wavelength are output from light output parts 11a-11h to be input into corresponding branch optical paths. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば光パッシブダブルスター(PDS:Passive Double Star)伝送システム等の光通信分野に用いられる光線路監視用デバイスおよび光線路監視用システムに関するものである。   The present invention relates to an optical line monitoring device and an optical line monitoring system used in an optical communication field such as an optical passive double star (PDS) transmission system.

現在、FTTH(Fiber To The Home)を低価格で導入するために、局内に設置された1つのOLT(Optical Line Terminal)を多数のユーザーで共用する光PDS(Passive Double Star)システムが提案されている。   Currently, in order to introduce FTTH (Fiber To The Home) at a low price, an optical PDS (Passive Double Star) system that shares one OLT (Optical Line Terminal) installed in the station with many users has been proposed. Yes.

光PDSシステムは、例えば図5に示すように、伝送装置10に接続される基幹光線路22aの途中に光スプリッタ28を接続することにより基幹光線路22aを光分岐して基幹光線路22とし、さらに、この光分岐されたそれぞれの基幹光線路22に分岐光線路1(1a,1a,・・・)を接続し、この分岐光線路1(1a,1a,・・・)をユーザー(加入者)24に接続している。 For example, as shown in FIG. 5, the optical PDS system connects the optical splitter 28 in the middle of the optical path 22 a connected to the transmission device 10 to optically branch the optical path 22 a into the optical path 22. Furthermore, branch optical 1 in each of the trunk optical line 22 that this is the optical branch (1a 1, 1a 2, ··· ) connected to a branch optical line 1 (1a 1, 1a 2, ··· ) A user (subscriber) 24 is connected.

また、一般に、光PDSシステムのような光加入者線路には、光線路媒体である光ファイバや光通信機器の異常の監視を行うために、OTDR(Optical Time Domain Reflectometer)2を用いた光線路監視用システムが導入されている。このシステムにおいて、OTDR2からの監視光はファイバセレクタ(FS)25と光カプラ18を介し、それぞれの、基幹光線路22に入力される。   In general, an optical line using an optical time domain reflector (OTDR) 2 is used for an optical subscriber line such as an optical PDS system in order to monitor an abnormality of an optical fiber or an optical communication device as an optical line medium. A monitoring system has been introduced. In this system, the monitoring light from the OTDR 2 is input to the respective trunk optical lines 22 via the fiber selector (FS) 25 and the optical coupler 18.

各基幹光線路22と分岐光線路1(1a,1a,・・・)との間には、光スプリッタの機能を有する光線路監視用デバイス3が設けられており、この光線路監視用デバイス3は、上記OTDR2からの監視光と、伝送装置10から光スプリッタ28と光カプラ18を介して光基幹線路22を伝搬してくる通信光とを、それぞれの分岐光線路1(1a,1a,・・・)に導入する。監視光は分岐光線路1(1a,1a,・・・)の終端側で反射してOTDR2に戻るように構成され、この監視光の測定を行うことより光線路の異常検出を行う。なお、通信光は、ユーザー24のONU(光加入者線終端装置)20に受信される。 An optical line monitoring device 3 having the function of an optical splitter is provided between each main optical line 22 and the branched optical line 1 (1a 1 , 1a 2 ,...). The device 3 transmits the monitoring light from the OTDR 2 and the communication light propagating from the transmission device 10 through the optical splitter 28 and the optical coupler 18 through the optical trunk line 22 to the respective branched optical lines 1 (1a 1 , 1a 1 , 1a 2 ,... The monitoring light is configured to be reflected at the terminal end side of the branch optical line 1 (1a 1 , 1a 2 ,...) And return to the OTDR 2. By measuring the monitoring light, abnormality of the optical line is detected. The communication light is received by the ONU (optical subscriber line terminating device) 20 of the user 24.

上記光線路監視用システムの一例として、分岐光線路の長さ管理方式の光線路監視用システムがある。このシステムは、分岐光線路1(1a,1a,・・・)ごとにその長さを異なる長さに設定し、分岐光線路1(1a,1a,・・・)の終端部に設けたフィルタなどの監視光反射機構とOTDR2との距離を、分岐光線路1(1a,1a,・・・)ごとに異なる長さとする。 As an example of the optical line monitoring system, there is an optical line monitoring system of a branch optical line length management system. The system branch optical 1 (1a 1, 1a 2, ···) is set to the length of different lengths for each, end of the branch optical 1 (1a 1, 1a 2, ···) The distance between the monitoring light reflecting mechanism such as a filter provided in the OTDR 2 and the OTDR 2 is set to a different length for each of the branched optical lines 1 (1a 1 , 1a 2 ,.

そして、分岐光線路1(1a,1a,・・・)の敷設後、OTDR2から出力して分岐光線路1(1a,1a,・・・)の終端位置で戻ってくる監視光の戻り光を分岐光線路1(1a,1a,・・・)の正常時に測定し、この測定データと、障害等の異常発生時に同様にして測定される監視光の戻り光のデータとの比較により、障害のある分岐光線路1の特定をするものである(例えば、非特許文献1参照。)。 The branch optical 1 (1a 1, 1a 2, ···) after laying, the output to branch optical 1 from OTDR2 (1a 1, 1a 2, ···) monitoring light returned at the end position of the Are measured when the branch optical line 1 (1a 1 , 1a 2 ,...) Is normal, and this measurement data and the return light data of the monitoring light measured in the same manner when an abnormality such as a failure occurs. In this way, the faulty branch optical line 1 is identified (for example, see Non-Patent Document 1).

また、光線路監視用システムの別の例として、端末反射波長割付方式の光線路監視用システムがある。このシステムは、分岐光線路1の終端反射の波長を分岐光線路ごとに割り付け、可変波長OTDR2等で監視を行い、反射光量の増減を測定することにより故障線路の特定を行うものである(例えば、非特許文献2参照。)。   Another example of the optical line monitoring system is a terminal reflection wavelength assignment type optical line monitoring system. In this system, the wavelength of the terminal reflection of the branch optical line 1 is assigned to each branch optical line, monitored by the variable wavelength OTDR2 or the like, and the failure line is specified by measuring the increase or decrease in the amount of reflected light (for example, Non-patent document 2).

さらに、光線路監視用システムのさらに別の例として、波長ルーティング方式の光線路監視用システムが提案されている。この提案のシステムは、例えば図6に示すように、基幹光線路22に、例えば波長λaの通信光と、互いに異なる複数の波長(例えば、nを2以上の整数として、波長λc〜λc)を持った監視光を伝搬させて光線路監視用デバイス3に入射し、光線路監視用デバイス3が分岐光線路1(1a,1a,・・・)ごとに監視光波長を割り付けるものである(例えば、非特許文献3参照。)。 Furthermore, a wavelength routing type optical line monitoring system has been proposed as yet another example of the optical line monitoring system. For example, as shown in FIG. 6, the proposed system includes a wavelength λc 1 to λc n on the trunk optical line 22, for example, communication light having a wavelength λa and a plurality of wavelengths different from each other (for example, n is an integer of 2 or more) ) Propagates and enters the optical line monitoring device 3, and the optical line monitoring device 3 assigns the monitoring light wavelength to each branch optical line 1 (1a 1 , 1a 2 ,...). (For example, see Non-Patent Document 3).

この波長ルーティング方式の光線路監視用システムにおいては、可変波長OTDRを用いてもよい。   In this wavelength routing type optical line monitoring system, a variable wavelength OTDR may be used.

この波長ルーティング方式のシステムに適用される光線路監視用デバイス3は、通信光を分岐する機能と監視光を分波する機能とを有する必要があり、例えば図7に示すようなアレイ導波路回折格子の応用品等により形成される。   The optical line monitoring device 3 applied to this wavelength routing system must have a function of branching communication light and a function of demultiplexing the monitoring light. For example, an arrayed waveguide diffraction as shown in FIG. It is formed by an applied product of a lattice.

図7に示す光部品は、光フィルタ30によって波長λaの通信光と波長λc〜λcの監視光とを分波し、アレイ導波路回折格子型の回路の通信光入力部31から通信光を入力し、監視光入力部32から監視光を入力する。通信光は、通信光を透過して監視光を反射するフィルタ37を透過し、通信光入力導波路42を通ってスラブ導波路33に入射し、スラブ導波路33で広がって、各光出力導波路36に入射し、その出力端からそれぞれ出射する。 Optical component shown in FIG. 7 demultiplexes the monitor light of the communication light wavelength λc 1 ~λc n wavelength λa by the optical filter 30, the communication light from the communication light input section 31 of the circuit of the arrayed waveguide grating type And the monitoring light is input from the monitoring light input unit 32. The communication light passes through the filter 37 that transmits the communication light and reflects the monitoring light, enters the slab waveguide 33 through the communication light input waveguide 42, spreads in the slab waveguide 33, and is transmitted to each light output guide. The light enters the waveguide 36 and exits from its output end.

一方、監視光は、監視光入力導波路43を通ってスラブ導波路33に入射し、スラブ導波路33の回折効果によって広がってアレイ導波路34に入射し、フィルタ37で反射することからアレイ導波路34を往復伝搬して、再びスラブ導波路33を通り、波長ごとに分波されて波長ごとに異なる光出力導波路36から出射する。   On the other hand, the monitoring light enters the slab waveguide 33 through the monitoring light input waveguide 43, spreads by the diffraction effect of the slab waveguide 33, enters the array waveguide 34, and is reflected by the filter 37. The light propagates back and forth through the waveguide 34, passes through the slab waveguide 33 again, is demultiplexed for each wavelength, and is emitted from a different light output waveguide 36 for each wavelength.

山本他、「分岐形光線路の1.6μm帯故障切り分け試験技術」1994年電子情報通信学会秋季大会B−846Yamamoto et al., “1.6 μm band fault isolation test technology for branching optical lines”, 1994 IEICE Autumn Meeting B-846 伊藤他、「PDS線路における障害監視方式に関する検討」1996年電子情報通信学会総合大会B−1073Ito et al., "Study on Fault Monitoring Method on PDS Line" 1996 IEICE General Conference B-1073 田中他、「試験波長割当法による分岐光線路の個別損失分布測定」平成8年電気学会電子・情報・システム部門大会A−9−4Tanaka et al., "Individual loss distribution measurement of branched optical line by test wavelength allocation method", 1996 IEEJ Electronics, Information and Systems Conference A-9-4

しかしながら、上記提案の光線路監視用システムには、それぞれ以下のような問題があった。例えば、分岐光線路の長さ管理方式の光線路監視用システムは、光線路の敷設時に各分岐光線路の長さを互いに異なる長さに設計する必要があり、設計作業が面倒であるといった問題があった。また、このシステムを適用して分岐光線路の監視を行った場合、どの分岐光線路に故障等の異常があるかを知ることができるだけであり、異常位置の特定はできなかった。   However, each of the proposed optical line monitoring systems has the following problems. For example, the optical line monitoring system of the branch optical line length management system needs to design the lengths of the branched optical lines to be different from each other when laying the optical line, and the design work is troublesome. was there. Moreover, when this system was applied to monitor the branch optical line, it was only possible to know which branch optical line had an abnormality such as a failure, and the abnormal position could not be specified.

また、端末反射波長割付方式の光線路監視用システムは、例えば断線等の障害発生時には、どの分岐光線路に異常が発生したかを知ることができるが、反射が無く、損失のみが増加する異常が発生した場合はどの位置で異常が発生したかを特定することができないといった問題があった。   In addition, the optical system for monitoring the optical line of the terminal reflection wavelength allocation method can know which branch optical line has an abnormality when a failure such as a disconnection occurs, but there is no reflection and an abnormality that increases only the loss. When this occurs, there is a problem that it is impossible to specify at which position the abnormality has occurred.

さらに、波長ルーティング方式の光線路監視用システムは、障害発生時にどの分岐光線路1のどの位置にどのような異常が発生したかが分かるものの、図7に示したような回路構成では光フィルタと、カプラの機能も果たすアレイ導波路回折格子型の回路を1つのチップ上に集積化させる製造工程が複雑となり、歩留まり向上が難しかった。   Further, although the wavelength routing type optical line monitoring system can know what kind of abnormality has occurred in which branch optical line 1 at the time of failure, the circuit configuration as shown in FIG. The manufacturing process for integrating an arrayed waveguide grating type circuit that also functions as a coupler on one chip becomes complicated, and it is difficult to improve the yield.

本発明は、上記従来の課題を解決するために成されたものであり、その目的は、障害発生時にどの分岐光線路のどの位置にどのような異常が発生したかを的確に監視できるような光線路監視用システムを形成可能な、歩留まりの高い光線路監視用デバイスを提供することにある。   The present invention has been made to solve the above-described conventional problems, and its purpose is to be able to accurately monitor what kind of abnormality has occurred in which branch optical line when a failure occurs. An object of the present invention is to provide an optical line monitoring device with a high yield capable of forming an optical line monitoring system.

上記目的を達成するために、本発明は次のような構成をもって課題を解決するための手段としている。すなわち、第1の発明の光線路監視用デバイスは、光入力部から入力される互いに異なる複数の波長を持った監視光と、該監視光と異なる波長を有して前記光入力部から入力される通信光とを分波する第1の光波長合分波フィルタと、該第1の光波長合分波フィルタの通信光分波側に設けられて通信光を複数に分岐する光分岐カプラと、前記第1の光波長合分波フィルタの監視光分波側に設けられて前記監視光をさらに波長ごとに分波し、それぞれの分波波長の光を前記光分岐カプラの対応する個別の出力部側に導くアレイ導波路回折格子型波長合分波器と、前記光分岐カプラの出力部側に設けられて該光分岐カプラが分岐出力した通信光と前記アレイ導波路回折格子型波長合分波器側から光分岐カプラのそれぞれの出力部側に導かれる波長ごとの監視光とをそれぞれ合波する第2の光波長合分波フィルタと、該第2の光波長合波フィルタにより合波された通信光と波長ごとの監視光をそれぞれ出力する複数の光出力部とを有する構成をもって課題を解決する手段としている。   In order to achieve the above object, the present invention has the following configuration as means for solving the problems. That is, the optical line monitoring device according to the first aspect of the present invention is the monitoring light having a plurality of wavelengths different from each other inputted from the optical input unit, and inputted from the optical input unit having a wavelength different from the monitoring light. A first optical wavelength multiplexing / demultiplexing filter that demultiplexes the communication light, and an optical branching coupler that is provided on the communication optical demultiplexing side of the first optical wavelength multiplexing / demultiplexing filter and branches the communication light into a plurality of , Provided on the monitoring light demultiplexing side of the first optical wavelength multiplexing / demultiplexing filter, further demultiplexing the monitoring light for each wavelength, and each of the demultiplexed wavelengths corresponding to each of the optical branching couplers. An arrayed waveguide grating type wavelength multiplexer / demultiplexer guided to the output side, and communication light provided on the output side of the optical branching coupler and branched and output by the optical branching coupler, and the arrayed waveguide grating type wavelength multiplexer / demultiplexer. Wavelength guided from the demultiplexer side to the output side of each optical branching coupler A second optical wavelength multiplexing / demultiplexing filter that multiplexes the monitoring light and the plurality of lights that respectively output the communication light and the monitoring light for each wavelength combined by the second optical wavelength multiplexing filter A configuration having an output unit serves as means for solving the problem.

また、第2の発明の光線路監視用デバイスは、前記第1の発明に加え、通信光は1.31μmと1.49μmと1.55μmの少なくとも一つの波長の光を有し、監視光は1.60μm以上1.70μm未満の互いに異なる複数の波長の光によって構成をもって課題を解決する手段としている。   Further, in the optical line monitoring device according to the second invention, in addition to the first invention, the communication light has light having at least one wavelength of 1.31 μm, 1.49 μm, and 1.55 μm, and the monitoring light is It is a means to solve the problem with a configuration with light having a plurality of different wavelengths of 1.60 μm to 1.70 μm.

第3の発明の光線路監視用デバイスは、前記第1、第2のいずれかの発明に加え、監視光は1.625μm以上1.675μm以下の互いに異なる複数の波長の光としたことをもって課題を解決する手段としている。   The optical line monitoring device according to a third aspect of the present invention has a problem that, in addition to the first and second aspects of the invention, the monitoring light is light having a plurality of different wavelengths from 1.625 μm to 1.675 μm. As a means to solve the problem.

第4の発明の光線路監視用デバイスは前記第1から第3のいずれか一つの発明に加え、監視光は1.64μm以上1.66μm以下の互いに異なる複数の波長の光としたことをもって課題を解決する手段としている。   The optical line monitoring device according to a fourth aspect of the invention is that in addition to any one of the first to third aspects of the invention, the monitoring light is light having a plurality of different wavelengths from 1.64 μm to 1.66 μm. As a means to solve the problem.

第5の発明の光線路監視用デバイスは、前記第1から第4のいずれか一つの発明に加え、光分岐カプラの光出力部の数を4または8としたことをもって課題を解決する手段としている。   The optical line monitoring device according to a fifth aspect of the present invention is a means for solving the problem by adding four or eight optical output units of the optical branching coupler in addition to any one of the first to fourth aspects of the invention. Yes.

第6の発明の光線路監視用デバイスは、前記第1から第5のいずれか一つの発明に加え、光分岐カプラは基板上に光導波路の回路を形成して成る平面導波回路により形成し、該平面導波回路に第1の光波長合分波フィルタと第2の光波長合分波フィルタを設けたことをもって課題を解決する手段としている。   According to a sixth aspect of the present invention, there is provided the optical line monitoring device according to any one of the first to fifth aspects, wherein the optical branching coupler is formed by a planar waveguide circuit formed by forming an optical waveguide circuit on a substrate. The planar waveguide circuit is provided with a first optical wavelength multiplexing / demultiplexing filter and a second optical wavelength multiplexing / demultiplexing filter as means for solving the problem.

第7の発明の光線路監視用デバイスは、前記第1から第6のいずれか一つの発明に加え、アレイ導波路回折格子型波長合分波器を光分岐カプラと同一基板上に形成した平面導波回路により形成したことをもって課題を解決する手段としている。   In addition to any one of the first to sixth inventions, the optical line monitoring device of the seventh invention is a plane in which an arrayed waveguide grating type wavelength multiplexer / demultiplexer is formed on the same substrate as the optical branching coupler. It is a means for solving the problem by being formed by a waveguide circuit.

第8の発明の光線路監視用デバイスは、前記第1から第7のいずれか一つの発明に加え、前記第1と第2の光波長合分波フィルタの少なくとも一方は誘電体多層膜フィルタにより形成され、前記誘電体多層膜フィルタは、前記監視光を反射し、かつ、前記通信光を透過することをもって課題を解決する手段としている。   An optical line monitoring device according to an eighth aspect of the present invention is the optical line monitoring device according to any one of the first to seventh aspects, wherein at least one of the first and second optical wavelength multiplexing / demultiplexing filters is a dielectric multilayer filter. The dielectric multilayer filter formed is a means for solving the problem by reflecting the monitoring light and transmitting the communication light.

第9の発明の光線路監視用デバイスは、前記第1から第8のいずれか一つの発明に加え、第1の光波長合分波フィルタと第2の光波長合分波フィルタを同じフィルタにより形成したことをもって課題を解決する手段としている。   According to a ninth aspect of the present invention, there is provided the optical line monitoring device according to any one of the first to eighth aspects, wherein the first optical wavelength multiplexing / demultiplexing filter and the second optical wavelength multiplexing / demultiplexing filter are formed by the same filter. It is a means to solve the problem with having formed.

第10の発明の光線路監視用デバイスは、前記第1から第9のいずれか一つの発明に加え、アレイ導波路回折格子型波長合分波器により分波する監視光のそれぞれの透過波長域を1.0nm以上としたことをもって課題を解決する手段としている。   In addition to any one of the first to ninth inventions, the optical line monitoring device of the tenth invention is a transmission wavelength region of each of the monitoring light demultiplexed by the arrayed waveguide grating type wavelength multiplexer / demultiplexer. Is set as 1.0 nm or more as means for solving the problem.

本発明の光線路監視用デバイスによれば、第1の光波長合分波フィルタによる通信光と監視光との分波と、光分岐カプラによる通信光分岐と、アレイ導波路回折格子型波長合分波器による監視光分波とを行い、この分波後に出力される波長ごとの監視光と前記分岐された通信光とを第2の光波長合分波フィルタによって合波することにより、簡単な構成で、通信光の分岐と監視光の分波とを良好に行うことができ、歩留まりが高いデバイスとすることができる。   According to the optical line monitoring device of the present invention, the demultiplexing of the communication light and the monitoring light by the first optical wavelength multiplexing / demultiplexing filter, the communication optical branching by the optical branching coupler, the array waveguide diffraction grating type wavelength multiplexing, Monitoring light demultiplexing by a demultiplexer is performed, and the monitoring light for each wavelength output after the demultiplexing and the branched communication light are multiplexed by a second optical wavelength multiplexing / demultiplexing filter, thereby simplifying With such a configuration, it is possible to satisfactorily perform branching of communication light and demultiplexing of monitoring light, and a device with a high yield can be obtained.

そして、本発明の光線路監視用デバイスは、波長ルーティング方式の光線路監視用システムに適用することにより、障害発生時にどの分岐光線路のどの位置にどのような異常が発生したかを的確に検出可能な光線路監視用システムを構築することができる。   The optical line monitoring device according to the present invention is applied to a wavelength routing type optical line monitoring system to accurately detect which abnormality has occurred in which branch optical line at the time of failure. Possible optical line monitoring system can be constructed.

また、本発明の光線路監視用デバイスにおいて、通信光は1.31μm、1.49μm、1.55μmの少なくとも一つの波長の光を有し、監視光は1.6μm以上1.7μm未満の互いに異なる複数の波長の光によって構成されている構成によれば、現行の光線路監視用システムの仕様をそのままの状態として、上記のように障害の有無と障害位置の検出を的確に行える光線路監視用システムを安価に構築可能とすることができる。   In the optical line monitoring device according to the present invention, the communication light includes light having at least one wavelength of 1.31 μm, 1.49 μm, and 1.55 μm, and the monitoring light is 1.6 μm or more and less than 1.7 μm. According to the configuration composed of light of multiple different wavelengths, the optical line monitoring that can accurately detect the presence or absence of the fault and the location of the fault as described above, with the specifications of the current optical line monitoring system as it is System can be constructed at low cost.

さらに、本発明の光線路監視用デバイスにおいて、監視光は1.625μm以上1.675μm未満の互いに異なる複数の波長の光とした構成によれば、現行の光線路監視用システムにおいて、分岐光線路の終端側やユーザー側に設けられているフィルタ等の監視光反射機構をそのままの状態として、上記のように障害の有無と障害位置の検出を的確に行える光線路監視用システムを安価に構築可能とすることができる。   Further, in the optical line monitoring device of the present invention, according to the configuration in which the monitoring light is light having a plurality of different wavelengths of 1.625 μm or more and less than 1.675 μm, in the existing optical line monitoring system, the branched optical line With the monitoring light reflection mechanism such as the filter provided on the terminal side or the user side as it is, the optical line monitoring system that can accurately detect the presence of the fault and the location of the fault as described above can be constructed at low cost It can be.

さらに、本発明の光線路監視用デバイスにおいて、光分岐カプラの光出力部の数を4または8とした構成によれば、光分岐カプラの光出力部数に対応させて光出力部を形成し、現行の光線路監視用システムに適用されている分岐光線路数をそのままにして、光線路監視用システムを安価に構築できる。   Furthermore, in the optical line monitoring device of the present invention, according to the configuration in which the number of light output portions of the light branching coupler is 4 or 8, the light output portion is formed corresponding to the number of light output portions of the light branching coupler, An optical line monitoring system can be constructed at a low cost while keeping the number of branched optical lines applied to the current optical line monitoring system.

さらに、本発明の光線路監視用デバイスにおいて、光分岐カプラは基板上に光導波路の回路を形成して成る平面導波回路により形成し、該平面導波回路に第1の光波長合分波フィルタと第2の光波長合分波フィルタを設けた構成によれば、光線路監視用デバイスの小型化と低コスト化をより一層図ることができる。   Further, in the optical line monitoring device of the present invention, the optical branching coupler is formed by a planar waveguide circuit formed by forming an optical waveguide circuit on a substrate, and the first optical wavelength multiplexing / demultiplexing is formed on the planar waveguide circuit. According to the configuration in which the filter and the second optical wavelength multiplexing / demultiplexing filter are provided, it is possible to further reduce the size and cost of the optical line monitoring device.

さらに、本発明の光線路監視用デバイスにおいて、アレイ導波路回折格子型波長合分波器を光分岐カプラと同一基板上に形成した平面導波回路により形成した構成によれば、光線路監視用デバイスの小型化と低コスト化をさらにより一層図ることができる。   Furthermore, in the optical line monitoring device of the present invention, the arrayed waveguide grating type wavelength multiplexer / demultiplexer is formed by a planar waveguide circuit formed on the same substrate as the optical branching coupler. The device can be further reduced in size and cost.

さらに、本発明の光線路監視用デバイスにおいて、第1、第2の光波長合分波フィルタの少なくとも一方に誘電体多層膜フィルタを適用し、監視光を反射し、通信光を透過する構成によれば、光波長合分波フィルタを好適に構成できる。   Furthermore, in the optical line monitoring device of the present invention, a dielectric multilayer filter is applied to at least one of the first and second optical wavelength multiplexing / demultiplexing filters to reflect the monitoring light and transmit the communication light. Accordingly, the optical wavelength multiplexing / demultiplexing filter can be suitably configured.

さらに、本発明の光線路監視用デバイスにおいて、第1の光波長合分波フィルタと第2の光波長合分波フィルタを同じフィルタにより形成した構成によれば、光線路監視用デバイスの部品点数を少なくして、より一層の低コスト化を図ることができる。   Furthermore, in the optical line monitoring device of the present invention, according to the configuration in which the first optical wavelength multiplexing / demultiplexing filter and the second optical wavelength multiplexing / demultiplexing filter are formed by the same filter, the number of parts of the optical line monitoring device is increased. It is possible to further reduce the cost.

さらに、本発明の光線路監視用デバイスにおいて、アレイ導波路回折格子型波長合分波器により分波する監視光のそれぞれの透過波長域を1.0nm以上とした構成によれば、デバイスの適用温度範囲内において温度調節機構を設けなくても監視光の分波を的確に行えるので、光線路監視用デバイスの低コスト化をより一層図ることができる。   Furthermore, in the optical line monitoring device of the present invention, according to the configuration in which each transmission wavelength region of the monitoring light demultiplexed by the arrayed waveguide diffraction grating type wavelength multiplexer / demultiplexer is 1.0 nm or more, the application of the device Since the demultiplexing of the monitoring light can be performed accurately without providing a temperature adjustment mechanism within the temperature range, the cost of the optical line monitoring device can be further reduced.

以下、本発明の実施の形態を、図面を参照して説明する。なお、本実施形態例の説明において、従来例と同一名称部分には同一符号を付し、その重複説明は省略又は簡略化する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the present embodiment, the same reference numerals are assigned to the same names as those in the conventional example, and the duplicate description is omitted or simplified.

図1には、本発明に係る光線路監視用デバイスの第1実施形態例が示されている。また、図2には、本実施形態例の光線路監視用デバイスを用いた光線路監視用システムの一例が示されている。本実施形態例の光線路監視用デバイス3は、例えば図2に示すような波長ルーティング方式の光線路監視用システムに適用され、光主幹線路22と分岐光線路1(1a〜1a)との間に介設されるものである。 FIG. 1 shows a first embodiment of an optical line monitoring device according to the present invention. FIG. 2 shows an example of an optical line monitoring system using the optical line monitoring device of this embodiment. The optical line monitoring device 3 of the present embodiment is applied to, for example, a wavelength routing type optical line monitoring system as shown in FIG. 2, and includes an optical main line 22 and branch optical lines 1 (1a 1 to 1a 8 ). Between the two.

図1に示すように、本実施形態例の光線路監視用デバイス3は、1つの光入力部4と、8つの光出力部11(11a〜11h)とを有し、光入力部4側には、該光入力部4から入力される互いに異なる複数(ここでは8つ)の波長λc〜λcを持った監視光を反射し、かつ、該監視光の波長と異なる波長λa、λbを有して前記光入力部4から入力される通信光を透過して、監視光と通信光を分波する第1の光波長合分波フィルタ5が設けられている。 As shown in FIG. 1, the optical line monitoring device 3 according to the present embodiment includes one optical input unit 4 and eight optical output units 11 (11a to 11h), and is provided on the optical input unit 4 side. reflects monitor light having a wavelength λc 1 ~λc 8 a plurality of mutually different input from the light input portion 4 (here eight), and the wavelength λa that is different from the wavelength of the monitoring light, the λb A first optical wavelength multiplexing / demultiplexing filter 5 is provided which transmits the communication light input from the optical input unit 4 and demultiplexes the monitoring light and the communication light.

本実施形態例において、通信光波長λaは1.31μmであり、通信光波長λbは1.55μmである。監視光波長は1.60μm以上1.70μm未満の予め設定した波長であり、1.625μm以上1.675μm以下の互いに異なる複数の波長λc、λc、・・・λcの光である。 In the present embodiment, the communication light wavelength λa is 1.31 μm, and the communication light wavelength λb is 1.55 μm. The monitoring light wavelength is a preset wavelength of 1.60 μm or more and less than 1.70 μm, and is light having a plurality of different wavelengths λc 1 , λc 2 ,... Λc 8 of 1.625 μm or more and 1.675 μm or less.

本実施形態例で適用している監視光波長は、λc=1.6575μm、λc=1.6550μm、λc=1.6525μm、λc=1.6500μm、λc=1.6475μm、λc=1.6450μm、λc=1.6425μm、λc=1.6400μmである。 The monitoring light wavelengths applied in this embodiment are λc 1 = 1.6575 μm, λc 2 = 1.6550 μm, λc 3 = 1.6525 μm, λc 4 = 1.6500 μm, λc 5 = 1.6475 μm, λc 6 = 1.6450 μm, λc 7 = 1.6425 μm, and λc 8 = 1.6400 μm.

第1の光波長合分波フィルタ5の通信光透過側には、通信光を複数(ここでは8つ)に分岐する光分岐カプラ6が設けられており、第1の光波長合分波フィルタ5の監視光反射側にはアレイ導波路回折格子型波長合分波器8が設けられている。   On the communication light transmission side of the first optical wavelength multiplexing / demultiplexing filter 5, an optical branching coupler 6 that branches the communication light into a plurality (here, eight) is provided, and the first optical wavelength multiplexing / demultiplexing filter 5 An arrayed waveguide diffraction grating type wavelength multiplexer / demultiplexer 8 is provided on the monitoring light reflecting side 5.

このアレイ導波路回折格子型波長合分波器8は、1本の光入力導波路12と、該光入力導波路12の出射側に接続された第1のスラブ導波路13と、該第1のスラブ導波路13の出射側に接続されたアレイ導波路14と、該アレイ導波路14の出射側に接続された第2のスラブ導波路15と、該第2のスラブ導波路15の出射側に接続された複数並設された光出力導波路16とを有している。   The arrayed waveguide grating type wavelength multiplexer / demultiplexer 8 includes one optical input waveguide 12, a first slab waveguide 13 connected to the output side of the optical input waveguide 12, and the first The arrayed waveguide 14 connected to the output side of the slab waveguide 13, the second slab waveguide 15 connected to the output side of the arrayed waveguide 14, and the output side of the second slab waveguide 15 And a plurality of optical output waveguides 16 arranged in parallel.

前記アレイ導波路14は、複数の並設されたチャンネル導波路14aにより形成されており、アレイ導波路14は、第1のスラブ導波路13から導出された光を伝搬する。チャンネル導波路14aは互いに異なる長さに形成され、隣り合うチャンネル導波路14aの長さは互いにΔL異なっている。   The arrayed waveguide 14 is formed by a plurality of channel waveguides 14 a arranged in parallel, and the arrayed waveguide 14 propagates light derived from the first slab waveguide 13. The channel waveguides 14a are formed to have different lengths, and the lengths of the adjacent channel waveguides 14a are different from each other by ΔL.

なお、チャンネル導波路14aは、通常、例えば100本といったように多数設けられるが、図1においては、図の簡略化のために、チャンネル導波路14aの本数を簡略的に示してある。また、本実施形態例において、アレイ導波路回折格子型波長合分波器8の光出力部の数(光出力導波路16の本数)は前記光分岐カプラ6の光出力部9(9a〜9h)の数と等しく8つである。   In general, a large number of channel waveguides 14a are provided, for example, 100, but in FIG. 1, the number of channel waveguides 14a is simply shown for the sake of simplicity. In the present embodiment, the number of light output portions of the arrayed waveguide grating type wavelength multiplexer / demultiplexer 8 (number of light output waveguides 16) is equal to the light output portions 9 (9a to 9h) of the light branching coupler 6. ) Equal to the number of).

アレイ導波路回折格子型波長合分波器8は、上記のような回路構成によって、複数波長の光を波長ごとに分波する機能を有しており、本実施形態例に適用されているアレイ導波路回折格子型波長合分波器8の合分波波長のそれぞれの透過波長域は1.0nm以上に設定されている。   The arrayed waveguide grating type wavelength multiplexer / demultiplexer 8 has a function of demultiplexing light of a plurality of wavelengths for each wavelength by the circuit configuration as described above, and is applied to the present embodiment. Each transmission wavelength region of the multiplexing / demultiplexing wavelength of the waveguide diffraction grating type wavelength multiplexer / demultiplexer 8 is set to 1.0 nm or more.

本実施形態例において、アレイ導波路回折格子型波長合分波器8は、前記監視光を波長(λc、λc、・・・λc)ごとに分波し、それぞれの分波波長λc、λc、・・・λcの光を、前記光分岐カプラ6の8つ出力部9のうちの対応する個別の出力部9(9a〜9h)側に導く。 In this embodiment, the arrayed waveguide grating type wavelength multiplexer / demultiplexer 8 demultiplexes the monitoring light for each wavelength (λc 1 , λc 2 ,... Λc 8 ), and each demultiplexed wavelength λc. 1 , λc 2 ,... Λc 8 are guided to the corresponding individual output unit 9 (9 a to 9 h) of the eight output units 9 of the optical branching coupler 6.

前記光分岐カプラ6の出力部9a〜9h側には第2の光波長合分波フィルタ7が設けられており、この第2の光波長合分波フィルタ7は、該光分岐カプラ6が分岐出力した通信光の波長λa、λbと前記アレイ導波路回折格子型波長合分波器8側から光分岐カプラ6のそれぞれの出力部9a〜9h側に導かれる波長λc、λc、・・・λcごとの監視光とをそれぞれ合波する機能を有している。 A second optical wavelength multiplexing / demultiplexing filter 7 is provided on the output section 9a-9h side of the optical branching coupler 6, and the second optical wavelength multiplexing / demultiplexing filter 7 is branched by the optical branching coupler 6. Wavelengths λa, λb of the output communication light and wavelengths λc 1 , λc 2 , guided from the arrayed waveguide grating type wavelength multiplexer / demultiplexer 8 side to the output units 9a to 9h of the optical branching coupler 6, respectively. -It has a function of multiplexing the monitoring light for each λc 8 .

第2の光波長合分波フィルタ7は、前記第1の光波長合分波フィルタ5と同様に、通信光波長λa、λbを透過し、監視光波長λc、λc、・・・λcを反射するフィルタにより形成されており、第2の光波長合分波フィルタ7は、この波長選択透過反射機能によって、第2の光波長合分波フィルタ7のから出力される通信光波長λa、λbを透過し、アレイ導波路回折格子型波長合分波器8から導かれる監視光波長λc、λc、・・・λcを反射して、通信光と波長ごとの監視光を合波する。 Similarly to the first optical wavelength multiplexing / demultiplexing filter 5, the second optical wavelength multiplexing / demultiplexing filter 7 transmits the communication optical wavelengths λa, λb and monitors the optical wavelengths λc 1 , λc 2 ,. 8 is formed by a filter which reflects the second optical wavelength division multiplexing filter 7, the wavelength selective transmission reflection function, the communication wavelength λa that is output from the second optical wavelength division multiplexing filter 7 , Λb, and reflects the monitoring light wavelengths λc 1 , λc 2 ,... Λc 8 guided from the arrayed waveguide grating type wavelength multiplexer / demultiplexer 8 to combine the communication light and the monitoring light for each wavelength. To wave.

第2の光波長合波フィルタ7により合波された通信光と波長ごとの監視光は、それぞれ前記光出力部11a〜11hから出力される。   The communication light combined by the second optical wavelength combining filter 7 and the monitoring light for each wavelength are output from the light output units 11a to 11h, respectively.

本実施形態例において、光分岐カプラ6とアレイ導波路回折格子型波長合分波器8の形成態様は、特に限定されるものではないが、本実施形態例では同一基板上に形成した平面導波回路により形成されており、該平面導波回路上の光分岐カプラ6の入力部側に第1の光波長合分波フィルタ5が設けられ、光分岐カプラ6の出力部側に第2の光波長合分波フィルタ7が設けられている。また、第1及び第2の光波長合分波フィルタは、特に限定されるものではないが、本実施形態例では例えば誘電体多層膜フィルタにより形成されている。   In the present embodiment, the form of forming the optical branching coupler 6 and the arrayed waveguide grating type wavelength multiplexer / demultiplexer 8 is not particularly limited, but in this embodiment, the planar waveguide formed on the same substrate is used. The first optical wavelength multiplexing / demultiplexing filter 5 is provided on the input side of the optical branching coupler 6 on the planar waveguide circuit, and the second optical wavelength coupler 6 is provided on the output side of the optical branching coupler 6. An optical wavelength multiplexing / demultiplexing filter 7 is provided. Further, the first and second optical wavelength multiplexing / demultiplexing filters are not particularly limited, but are formed by, for example, a dielectric multilayer filter in the present embodiment.

本実施形態例の光線路監視用デバイス3は以上のように構成されており、例えば図2に示すような従来の従来のシステム構成において、従来型スプリッタ設置部分に、前記本実施形態例のデバイス3を適用し、この光線路監視用デバイス3の光入力部4に、光主幹線路22,22aを介して、通信光光源としての伝送装置10と監視光光源としてのOTDR2を接続し、光線路監視用デバイス3のそれぞれの出力部に対応する光線路である分岐光線路1(1a,1a,・・・)を接続して、波長ルーティング方式の光線路監視用システムが形成出来る。 The optical line monitoring device 3 according to the present embodiment is configured as described above. For example, in the conventional conventional system configuration as shown in FIG. 2, the device according to the present embodiment is installed in the conventional splitter installation portion. 3 is connected to the optical input unit 4 of the optical line monitoring device 3 via the optical main lines 22 and 22a, the transmission device 10 as the communication light source and the OTDR 2 as the monitoring light source. A branching optical line 1 (1a 1 , 1a 2 ,...) That is an optical line corresponding to each output unit of the monitoring device 3 can be connected to form a wavelength routing type optical line monitoring system.

従来システム構成に前記本実施形態例の光線路監視用デバイス3を適用させた図2に示す光線路監視用システムにおいて、OTDR2の光源は、互いに異なる複数の波長を持った監視光を、波長ごとに対応する出力部27から出力する光源であり、OTDR2は、監視光合分波用アレイ導波路回折格子26を介してファイバセレクタ25に接続される。監視光合分波用アレイ導波路回折格子26は、本実施形態例の光線路監視用デバイス3に適用されているアレイ導波路回折格子型波長合分波器8と同じ波長合分波機能を備えている。   In the optical line monitoring system shown in FIG. 2 in which the optical line monitoring device 3 of the present embodiment is applied to the conventional system configuration, the light source of the OTDR 2 uses the monitoring light having a plurality of different wavelengths for each wavelength. The OTDR 2 is connected to the fiber selector 25 via the monitoring light multiplexing / demultiplexing array waveguide diffraction grating 26. The monitoring optical multiplexing / demultiplexing array waveguide diffraction grating 26 has the same wavelength multiplexing / demultiplexing function as the arrayed waveguide grating type wavelength multiplexing / demultiplexing device 8 applied to the optical line monitoring device 3 of this embodiment. ing.

従来システム構成に前記本実施形態例の光線路監視用デバイス3を適用させた図2に示す光線路監視用システムは、OTDR2の複数の出力部27からそれぞれ出力する互いに異なる波長の監視光を、監視光合分波用アレイ導波路回折格子26で合波し、ファイバセレクタ25とそれぞれの光主幹線路22に介設された光カプラ18を介して光主幹線路22に入力し、また、伝送装置10から出力される通信光を光スプリッタ28により分岐して複数の光主幹線路22に入力する。そして、それぞれの光主幹線路22に入力された波長λa、λbの通信光と、複数波長λc、λc、・・・λcとを持った監視光は、本実施形態例の光線路監視用デバイス3の光入力部4に入力される。 The optical line monitoring system shown in FIG. 2 in which the optical line monitoring device 3 according to the present embodiment is applied to the conventional system configuration includes monitoring lights having different wavelengths respectively output from the plurality of output units 27 of the OTDR 2. The signals are multiplexed by the arrayed waveguide diffraction grating 26 for monitoring light multiplexing / demultiplexing, and input to the optical main line 22 via the fiber selector 25 and the optical coupler 18 interposed in each optical main line 22. The communication light output from the light is split by the optical splitter 28 and input to the plurality of optical main lines 22. Then, the communication light having the wavelengths λa and λb and the monitoring light having a plurality of wavelengths λc 1 , λc 2 ,... Λc 8 input to each optical main line 22 are the optical line monitoring of the present embodiment. Is input to the optical input unit 4 of the device 3.

そうすると、図1に示すように、通信光は、第1の光波長合分波フィルタ5を透過し、光分岐カプラ6によって分岐されて各光出力部9a〜9hから出力され、第2の光波長合分波フィルタ7を透過して、それぞれの分岐通信光が個別に光出力部11a〜11h側に伝搬していく。   Then, as shown in FIG. 1, the communication light passes through the first optical wavelength multiplexing / demultiplexing filter 5, is branched by the optical branching coupler 6, and is output from each of the optical output units 9a to 9h. Each branched communication light is individually transmitted to the light output units 11a to 11h through the wavelength multiplexing / demultiplexing filter 7.

一方、監視光は、第1の光波長合分波フィルタ5によって反射し、その後、アレイ導波路回折格子型波長合分波器8によってそれぞれの波長ごとに分波されて、光分岐カプラ6の対応する個別の光出力部9a〜9hに導かれる。これらの監視光は、それぞれ、第2の光波長合分波フィルタ7によって反射し、第2の光波長合分波フィルタ7を透過した分岐後の各通信光とそれぞれ合波されて対応する光出力部11a〜11h側に伝搬していく。   On the other hand, the monitoring light is reflected by the first optical wavelength multiplexing / demultiplexing filter 5, and then demultiplexed for each wavelength by the arrayed waveguide diffraction grating type wavelength multiplexing / demultiplexing unit 8. It is guided to the corresponding individual light output units 9a to 9h. Each of these monitoring lights is reflected by the second optical wavelength multiplexing / demultiplexing filter 7 and is combined with each of the branched communication lights that have been transmitted through the second optical wavelength multiplexing / demultiplexing filter 7. It propagates to the output units 11a to 11h.

そして、光線路監視用デバイス3の光出力部11aから、波長λa、λb、λcの光が出力され、光出力部11bから、波長λa、λb、λcの光が出力されるといったように、それぞれの光出力部11a〜11hから対応する波長の監視光と通信光とが出力される。このように、本実施形態例の光線路監視用デバイス3は、通信光の分岐と監視光の分波とを行い、その合波光を出力する。 Then, from the light output portion 11a of the optical line monitoring device 3, the wavelength [lambda] a, [lambda] b, the light of [lambda] c 1 is output from the light output section 11b, as such wavelengths [lambda] a, [lambda] b, the light of [lambda] c 2 is output The monitoring light and the communication light of the corresponding wavelength are output from the respective light output units 11a to 11h. As described above, the optical line monitoring device 3 according to the present embodiment performs the branching of the communication light and the demultiplexing of the monitoring light, and outputs the combined light.

従来システム構成に光線路監視用デバイス3を適用させた図2に示す光線路監視用システムにおいて、光線路監視用デバイス3の各光出力部11a〜11hから出力された通信光と波長ごとの監視光は、対応する分岐光線路1a〜1aに入力される。そして、分岐光線路1a〜1aをユーザー24側に伝搬した通信光はユーザー24のONU(光加入者線終端装置)20に受信される。 In the optical line monitoring system shown in FIG. 2 in which the optical line monitoring device 3 is applied to the conventional system configuration, the communication light output from each of the optical output units 11a to 11h of the optical line monitoring device 3 and the monitoring for each wavelength. The light is input to the corresponding branched optical lines 1a 1 to 1a 8 . Then, the communication light propagated through branch optical 1a 1 to 1A 8 user 24 side is received by the ONU (optical network unit) 20 of the user 24.

また、波長ごとの監視光はONU20の通信光受信部より手前側に設けられた監視光反射機構(図示せず)によって反射して、それぞれ、波長ごとに分岐光線路1a〜1aを戻っていき、光線路監視用デバイス3のそれぞれの光出力部11a〜11hに入射する。 Further, the monitoring light for each wavelength is reflected by a monitoring light reflecting mechanism (not shown) provided on the near side of the communication light receiving unit of the ONU 20 and returns to the branched optical lines 1a 1 to 1a 8 for each wavelength. Then, the light is incident on each of the light output units 11 a to 11 h of the optical line monitoring device 3.

光線路監視用デバイス3のそれぞれの光出力部11a〜11hに戻ってきた波長ごとの監視光は、光線路監視用デバイス3を前記と逆の経路を通って伝搬し、アレイ導波路回折格子型波長合分波器8によって合波されて、複数の波長λc、λc、・・・λcを持った監視光の戻り光として光入力部4から出力される。 The monitoring light for each wavelength that has returned to the respective optical output units 11a to 11h of the optical line monitoring device 3 propagates through the optical line monitoring device 3 through the reverse path to the array waveguide diffraction grating type. The signals are multiplexed by the wavelength multiplexer / demultiplexer 8 and output from the optical input unit 4 as the return light of the monitoring light having a plurality of wavelengths λc 1 , λc 2 ,... Λc 8 .

この監視光は、光カプラ18、ファイバセレクタ25を介し、さらに、監視光合分波用アレイ導波路回折格子26により波長ごとに分波出力されてOTDR2の各出力部27に戻っていくので、OTDR2は、戻ってきた波長毎の監視光を検出し、周知のOTDRによる線路異常(障害)検出方法によって、それぞれの分岐光線路1の異常の有無および異常発生位置の検出を行う。   This monitoring light is further demultiplexed for each wavelength by the monitoring light multiplexing / demultiplexing array waveguide diffraction grating 26 via the optical coupler 18 and the fiber selector 25, and returns to each output unit 27 of the OTDR2. Detects the return of the monitoring light for each wavelength, and detects the presence / absence of abnormality of each branch optical line 1 and the position of occurrence of abnormality by a known line abnormality (failure) detection method using OTDR.

本実施形態例の光線路監視用デバイス3は、上記のように、通信光の分岐と監視光の分波とを行うことができるので、波長ルーティング方式の光線路監視用システムに適用することができ、障害発生時にどの分岐光線路1のどの位置にどのような異常が発生したかを検出可能な光線路監視用システムを構築することができる。   As described above, the optical line monitoring device 3 according to the present embodiment can branch the communication light and demultiplex the monitoring light, so that it can be applied to a wavelength routing type optical line monitoring system. In addition, it is possible to construct an optical line monitoring system that can detect what kind of abnormality has occurred in which branch optical line 1 when a failure occurs.

また、本実施形態例の光線路監視用デバイス3は、光分岐カプラ6とアレイ導波路回折格子型波長合分波器8とを同一基板上に形成した平面光導波回路により形成して、この平面光導波回路に第1、第2の光波長合分波フィルタ5,7を設けた簡単な構成であるので、容易に、歩留まり良く製造でき、小型で、安価なデバイスを実現することができ、図7に示される構成による小型化の難しさを解決することが出来る。   Further, the optical line monitoring device 3 of this embodiment is formed by a planar optical waveguide circuit in which the optical branching coupler 6 and the arrayed waveguide diffraction grating type wavelength multiplexer / demultiplexer 8 are formed on the same substrate. Since it is a simple configuration in which the first and second optical wavelength multiplexing / demultiplexing filters 5 and 7 are provided in the planar optical waveguide circuit, it can be easily manufactured with high yield, and a small and inexpensive device can be realized. The difficulty of miniaturization by the configuration shown in FIG. 7 can be solved.

また、本実施形態例の光線路監視用デバイス3は、通信光波長を1.31μmと1.55μmとし、監視光波長を1.6μm帯としており、光出力部11a〜11hの個数を8として8本の分岐光線路1(1a〜1a)に接続することができるので、現行の光線路監視用システムに適用することにより、現在適用されている波長の光を用いて、光通信と光線路監視を良好に行うことができる。 Further, the optical line monitoring device 3 of this embodiment example has communication light wavelengths of 1.31 μm and 1.55 μm, a monitoring light wavelength of 1.6 μm band, and the number of light output units 11 a to 11 h is eight. Since it can be connected to the eight branched optical lines 1 (1a 1 to 1a 8 ), it can be applied to the current optical line monitoring system, so that the optical communication can be performed using the light of the currently applied wavelength. Optical line monitoring can be performed satisfactorily.

さらに、本実施形態例の光線路監視用デバイス3は、監視光波長を1.64μm以上1.66μm以下の互いに異なる複数の波長の光としているので、光線路監視用システムに適用するときに、システムのユーザー24側に設ける監視光反射機構(監視光反射用のフィルタ等)を現在適用されている部材を適用してシステムを構築でき、安価なシステム構築を可能とすることができる。   Furthermore, since the optical line monitoring device 3 of the present embodiment example uses a plurality of different wavelengths of light having a monitoring light wavelength of 1.64 μm or more and 1.66 μm or less, when applied to an optical line monitoring system, A system can be constructed by applying a member to which a monitoring light reflection mechanism (such as a filter for monitoring light reflection) provided on the user 24 side of the system is currently applied, and an inexpensive system can be constructed.

さらに、本実施形態例の光線路監視用デバイス3は、アレイ導波路回折格子型波長合分波器8の光合分波波長の透過波長域を1.0nm以上としているので、温度依存性が0.01nm/℃のアレイ導波路回折格子型波長合分波器8を、例えば−20℃〜80℃の範囲で温度調節無しで使用できるので、小型化と低価格化をより一層可能とすることができる。   Furthermore, the optical line monitoring device 3 according to the present embodiment has a transmission wavelength range of 1.0 nm or more of the optical multiplexing / demultiplexing wavelength of the arrayed waveguide diffraction grating type wavelength multiplexer / demultiplexer 8, so that the temperature dependency is 0. Since the .01 nm / ° C. arrayed waveguide grating type wavelength multiplexer / demultiplexer 8 can be used without adjusting the temperature in the range of −20 ° C. to 80 ° C., for example, it is possible to further reduce the size and the cost. Can do.

なお、本実施形態例の光線路監視用デバイス3は、図3に示すように、図2において、OTDR2の直後に設けた監視光合分波用アレイ導波路回折格子26を省略した構成の光線路監視用システムに適用することもできる。なお、図3のシステムにおいては、監視光合分波用アレイ導波路回折格子26を有していないので、例えばOTDR2内に設けたスーパーコンティニュウム光源等の広帯域光源や多波長光源から互いに異なる複数波長を持った監視光を出力してファイバセレクタ25に入力し、光カプラ18を介して基幹光線路22に入力する。   As shown in FIG. 3, the optical line monitoring device 3 of the present embodiment is an optical line having a configuration in which the monitoring light multiplexing / demultiplexing array waveguide diffraction grating 26 provided immediately after the OTDR 2 is omitted in FIG. It can also be applied to a monitoring system. 3 does not have the array waveguide diffraction grating 26 for monitoring light multiplexing / demultiplexing, for example, a plurality of different light sources such as a supercontinuum light source such as a supercontinuum light source provided in the OTDR 2 and a plurality of different wavelength light sources. Monitoring light having a wavelength is output and input to the fiber selector 25, and then input to the trunk optical line 22 via the optical coupler 18.

基幹光線路22を伝搬した監視光は、光線路監視用デバイス3に入力されて分波され、それぞれ対応する各分岐光線路1に入射してその終端側で反射した後に、光線路監視用デバイス3に戻って合波される。その後、基幹光線路22を通って戻ってきた複数波長を有する監視光は、ファイバセレクタ25を介して複数波長を持ったままOTDR2に入力されるので、OTDR2側で、波長ごとに分析して光線路の異常の有無や異常箇所の検出を行うことになる。   The monitoring light propagating through the trunk optical line 22 is input to the optical line monitoring device 3 and is demultiplexed. After entering the corresponding branch optical line 1 and reflected on the terminal side, the optical line monitoring device. Return to 3 and combine. Thereafter, since the monitoring light having a plurality of wavelengths returned through the backbone optical line 22 is input to the OTDR 2 while having a plurality of wavelengths via the fiber selector 25, the light is analyzed and analyzed for each wavelength on the OTDR 2 side. The presence / absence of a road abnormality and an abnormal part are detected.

この波長ごとの分析には前述のアレイ導波路回折格子型波長合分波器を用いることが可能である。この場合、アレイ導波路回折格子型波長合分波器はOTDR2の監視光入力側に設置し、アレイ導波路回折格子型波長合分波器のそれぞれの出力側に各々OTDR2の受光素子を設けるか、光スイッチ等を用いてOTDR2の受光素子とアレイ導波路回折格子型波長合分波器の出力の接続を選択する方式が用いられる。   For the analysis for each wavelength, the above-described arrayed waveguide grating type wavelength multiplexer / demultiplexer can be used. In this case, the arrayed waveguide grating type wavelength multiplexer / demultiplexer is installed on the monitoring light input side of the OTDR2, and the light receiving element of the OTDR2 is provided on each output side of the arrayed waveguide grating type wavelength multiplexer / demultiplexer. A method of selecting the connection between the light receiving element of OTDR2 and the output of the arrayed waveguide grating type wavelength multiplexer / demultiplexer using an optical switch or the like is used.

また、図3においては、波長可変のOTDRを用いることも可能である。この場合、OTDRの光源波長をλc1からλc8の何れかに制御することにより、任意に所望の分岐光線路を監視することが可能である。   In FIG. 3, it is also possible to use a wavelength-tunable OTDR. In this case, by controlling the light source wavelength of the OTDR to any one of λc1 to λc8, it is possible to arbitrarily monitor a desired branch optical line.

次に、図4に示す、本発明に係る光線路監視用デバイスの第2実施形態例について説明する。なお、第2実施形態例の光線路監視用デバイス3において、上記第1実施形態例と同様に構成されている構成要素についての説明は省略または簡略化する。   Next, a second embodiment of the optical line monitoring device according to the present invention shown in FIG. 4 will be described. In addition, in the optical line monitoring device 3 of the second embodiment, the description of the components configured in the same manner as the first embodiment is omitted or simplified.

第2実施形態例の光線路監視用デバイス3が第1実施形態例の光線路監視用デバイス3と異なる特徴的なことは、光入力部4と光出力部11a〜11hを光線路監視用デバイス3の一端側(同じ端側)に設け、第1の光波長合分波フィルタ5と第2の光波長合分波フィルタ7を同じフィルタにより構成したことである。   The optical line monitoring device 3 of the second embodiment differs from the optical line monitoring device 3 of the first embodiment in that the optical input unit 4 and the optical output units 11a to 11h are connected to the optical line monitoring device. 3, the first optical wavelength multiplexing / demultiplexing filter 5 and the second optical wavelength multiplexing / demultiplexing filter 7 are configured by the same filter.

第2実施形態例は以上のように構成されており、第2実施形態例も上記第1実施形態例と同様の動作により同様の効果を奏することができる。   The second embodiment is configured as described above, and the second embodiment can also achieve the same effect by the same operation as the first embodiment.

また、第2実施形態例は、第1の光波長合分波フィルタ5と第2の光波長合分波フィルタ7を同じフィルタにより構成しているので、光線路監視用デバイス3の部品点数を少なくして低価格化をより一層図ることができる。   In the second embodiment, the first optical wavelength multiplexing / demultiplexing filter 5 and the second optical wavelength multiplexing / demultiplexing filter 7 are configured by the same filter, so the number of parts of the optical line monitoring device 3 is reduced. The price can be further reduced by reducing it.

なお、本発明は上記実施形態例に限定されることはなく、様々な実施の態様を採り得る。例えば、通信光波長や監視光波長は、必ずしも上記各実施形態例で適用した波長とは限らず、例えば通信光波長を、1.31μm、1.49μm、1.55μmの少なくとも一つの波長とする等、システムの仕様等に対応させて適宜設定されるものである。   In addition, this invention is not limited to the said embodiment example, Various aspects can be taken. For example, the communication light wavelength and the monitoring light wavelength are not necessarily the wavelengths applied in the above-described embodiments. For example, the communication light wavelength is at least one wavelength of 1.31 μm, 1.49 μm, and 1.55 μm. These are set as appropriate in accordance with the system specifications.

また、上記各実施形態例では、光分岐カプラ6の光出力部9の数を8としたが、光分岐カプラ6の光出力部9の数は8以外の数(例えば4、16等の適宜の数)としてもよく、この数に対応させてアレイ導波路回折格子型波長合分波器8の光出力導波路16や光線路監視用デバイス3の光出力部の数を設定すればよい。なお、光線路監視用デバイス3の光出力部の数を4または8とし、対応する分岐光線路1に接続すると、従来用いられてきた光線路監視用システムへの適用を容易にできる。   In each of the above embodiments, the number of the optical output units 9 of the optical branching coupler 6 is eight, but the number of the optical output units 9 of the optical branching coupler 6 is a number other than eight (for example, 4, 16, etc. as appropriate). The number of the optical output waveguides 16 of the arrayed waveguide diffraction grating type wavelength multiplexer / demultiplexer 8 and the number of the optical output units of the optical line monitoring device 3 may be set corresponding to this number. If the number of light output units of the optical line monitoring device 3 is set to 4 or 8, and connected to the corresponding branch optical line 1, it can be easily applied to a conventionally used optical line monitoring system.

アレイ導波路回折格子型波長合分波器8により分波する監視光のそれぞれの透過波長域を1.0nm以上としたが、分波監視光の透過波長域は特に限定されるものでなく、適宜設定されるものである。ただし、分波監視光の透過波長域を1.0nm以上の適宜の値とすると、例えば温度範囲が100℃程度の範囲内で、温度調節無しで光線路監視用デバイス3を使用できるので、小型化と低価格化をより一層可能とすることができて好ましい。   Each transmission wavelength region of the monitoring light demultiplexed by the arrayed waveguide grating type wavelength multiplexer / demultiplexer 8 is set to 1.0 nm or more, but the transmission wavelength region of the demultiplexed monitoring light is not particularly limited, It is set appropriately. However, if the transmission wavelength region of the demultiplexed monitoring light is set to an appropriate value of 1.0 nm or more, the optical line monitoring device 3 can be used without adjusting the temperature, for example, within a temperature range of about 100 ° C. It is possible to further reduce the price and reduce the price, which is preferable.

また、監視光は1.625μm以上1.675μm以下であることが好ましく、この場合、国際規格によって定められた伝送帯域と一致するため汎用性が広がり、様々なシステムにおいて光線路監視用デバイス3を使用できるので、低価格化をより一層可能とすることができる。   Further, the monitoring light is preferably 1.625 μm or more and 1.675 μm or less, and in this case, since it matches the transmission band determined by the international standard, the versatility spreads, and the optical line monitoring device 3 can be used in various systems. Since it can be used, the price can be further reduced.

本発明に係る光線路監視用デバイスの第1実施形態例を示す要部構成図である。It is a principal part block diagram which shows 1st Example of the device for optical line monitoring which concerns on this invention. 本発明に係る光線路監視用デバイスを、従来のシステム構成に適用した光線路監視用システムの一例を示す要部構成図である。It is a principal part block diagram which shows an example of the system for optical line monitoring which applied the device for optical line monitoring which concerns on this invention to the conventional system structure. 本発明に係る光線路監視用デバイスを、従来のシステム構成に適用した光線路監視用システムの別の例を示す要部構成図である。It is a principal part block diagram which shows another example of the optical line monitoring system which applied the device for optical line monitoring which concerns on this invention to the conventional system structure. 本発明に係る光線路監視用デバイスの第2実施形態例を示す要部構成図である。It is a principal part block diagram which shows 2nd Example of the optical line monitoring device which concerns on this invention. 従来の光線路監視用システムを説明するための模式図である。It is a schematic diagram for demonstrating the conventional system for optical line monitoring. 波長ルーティング方式の光線路監視用システムの説明のための模式図である。It is a schematic diagram for description of a wavelength routing type optical line monitoring system. 従来提案された波長ルーティング方式光線路監視用システムに適用する光デバイスの説明図である。It is explanatory drawing of the optical device applied to the wavelength routing system optical line monitoring system proposed conventionally.

符号の説明Explanation of symbols

1,1a〜1a 分岐光線路
2 OTDR
3 光線路監視用デバイス
4 光入力部
5 第1の光波長合分波フィルタ
6 光分岐カプラ
7 第2の光波長合分波フィルタ
8 アレイ導波路回折格子型波長合分波器
9,9a〜9h 出力部
10 伝送装置
11a〜11h 光出力部
1, 1a 1 to 1A n-branch optical network 2 OTDR
DESCRIPTION OF SYMBOLS 3 Optical line monitoring device 4 Optical input part 5 1st optical wavelength multiplexing / demultiplexing filter 6 Optical branching coupler 7 2nd optical wavelength multiplexing / demultiplexing filter 8 Array waveguide diffraction grating type wavelength multiplexing / demultiplexing 9, 9a- 9h Output unit 10 Transmission device 11a to 11h Optical output unit

Claims (10)

光入力部から入力される互いに異なる複数の波長を持った監視光と、該監視光と異なる波長を有して前記光入力部から入力される通信光とを分波する第1の光波長合分波フィルタと、該第1の光波長合分波フィルタの通信光分波側に設けられて通信光を複数に分岐する光分岐カプラと、前記第1の光波長合分波フィルタの監視光分波側に設けられて前記監視光をさらに波長ごとに分波し、それぞれの分波波長の光を前記光分岐カプラの対応する個別の出力部側に導くアレイ導波路回折格子型波長合分波器と、前記光分岐カプラの出力部側に設けられて該光分岐カプラが分岐出力した通信光と前記アレイ導波路回折格子型波長合分波器側から光分岐カプラのそれぞれの出力部側に導かれる波長ごとの監視光とをそれぞれ合波する第2の光波長合分波フィルタと、該第2の光波長合波フィルタにより合波された通信光と波長ごとの監視光をそれぞれ出力する複数の光出力部とを有することを特徴とする光線路監視用デバイス。 A first optical wavelength combination for demultiplexing the monitoring light having a plurality of different wavelengths input from the optical input unit and the communication light having a wavelength different from that of the monitoring light and input from the optical input unit. A demultiplexing filter, an optical branching coupler that is provided on the communication light demultiplexing side of the first optical wavelength multiplexing / demultiplexing filter and branches the communication light into a plurality of signals, and monitoring light of the first optical wavelength multiplexing / demultiplexing filter Provided on the demultiplexing side, the monitoring light is further demultiplexed for each wavelength, and the light of each demultiplexing wavelength is guided to the corresponding individual output unit side of the optical branching coupler. A communication device provided on the output unit side of the optical branching coupler and branched and output by the optical branching coupler, and each output unit side of the optical branching coupler from the arrayed waveguide grating type wavelength multiplexer / demultiplexer side A second optical wavelength combination for combining the monitoring light for each wavelength guided to Optical line monitoring device, characterized in that it comprises a wave filters, and a plurality of light output portions by the second optical wavelength multiplexing filter multiplexed communication light and for each wavelength of monitor light outputted respectively. 通信光は1.31μmと1.49μmと1.55μmの少なくとも一つの波長の光を有し、監視光は1.60μm以上1.70μm未満の互いに異なる複数の波長の光によって構成されていることを特徴とする請求項1記載の光線路監視用デバイス。 The communication light has at least one wavelength of 1.31 μm, 1.49 μm, and 1.55 μm, and the monitoring light is composed of light having a plurality of different wavelengths that are not less than 1.60 μm and less than 1.70 μm. The optical line monitoring device according to claim 1. 監視光は1.625μm以上1.675μm以下の互いに異なる複数の波長の光としたことを特徴とする請求項1または請求項2のいずれか一つに記載の光線路監視用デバイス。 The optical line monitoring device according to claim 1, wherein the monitoring light is light having a plurality of different wavelengths of 1.625 μm to 1.675 μm. 監視光は1.64μm以上1.66μm以下の互いに異なる複数の波長の光としたことを特徴とする請求項1乃至請求項3のいずれか一つに記載の光線路監視用デバイス。 The optical line monitoring device according to any one of claims 1 to 3, wherein the monitoring light is light having a plurality of different wavelengths of 1.64 µm to 1.66 µm. 光分岐カプラの光出力部の数を4または8としたことを特徴とする請求項1乃至請求項4のいずれか一つに記載の光線路監視用デバイス。 5. The optical line monitoring device according to claim 1, wherein the number of optical output units of the optical branching coupler is four or eight. 光分岐カプラは基板上に光導波路の回路を形成して成る平面導波回路により形成し、該平面導波回路に第1の光波長合分波フィルタと第2の光波長合分波フィルタを設けたことを特徴とする請求項1乃至請求項5のいずれか一つに記載の光線路監視用デバイス。 The optical branching coupler is formed by a planar waveguide circuit formed by forming an optical waveguide circuit on a substrate, and a first optical wavelength multiplexing / demultiplexing filter and a second optical wavelength multiplexing / demultiplexing filter are provided on the planar waveguide circuit. 6. The optical line monitoring device according to claim 1, wherein the optical line monitoring device is provided. アレイ導波路回折格子型波長合分波器を光分岐カプラと同一基板上に形成した平面導波回路により形成したこと特徴とする請求項1乃至請求項6のいずれか一つに記載の光線路監視用デバイス。 7. The optical line according to claim 1, wherein the arrayed waveguide grating type wavelength multiplexer / demultiplexer is formed by a planar waveguide circuit formed on the same substrate as the optical branching coupler. Monitoring device. 第1と第2の光波長合分波フィルタの少なくとも一方は誘電体多層膜フィルタにより形成され、前記誘電体多層膜フィルタは、前記監視光を反射し、かつ、前記通信光を透過することを特徴とする、請求項1乃至請求項7のいずれか一つに記載の光線路監視用デバイス。 At least one of the first and second optical wavelength multiplexing / demultiplexing filters is formed by a dielectric multilayer filter, and the dielectric multilayer filter reflects the monitoring light and transmits the communication light. The optical line monitoring device according to any one of claims 1 to 7, wherein the device is an optical line monitoring device. 第1の光波長合分波フィルタと第2の光波長合分波フィルタを同じフィルタにより形成したことを特徴とする請求項1乃至請求項8のいずれか一つに記載の光線路監視用デバイス。 9. The optical line monitoring device according to claim 1, wherein the first optical wavelength multiplexing / demultiplexing filter and the second optical wavelength multiplexing / demultiplexing filter are formed of the same filter. . アレイ導波路回折格子型波長合分波器により分波する監視光のそれぞれの透過波長域を1.0nm以上としたことを特徴とする請求項1乃至請求項9のいずれか一つに記載の光線路監視用デバイス。 10. The transmission wavelength region of each of the monitoring lights to be demultiplexed by the arrayed waveguide grating type wavelength multiplexer / demultiplexer is set to 1.0 nm or more, according to claim 1. Optical line monitoring device.
JP2003324946A 2003-09-17 2003-09-17 Optical line monitoring device Expired - Fee Related JP4015091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003324946A JP4015091B2 (en) 2003-09-17 2003-09-17 Optical line monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003324946A JP4015091B2 (en) 2003-09-17 2003-09-17 Optical line monitoring device

Publications (2)

Publication Number Publication Date
JP2005091160A true JP2005091160A (en) 2005-04-07
JP4015091B2 JP4015091B2 (en) 2007-11-28

Family

ID=34455548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003324946A Expired - Fee Related JP4015091B2 (en) 2003-09-17 2003-09-17 Optical line monitoring device

Country Status (1)

Country Link
JP (1) JP4015091B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025422A (en) * 2005-07-20 2007-02-01 Alps Electric Co Ltd Wavelength branching filter and optical communication module
JP2008134335A (en) * 2006-11-27 2008-06-12 Sumitomo Electric Ind Ltd Optical multiplexer/demultiplexer
KR20110093989A (en) * 2008-10-17 2011-08-19 엑스포 아이엔씨. Method and apparatus for deriving parameters of optical paths in optical networks using a two-wavelength otdr and a wavelength-dependent reflective element
CN104238595A (en) * 2013-06-14 2014-12-24 深圳新飞通光电子技术有限公司 Optical performance monitor based on temperature control optical waveguide
WO2024047699A1 (en) * 2022-08-29 2024-03-07 日本電信電話株式会社 Optical line monitoring system, optical line monitoring device, and optical line monitoring method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025422A (en) * 2005-07-20 2007-02-01 Alps Electric Co Ltd Wavelength branching filter and optical communication module
JP2008134335A (en) * 2006-11-27 2008-06-12 Sumitomo Electric Ind Ltd Optical multiplexer/demultiplexer
KR20110093989A (en) * 2008-10-17 2011-08-19 엑스포 아이엔씨. Method and apparatus for deriving parameters of optical paths in optical networks using a two-wavelength otdr and a wavelength-dependent reflective element
JP2012506171A (en) * 2008-10-17 2012-03-08 エクスフォ インコーポレイティッド Method and apparatus for deriving optical path and wavelength dependent reflective element parameters in an optical network using dual wavelength OTDR
US8687957B2 (en) 2008-10-17 2014-04-01 Exfo Inc. Method and apparatus for deriving parameters of optical paths in optical networks using two-wavelength OTDR and a wavelength-dependent reflective element
KR101587091B1 (en) 2008-10-17 2016-01-20 엑스포 아이엔씨. Method and Apparatus for Deriving Parameters of Optical Paths in Optical Networks using a Two-Wavelength OTDR and a Wavelength-Dependent Reflective Element
CN104238595A (en) * 2013-06-14 2014-12-24 深圳新飞通光电子技术有限公司 Optical performance monitor based on temperature control optical waveguide
WO2024047699A1 (en) * 2022-08-29 2024-03-07 日本電信電話株式会社 Optical line monitoring system, optical line monitoring device, and optical line monitoring method

Also Published As

Publication number Publication date
JP4015091B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
US7542673B2 (en) Fault localization apparatus for optical line in wavelength division multiplexed passive optical network
US8948589B2 (en) Apparatus and method for testing fibers in a PON
US5579421A (en) Optical integrated circuits and methods
US7800744B2 (en) Detection system for identifying faults in passive optical networks
US8311409B2 (en) Signal switching module for optical network monitoring and fault locating
US20060110161A1 (en) Method and apparatus for monitoring optical fibers of passive optical network system
WO2012024977A1 (en) Method and system for detecting fiber fault in passive optical network
US20010017959A1 (en) Dense WDM optical multiplexer and demultiplexer
EP2494726B1 (en) Improvements in optical communications networks
US20050276603A1 (en) Self-monitoring passive optical network
KR20050071796A (en) Bidirectional wavelength division multiplexing self-healing passive optical network
KR20040023305A (en) Supervisory system for WDM-PON fiber using OTDR
JP4015091B2 (en) Optical line monitoring device
CA2235050A1 (en) Wavelength dividing circuit with arrayed-waveguide grating monitor port
JP2009216626A (en) Fracture point detection system of passive optical line network
KR20040024733A (en) Supervisory system for WDM-PON fiber using optical circulator
JP3250766B2 (en) Optical branch line monitoring system
US7228021B2 (en) Bidirectional optical add/drop multiplexer and wavelength division multiplexed ring network using the same
JP4383162B2 (en) Optical branch line monitoring system
JPH10327104A (en) Optical fiber fault point detector
JP3308148B2 (en) Optical submarine cable branching device for WDM communication system and WDM optical submarine cable network using the same
KR200435229Y1 (en) Coarse Wavelength Division Multiplexer Passive Optical Network System having 8 Channle
US20120315033A1 (en) Optical communication device
KR101021408B1 (en) Method for Monitoring Optical Fiber Line of WDM-PON Access Network
TWI469544B (en) Multi - wave channel thin film filter - type wavelength multiplexing and multi - processor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees