JP4383162B2 - Optical branch line monitoring system - Google Patents

Optical branch line monitoring system Download PDF

Info

Publication number
JP4383162B2
JP4383162B2 JP2003434188A JP2003434188A JP4383162B2 JP 4383162 B2 JP4383162 B2 JP 4383162B2 JP 2003434188 A JP2003434188 A JP 2003434188A JP 2003434188 A JP2003434188 A JP 2003434188A JP 4383162 B2 JP4383162 B2 JP 4383162B2
Authority
JP
Japan
Prior art keywords
optical
light
wavelength
monitoring
branch line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003434188A
Other languages
Japanese (ja)
Other versions
JP2005192138A (en
Inventor
政仁 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2003434188A priority Critical patent/JP4383162B2/en
Publication of JP2005192138A publication Critical patent/JP2005192138A/en
Application granted granted Critical
Publication of JP4383162B2 publication Critical patent/JP4383162B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)
  • Optical Communication System (AREA)

Description

この発明は、親局装置に対して複数の子局装置が光多分岐接続された光多分岐通信システムにおける光分岐線路監視システムに関し、特に、各子局装置の受信機能に影響を与えずに簡易な方法で光通信線路を監視することができる光分岐線路監視システムに関するものである。   The present invention relates to an optical branch line monitoring system in an optical multi-branch communication system in which a plurality of slave station devices are connected to a master station device, and in particular without affecting the reception function of each slave station device. The present invention relates to an optical branch line monitoring system capable of monitoring an optical communication line by a simple method.

現在、FTTH(Fiber To The Home)を低価格で導入するために、局内に接地された1つのOLT(Optical Line Terminal)を多数のユーザで共有する光PDS(Passive Double Star)システムが提案されている。図4は、この光PDSシステムの概要構成を示す図である。図4において、伝送装置10に接続される基幹光線路22の途中に光スプリッタ28を設け、この光スプリッタ28によって基幹光線路22を光多分岐し、さらにこの光多分岐された基幹光線路22は、局外の光スプリッタ3を介して複数の分岐光線路1a1〜1a8に光多分岐され、ユーザ(加入者)24内の各ONU(Optical Network Unit)20に接続される。 Currently, in order to introduce FTTH (Fiber To The Home) at a low price, an optical PDS (Passive Double Star) system that shares one OLT (Optical Line Terminal) grounded in the office among many users has been proposed. Yes. FIG. 4 is a diagram showing a schematic configuration of this optical PDS system. In FIG. 4, an optical splitter 28 is provided in the middle of the basic optical line 22 connected to the transmission apparatus 10, the basic optical line 22 is optically branched by the optical splitter 28, and this optically branched basic optical line 22 is further split. Are split into a plurality of branched optical lines 1a 1 to 1a 8 via an optical splitter 3 outside the office and connected to each ONU (Optical Network Unit) 20 in the user (subscriber) 24.

この光PDSシステムは、光線路媒体である光ファイバや光通信機器の異常の監視を行うために、OTDR(Optical Time Domain Reflectometer)2を用い、OTDR2からファイバセレクタ(FS)2および光カプラ18を介して基幹光線路20に監視光を出力し、各ONU20から戻った監視光を検知するようにしている。すなわち、光カプラ18から出力された監視光は、伝送装置10が伝搬する通信光とともに基幹光線路20を伝搬し、光スプリッタ3および分岐光線路1a1〜1a8を介して各ONU20に到達し、監視光のみが反射されてOTDR2に戻り、この戻った監視光を測定することによって分岐光線路1a1〜1a8の異常の監視を行う。 This optical PDS system uses an OTDR (Optical Time Domain Reflectometer) 2 to monitor an abnormality of an optical fiber or an optical communication device as an optical line medium, and a fiber selector (FS) 2 and an optical coupler 18 from the OTDR 2. The monitoring light is output to the trunk optical line 20 via the optical line 20 and the monitoring light returned from each ONU 20 is detected. That is, the monitoring light output from the optical coupler 18 propagates along the backbone optical line 20 together with the communication light propagated by the transmission apparatus 10 and reaches each ONU 20 via the optical splitter 3 and the branched optical lines 1a 1 to 1a 8. returns to the monitoring light only is reflected OTDR 2, to monitor the abnormality of the branch optical 1a 1 to 1A 8 by measuring the back monitoring light.

この監視方式としては、たとえば、分岐光線路1a1〜1a8の長さを各分岐光線路1a1〜1a8毎に異なる長さに設定し、各ONU202とOTDR2との間の光線路長が異なるようにし、予め各分岐光線路1a1〜1a8毎に、正常時における監視光の戻り光の遅延時間などの測定データを求めておき、監視時における監視光の戻り光の測定データとの比較を行うことによって、異常のあった分岐光線路1a1〜1a8を特定するようにしている(非特許文献1参照)。この場合、監視光は単一波長を用いる。 As the monitoring method, for example, the length of the branch optical 1a 1 to 1A 8 set to different lengths for each branch optical 1a 1 to 1A 8, the optical path length between each ONU202 and OTDR2 is The measurement data such as the delay time of the return light of the monitoring light in the normal state is obtained for each of the branched optical lines 1a 1 to 1a 8 in advance, and the measurement data of the return light of the monitoring light at the time of monitoring is obtained. By performing the comparison, the branched optical lines 1a 1 to 1a 8 having an abnormality are specified (see Non-Patent Document 1). In this case, the monitoring light uses a single wavelength.

また、各分岐光線路1a1〜1a8毎に異なる監視光波長を割り付けて、OTDR2が可変波長を出力できるようにし、OTDR2が監視光の反射光量の増減を監視することによって各分岐光線路1a1〜1a8の異常を検知し、異常のあった各分岐光線路1a1〜1a8を監視光の波長によって特定するようにしている(非特許文献2参照)。 Further, a different monitoring light wavelength is assigned to each of the branched light lines 1a 1 to 1a 8 so that the OTDR 2 can output a variable wavelength, and the OTDR 2 monitors the increase or decrease in the amount of reflected light of the monitoring light, so Abnormalities 1 to 1a 8 are detected, and each of the branched optical lines 1a 1 to 1a 8 having an abnormality is specified by the wavelength of the monitoring light (see Non-Patent Document 2).

さらに、異なる波長の監視光を各分岐光線路1a1〜1a8に分岐するのではなく、波長ルーティングによって対応する各分岐光線路1a1〜1a8のみに監視光を分波するものがある(非特許文献3参照)。この波長ルーティング方式の監視を行うためには、光スプリッタ3に代えて、図5に示す光線路監視用デバイス103を設ける必要がある。 Further, instead of branching the monitoring light of different wavelengths to the respective branch optical lines 1a 1 to 1a 8 , there is one that demultiplexes the monitor light only to the corresponding branch optical lines 1a 1 to 1a 8 by wavelength routing ( Non-Patent Document 3). In order to perform monitoring of this wavelength routing method, it is necessary to provide an optical line monitoring device 103 shown in FIG.

この光線路監視用デバイス103は、まず光フィルタ130によって、入力された波長λaの通信光と、波長λc1〜λcnの監視光とを分波し、アレイ導波路回折格子型の回路110の通信光入力部131からの通信光を入力し、監視光入力部132から監視光を入力する。通信光を透過し監視光を反射するフィルタ137を介して通信光は透過し、通信光入力導波路142を通ってスラブ導波路133に入射し、スラブ導波路133で広がって、各光出力導波路136に入射し、その出力端からそれぞれ出射する。 The optical line monitoring device 103, the optical filter 130 first, and the wavelength λa of the communication light inputted demultiplexes the monitor light having a wavelength λc 1 ~λc n, the circuit 110 of the arrayed waveguide grating The communication light from the communication light input unit 131 is input, and the monitoring light is input from the monitoring light input unit 132. The communication light is transmitted through the filter 137 that transmits the communication light and reflects the monitoring light, enters the slab waveguide 133 through the communication light input waveguide 142, spreads in the slab waveguide 133, and is transmitted to each light output guide. The light enters the waveguide 136 and exits from its output end.

一方、監視光は、監視光入力導波路143を通ってスラブ導波路133に入射し、スラブ導波路133の回折効果によって広がって、アレイ導波路134に入射し、フィルタ37で反射することによってアレイ導波路134を往復伝搬し、再びスラブ導波路133を通って、波長毎に分波され、波長毎に異なる光出力導波路136から出射する。   On the other hand, the monitoring light enters the slab waveguide 133 through the monitoring light input waveguide 143, spreads by the diffraction effect of the slab waveguide 133, enters the arrayed waveguide 134, and is reflected by the filter 37. The light propagates back and forth in the waveguide 134, passes through the slab waveguide 133 again, is demultiplexed for each wavelength, and is emitted from a different light output waveguide 136 for each wavelength.

「分岐形光線路の1.6μm帯故障切り分け試験技術」山本他、1994年電子情報通信学会秋季大会B−846"1.6 μm band fault isolation test technology for branched optical lines" Yamamoto et al., 1994 IEICE Autumn Meeting B-846 「PDS線路における障害監視方式に関する検討」伊藤他、1996年電子情報通信学会総合大会B−1073"Study on fault monitoring method in PDS line" Ito et al., 1996 IEICE General Conference B-1073 「試験波長割当法による分岐光線路の個別損失分布測定」田中他、平成8年電気学会電子・情報・システム部門大会A−9−4"Individual loss distribution measurement of branched optical lines by test wavelength allocation method" Tanaka et al., 1996 IEEJ Electronics, Information and Systems Conference A-9-4

しかしながら、非特許文献1に記載された光分岐線路監視システムでは、各分岐光線路が敷設時に予め異なる長さにする設計を行う必要があり、この設計作業に時間と労力とがかかるという問題点があった。   However, in the optical branch line monitoring system described in Non-Patent Document 1, it is necessary to design each branch optical line to have a different length at the time of laying, and this design work takes time and labor. was there.

また、非特許文献2に記載された光分岐線路監視システムでは、監視光が全てのONUに分岐されて入力されるため、自端末に対応する監視光の波長は反射できても、他端末に対応する監視光は反射することができないため、この監視光が端末側の通信装置に受光されないようにWDMフィルタなどの追加のフィルタ素子を設ける必要があり、小型化を阻害し、構成が複雑になるという問題点があった。   In the optical branch line monitoring system described in Non-Patent Document 2, since the monitoring light is branched and inputted to all ONUs, even if the wavelength of the monitoring light corresponding to the own terminal can be reflected, Since the corresponding monitoring light cannot be reflected, it is necessary to provide an additional filter element such as a WDM filter so that the monitoring light is not received by the communication device on the terminal side, which hinders downsizing and makes the configuration complicated. There was a problem of becoming.

さらに、非特許文献3に記載された光分岐線路監視システムでは、監視光のルーティングが行われるため、追加のフィルタ素子は必要ないが、光スプリッタに、このルーティングを行うための波長分離機能を搭載する必要があり、光スプリッタの小型化を阻害するという問題点があった。特に、この光スプリッタを収納する屋外のクロージャートレイでは収納困難となってしまい、このクロージャートレイと波長分離機能をもつ回路とを合わせて交換する必要があり、交換にかかる時間と労力とがかかるという問題点があった。   Furthermore, in the optical branch line monitoring system described in Non-Patent Document 3, since the monitoring light is routed, no additional filter element is required, but the optical splitter has a wavelength separation function for performing this routing. There is a problem that miniaturization of the optical splitter is hindered. In particular, the outdoor closure tray that houses the optical splitter becomes difficult to store, and it is necessary to replace the closure tray and the circuit having the wavelength separation function together, which takes time and labor for the replacement. There was a problem.

この発明は、上記に鑑みてなされたものであって、光多分岐通信システムの大幅な変更を加えることなく、簡易かつ的確に分岐光線路の障害を検知し特定することができる光分岐線路監視システムを提供することを目的とする。   The present invention has been made in view of the above, and it is possible to easily and accurately detect and identify a failure in a branched optical line without making a significant change in the optical multi-branch communication system. The purpose is to provide a system.

上述した課題を解決し、目的を達成するために、この発明は、親局装置と複数の子局装置とが光スプリッタによって光多分岐接続された光多分岐通信システムの各分岐線路を監視する光分岐線路監視システムにおいて、各子局装置は、各子局装置固有に割り当てられた固有の監視波長光を反射する反射フィルタを備え、前記親局装置は、前記反射フィルタの入力端における各監視波長光の強度が各子局装置の最小受信強度未満となるように各監視波長光を出射する出力制御手段を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention monitors each branch line of an optical multi-branch communication system in which a master station device and a plurality of slave station devices are connected by an optical splitter. In the optical branch line monitoring system, each slave station device includes a reflection filter that reflects light having a unique monitoring wavelength allocated to each slave station device, and the master station device monitors each monitor at the input end of the reflection filter. Output control means for emitting each monitor wavelength light is provided so that the intensity of the wavelength light is less than the minimum reception intensity of each slave station device.

また、この発明は、上記の発明において、前記親局装置は、前記反射フィルタから反射された監視波長光をフォトンカウンティング方式を用いて検出することを特徴とする。   In addition, according to the present invention, in the above invention, the master station device detects the monitoring wavelength light reflected from the reflection filter using a photon counting method.

また、この発明は、上記の発明において、前記反射フィルタは、ファイバブラッググレーティングであることを特徴とする。   In the present invention according to the present invention, the reflection filter is a fiber Bragg grating.

また、この発明は、上記の発明において、監視波長および各反射フィルタの反射波長は、1625nmから1675nmの範囲内であることを特徴とする。   In the present invention, the monitoring wavelength and the reflection wavelength of each reflection filter are in the range of 1625 nm to 1675 nm.

この発明によれば、親局装置の出力制御手段が、反射フィルタの入力端における各監視波長光の強度が各子局装置の最小受信強度未満となるように各監視波長光を出射するようにしているので、子局装置側の通信に影響を及ぼさず、かつ簡易な構成で、分岐光線路の監視を行うことができるという効果を奏する。   According to this invention, the output control means of the master station apparatus emits each monitor wavelength light so that the intensity of each monitor wavelength light at the input end of the reflection filter is less than the minimum reception intensity of each slave station apparatus. Therefore, there is an effect that the branch optical line can be monitored with a simple configuration without affecting the communication on the slave station side.

以下に、図面を参照して、この発明にかかる光分岐線路監視システムの実施の形態について説明する。   Embodiments of an optical branch line monitoring system according to the present invention will be described below with reference to the drawings.

図1は、この発明の実施の形態である光分岐線路監視システムの概要構成を示す図である。この光分岐線路監視システムは、伝送装置10に幹線光線路22が接続され、この幹線光線路22は、光スプリッタ28によって光多分岐され、複数の幹線光線路22に分岐される。この分岐された幹線光線路22は、光カプラ18を介して局外に延び、屋外の光スプリッタ3によって各分岐光線路1a1〜1a8に光多分岐される。光多分岐された各分岐光線路1a1〜1a8はユーザ24内の各ONU20に接続される。 FIG. 1 is a diagram showing a schematic configuration of an optical branch line monitoring system according to an embodiment of the present invention. In this optical branch line monitoring system, a trunk optical line 22 is connected to the transmission apparatus 10, and the trunk optical line 22 is optically branched by an optical splitter 28 and branched into a plurality of trunk optical lines 22. The branched main optical line 22 extends outside the station via the optical coupler 18 and is branched into multiple branched optical lines 1a 1 to 1a 8 by the outdoor optical splitter 3. Each of the branched optical lines 1a 1 to 1a 8 subjected to optical multi-branching is connected to each ONU 20 in the user 24.

制御部26は、OTDR2が出力する可変波長の監視光の出力制御を行い、FSに出力するとともに、受信計測の制御をも行う。OTDR2は、この制御部26およびFS25を介して光カプラ18に接続される。   The control unit 26 performs output control of the monitoring light of the variable wavelength output from the OTDR 2 and outputs it to the FS and also controls reception measurement. The OTDR 2 is connected to the optical coupler 18 via the control unit 26 and the FS 25.

各ONU20は、各ONU20固有の監視光波長が割り当てられ、各ONU20内にはそれぞれ固有波長の監視光を反射するFBG(Fiber Bragg Grating)20−1〜20−8が設けられている。   Each ONU 20 is assigned a monitoring light wavelength unique to each ONU 20, and FBGs (Fiber Bragg Grating) 20-1 to 20-8 are provided in each ONU 20 to reflect the monitoring light having a specific wavelength.

制御部26は、監視すべき波長λc1〜λc8の監視光を周期的に出射させ、光カプラ18を介して幹線光線路22に出力される。この際、FS25は、出力すべき幹線光線路22を選択する。光カプラ18において、伝送装置10から伝搬した波長λbの通信光は、たとえば波長λc1の監視光とともに光スプリッタ3に入力され、各分岐光線路1a1〜1a8に光多分岐され、各ONU20に達する。すなわち、図2に示すように、波長λc1の監視光は、FBG20−1のみによって反射され、波長λbの通信光は、すべてのONU20で受信される。しかし、FBG20−3は、波長λc 1 を反射せずに、光受信部31−3で受信され、O/E部によって光/電気変換され、受信処理部33−3側に入力される。この波長λc 1 に対応する信号が受信されると、通信エラーなどが生じ、通信に影響を及ぼすことになる。 The control unit 26 periodically emits monitoring light having wavelengths λc 1 to λc 8 to be monitored, and outputs the monitoring light to the trunk optical line 22 via the optical coupler 18. At this time, the FS 25 selects the trunk optical line 22 to be output. In the optical coupler 18, the communication light of wavelength λb propagating from the transmission device 10, for example, is input to the optical splitter 3 with monitoring light of wavelength [lambda] c 1, are light multi-branching in each branch optical 1a 1 to 1A 8, each ONU20 Reach. That is, as shown in FIG. 2, the monitoring light having the wavelength λc 1 is reflected only by the FBG 20-1, and the communication light having the wavelength λb is received by all the ONUs 20. However, FBG20-3, without reflection wavelength [lambda] c 1, is received by the optical receiver 31-3 are optical / electrical conversion by O / E section, it is input to the reception processing section 33-3 side. When a signal corresponding to this wavelength λc 1 is received, a communication error or the like occurs, affecting communication.

そこで、この実施の形態では、監視光の受光強度が、光受信部31−1〜31−8における最小受信感度未満となるように、OTDR2から出射される監視光強度を調整している。図3は、具体的な監視光強度の減衰を示す図である。図3に示すように、OTDR2からカプラ18までの間の接続損失が2dB、光カプラ18における分岐損失が8dB、光カプラ18からスプリッタ3までの伝送損失を5dB、光スプリッタ3における分岐損失10dBとすると、OTDR2からONU20までの間の損失は、25dBとなる。ここで、ONU20の最小受信感度を−30dBmとすると、OTDR2から―5dBm未満の監視光が出力されればよい。この実施の形態では、OTDR2から−10dBmの監視光を出力し、最終的なONU20端では、−35dBmの入力となる。したがって、この−35dBmの受信入力は、最小受信感度−30dBm未満であるので、この監視光の光受信部において受信されず、通信に影響を及ぼすことがない。なお、監視光はパルスで送出される。また、波長λaの通信光は、ONU20から伝送装置10側に送出されるものである。   Therefore, in this embodiment, the monitoring light intensity emitted from the OTDR 2 is adjusted so that the received light intensity of the monitoring light is less than the minimum receiving sensitivity in the light receiving units 31-1 to 31-8. FIG. 3 is a diagram illustrating specific attenuation of the monitoring light intensity. As shown in FIG. 3, the connection loss from the OTDR 2 to the coupler 18 is 2 dB, the branch loss in the optical coupler 18 is 8 dB, the transmission loss from the optical coupler 18 to the splitter 3 is 5 dB, and the branch loss in the optical splitter 3 is 10 dB. Then, the loss between OTDR2 and ONU20 is 25 dB. Here, if the minimum receiving sensitivity of the ONU 20 is −30 dBm, it is only necessary to output monitoring light of less than −5 dBm from OTDR2. In this embodiment, -10 dBm monitoring light is output from the OTDR 2, and at the final ONU 20 end, −35 dBm is input. Accordingly, since the reception input of −35 dBm is less than the minimum reception sensitivity of −30 dBm, it is not received by the optical reception unit of the monitoring light and does not affect communication. Note that the monitoring light is transmitted in pulses. The communication light having the wavelength λa is transmitted from the ONU 20 to the transmission apparatus 10 side.

ここで、各FBG20−1〜20−8からの反射戻り光である監視光強度は小さくなるため、OTDR2は、フォトンカウンティング方式を用いて監視光を検出することが好ましい。これによって、高感度の光測定を行うことができ、詳細な光測定波形を求めることができる。   Here, since the monitoring light intensity that is the reflected return light from each of the FBGs 20-1 to 20-8 becomes small, the OTDR 2 preferably detects the monitoring light using a photon counting method. Thereby, highly sensitive light measurement can be performed, and a detailed light measurement waveform can be obtained.

なお、FBG20−1〜20−8は、光コネクタ30−1〜30−8内に収まり、しかも光ファイバ内に形成されるため、ONU20の小型化を維持することができるとともに、低コスト化を図ることができる。   Since the FBGs 20-1 to 20-8 can be accommodated in the optical connectors 30-1 to 30-8 and formed in the optical fiber, the ONU 20 can be reduced in size and cost can be reduced. Can be planned.

さらに、監視光の波長を1625nm〜1675nmとすることで、国際標準に準拠した監視光波長とすることでき、システム構成部品の標準化が容易となり、コストダウンを容易に行うことができる。   Furthermore, by setting the wavelength of the monitoring light to 1625 nm to 1675 nm, the monitoring light wavelength conforming to the international standard can be obtained, the standardization of the system components can be facilitated, and the cost can be easily reduced.

この発明の実施の形態である光分岐線路監視システムの概要構成を示す図である。It is a figure which shows schematic structure of the optical branch line monitoring system which is embodiment of this invention. ONU側における監視光と通信光との伝送状態を示す図である。It is a figure which shows the transmission state of the monitoring light and communication light in the ONU side. 監視光の損失変化を示す図である。It is a figure which shows the loss change of monitoring light. 従来の光分岐線路監視システムの概要構成を示す図である。It is a figure which shows schematic structure of the conventional optical branch line monitoring system. 監視光の波長分離機能を有した光スプリッタの構成を示す図である。It is a figure which shows the structure of the optical splitter which has the wavelength separation function of monitoring light.

符号の説明Explanation of symbols

1a1〜1a8 分岐光線路
2 OTDR
3,28 光スプリッタ
10 伝送装置
18 光カプラ
20 ONU
20−1〜20−8 FBG
22 基幹光線路
24 ユーザ
25 ファイバセレクタ(FS)
26 制御部
30−1,30−3 光コネクタ
31−1,31−3 光受信部
32−1,32−3 O/E部
33−1,33−3 受信処理部
λa,λb 通信光の波長
λc1〜λc8 監視光の波長
1a 1 to 1a 8 branch optical line 2 OTDR
3,28 Optical splitter 10 Transmission device 18 Optical coupler 20 ONU
20-1 to 20-8 FBG
22 Basic optical line 24 User 25 Fiber selector (FS)
26 Control unit 30-1, 30-3 Optical connector 31-1, 31-3 Optical receiving unit 32-1, 32-3 O / E unit 33-1, 33-3 Reception processing unit λa, λb Wavelength of communication light λc 1 to λc 8 monitoring light wavelength

Claims (3)

親局装置と複数の子局装置とが光スプリッタによって光多分岐接続された光多分岐通信システムの各分岐線路を監視する光分岐線路監視システムにおいて、
各子局装置は、各子局装置固有に割り当てられた固有の監視波長光を反射する反射フィルタを備え、
前記親局装置は、前記反射フィルタの入力端における各監視波長光の強度が各子局装置の最小受信強度未満となるように各監視波長光を予め設定した出力で出射するとともに、前記反射フィルタから反射された監視波長光をフォトンカウンティング方式を用いて検出することを特徴とする光分岐線路監視システム。
In an optical branch line monitoring system for monitoring each branch line of an optical multi-branch communication system in which a master station device and a plurality of slave station devices are optically multi-branched connected by an optical splitter,
Each slave station device includes a reflection filter that reflects light having a unique monitoring wavelength assigned to each slave station device.
The master station device emits each monitor wavelength light with a preset output so that the intensity of each monitor wavelength light at the input end of the reflection filter is less than the minimum reception intensity of each slave station device, and the reflection filter An optical branch line monitoring system for detecting a monitoring wavelength light reflected from a light using a photon counting method .
前記反射フィルタは、ファイバブラッググレーティングであることを特徴とする請求項に記載の光分岐線路監視システム。 The optical branch line monitoring system according to claim 1 , wherein the reflection filter is a fiber Bragg grating. 監視波長および各反射フィルタの反射波長は、1625nmから1675nmの範囲内であることを特徴とする請求項1または2に記載の光分岐線路監視システム。 The optical branch line monitoring system according to claim 1 or 2 , wherein the monitoring wavelength and the reflection wavelength of each reflection filter are in the range of 1625 nm to 1675 nm.
JP2003434188A 2003-12-26 2003-12-26 Optical branch line monitoring system Expired - Fee Related JP4383162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003434188A JP4383162B2 (en) 2003-12-26 2003-12-26 Optical branch line monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003434188A JP4383162B2 (en) 2003-12-26 2003-12-26 Optical branch line monitoring system

Publications (2)

Publication Number Publication Date
JP2005192138A JP2005192138A (en) 2005-07-14
JP4383162B2 true JP4383162B2 (en) 2009-12-16

Family

ID=34791323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003434188A Expired - Fee Related JP4383162B2 (en) 2003-12-26 2003-12-26 Optical branch line monitoring system

Country Status (1)

Country Link
JP (1) JP4383162B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5291908B2 (en) * 2007-09-05 2013-09-18 日本電信電話株式会社 Optical line test system and optical line test method
JP2009085684A (en) * 2007-09-28 2009-04-23 Yokogawa Electric Corp Optical pulse tester
WO2010106917A1 (en) * 2009-03-16 2010-09-23 日本電気株式会社 Passive optical network system, optical line terminal, optical communication device used in monitoring, optical network unit, and communication method in passive optical network system
CN102244538B (en) * 2010-05-10 2015-06-17 华为技术有限公司 System and method for detecting sub-optical fibers, ODN (optical distribution network) and optical splitter
JP2014003439A (en) * 2012-06-18 2014-01-09 Nippon Telegr & Teleph Corp <Ntt> Optical path equipment management method and optical path equipment management system
CN104518825B (en) * 2013-09-26 2018-10-09 上海诺基亚贝尔股份有限公司 The intelligent splitter element that a kind of branch optical fiber for PON monitors

Also Published As

Publication number Publication date
JP2005192138A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
KR101657329B1 (en) Method and apparatus for fault discovery in a passive optical network(pon)
US6269204B1 (en) Method and system for monitoring of optical transmission lines
US7542673B2 (en) Fault localization apparatus for optical line in wavelength division multiplexed passive optical network
US7800744B2 (en) Detection system for identifying faults in passive optical networks
US8948589B2 (en) Apparatus and method for testing fibers in a PON
EP2623948B1 (en) Field tester for topologies utilizing array connectors and multi-wavelength field tester for topologies utilizing array connectors
Yuksel et al. Optical layer monitoring in passive optical networks (PONs): a review
CN101924590B (en) The detection system of fiber fault of passive optical network and method
US9008503B2 (en) Supervision of wavelength division multiplexed optical networks
US5579421A (en) Optical integrated circuits and methods
US8311409B2 (en) Signal switching module for optical network monitoring and fault locating
US20060110161A1 (en) Method and apparatus for monitoring optical fibers of passive optical network system
EP2726837B1 (en) Device, remote node and methods for pon supervision
US9647789B2 (en) Optical transmission device, optical transmission system, and test method for alarm function
JP5291908B2 (en) Optical line test system and optical line test method
JP4383162B2 (en) Optical branch line monitoring system
JP2009216626A (en) Fracture point detection system of passive optical line network
KR20090124437A (en) Fixed reflector for otdr and supervisory apparaus thereuse
KR20040024733A (en) Supervisory system for WDM-PON fiber using optical circulator
JP4015091B2 (en) Optical line monitoring device
JPH10327104A (en) Optical fiber fault point detector
Fathallah et al. Performance evaluation of special optical coding techniques appropriate for physical layer monitoring of access and metro optical networks
US9755735B2 (en) Optical end monitoring apparatus and method of operating the apparatus
KR101021408B1 (en) Method for Monitoring Optical Fiber Line of WDM-PON Access Network
JP4209309B2 (en) Optical line test system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees